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Abstract—We introduce a new notion of capacity, termed
spatial outage capacity (SOC), which is defined as the maxi-
mum density of concurrently active links that have a success
probability greater than a predefined threshold. For Poisson
bipolar networks, we provide exact analytical and approximate
expressions for the density of successful transmissions under each
link’s outage constraint. In the high-reliability regime, we obtain
an exact closed-form expression of the SOC, which gives the
asymptotic scaling behavior of the SOC.

Index Terms—Bipolar network, interference, Poisson point
process, SIR, spatial outage capacity, stochastic geometry

I. INTRODUCTION

A. Motivation

Stochastic geometry provides the mathematical tools to
study wireless networks where node locations are modeled
by a random point process. By spatial averaging, stochastic
geometry allows us to evaluate the statistics of the wireless
network such as interference distribution and average success
probability. In this approach, the performance evaluation is
usually done with respect to the typical user or typical link.
This approach leads to the tractable performance metrics for
the given network parameters, which in turn, allows us to
choose network parameters that optimize the network perfor-
mance.

While such a macroscopic view based on spatial averaging
is important, it does not give fine-grained information about
the network, such as the link-wise performance characterized
by the link success probability (or outage probability). Due
to random node locations, the success probability of each
link is a random variable that depends on path loss, fading,
and interferer locations. In fact, as Fig. 1 shows, for the
same average success probability, depending on the network
parameters, the distribution of link success probabilities in
a Poisson bipolar network varies significantly. Thus the link
success probability distribution is a much more comprehensive
metric than the average success probability that is usually
considered.

In this regard, we introduce a new notion of capacity, termed
spatial outage capacity (SOC). The SOC is defined as the
maximum density of concurrently active links that have a
success probability greater than a certain threshold. Thus the
definition of SOC is based on the distribution of link success
probabilities across the network.

Fig. 1. The distribution of link success probabilities in a Poisson bipolar
network obtained via Monte-Carlo simulations for p = 1/100 and p = 1.
Both cases have the same average success probability of ps = 0.9, but we
see a different distribution of link success probabilities for different values
of the pair density λ and transmit probability p. For p = 1/100, the link
success probabilities lie between 0.83 and 0.95 (concentrated around their
average), while for p = 1, they are spread more widely. The SIR threshold
θ = −10 dB, distance between a transmitter and its receiver R = 1, path
loss exponent α = 4, and λp = 1/15.

Definition 1 (Spatial outage capacity). For a stationary and

ergodic point process model, the SOC is

S(θ, x) ! sup
λ,p

λpη(θ, x), (1)

where θ ∈ R+, x ∈ (0, 1), λ > 0, and p ∈ (0, 1].

In (1), λ is the total intensity of potential transmitters, p is
the fraction of nodes that are active at a time, and η(θ, x) is
the fraction of links in each realization of the point process
that have a signal-to-interference ratio (SIR) greater than θ
with probability at least x. Due to the ergodicity of the point
process, η(θ, x) is also the probability that the typical link
has a success probability of at least x. We can further denote
the density of concurrently active links that have a success
probability greater than x as

τ(θ, x) ! λpη(θ, x), (2)

which results in

S(θ, x) = sup
λ,p

τ(θ, x). (3)



The SOC provides a useful practical measure which tells us
the maximum number of active users per unit area a wireless
network can handle at a time while guaranteeing minimum
reliability (i.e., success probability) for each active link.

B. Background

The fraction η(θ, x) in (1) is termed meta distribution of the
SIR in [1]. Given the point process, the meta distribution is the
complementary cumulative distribution function (ccdf) of the
link success probability Ps averaged only over the fading and
the medium access scheme (if random) of interferers. Hence
Ps is a random variable given as

Ps(θ) ! P(SIR > θ | Φ), (4)

where θ is the SIR threshold, and the meta distribution is given
by

η(x, θ) ! P
!t(Ps(θ) > x), (5)

where P!t denotes the reduced Palm probability, given the
presence of an active transmitter at the prescribed location,
and the SIR is calculated at its dedicated receiver. Given the
random locations of nodes, η(x, θ) is the probability that the
link under consideration has the success probability at least x.
The standard success probability follows as

ps(θ) = P(SIR > θ) = E
!t(Ps(θ)) =

∫ 1

0
η(θ, x)dx. (6)

C. Contributions

The contributions of the paper are as follows:

• We introduce a new notion of capacity—spatial outage
capacity—based on the link success probability distribu-
tion.

