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Abstract—In cellular network models, the base stations are
usually assumed to form a lattice or a Poisson point process
(PPP). In reality, however, they are deployed neither fully
regularly nor completely randomly. Accordingly, in this paper, we
consider the very general class of motion-invariant models and
analyze the behavior of the coverage probability (the probability
that the signal-to-interference-plus-noise-ratio (SINR) exceeds
a threshold) as the threshold goes to zero. We show that,
surprisingly, the slope of the coverage probability as a function
of the threshold is the same for essentially all motion-invariant
point processes. The slope merely depends on the fading statistics.

Using this result, we introduce the notion of the asymptotic
deployment gain (ADG), which characterizes the horizontal gap
between the coverage probability of the PPP and another
point process in the high-reliability regime (where the coverage
probability is near 1).

To demonstrate the usefulness of the ADG for the charac-
terization of coverage probabilities, we investigate the coverage
properties and the ADGs for different point processes and fading
statistics by simulations.

I. INTRODUCTION

The topology of the base stations (BSs) in cellular networks
depends on many natural or man-made factors, such as the
landscape, topography, bodies of water, population densities,
and traffic demands. Despite, base stations were usually mod-
eled deterministically as triangular or square lattices until
recently, when it was shown in [1], [2] that a completely
irregular point process, the Poisson point process (PPP), may
be used without any loss in accuracy but significant gain in
analytical tractability. Real deployments fall somewhere in
between these two extremes of full regularity (the triangular
lattice) and complete randomness (the PPP), as investigated in
[3] using base station data from the UK. They exhibit some
degree of repulsion between the BSs, since the operators do not
place them closely together. Such repulsion can be modeled
using point processes with a hard minimum distance between
BSs (hard-core processes) or a high likelihood that BSs are a
certain distance apart (soft-core processes). At a larger scale,
at the level of a state of country, BSs may appear clustered
due to the high density of BSs in cities and low density in
rural regions. The analysis of such non-Poisson processes is
significantly more difficult than the analysis of the PPP, since
dependencies exist between the locations of base stations.

The coverage probability, defined as the probability that
the signal-to-interference-plus-noise ratio (SINR) exceeds a

certain threshold θ, denoted as Pc(θ) is one of the main
performance metrics in cellular networks. It depends on many
factors, such as the fading, the path loss and the distribution
of the BSs. In [1], the authors derive the expressions for the
coverage probability and the mean achievable rate for networks
whose BSs form a homogeneous PPP. For general models, it
is much harder to compute the coverage probability due to
the dependence between BS locations mentioned above, and
we are not aware of any tractable analytical methods that are
applicable in general.

In this paper, we provide an indirect approach to the cover-
age analysis in which the coverage probability of an arbitrary
motion-invariant (isotropic and stationary1) point process [4,
Ch. 2] by comparing its coverage probability to the coverage
probability of the PPP. To validate this approach, we establish
that the outage probability 1−Pc(θ) of essentially all motion-
invariant (m.i.) point processes, expressed in dB, as a function
of the SINR threshold θ, also in dB, has the same slope as
θ → 0. The slope depends on the fading statistics. This result
shows that asymptotically the coverage curves Pc(θ) of all
m.i. models are just (horizontally) shifted versions of each
other in a log-log plot, and the shift can be quantified in terms
of the horizontal difference Ĝ along the θ (in dB) axis. Since
the coverage probability of the PPP is known analytically, the
PPP is a sensible choice as a reference model, which then
allows to express the coverage of an arbitrary m.i. model as a
gain relative to the PPP. This gain is denoted as the asymptotic
deployment gain (ADG).

We introduced the concept of the deployment gain (DG) in
our previous work [3]. It measures how close a point process or
a point set is to the PPP at a given target coverage probability.
Here we extend the DG to include noise and then, to obtain a
quantity that does not depend on a target coverage probability,
formally define its asymptotic counterpart—the ADG.

The paper makes the following contributions:
• We introduce the asymptotic deployment gain.
• We formally prove its existence for a large class of

m.i. point processes.
• We show how the asymptotic slope of the outage proba-

bility depends on the fading statistics.

1Stationarity implies that the coverage probability does not depend on the
location of a mobile user.



• We demonstrate through simulations how the ADG is
employed to quantify the coverage probability of several
non-Poisson models, even if the SINR threshold θ is not
small.

