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Abstract—In wireless networks, interference that is generated
by undesired transmitters dominantly limits network perfor-
mance. The correlation of node locations (in mobile or static
networks) makes the interference temporally correlated. Such
correlation affects network performance greatly, and hence
needs to be quantified. In this paper, we quantify the temporal
correlation of the interference in mobile Poisson networks.
More specifically, we obtain closed-form expressions for the
interference correlation coefficient ρ in Poisson line networks
under various mobility models. When the mean speed of nodes v̄
increases, we show that ρ is asymptotically proportional to v̄−1.
Moreover, multi-path fading and random MAC schemes reduce
the temporal correlation of the interference. These results are
extended to higher-dimensional networks.

Index Terms—Correlation, interference, mobility, Poisson point
process.

I. INTRODUCTION

In wireless networks, network performance measured by,
e.g., link outage, is mainly limited by interference. The char-
acterization of the interference depends on the transmitters set,
the fading and the path loss. In static networks, the distance
between nodes stays constant over time, while in mobile
networks, the random mobility of nodes introduces another
degree of randomness in the interference characterization, i.e.,
distance uncertainty [1].

The interference statistics of mobile networks in a single
time slot has been studied in [2], by treating the network as a
realization of a static model with dynamic links. However,
only investigating the interference in a single time slot is
insufficient to design the retransmission and routing schemes
in wireless networks, since the interference is often temporally
and spatially correlated. Such correlation, which is caused
by the location correlation of the mobile nodes, affects re-
transmission and routing strategies greatly. For example in an
ARQ (Automatic Repeat reQuest) retransmission mechanism,
a packets is retransmitted after a timeout or after a negative
acknowledgment (NACK) received. Intuitively, when the inter-
ference is correlated, so are outage events, and retransmissions
do not offer the same diversity benefit as they would if
outages were independent. Quantifying the correlation is hence
necessary.

In [3], the spatio-temporal correlation of the interference in
static networks with randomly placed nodes has been studied.
To our knowledge, there is no prior work on the correlation

of the interference in mobile networks. In this paper, we
mainly focus on one-dimensional mobile Poisson networks.
We quantify the temporal correlation of the interference in
terms of the correlation coefficient under various mobility
models. We then extend our results to higher dimensional
networks.

II. SYSTEM AND MOBILITY MODELS

A. System model

At any time t ∈ Z, the locations of nodes follow a Poisson
point process (PPP) Φ(t) = {xi(t)} on R of intensity λ. The
Poisson model assumes the independence of the number of the
nodes in disjoint regions. It is a typical mathematical model for
analyzing large wireless networks. Slotted ALOHA is assumed
as the MAC protocol, where each node decides to transmit
independently with probability p in each time slot. We assume
that every transmitter transmits with unit power.

The wireless channel is modeled by the product of a large-
scale path loss component (signal attenuation over distance)
and a small-scale fading component (multi-path induced). The
large-scale path loss function g(x) is given by

g(x) =
1

ε+ |x|α
,

where |·| is the distance of a node to the origin, α is the
path loss exponent, and ε > 0 to keep g(0) bounded. g(x) is
assumed to be square integrable, i.e.,

∫∞
0
g2(x)dx < ∞. For

multi-path fading, we consider the Nakagami-m model with
focus on the special case m = 1 (Rayleigh model).

B. Mobility models

The speed of a node in one time slot is defined as vi(t) =
|xi(t) − xi(t − 1)|. We denote v̄ = E[vi(t)]. v̄ is the mean
speed averaged over all nodes. Due to ergodicity, the space
averages are equal to the time averages.

1) Constrained i.i.d. mobility (CIM): We consider the iden-
tical CIM model defined in [1] except for one step at t = 0.
The node location at t+1 is given by xi(t+1) = yi+ v̄ ·wi(t),
where the home locations of nodes Ψ = {yi} form a
PPP, and wi(t) is a random process of location update with
E[|wi(t + 1) − wi(t)|] = 1. We focus on the model where
wi(t) is i.i.d. uniformly at random in [−R,R] for R = 1.5.
In other words, the node is mobile in an interval centered at
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yi with maximum mobility range Rv̄. When v̄ → ∞, this
model approaches the high mobility model used in [4]. The
CIM model is non-Markov. However, the node locations in
different time t are i.i.d. conditioned on yi.

2) Random walk (RW): Under the RW model, each mobile
node takes a step left or right with equal probability in every
time slot. The speed of the node vi(t) ∈ [0, 2v̄] is i.i.d.
uniformly at random. Alternatively, the location of the node
at time t+ 1 is given by xi(t+ 1) = xi(t) + v̄ ·wi(t), where
wi(t) ∈ [−2, 2] is uniformly at random.