• For the Poisson bipolar network with ALOHA, we
evaluate the density of concurrently active successful
transmissions under the reliability constraint.

• We show the trade-off between the density of active trans-
missions and the fraction of successful transmissions.

• In the high-reliability regime where the target outage
probability is close to 0, we give a closed-form expression
of the SOC, and prove that the SOC is achieved at p = 1.

D. Related Work

For Poisson bipolar networks, the success probability of
the typical link ps is studied in [2] and [3]. The notion of
transmission capacity is introduced in [4], which is defined as
the maximum density of successful transmissions provided the
outage probability of the typical user stays below a predefined
threshold ϵ. While the results obtained in [4] are certainly
important, the transmission capacity does not represent the
actual maximum density of successful transmissions for the
target outage probability, as claimed in [4], since the metric
implicitly assumes that each link is typical. We illustrate this
through the following example.

Example 1. For Poisson bipolar networks with SIR threshold

θ = −10 dB, distance between a transmitter and its receiver
R = 1, path loss exponent α = 4, and target outage

probability ϵ = 0.1, the transmission capacity is 0.0608
(see [5, (4.15)]). At this value of transmission capacity, for
p = 1, actually only 82% of active transmissions achieve an

outage probability smaller than 0.1. On the other hand, by
considering the fraction of active nodes that meet the target

outage probability of 0.1 and optimizing over λ and p, we

obtain the actual maximum density of concurrently active
transmissions that have outage probability smaller than ϵ,
which is the SOC introduced in this paper and has a value of

0.09227.

A version of the transmission capacity that considers the
link success probability distribution is introduced in [6], but
it does not consider a medium access control (MAC) scheme,
i.e., all nodes always transmit (p = 1). Here, we consider
the general case with the transmit proabability p ∈ (0, 1].
The choice of p is important as it significantly affects the
link success probability distribution as shown in Fig. 1. Also,
the transmission capacity defined in [6] requires a certain
fraction of users to satisfy the outage constraint. Thus their
transmission capacity definition corresponds to the minimum
fraction of users that satisfy the outage constraint. Such
constraint is not required by our definition of SOC, and the
SOC corresponds to the actual density of users that satisfy the
outage constraint.

The meta distribution η(θ, x) for Poisson bipolar networks
and cellular networks is studied in [1], where a closed-form
expression for the moments of Ps is obtained, and an exact
integral expression and simple bounds for η(θ, x) are provided.
A key result in [1] is that, for constant transmitter density λp,
as the Poisson bipolar network becomes very dense (λ → ∞)
with a very small transmit probability (p → 0), all links have
the same success probability, which is same as the average
success probability ps.

II. NETWORK MODEL

We consider the Poisson bipolar network model in which
the locations of transmitters form a homogeneous Poisson
point process (PPP) Φ ⊂ R2 with density λ [7, Def. 5.8].
Each transmitter has a dedicated receiver at a distance R in
a uniformly random direction. In a time slot, each node in Φ
independently transmits at unit power with probability p and
stays silent with probability 1−p. Thus, the active transmitters
form a homogeneous PPP with density λp. We consider a
standard power law path loss model with path loss exponent α.
We assume that a channel is subject to independent Rayleigh
fading with channel power gains as i.i.d. exponential random
variables with mean 1.

We focus on the interference-limited case, where the re-
ceived SIR is a key quantity of interest. The average success
probability ps of the typical link depends on the SIR. From
[3], [7], [8], it is known that

ps(θ) = exp
(

−λpCθδ
)

, (7)

where C ! πR2Γ(1 + δ)Γ(1 − δ) with δ ! 2/α.