II. SYSTEM MODEL AND ASYMPTOTIC DEPLOYMENT
GAIN

A. System Model

We consider a cellular network that consists of BSs and
mobile users. The BSs are modeled as a general m.i. point
process Φ of intensity λ on the plane. We assume that Φ
is mixing [4, Def. 2.31], which implies that ρ(2)(x) → λ2

as ‖x‖ → ∞, where ρ(2)(x) is the second-order density.
Intuitively, ρ(2)(x) is the probability that there are two points
at distance ‖x‖. Rigorously, the second-order density is the
density pertaining to the second factorial moment measure [4,
Def. 6.4], which is given by

α(2)(A×B) = E
( 6=∑
x,y∈Φ

1A(x)1B(y)
)

=

∫
A×B

ρ(2)(y−x)dxdy,

where A,B are two compact subsets of R2 and the 6= symbol
indicates that the sum is taken only over distinct point pairs.
Since the point processes considered are isotropic, ρ(2)(y−x)
only depends on ‖y − x‖.

We assume all BSs are always transmitting and the transmit
power is fixed to 1. Each mobile user receives signals from its
nearest BS, and all other BSs act as interferers (the frequency
reuse factor is 1). Every signal is assumed to experience
path loss, fading and additive thermal noise. The shadowing
effect is neglected. The path loss model we consider is
`(x) = (1 + ‖x‖α)−1, where α > 2. We assume that the
fading is independent and identically distributed (i.i.d.) for
signals from all BSs. We mainly focus on Nakagami-m fading,
which includes Rayleigh fading as a special case. The thermal
noise power is assumed to be additive and constant with W .
We define the mean SNR as the received SNR at a distance
of r = 1 and SNR = 1/(2W ).

Under the above assumptions, to formulate the SINR and the
coverage probability, we first define the nearest-point operator
NPϕ for a countable point pattern ϕ ⊂ R2 as

NPϕ(x) , arg min
y∈ϕ

{‖y − x‖}, x ∈ R2. (1)

If the nearest point is not unique, the operator picks one of
the nearest points uniformly at random. The SINR at location
z ∈ R2 has the form

SINRz =
hu`(u− z)

W +
∑
x∈Φ\{u} hx`(x− z)

, (2)

where u = NPΦ(z) and hx denotes the i.i.d. fading variable
for x ∈ Φ with CDF Fh and PDF fh. For a m.i. point process,
the coverage probability P(SINRz > θ) does not depend on
z, and we define

Pc(θ) = P(SINR > θ). (3)

Hence, without any loss of generality, we focus on the cover-
age probability at the origin o. Since each user communicates
with its nearest BS, the interference at o only comes from the
BSs outside the open disk b(o, ‖u‖) , {x ∈ R2 : ‖x‖ < ‖u‖},
where u = NPΦ(o). The total interference, denoted by I(Φ),
is

I(Φ) =
∑

x∈Φ\NPΦ(o)

hx`(x). (4)

B. Asymptotic Deployment Gain

In [3], we introduced the deployment gain (DG). Here we
redefine the DG, since the thermal noise is not included in [3].

Definition 1 (Deployment gain): The deployment gain, de-
noted by G(pt), is the SINR ratio between the coverage curves
of the given point process (or point set) and the PPP at a given
target outage probability pt.

G(pt) =
P−1

c (pt)

(PPPP
c )−1(pt)

(5)

where PPPP
c (θ) and Pc(θ) are, respectively, the coverage

probabilities of the PPP and the given point process Φ.
This definition is analogous to the notion of the coding gain

commonly used in coding theory [5, Ch. 1].
Fig. 1 shows the coverage probability of the PPP, the Matérn

cluster process (MCP) [4, Ch. 3] and the triangular lattice. The
intensities of all the three point processes are the same. We
observe that for pt > 0.6, the DG is approximately constant,
e.g. the DG of the MCP is about −3 dB. In Fig. 1, the coverage
curves of the PPP that are shifted by G(0.6) of the MCP and
the triangular lattice are also drawn. We see that the shifted
curves overlap quite exactly with the curves of the MCP and
the triangular lattice, respectively, for all pt > 0.6. It is thus
sensible to study the DG as pt → 1 and find out whether
the DG approaches a constant. To do so, analogous to the
notion of the asymptotic coding gain, we define the asymptotic
deployment gain (ADG).

Definition 2 (Asymptotic deployment gain): The ADG, de-
noted by Ĝ, is the deployment gain G(pt) when θ → 0, or
equivalently, when pt → 1.