3) Discrete-time Brownian motion (BM): Under the
discrete-time BM model, the node location at time t + 1 is
xi(t + 1) = xi(t) + v̄ · wi(t), where wi(t) is i.i.d. normally
distributed i.e., wi(t) ∼ N

(
0, σ2

)
. By definition, we have

σ =
√
π/2.

Remark. According to [5]–[7, Lemma 2.2], the above mobility
models preserve the uniform properties of the node distribu-
tions. The snapshot of a network at fixed time t ∈ Z can
be viewed as a realization of a static model. Consequently
for any t, the PPP Φ(t) remains homogeneous, if Φ(0) is
homogeneous.

III. TEMPORAL CORRELATION OF INTERFERENCE IN
POISSON LINE NETWORKS

Here we only analyze the temporal correlation of inter-
ference. Spatio-temporal correlation can be treated similarly.
Because of the spatial stationarity of the point process, it is
sufficient to consider the interference at the origin only. At
time t, the total interference aggregated at the origin is given
by

I(t) =
∑
x∈Φ(t)

Tx(t)hx(t)g(x), (1)

where Tx(t) is i.i.d. Bernoulli with parameter p, and hx(t)
is the multi-path fading gain with mean Eh = 1. I(t) is
identically distributed for any t ∈ Z [2]. In any snapshot,
the network can be treated as static with updated node po-
sitions based on previous snapshots. We denote the temporal
correlation coefficient of the interference between time s and
t as ρτ , ρI(t)I(s), where τ = |t− s|. We have the following
proposition about ρτ .

Proposition 1. The temporal correlation coefficient of the
interferences I(s) and I(t), where s 6= t, is given by

ρτ =
p
∫
R g(x)Ewτ [g(x+ v̄wτ )]dx

E[h2]
∫
R g

2(x)dx
, (2)

where v̄wτ is the location difference of a node between time
s and t.

Proof: Since I(s) and I(t) are identically distributed, we
have

ρτ ,
Cov(I(t), I(s))

Var[I(t)]
=

E[I(t)I(s)]− E[I(t)]
2

E[I(t)2]− E[I(t)]
2 , (3)

where
µI , E[I(t)] = pλ

∫
R
g(x)dx, (4)

and

E[I(t)
2
] = pλE

[
h2
] ∫

R
g2(x)dx+ p2λ2

(∫
R
g(x)dx

)2

. (5)

According to [3, (4)] and [3, (5)], (4) and (5) can be derived
straightforwardly using Campbell’s theorem [8]. The mean
product of I(t) and I(s), where t 6= s, is given by

E[I(t)I(s)]

= E

 ∑
x∈Φ(t)

Tx(t)hx(t)g(x)
∑

y∈Φ(s)

Ty(s)hy(s)g(y)


= E

 ∑
x∈Φ(s)

Tx(t)hx(t)g(x+ v̄wτ )
∑

y∈Φ(s)

Ty(s)hy(s)g(y)


= E

 ∑
x∈Φ(s)

Tx(t)Tx(s)hx(t)hx(s)g(x+ v̄wτ )g(x)

+

E

 x 6=y∑
x,y∈Φ(s)

Tx(t)Ty(s)hx(t)hy(s)g(x+ v̄wτ )g(y)

 , (6)

where v̄wτ is the location difference of a node between time
s and t. Using Campbell’s theorem [8], and the independence
property of the multi-path fading gain hx, we further write (6)
as

E[I(t)I(s)]

= p2 (Eh)
2
λ

∫
R
Ewτ [g(x+ wτ )g(x)] dx

+p2 (Eh)
2
λ2

∫
R

∫
R
Ewτ [g(x+ wτ )g(y)] dxdy

(a)
= p2λ

∫
R
g(x)Ewτ [g(x+ wτ )] dx

+p2λ2

(∫
R
g(x)dx

)2

, (7)

where (a) follows from the following relationship:

pλ

∫
R
g(x)dx = E[I(0)] = E[I(t)]

= E

 ∑
x∈Φ(0)

Tx(t)hx(t)g(x+ v̄wt)


= pλ

∫
R
Ewt [g(x+ v̄wt)]dx

Therefore, (2) is proved.

Examining (2), we find that its form is close to the spatio-
temporal correlation coefficient in [3, (11)] for static networks.
At two given locations, the spatio-temporal correlation coef-
ficient is provided in [3, (11)], while for mobile networks,
we average out the random position difference of nodes in
different time slots. Furthermore, the correlation coefficient is
independent of the intensity λ. With larger λ, the interference
is only linearly scaled. The dependence of the interferences in
two different time slots remains unchanged. Now we have the
following corollary about ρτ .
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Corollary 2. ρτ is bounded by

ρτ 6
p

E[h2]
. (8)

Denote the pdf of wτ as fwτ (z). If fwτ (0) is bounded, we
have

ρτ ∼ C1v̄
−1, v̄ →∞, (9)

where “∼” denotes asymptotic equality, and

C1 =
pfwτ (0)

(∫
R g(x)dx

)2
E[h2]

∫
R g

2(x)dx
.