III. SPATIAL OUTAGE CAPACITY

A. Exact Formulation

Observe from Def. 1 that, the SOC depends on η(θ, x) =
P(Ps(θ) > x | Φ). Let Mb(θ) denote the bth moment of Ps(θ),
i.e.,

Mb(θ) ! E
(

(Ps(θ))
b
)

. (8)

Then the average success probability is ps(θ) ≡ M1(θ).
From [1, Thm. 1], we can express Mb(θ) as

Mb(θ) = exp
(

−λCθδDb(p, δ)
)

, b ∈ C, (9)

where

Db(p, δ) !
∞∑

k=1

(
b

k

)(
δ − 1

k − 1

)

pk, p, δ ∈ (0, 1], (10)

which is termed diversity polynomial in [9]. For b = 1 (first
moment), D1(p, δ) = p, and we get the expression of ps(θ)
as in (7). We can also express Db(p, δ) using the Gaussian
hypergeometric function 2F1 as

Db(p, δ) = pb 2F1(1 − b, 1− δ; 2; p). (11)

Using the Gil-Pelaez theorem [10], the exact expression of
τ(θ, x) = λpη(θ, x) can be obtained in integral form from
that of η(θ, x) given in [1, Cor. 3] as follows.

τ(θ, x) =
λp

2
−

λp

π

∞∫

0

sin(u log x+ λCθδℑ(Dju))

ueλCθδℜ(Dju)
du, (12)

where j !
√
−1, Dju = Dju(p, δ) is given by (10), while

ℜ(z) and ℑ(z) are the real and imaginary parts of the complex
number z, respectively. Note that the SOC is obtained by
maximizing (12) over λ and p.

B. Approximation with Beta Distribution

We can accurately approximate (12) in a semi-closed form
using beta distribution, which is indeed a good approximation
(and a simple one) as shown in [1]. The rationale behind
such approximation is that the support of the link success
probability Ps is [0, 1], making the beta distribution a natural
choice. With the beta distribution approximation, from [1, Sec.
II.F], τ is approximated as

τ ≈ λp

(

1− Ix

(
µβ

1− µ
,β

))

, (13)

where Ix(y, z) !
∫ x
0 ty−1(1 − t)z−1dt/B(y, z) is the reg-

ularized incomplete beta function with B(·, ·) denoting beta
function, µ = M1, and β = (M1−M2)(1−M1)/(M2−M2

1 ).
The advantage of the beta approximation is the faster

computation of τ compared to the exact expression without
losing much accuracy [1, Tab. I, Fig. 4] (also see Fig. 6
of this paper). In general, it is difficult to obtain the SOC
analytically due to the form of τ given in (12) and (13). But
we can obtain the SOC numerically with ease. We can also
gain useful insights considering some specific scenarios, on
which we focus in following three subsections of the paper.

C. Constrained SOC

1) Constant λp: For constant λp (or, equivalently, a ps),
we now study how the density of successful transmissions τ
with reliability constraint x behaves in an ultra-dense network.
Given θ, R, α, and x, this case is equivalent to asking how τ
varies as λ → ∞ while letting p → 0 for constant transmitter
density λp (constant ps).

Theorem 1 (p → 0 for constant λp). Let ν = λp. Then, for

constant ν while letting p → 0, the SOC constrained on the

density of concurrent transmissions is

Sν =

{

λp, if x < ps
0, if x > ps.

(14)

Proof: Applying Chebyshev’s inequality to (5), for x <
ps = M1, we have

η(θ, x) > 1−
var(Ps(θ))

(x−M1)2
, (15)

where var(Ps(θ)) = M2 − M2
1 . From [1, Cor. 1], we know

that var(Ps(θ)) → 0 as p → 0 for constant ν. Thus the lower
bound in (15) approaches 1, leading to η(θ, x) = 1, in turn,
resulting in the SOC constrained on the density of concurrent
transmissions, which is equal to Sν = λp.

On the other hand, for x > M1,

η(θ, x) ≤
var(Ps(θ))

(x−M1)2
. (16)

As we let p → 0 for constant ν, the upper bound in (16)
approaches 0, leading to η(θ, x) = 0, in turn, resulting in the
SOC constrained on the density of concurrent transmissions,
which is equal to Sν = 0.

In fact, as var(Ps(θ)) → 0, the cdf (in turn ccdf) of Ps(θ)
approaches a step function, and η(θ, x) (i.e., ccdf of Ps(θ))
leaps from 1 to 0 at the mean of Ps(θ), i.e., ps. This behavior
justifies (14).

