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Abstract—In cellular networks, cell size reduction is an impor-
tant technique for improving the spectral reuse and achieving
higher data rates. In addition, it results in power savings as it
leads to a decrease in transmit power. However, it is not clear
if the transmit power can be indefinitely decreased with the cell
sizes. In this paper, we analyze the impact of transmit power
reduction (cell size reduction) on the performance of the network.
More precisely, we obtain a lower bound on the transmit power
such that a minimum coverage and a minimum data rate can be
guaranteed. We then analyze the area power consumption metric,
which denotes the total power consumed per unit area. Under
the constraints of target coverage and target data rate, the area
power consumption is minimized and the optimal base station
density is obtained. For a path loss exponent α > 4, we observe
the existence of a minimum cell size below which shrinking the
cell would result in an overall increase of power. However, for
α ≤ 4, there exists no such optimal cell-size, as the area power
consumption increases with base station density.

Index Terms—Small cells, green communication, cell size,
quality of service, power consumption, power efficiency, optimal
base station density.

I. INTRODUCTION

Cell size reduction provides increased spectral reuse and
increased data rates to mobile users. As the cell size decreases,
the number of users per base station (BS) decreases leading
to a greater bandwidth (or time share) per user. Cell size
reduction can be achieved by increasing the density of the
base stations, either by increasing the number of macro base
stations or adding tiers of low powered base stations. There
are two advantages of cell size reduction. Firstly, increased
bandwidth per user. Secondly, lower transmit power since the
mobile user is much closer to a base station.

In this paper, we investigate if the downlink transmit power
can be decreased arbitrarily by increasing the density of base
stations for a given target rate and coverage. It turns out that
after a certain power threshold, noise plays a significant role
on both coverage and rate.

For α > 4, we obtain an expression for the optimum base
station density which minimizes area power consumption and
maximizes power efficiency1 under target rate and coverage
constraints. If the cell density exceeds an optimal threshold

1Power efficiency is defined as inverse of the area power consumption. We
call the network to be power efficient if the area power consumption decreases
with increase of base station density.

the total power consumption increases. The optimum density
gives us a limit up to which cell size can be shrunk and power
savings can be achieved. It also indicates when operator should
stop further deployment of small cells in this regime. For α ≤
4, we observe that increasing the base station density leads to
an overall increase of power.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

In this paper, we assume a single tier of BSs and focus on
the downlink. The locations of the base stations are modeled
by a spatial Poisson point process (PPP) [1] Φb of density
λb. We assume that users forms a stationary point process
with density λu ≥ λb that is independent of the base station
process. Since the users are uniformly distributed, the average
number of users per cell is λu/λb. We assume a path loss
function l(x) = K‖x‖−α, α > 2, where K is a constant
chosen2 as 3.2 × 10−6. Without loss of generality, we focus
on a mobile user at the origin for computing coverage and
rate. We assume that each mobile user is served by its closest
BS. We also assume that all BSs transmit with the same power
P .

The bandwidth (BW) per user is a random variable that
depends on the cell size and the number of users in the cell.
However, for ease of analysis we set it to be equal to the total
available bandwidth (B) divided by the average number of
users, i.e., Bu(λb) = B λb

λu
. Hence the average rate per user is

R = Bu(λb)E[ln(1 + SINR)].

Since the user BW depends on the densities, the noise power
is FkTBu(λb), where F is the receiver noise figure, k is the
Boltzmann constant, and T is the ambient temperature.

The small scale fading is denoted by hx which is assumed to
follow an exponential distribution (square of Rayleigh fading)
with unit mean. The signal-to-interference-plus-noise ratio for

2A typical femtocell covers a range of 40 m with a transmit power of 0.2
W [2]. The received power at the cell boundary should be at least equal to
the receiver sensitivity, which is −80 dBm. So r = 40, α = 3, transmit
power Pt = 0.2, received power Pr = 10

−80−30
10 = K · Pt · r−α. Hence,

K = 3.2× 10−6.



the mobile user at the origin is

SINR =
hx‖x‖−α

σ2

P +
∑
y∈Φb\{x} hy‖y‖−α

,

where σ2 = λbFkTB/(λuK), and x ∈ Φb is the BS closest
to the origin. The coverage probability is defined as ∆(P ) =
P(SINR > θ), and the spectral efficiency is defined as τ(P ) =
E[ln(1 + SINR)].