If fwτ (0) > fwτ (x), ρτ is bounded by

ρτ . C1v̄
−1, v̄ →∞. (10)

Proof: Since ρτ decreases monotonically with v̄, we
obtain

ρτ 6 lim
v̄→0

p
∫
R g(x)Ewτ [g(x+ v̄wτ )]dx

E[h2]
∫
R g

2(x)dx
=

p

E[h2]
.

Exploring Ewτ [g(x+ v̄wτ )] in (2), we obtain

Ewτ [g(x+ v̄wτ )] =

∫ ∞
−∞

fwτ (z)

ε+|x+ v̄z|α
dz

=
1

v̄

∫ ∞
−∞

fwτ (t/v̄)

ε+|x+ t|α
dt. (11)

Hence when v̄ →∞, we have

lim
v̄→∞

ρτ
v̄−1

=
pfwτ (0)

(∫
R g(x)dx

)2
E[h2]

∫
R g

2(x)dx
, C1 <∞.

If fwτ (0) > fwτ (x), Ewτ [g(x+ v̄wτ )] in (11) is upper
bounded by

Ewτ [g(x+ v̄wτ )] 6
fwτ (0)

∫
R g(x)dx

v̄
.

(10) is then proved.

(8) is consistent to [3, Corollary 2] for static networks when
v̄ → 0. Bounded fwτ (0) indicates that the probability where
a node returns to its original position after the time interval
τ is equal to zero. Corollary 2 is valid for the three mobility
models considered in this paper.

Interestingly, the decay of ρτ (v̄) is always asymptotically
proportional to v̄−1. Figure 1 shows ρτ versus the mean speed
v̄ with different α under the CIM model. Figure 2 shows ρτ
versus ε. When ε is small, ρτ increases with α. In this case the
interferers close to the origin dominate the interference. Such
dominance is more prominent with larger α and hence causes
higher temporal correlation of the interference. However, ρτ
decreases with α when ε is large. More nodes contribute to
the interference in this case. The slower the path loss decays,
the more correlated the interference is.

The integral
∫
R g(x)Ewτ [g(x+ v̄wτ )]dx in (2) depends on

the mobility model. In the next several subsections, we discuss
different mobility models individually.

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

v̄

ρ
τ

p = 1,E[h2] = 2, ǫ = 0.01

 

 
α = 4/3
α = 2
α = 3
α = 4
α = 4.5

Figure 1. The temporal correlation coefficient ρτ versus the mean speed v̄
with different path loss exponent α for the CIM model.
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Figure 2. The temporal correlation coefficient ρτ versus ε for the CIM
model.

A. Constrained i.i.d. mobility (CIM)

Under the CIM model, the first term in (6) can be rewritten
as

E

 ∑
x∈Φ(s)

Tx(t)Tx(s)hx(t)hx(s)g(x+ v̄wτ )g(x)


(a)
= p2E

[∑
x∈Ψ

g(x+ v̄wt)g(x+ v̄ws)

]
(b)
= p2λ

∫
R
Ews [g(x+ v̄ws)]

2dx,

where (a) follows from the independence of Tx(t) and Tx(s);
(b) follows from the fact that wt, ws ∈ [−1.5, 1.5] are i.i.d.
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Figure 3. Numerical evaluation (from (12)) of the temporal correlation
coefficient ρτ versus v̄ with the corresponding approximation (from (13)).
The mobility model is CIM.

and uniformly at random. Thus, ρτ,CIM is given by

ρτ,CIM =
p
∫
R Ews [g(x+ v̄ws)]

2dx

E[h2]
∫
R g

2(x)dx
. (12)

Using the limit in (10) as an approximation, we have the
following corollary about ρτ,CIM.

Corollary 3. ρτ,CIM can be upper bounded by

ρτ,CIM /
p

E[h2]
·min

{
1,

2πε1/α

3(α− 1) sin(π/α)v̄

}
. (13)

Proof: Since we have∫
R
g(x)dx =

2π

αε1−1/α sin(π/α)
,

and ∫
R
g2(x)dx =

2(α− 1)π

α2ε2−1/α sin(π/α)
,

(13) then follows from Corollary 2 after several steps of
calculation.