2) λp → 0: For λp → 0, τ increases linearly, which we
prove in the next theorem.

Theorem 2 (τ as λp → 0). As λp → 0,

τ ∼ λp, λp → 0. (17)

Proof: As λp → 0, the mean M1 = ps approaches
1. Thus the variance of Ps approaches 0 as var(Ps) =
M2

1 (M
p(δ−1)
1 − 1). Since x ∈ (0, 1), x < M1 as λp → 0.

Using Chebyshev’s inequality for x < M1 as in (15) and
substituting var(Ps) = 0 in it, the lower bound in (15)
approaches 1, leading to η(θ, x) = 1. Thus, τ ∼ λp as λp → 0,
having slope 1 with respect to λp.

Remark 1. The case λp → 0 can be interpreted in two ways:
1) λ → 0 for constant p and 2) p → 0 for constant λ. Thm. 2

is valid for both cases.

Thm. 2 can be understood as follows. As λp → 0,
the density of active transmitters is very small. Thus each
transmission succeeds with high probability, and η is 1 in
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Fig. 2. The density of successful transmissions τ as depicted in (2) for
different values of transmit probability p for θ = −10 dB, R = 1, α = 4,
and x = 0.9. Observe that the slope of τ is one for small λp.

this regime, increasing the density of successful transmissions
linearly with λp.

Remark 2. As p gets smaller, the probability that a node

makes a transmission attempt in a slot reduces, increasing the
delay. Since the mean delay is larger than 1/p, it would get

large for small values of p. Thus, a delay constraint prohibits

p from getting too small. The case of constant p is relevant
since it can be interpreted as a delay constraint.

Fig. 2 illustrates Thm. 2. Also, observe that, as p → 0 (p =
10−5 in Fig. 2), τ increases linearly with λp till the product
λp reaches to the value that corresponds to ps = x = 0.9, and
then leaps to 0. This behavior is in accordance with Thm. 1. In
general, as λp increases, τ increases first and then decreases
after a tipping point. This is due to the two opposite effects
of λp on τ . Because of the term λp in the expression of τ
(see (2)), the increase in λp increases τ first, but contributes to
more interference at the same time, which reduces the fraction
η(θ, x) of links that have reliability at least x, thereby reducing
τ .

The contour plot Fig. 3 visualizes the trade-off between
λp and η(θ, x). The contour curves for small products λp
run nearly parallel to those for τ , indicating that η(θ, x) is
close to 1. Contrary, for large values of λp, the decrease
in η(θ, x) dominates τ . Specifically the contour curves for
λp = 0.01 and λp = 0.02 match almost exactly with those
for τ = 0.01 and τ = 0.02, respectively. This behavior is in
accordance with Thm. 2. Also, notice that, for larger values
of λ (λ > 0.4 for Fig. 3), τ , i.e., the density of successful
transmissions under the reliability constraint, first increases
and then decreases with the increase in p. This behavior is
due to the following trade-off in p. For a small p, there are
few active transmitters in the network per unit area, but a
higher fraction of transmissions are successful. On the other
hand, a larger p means more active transmitters per unit area,
but also a higher interference which reduces the fraction of

0.01

0.02

0.09
0.080.07

0.060.05

0.04

0.04

0.03

0.03

0.02
0.01

0.01 0.02

0.05

0.1

0.2 0.4 0.6

0.8

1
1.2

1.4
1.6

1.8

0 0.2 0.4 0.6 0.8 1
p

0.5

1

1.5

2

SOC point

Fig. 3. Counter plots of τ and the product λp for θ = −10 dB, R = 1,α =
4, and x = 0.9. The solid lines represent the contour curves for τ and the
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“red” indicate the contour levels for τ and λp, respectively. The “SOC point”
corresponds to the supremum of τ , and gives the SOC equal to S = 0.09227.
The values of λ and p at the SOC point are 0.23 and 1, respectively, and the
corresponding average success probability is ps = 0.6984.
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Fig. 4. Three-dimensional plot of τ corresponding to the contour plot Fig. 3.

successful transmissions. For small λ (λ < 0.4), the increase
in the density of active transmitters dominates the increase
in interference, and τ increases monotonically with p. An
interesting observation in Fig. 3 is that the average success
probability ps at the SOC point is 0.6984 for 90% reliability.
The three-dimensional plot corresponding to the contour plot
Fig. 3 is shown in Fig. 4.