B. Problem Formulation

With BSs transmitting at power P , we define the area
transmit power consumption as λbP . In addition to the trans-
mission power, each BS requires a fixed amount of operational
power which we denote by P0. The power P0 includes the
fixed operational power of the hardware and also the transmit
power of the pilot tones. Hence the area power consumption
is λb(P + P0). When the transmit power is infinity, it is
shown in [3] that the SINR distribution and hence the coverage
probability and spectral efficiency does not depend on the BS
density. The rate demanded by each user is denoted by RT ;
it is independent of the base station density. The interference-
limited spectral efficiency, corresponding to P =∞, is τ(∞).
It is independent of the base station density and depends
only on path loss exponent α. So, irrespective of the transmit
power, the maximum achievable rate for a particular density
λb is given by τ(∞)Bu(λb). The user demand rate can be
satisfied only if it is less than the maximum achievable rate.
But if the user demand exceeds the maximum achievable rate,
then the best the operator can do is to support a data rate
of τ(∞)Bu(λb). So, the operator must satisfy the target rate
or maximum achievable rate, whichever is minimum, with a
maximum rate outage δ.

The limiting coverage probability that can be achieved for a
given SINR threshold θ and path loss exponent α is given by
∆(∞). So, the operator must provide ∆(∞) coverage with
a maximum outage of ε. Our goal is to obtain the optimal
parameters λ∗b and transmit power P so that the area power
consumption λb(P + P0) is minimal while maintaining the
QoS constraints of rate and coverage. Formally,

λ∗b = arg min
λb
{λb(P + P0)}

s.t. ∆(P ) ≥ (1− ε)∆(∞), (1)
R(P ) ≥ (1− δ) min{RT , τ(∞)Bu(λb)}. (2)

We consider both the rate and coverage constraints for the
following two reasons:

• Even though Bu(λb) ln(1 + SINR) might be high, SINR
might be low. This might be because of a large BW B.

• Because of the inclusion of RT , the lower bound on
transmit power obtained from the two constraints, may
scale differently with the BS density as can be seen in
Lemma 1 and Lemma 2 and Fig. 3 and Fig. 6.

C. Prior Work

Energy efficiency in HetNets has received increasing atten-
tion recently. Mostly only interference-limited networks have
been considered [4], [5]. Different energy saving techniques in
communication networks, have been presented in [6]. Energy
efficiency in cellular networks has also been analyzed in
[7],[8]. However, the authors have focused on a hexagonal grid
model with fixed downlink transmit power. In [4], an optimal
base-station density for both homogeneous and heterogeneous
cellular networks has been obtained under the constraint
of target rate. However, noise has been ignored. Coverage
constraints have not been considered, either.Energy efficiency
in HetNets has been studied in [5], which provides an optimal
macro-pico density ratio that maximizes the overall energy
efficiency under fixed noise assumption (i.e., noise power does
not vary with the allocated bandwidth).

In this paper, we consider noise and both target coverage
constraints and target rate constraints. We also show how the
transmit power has to be scaled down with increase of base
station density.

III. OPTIMAL POWER FOR TARGET COVERAGE AND RATE

A. Minimum transmit power for coverage

As the BS density increases, the transmit power of the
base stations may be decreased because of the decreasing
cell size. However, reducing the transmit power, decreases the
coverage probability because of the noise. See Fig. 1. In the
next lemma we evaluate the transmit power required to achieve
(1− ε)∆(∞) coverage.

Lemma 1. The minimum downlink transmit power for which
a minimum SINR of θ can be guaranteed for a fraction 1− ε
of the users is given by

P ∗c ≈
k1

λ
α/2−1
b

, (3)

where k1 = θσ2Γ(α/2+1)
επα/2[1+ρ(θ,α)]α/2

.

Proof: The coverage probability without noise (or infinite
power) is [3]

∆(∞) = (1 + ρ(θ, α))−1, (4)

where ρ(θ, α) = θ2/α
∫∞

0
1

1+xα/2
dx. The coverage probability

with noise is [3]

∆(P ) = πλb

∫ ∞
0

e−πλb(1+ρ(θ,α))v−θσ2λbv
α/2P−1

dv. (5)

Now, using the substitution θσ2P−1 → s in (5) and
the approximation e−sv

α/2 ≈ (1 − svα/2) for small s (or,
equivalently, small σ2), we get

∆(P ) ≈ ∆(∞)

(
1− θσ2Γ(α/2 + 1)

Pλ
α/2−1
b [π(ρ(θ, α) + 1)]α/2

)
, (6)

where Γ(x) =
∫∞

0
tx−1e−tdt is the standard gamma function.