Ĝ = lim
pt→1

G(pt). (6)

Similar to the DG, the ADG also measures the coverage
probability but characterizes the difference between the cov-
erage of the PPP and a given point process as the coverage
probability approaches 1 instead of for a target coverage
probability, and by observation from Fig. 1, the ADG closely
approximates the DG for all practical values of the coverage
probability. Hence, given the ADG of a point process, we can
evaluate its coverage probability by shifting the corresponding
PPP results.

III. ASYMPTOTIC PROPERTY OF THE COVERAGE

A. General Case and Main Result

In this subsection, we derive an important asymptotic prop-
erty of the coverage probability in Theorem 1, given some
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Fig. 1. The coverage probability of the PPP with intensity λ = 0.1, the
MCP with λp = 0.01, c̄ = 10 and rc = 5 and the triangular lattice with
density λ = 0.1 (see Section III-B for an explanation of these parameters)
for Rayleigh fading, path loss exponent α = 4 and noise W = 0, which are
simulated on a 100 × 100 square. The lines are the coverage curves of the
three point processes, while the markers indicate the coverage curves of the
PPP shifted by the deployment gains of the MCP and the triangular lattice at
pt = 0.6.

general assumptions about the point process and the CDF of
the fading variable.

First we give several notations, based on which we introduce
the precise class of point processes we focus on. We define
ξ , ‖NPΦ(o)‖, and define the supremum of ξ as

ξmax , sup
x∈R2

min
y∈Φ
{‖x− y‖}. (7)

Due to the ergodicity [4, Ch. 2] of the point process (which
follows from the mixing property), ξmax does not depend
on the realization of Φ. ξmax = ∞ in many mixing point
processes.

We define Φζo , (Φ | NPΦ(o) = ζ). Note that for this point
process, ζ ∈ Φζo and Φζo(b(o, ‖ζ‖)) = 0. We compare the
interference in Φζo with the interference from a point process
where the desired BS ζ is not necessarily the closest one.
To this end, we define Φζ , (Φ | ζ ∈ Φ) and consider
its interference except for a disk of radius ‖ζ‖/2 around the
origin:

Î(Φζ) =
∑

x∈Φζ
⋂
b(o,‖ζ‖/2)c\{ζ}

hx`(x), (8)

where b(o, ‖ζ‖/2)c = R2\b(o, ‖ζ‖/2).
To better understand the above notations, we give an illus-

tration of them in Fig. 2. Both Φζo and Φζ have a point at
ζ and ‖ζ‖ = y. All points of Φζo are located in the striped
region (outside b(o, y)) and I(Φζo) is the interference from all
these points except ζ. While, Φζ may have points throughout
the whole plane, but Î(Φζ) is the interference only from the
points of Φζ in the shaded region (outside b(o, y/2)) except
ζ.
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Fig. 2. An illustration of Φζo , Φζ , I(Φζo) and Î(Φζ), where ‖ζ‖ = y.

Using the above notations, we define a general class of point
process distributions that we use to rigorously state our main
result on the coverage probability.

Definition 3 (Set A): The set A = {PΦ} is the set of
all point process distributions PΦ that are mixing and that
satisfy the following four conditions. If a point process Φ is
distributed as PΦ ∈ A,

1) ξmax =∞;
2) for all y > 0, ∃ζ ∈ R2 with ‖ζ‖ = y, such that

P(Φζ(b(o, y)) = 0) 6= 0;
3) ∃y0 > 0, such that for all y > y0 and ‖ζ‖ = y, Î(Φζ)

stochastically dominates I(Φζo), i.e., P(I(Φζo) > z) ≤
P(Î(Φζ) > z), for all z ≥ 0;

4) ∀n ∈ N, the n-th moment of ξ is bounded, i.e., ∃bn ∈
(0,+∞), s.t. E(ξn) < bn.

The four conditions in Def. 3 are quite mild; they are
satisfied by most point processes that are usually considered
in wireless networks and in stochastic geometry, such as the
PPP, the MCP and the Matérn hard-core process (MHP) [4,
Ch. 3]. The triangular lattice is not included, since it is not
mixing. We will prove that the laws of the PPP, the MCP and
the MHP belong to A in Section III-B.

Before introducing the main theorem, we show a property
of the distribution of I(Φζo) under certain assumptions.

Lemma 1: For PΦ ∈ A, if the fading has at most an
exponential tail, i.e., − logF ch(x) = Ω(x), where F ch(x) is
the CCDF of the fading variable h, then the interference tail
is bounded by an exponential, i.e., − logF c

I(Φζo)
(x) = Ω(x),

where F c
I(Φζo)

(x) is the CCDF of I(Φζo).
Proof: See Appendix A.