D. High-reliability Regime

In the high-reliability regime, the reliability threshold is
x → 1. In terms of the outage probability, the outage
probability ϵ = 1− x of a link is close to 0, i.e., ϵ → 0.

In this section, we investigate the behavior of τ and SOC
in the high-reliability regime. In this regard, we first state a
simplified version of de Bruijn’s Tauberian theorem (see [11,
Thm. 4.12.9]) which allows a convenient formulation of
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Fig. 5. The solid lines represent the exact Db(p, δ) as in (10), while the
dashed lines represent asymptotic form of Db(p, δ) as in (21). Observe
that (21) is a good approximation of (10) and is asymptotically tight.

η(θ, 1 − ϵ) = P(Ps(θ) > 1 − ϵ) as ϵ → 0, in terms of
the Laplace transform. The following simplified version of de
Bruijn’s Tauberian theorem suffices for our purposes.

Theorem 3 (de Bruijn’s Tauberian theorem [12, Thm. 1]).
For a non-negative random variable Y , the Laplace transform

E[exp(−sY )] ∼ exp(rsu) for s → ∞ is equivalent to P(Y ≤
ϵ) ∼ exp(q/ϵv) for ϵ → 0, when 1/u = 1/v+1 (for u ∈ (0, 1)
and v > 0), and the constants r and q are related as |ur|1/u =
|vq|1/v .

Theorem 4. For ϵ → 0, the density of successful transmissions

τ(θ, 1 − ϵ) is asymptotically equal to

τ(θ, 1−ϵ) ∼ λp exp

(

−
(
θp

ϵ

)κ (δλC ′)
κ
δ

κ

)

, ϵ → 0, (18)

where κ = δ
1−δ = 2

α−2 and C′ = πR2Γ(1− δ).

Proof: From (2) and (5),

τ(θ, 1 − ϵ) = λpP(Ps(θ) > 1− ϵ). (19)

Using Thm. 3, we first prove that

P(Ps(θ) > 1− ϵ) ∼ exp

(

−
(
θp

ϵ

)κ (δλC ′)
κ
δ

κ

)

, ϵ → 0,

(20)

which gives the desired result in (18). Note that for b ∈ R,

Db(p, δ) ∼ pδbδ/Γ(1 + δ), b → ∞, (21)

where Db(p, δ) is given by (10). In Fig. 5, we illustrate how
quickly Db approaches the asymptote.

Let Y = − logPs. The Laplace transform of Y is
E(exp(−sY )) = E(P s

s ) = Ms. Here, Ms is the sth moment
of Ps given by (8). Using (9) and (21), we have

Ms ∼ exp

(

−
λC(θp)δsδ

Γ(1 + δ)

)

, s → ∞.
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Fig. 6. The solid line with marker ‘o’ represents the exact expression of τ
as in (12), the dotted line represents the asymptotic expression of τ given by
(18) as ϵ → 0, and the dashed line represents the approximation by the beta
distribution given by (13). Observe that (18) is asymptotically tight, while
the beta approximation is good. θ = 0 dB, R = 1,α = 4, λ = 1/2, and
p = 1/3.

From Thm. 3, we have r = −λC(θp)δ

Γ(1+δ) , u = δ, v = δ/(1−δ) =
κ, and thus

q =
1

κ
(δλC ′)

κ
δ (θp)κ,

where C′ = πR2Γ(1− δ).
Using Thm. 3, we can now write

P(Y ≤ ϵ) = P(Ps(θ) ≥ exp(−ϵ))

∼ exp

(

−
(θp)κ (δλC ′)

κ
δ

κϵκ

)

, ϵ → 0,

which equals (20) since exp(−ϵ) ∼ 1 − ϵ as ϵ → 0, and the
desired result in (18) follows from (19).