This approximation (linearization of the exponential term) is
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Fig. 1: Effect of transmit power on coverage probability: User
density λu = 0.01 m−2, α = 4 and σ2 = λb × 1.035× 10−5
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Fig. 2: Tightness of numerical approximation
e−(θσ2P−1)vα/2 ≈ (1 − θσ2P−1vα/2) used to evaluate
coverage probability: SINR threshold θ = -30dB, User density
λu = 0.01 m−2, α = 3 and σ2 = λb × 1.035× 10−5 W.

very tight, as can be seen from Fig. 2. The lower bound P ∗c
on transmit power P can be obtained by combining (4) and
(6) with the coverage constraint (1).

With increasing base station density, the operator can scale
down the transmit power at a rate proportional to λ

1−α/2
b

(as shown in Fig. 3), while guaranteeing a certain minimum
coverage.

B. Minimum transmit power for target data rate

The effect of noise on rate is shown in Fig. 4. The transmit
power can decrease with increasing BS density. However, a
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Fig. 3: Minimum transmit power for target coverage: User
density λu = 0.01 m−2, Outage probability ε = 0.25 and
σ2 = λb × 1.035× 10−5 W.
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Fig. 4: Effect of noise on rate: User density λu = 0.01 m−2,
α = 4.5 and σ2 = λb × 1.035× 10−5 W.

minimum transmit power is required to combat the noise and
provide average rate to satisfy the user demand or the maxi-
mum achievable rate, whichever is minimum. This constraint
imposes a limit on the downlink transmit power, which is
provided in the next lemma.

Lemma 2. The minimum downlink transmit power that
achieves a fraction 1 − δ of the minimum of the target rate
RT and maximum supported rate τ(∞)Bu(λb) is given by

P ∗r ≈
min{h(λb), k2}

λ
α/2−1
b

, (7)
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P rα(et−1) ≈
[1 − σ2

P r
α(et − 1)] used to evaluate spectral efficiency: User

density λu = 0.01m−2, noise power σ2 = λb × 1.035× 10−5

W.

where k2 = σ2g(α)
δτ(∞) , h(λb) = σ2g(α)

[τ(∞)−(1−δ){RT λuBλb
}]

, and

g(α) = π−α/2
∫
z>0

e−zzα/2·∫
t>0

(et − 1)e
−z{(et−1)2/α

∫∞
(et−1)−2/α

1

1+xα/2
dx}

dtdz.

Proof: The spectral efficiency τ(P ) has been derived in
[3] as

τ(P ) , E[ln(1 + SINR)]

=

∫
r>0

e−πλbr
2

∫
t>0

e−
σ2λb
P rα(et−1)LIr (rα(et − 1))dt2πλbrdr,

(8)

where LIr (rα(et − 1)) is the Laplace transform of the inter-
ference Ir evaluated at rα(et − 1), which is given by

exp

(
−πλbr2(et − 1)2/α

∫ ∞
(et−1)−2/α

1

1 + xα/2
dx

)
.

Since σ2 is very small, we use the approximation
e−

σ2

P rα(et−1) ≈ (1− σ2

P r
α(et−1)) in (8). This approximation

is tight as shown in Fig. 5. Substituting πλbr2 → z in (8), we
obtain

τ(P ) = τ(∞)− σ2g(α)P−1λ
−α/2+1
b + o(σ2), σ2 → 0, (9)

where τ(∞) is the spectral efficiency at zero noise or high
power, which is independent of the BS density [3]. A fraction
1 − δ of the users must achieve a data rate at least equal
to the target rate or maximum achievable rate, whichever is
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Fig. 7: Maximum achievable rate and target rate (user
demand): User density λu = 0.1 m−2, α = 4, total bandwidth
B = 20 MHz and target rate (user demand) RT = 500 kbps.

minimum. This, in turn, imposes a constraint on the spectral
efficiency τ(P ):

τ(P ) ≥ (1− δ) min

{
RT

Bu(λb)
, τ(∞)

}
. (10)

Combining (10) and (9) we get a lower bound P ∗r on the
transmit power P .

Depending on the target data rate, the transmit power of
the base stations can be scaled down (under target data rate
constraint) with the increase of small cell density λb, at a rate
proportional to λ1−α2

b or faster than that as shown in Fig. 6.

IV. OPTIMUM BASE STATION DENSITY

To ensure QoS (both coverage and user demand
rate), the minimum downlink transmit power should be
P ∗m=max(P ∗c , P

∗
r ). So, the total power consumption by a base

station is P ∗m + P0. The area power consumption follows as



PA(λb) = λb(P
∗
m + P0) = λb(max(P ∗c , P

∗
r ) + P0). Using (3)

and (7), we get

PA(λb) =
max{k1,min{h(λb), k2}}

λ
α/2−2
b

+ P0λb. (11)

The optimal λ∗b is then obtained by setting
dPA
dλb

= 0.