A similar property has been derived in [6], namely, that in ad
hoc networks modeled by m.i. point processes, an exponential
tail in the fading distribution implies an exponential tail in the
interference distribution. The result cannot be directly applied
to cellular networks. Because in the cellular network that we
consider, each user communicates with its nearest BS u and
thus no interferers can be nearer than u, while the authors in
[6] assume the receiver communicates with a transmitter with
a fixed location and there can be some interferers nearer to
the receiver than the transmitter.



Theorem 1: For PΦ ∈ A, if F ch(x) has at most an expo-
nential tail and ∃m ∈ (0,+∞), s.t. Fh(t) ∼ atm, as t → 0,
where a > 0 is a constant, then

1− Pc(θ)

θm
→ κ, as θ → 0, (9)

where κ > 0 does not depend on θ and given by

κ =

∫ ∞
0

EI(Φζo)

[
a`(ζ)−m

(
I(Φζo) +W

)m]
fξ(y)dy (10)

(‖ζ‖ = y) and fξ is the PDF of ξ.
Proof: See Appendix B.

Theorem 1 shows that the ADG exists and, given the type
of fading, how it depends on the other network parameters.

Corollary 1: For PΦ ∈ A and a fading type that satisfies
the assumption in Theorem 1, the ADG of Φ is given by

Ĝ =
(κPPP

κ

) 1
m

, (11)

where κPPP is the value for the PPP and κ is the value for
Φ.

Proof: This follows directly from Theorem 1.
One point process has different ADGs with respect to the

fading types with different m. So it is sensible to compare the
ADGs of different point process models only under the same
fading assumption.

In the following subsection, we will present several special
cases regarding the fading types and point processes.

B. Special Cases

We assume the fading type is Nakagami-m fading. When
m = 1, the fading reduces to Rayleigh fading. As to the point
processes, we specifically concentrate on the PPP, the MCP
and the MHP.

Poisson Point Process: The PPP is the simplest model of
point processes, which exhibits complete spatial randomness.
The points in the PPP are stochastically independent, which
makes the PPP the most tractable point process.

Matérn Cluster Process: As a class of clustered point
processes on the plane built on a PPP, the MCPs are doubly
Poisson cluster processes, where the parent points form a
uniform PPP Φp of intensity λp and the daughter points are
uniformly scattered on the ball of radius rc centered at each
parent point xp with intensity

λ0(x) =
c̄

πr2
c

1B(xp,rc)(x), (12)

where B(xp, rc) , {x ∈ R2 : ‖x − xp‖ ≤ rc} is the closed
disk of radius rc centered at xp. The mean number of daughter
points in one cluster is c̄. So the intensity of the process is
λ = λpc̄.

Matérn Hard-core Process: The MHPs are a class of regular
point process, where points are forbidden to be closer than a
certain minimum distance. The MHPs have many types. Here
we only consider the MHP of type I [4, Ch. 3], which is
generated by starting with a basic uniform PPP Φb of intensity
λb and removing all points that have a neighbor within the

hard-core distance rh simultaneously. The intensity of the
MHP is λ = λb exp(−λbπr

2
h). The highest density it can

achieve is λmax = 1/(eπr2
h).

Lemma 2: The distributions of the PPP, the MCP and the
MHP belong to the set A.

Proof: See Appendix C.
By Lemma 2, we have the following corollary to Theorem

1.
Corollary 2: When the fading is Nakagami-m fading, for

the PPP, the MCP and the MHP,

1− Pc(θ) ∼ κθm, as θ → 0, (13)

where κ > 0 is given in (10).
Proof: To prove this theorem, we only need to verify the

assumption in Theorem 1 for Nakagami-m fading.
As the fading parameter h ∼ Gamma(m, 1/m), F ch(x) has

an exponential tail and

lim
t→0

Fh(t)

tm
= lim
t→0

(mt)m−1 exp(−mt)
Γ(m)tm−1

=
mm−1

Γ(m)
< +∞.

(14)
Therefore, by Lemma 2 and Theorem 1, this corollary is
proved.

IV. SIMULATIONS

In this section, we give some simulations of the cover-
age probability for the PPP, the MCP, and the MHP un-
der Nakagami-m fading. We perform the simulations on a
100 × 100 square and fix the path loss exponent to α = 4
and the intensity of the point processes to λ = 0.1. More
precisely, for the MCP, we let λp = 0.01, c̄ = 10 and rc = 5;
for the MHP, we let λb = 0.532 and rh = 1.
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Fig. 3. The outage probability 1−Pc(θ) vs. 1/θ for the PPP when m = 1
under different SNR settings.