For the special case of p = 1 (all transmitters are active),
P(Ps(θ) ≥ 1− ϵ) as in (18) simplifies to

P(Ps(θ) ≥ 1− ϵ) ∼ exp

(

−
(

δλC ′θδ
)κ

δ

κϵκ

)

, ϵ → 0,

which is in agreement with [6, Thm. 2], which was derived
in a less direct way than Thm. 4. Fig. 6 shows the tightness
of (18) in the high-reliability regime and also the accuracy of
the beta approximation given by (13).

We now investigate the scaling of S(θ, 1 − ϵ) in the high-
reliability regime.

Corollary 1 (SOC in high-reliability regime). For ϵ → 0, the

SOC is asymptotically equal to

S(θ, 1 − ϵ) ∼
( ϵ

δθ

)δ exp (−(1− δ))

πR2Γ(1 − δ)
, (22)

and it is achieved at p = 1.

Proof: Let us denote

ξ(θ, ϵ) =

(
θ

ϵ

)κ (δC′)κ/δ

κ
.



From (18), we can then write

τ(θ, 1 − ϵ) ∼ λp exp
(

−λκ/δpκξ(θ, ϵ)
)

, ϵ → 0.

Thus we have

S(θ, 1− ϵ) ∼ sup
λ,p

f(λ, p), ϵ → 0,

where f(λ, p) = λp exp(−λκ/δpκξ(θ, ϵ)). First, fix p ∈ (0, 1].
As ϵ → 0, we can then write

∂f

∂λ
= p exp

(

−λκ/δpκξ(θ, ϵ)
)

︸ ︷︷ ︸

>0

[

1−
κξ(θ, ϵ)

δ
λκ/δpκ

]

.

Setting ∂f
∂λ = 0, we obtain the critical point as

λ0 =

(
δ

ξ(θ, ϵ)κpκ

)δ/κ

.

Note that, for fixed p, f is strictly increasing for λ ∈ (0,λ0]
and strictly decreasing for λ > λ0. Hence we have

S(θ, 1− ϵ) ∼ sup
p

f(λ0, p), ϵ → 0,

= sup
p

p1−δ

(
δ

κξ(θ, ϵ)

)δ/κ

exp

(

−
δ

κ

)

.

Observe that f(λ0, p) monotonically increases with p, and thus
attains the maximum at p = 1. Thus the SOC is achieved at
p = 1 and is given by (22) after simplification.

Remark 3. From Cor. 1, we observe that, as ϵ → 0, the

exponents of θ and ϵ are the same. In the high-reliability

regime, the SOC scales in ϵ similar to the transmission
capacity defined in [6], while the transmission capacity defined

in [4] scales linearly in ϵ (see [5, (4.29)]).

For α = 4, the expression of SOC in (22) simplifies to

S(θ, 1− ϵ) ∼
(
2ϵ

θe

) 1

2 1

π
3

2R2
.

For α = 4, Fig. 7 plots τ versus λ and p for x = 0.993 (high-
reliability regime). In this case, the SOC is achieved at p = 1
which is in accordance with Cor. 1.

IV. CONCLUSIONS

The first main contribution is a new notion of capacity,
termed spatial outage capacity (SOC), which is the maximum
density of concurrently active intermissions while ensuring
a certain reliability. The SOC gives fine-grained information
about the network compared to the transmission capacity
whose framework is based on the average success probability.
The SOC has applications in wireless networks with strict
reliability constraints.

Secondly, for Poisson bipolar networks with ALOHA, we
have obtained an exact analytical expression and a simple
approximation for the density τ of concurrently active links
that have a success probability greater than a certain threshold.
The SOC can be easily calculated numerically as the supre-
mum of τ obtained by optimizing over the density λ and the
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Fig. 7. Three-dimensional plot of τ for x = 0.993, θ = −10 dB, R = 1,
and α = 4. Observe that p = 1 achieves the SOC. The average success
probability ps at the SOC point is 0.8964.

transmit probability p. When constrained on the density of
concurrent transmissions, i.e., for constant λp, while letting
p → 0, the supremum of τ is equal to the product λp if
the reliability threshold is smaller than the average success
probability and zero if the reliability threshold is larger than
the average success probability. In the high-reliability regime
where the outage probability of a link goes to 0, we give
a closed-form expression of the SOC and show that p = 1
achieves the SOC.
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