Theorem 1. When α > 4, the optimum base station density
λ∗b that minimizes the area power consumption under coverage
and rate constraints is given by

λ∗b =


[ (α− 4) max{k1, k2}

2P0

] 2
α−2

RT ≥ R2,[ (α− 4)k1

2P0

] 2
α−2

RT ≤ R1,

where

R1 =

[
(α− 4)(Bτ(∞))α/2−1k1

2P0λ
α/2−1
u

] 2
α−2

,

and

R2 =

[
(α− 4)(Bτ(∞))α/2−1 max{k1, k2}

2P0λ
α/2−1
u

] 2
α−2

.

When R1 < RT < R2, the optimal base station density λ∗b is
the solution to the following equation

λ∗b
α/2−2(2P0c

2
2)− λ∗b

α/2−1(4P0τ(∞)c2) + 2λ∗b
α/2P0(τ(∞))2·

−λ∗b((α− 4)c1τ(∞)) + ((α− 6)c1c2) = 0,

where c1 = σ2g(α), c2 = (1 − δ)RTλuB . There exists no
optimum density for α ≤ 4.

Proof: We begin the proof by considering 3 different
ranges of λb. We define Λ1 = RTλu

Bτ(∞) and Λ2 = k1c2
k1τ(∞)−c1 .

We also re-write h(λb) as h(λb) = λbc1
λbτ(∞)−c2 . The demand

rate RT is at least equal to the maximum achievable rate
Bu(λb)τ(∞) only when λb ∈ (0,Λ1], as can be seen in Fig. 7.
Re-arranging the expressions of h(λb), Λ1, Λ2 and k2 we get

min{h(λb), k2} =

 k2 ∀ λb ∈ (0,Λ1],
h(λb) ∀ λb ∈ (Λ1,Λ2),
h(λb) ∀ λb ∈ [Λ2,∞).

Re-arranging the expressions of Λ2, k1 and h(λb), it can be
shown that, k1 ≥ h(λb) only for λb ∈ [Λ2,∞). Therefore, the
area power consumption given in (11) can be re-written as

PA =



max{k1, k2}
λ
α/2−2
b

+ P0λb ∀ λb ∈ (0,Λ1],

h(λb)

λ
α/2−2
b

+ P0λb ∀ λb ∈ (Λ1,Λ2),

k1

λ
α/2−2
b

+ P0λb ∀ λb ∈ [Λ2,∞).

(12)
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Fig. 8: Area power consumption: Target rate RT = 500Mbps,
SINR threshold θ = 12 dB, User density λu = 0.01 m−2,
Outage probability ε = 0.25, Rate outage δ = 0.25, P0 =
1.5 W and noise power σ2 = λb × 1.035 × 10−5 W. The
dashed lines correspond to our analysis while the bold lines
are obtained by Monte Carlo simulation.

Re-arranging the expressions of R1, R2, Λ1, Λ2 and using the
derivative of (12), for α > 4, we obtain

dPA(Λ1)

dλb
≥ 0 RT ≥ R2,

dPA(Λ1)

dλb
< 0,

dPA(Λ2)

dλb
> 0 R1 < RT < R2,

dPA(Λ2)

dλb
≤ 0 RT ≤ R1.

Therefore for α > 4,

λ∗b ∈


(0,Λ1] RT ≥ R2,

(Λ1,Λ2) R1 < RT < R2,

[Λ2,∞) RT ≤ R1.

(13)

Now, for α > 4, optimal base station density λ∗b can be
obtained by setting the derivative of (12) to zero.

When α ≤ 4, the total area transmit power consumption
λbP

∗
m as well as the total area fixed power consumption λbP0

increase with base station density, for λb ∈ (0,Λ1] and λb ∈
[Λ2,∞), see (12). Hence, in this case, there exists no optimal
density.

The area power consumption always increases with base
station density for α = 3 and α = 4 as can be seen in Fig. 8.
The simulation curves are obtained using the Monte Carlo
method. This result indicates that cell size shrinking or dense
small cell deployment is not power-efficient for these values
of the path loss exponent. Fig. 8 also shows the area power
consumption and the optimal base station densities for α = 5
and α = 6. This result indicates that small cell deployment
can be power efficient in urban areas (where it is possible that
α > 4).



V. CONCLUSION

In this paper, we have derived a lower bound on downlink
transmit power in a homogeneous Poisson networks under
target coverage and target data rate constraints. For a path
loss exponent α > 4, we have proven the existence of an
optimal deployment density after which further reduction of
the cell size is not efficient from an energy viewpoint. Our
results indicate that, for α ≤ 4, counter-intuitively, smaller BS
densities lead to improved area power consumption. In other
words, increasing the BS density is not “green” for α ≤ 4.
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