Fig. 3 shows the outage curves 1 − Pc(θ) of the PPP for
Rayleigh fading and different SNR values. The slopes of the
curves are all −1, as θ approaches 0. We also observe that
there is only a quite small gap between the cases of SNR = 20



dB and SNR = ∞ dB, thus the thermal noise is not a very
important factor that affects the asymptotic performance of the
coverage. We will neglect noise in the rest part of this section.
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Fig. 4. The outage probability 1−Pc(θ) vs. 1/θ for the PPP, the MCP and
the MHP when m ∈ {1, 2, 4} (no noise).

In Fig. 4, we find that for the same point process, different
m implies different asymptotic slopes. In fact, the slope is
−m. For the same m, different point processes have the same
asymptotic slope as predicted by Theorem 1. Besides, we
also observe that for any m, the coverage probability of the
MCP is always smaller than that of the PPP and the coverage
probability of the MHP is always larger than that of the PPP.
Intuitively, the MHP has a better coverage because it is more
regular than the PPP. Similarly, the MCP has a poorer coverage
because it is more clustered than the PPP.
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Fig. 5. The ADG for the different point processes and m values (approxi-
mated by the DG value at pt = 1− 10−3) for α = 4.

Fig. 5 shows the empirical values of the ADG for the PPP,
the MCP and the MHP when m takes different values. The
ADG is approximated by the DG value at pt = 1−10−3, since

from Fig. 4, the DG seems unchanged for pt > 1− 10−2. We
see that the ADGs of the MHP and the MCP vary for different
m.

TABLE I
THE ADGS FOR DIFFERENT α (RAYLEIGH FADING, NO NOISE).

ADG (in dB) α = 2.5 α = 3.0 α = 3.5 α = 4
MCP −3.5601 −3.5273 −3.7824 −3.5107
MHP 0.1857 0.2258 0.2163 0.3523

Table I shows the ADGs of the MCP and the MHP for
Rayleigh fading, W = 0 and different values of path loss
exponent α. The ADG is a function of α and does not
monotonically increase as α increases.

V. CONCLUSIONS

In this paper, we show the asymptotic property of the
coverage probability that 1−Pc(θ) ∼ κθm, as θ → 0, and the
ADG exists for a variety of motion-invariant point processes
given some general assumptions on the point process and
the fading type. Note that the existence of the ADG for all
cases remains to be validated. The assumptions on the point
process are satisfied by many commonly used point processes,
e.g. the PPP, the MHP and the MCP. The triangular lattice
is an extreme case, which has the largest ADG of all point
processes.

Under the same system configurations on the fading and
path loss, different point processes with the same intensity
have different ADGs. Thus, the ADG can be used as a new
metric to characterize the coverage probability in the high-
reliability regime. Given the ADG of a point process, we can
obtain the precise CDF of the coverage probability near 1 by
shifting the coverage curve of the PPP with the same intensity
by the ADG.

APPENDIX A
PROOF OF LEMMA 1

Proof: Due to space constraints we only provide the
sketch of the proof. The basic idea is to consider the worst
case of the fading, i.e. F ch(x) ∼ exp(−ax), x→∞ for some
a > 0 and show that there exists τ < 0, such that the Laplace
transform of the I(Φζo), denoted by LI(Φζo)(s), converges for
s > τ . By Theorem 3 in [7], it follows that the interference has
an exponential tail. To show such τ exists, we first evaluate
LI(Φζo)(s) for s < 0 and derive an upper bound that only
depends on Φζ , so that we can take advantage of the reduced
Palm distribution [4, Ch. 8]. Using the assumptions on the
point process, we prove that ∀s < 0, there exists a positive
Ks < ∞, s.t. LI(Φζo)(s) ≤ KsLÎ(Φζ)(s). Then we only need
to show LÎ(Φζ)(s) converges for some τ0 < 0, which can
be proved using a similar method described in the proof of
Theorem 3 in [6].



APPENDIX B
PROOF OF THEOREM 1

Proof: We first consider the case when the noise power
W = 0. Let ˆ̀(x) = 1/`(x) and ‖ζ‖ = y. The coverage
probability is

Pc(θ) = Eξ[P(SINR > θ | ξ)]

=

∫ ∞
0

P(hζ > θ ˆ̀(ζ)I(Φζo))fξ(y)dy. (15)

To calculate P(hζ > θ ˆ̀(ζ)I(Φζo)), we condition on I(Φζo)
and have

P(hζ > θ ˆ̀(ζ)I(Φζo))

= EI(Φζo)[F
c
h(θ ˆ̀(ζ)I(Φζo))]. (16)

Thus,

lim
θ→0

1− Pc(θ)

θm

= lim
θ→0

∫ ∞
0

EI(Φζo)

[
Fh(θ ˆ̀(ζ)I(Φζo))

θm

]
fξ(y)dy. (17)

Assume G(t) = Fh(t)/tm and G(0) = limt→0 Fh(t)/tm.
We can easily prove that ∃A > 0, such that G(t) < A, for all
t > 0.

By Lemma 1, we have that ∀n ∈ N, ∃cn < +∞, such that
E(I(Φζo)

n) < cn.
Thus, we have

H(y) , EI(Φζo)

[
Fh(θ ˆ̀(ζ)I(Φζo))

θm

]
< EI(Φζo)

[
A(ˆ̀(ζ)I(Φζo))

m

]
< Acm ˆ̀(ζ)m < +∞, (18)

and∫ ∞
0

H(y)fξ(y)dy < AcmEξ
(
(1 + ξα)m

)
< +∞. (19)

We apply the Dominated Convergence Theorem twice to
(17), then we have

lim
θ→0

1− Pc(θ)

θm

=

∫ ∞
0

EI(Φζo)

[
lim
θ→0

Fh(θ ˆ̀(ζ)I(Φζo))

θm

]
fξ(y)dy

=

∫ ∞
0

EI(Φζo)

[
a(ˆ̀(ζ)I(Φζo))

m

]
fξ(y)dy. (20)

Now, we consider the case when W > 0. In (17), we only
need to replace I(Φζo) with (I(Φζo) + W ) in the expectation
and (18) becomes

EI(Φζo)

[
Fh(θ ˆ̀(ζ)(I(Φζo) +W ))

θm

]
< EI(Φζo)

[
Aˆ̀(ζ)m(I(Φζo) +W )m

]
. (21)

By expanding (I(Φζo) +W )m, we observe that the right-hand
side of (21) is still finite. Analogous to the case when W = 0,
we can prove that Theorem 1 also holds for W > 0.

APPENDIX C
PROOF OF LEMMA 2

Proof: Due to the limited space, we only provide the basic
idea of the proof for the three point processes. Conditions 1)
and 2) in Definition 3 hold for all the three point processes
obviously. For Conditions 3) and 4), we treat the three point
processes separately.

For the PPP, Condition 3) holds, because the points in Φ
are independent; Condition 4) holds, because P(ξ > x) =
P(Φ(b(o, x)) = 0) = exp(−λπx2).

For the MCP, since the parent process is the PPP, clus-
ters are independent. We only need to consider the region
B(o, y + rc) for large y. As in each cluster, the daughter
points are also independent, we can prove that the part of
Î(Φζ) that comes from the clusters with centers located in
B(o, y + rc)\b(o, y − rc) stochastically dominates the corre-
sponding part of I(Φζo). Thus, Condition 3) holds. For large
y, assume Sy = {x ∈ Φp : x ∈ B(o, y − rc)} and let Φ̃x be
the daughter process for the cluster centered at x ∈ Φp. We
have P(ξ > y) ≤ P(Φ̃x(B(x, rc)) = 0, for all x ∈ Sy) =
exp

(
− (1− exp(−c̄))λpπ(y− rc)2

)
. So, Condition 4) holds.

For the MHP, to prove Condition 3), we consider Φζo
and Φζ in view of the base PPP Φb and only need to
consider the region B(o, y + 2rh) for large y if we condition
on Φb

⋂
(B(o, y + 2rh)\B(o, y + rh)). We can prove that

the portion of Î(Φζ) that comes from the retained points
in B(o, y + 2rh) stochastically dominates the corresponding
portion of I(Φζo). Hence, Condition 3) holds. For Condition
4), we use the CCDF of ξ of the hard-core process F c

ξ (x)
expressed in the form (15.1.5) in [8] and can prove that
its tail follows the one of the PPP. Because the difference
of the factorial k-th moment measure from the PPP to the
MHP grows no faster than some ak (a > 0), which makes
the difference bounded and, in fact, arbitrarily small as x
increases.
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