Figure 3 shows the numerical evaluation of ρτ,CIM from
(12) (solid-line curves) together with the approximation from
(13) (dash-line curves). The approximation converges to the
numerical evaluation fast as v̄ increases, and thus provides a
tight approximation for all α > 1.

From (12) and (13), we find that the temporal correlation
remains stationary over time under the CIM model, since
ρτ,CIM is independent of τ . This observation matches with
the property of the CIM model. For the Nakagami-m fading
model, we have E[h2] = m+1

m . In particular, E[h2] = 2 for
Rayleigh fading (m = 1), and E[h2] = 1 for no fading
(m → ∞). ρτ,CIM increases with m. So as with the MAC
scheme parameter p. Alternatively, both fading and random
MAC scheduling schemes reduce the temporal correlation of
interference.
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Figure 4. Numerical evaluation (from (2)) of the temporal correlation
coefficient ρ1 versus v̄ with the corresponding approximation (from (14)).
The mobility model is RW.

B. Random walk (RW)

Under the RW model, we focus on the temporal correlation
of the interference between two successive time slots i.e., ρ1.
By a similar derivation as for the CIM model, we have the
following corollary about ρ1,RW.

Corollary 4. The upper bound of ρ1,RW is given by

ρ1,RW /
p

E[h2]
·min

{
1,

πε1/α

2(α− 1) sin(π/α)v̄

}
. (14)

Figure 4 displays the numerical evaluation of ρ1,RW from
(2) and its approximation from (14). Straightforwardly, the
approximation converges fast to the numerical evaluation.

When τ > 1, we have wτ =
∑τ
i=1 w(i), where w(i) ∈

[−2, 2] is i.i.d. uniformly at random. Hence, the pdf of wτ is
given by

fwτ (z) =
1

2π

∫ ∞
−∞

(
sin (2v̄ω)

2v̄ω

)τ
e−jωzdω.

It is hard to get a closed-form ρτ,RW expression for τ > 1.
However, numerical evaluation can be obtained, which is
shown in Figure 6.

C. Discrete-time Brownian motion (BM)

Under the BM model, we have wτ =
∑τ
i=1 w(i) =

√
τw0,

where w0 is a normal random variable, i.e., N
(
0, σ2

)
. Hence,

(2) can be rewritten as

ρτ,BM =
p
∫
R g (x)Ew0

[g(x+
√
τ v̄w0)] dx

E[h2]
∫
R g

2(x)dx
. (15)

Figure 5 plots ρ1 versus the mean speed of nodes v̄ under three
mobility models. As we observe from the figure, ρ1,CIM and
ρ1,BM are approximately equal. ρ1,RW decays slightly faster
with the increase of v̄. The discrepancy between them is less
than 0.02. The mean speed v̄ rather than the mobility models
themselves affects the temporal correlation of interference
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Figure 5. The interference correlation coefficient ρ1 versus the mean speed
v̄ under three mobility models.

greatly. For τ > 1, we have the following corollary about
ρτ,BM.

Corollary 5. When τ →∞, we have

ρτ,BM ∼ C2τ
−1/2, (16)

where

C2 =
C1

v̄
=

2ε1/α

(α− 1) sin(π/α)v̄
,

and ρτ,BM is bounded by

ρτ,BM /
p

E[h2]
·min

{
1,

2ε1/α

(α− 1) sin(π/α)
√
τ v̄

}
. (17)

Proof: Based on Corollary 2, (16) and (17) follow from
(15) after a few elementary steps.

Figure 6 shows the decay of ρτ versus τ . ρτ,BM decays
slightly faster than ρτ,RW. ρτ,CIM is constant over τ and its
value can be read from Figure 5.

IV. TEMPORAL CORRELATION OF INTERFERENCE IN
HIGHER-DIMENSIONAL NETWORKS

In d-dimensional networks, the path loss function g (x) is
given by

g(x) =
1

ε+ ‖x‖α
,

where ‖·‖ is the Euclidean distance. Hence by a similar
derivation as in Proposition 1, ρτ is given by

ρτ =
p
∫
Rd g(x)Ewτ [g(x+ v̄wτ )] dx

E[h2]
∫
Rd g

2(x)dx
. (18)

V. CONCLUSIONS

In this paper, we have quantified the temporal correlation of
the interference in mobile networks in terms of the correlation
coefficient ρ. We have shown that ρ decreases asymptotically
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Figure 6. The interference correlation coefficient ρτ versus the time
difference τ under the RW and BM models. ρτ,CIM is constant over τ and
its value can be read from Figure 5.

inversely proportionally with the mean speed of nodes. Multi-
path fading and random MAC schemes also reduce the in-
terference correlation. The interference correlation coefficient
is a key ingredient when exploring the outage correlation in
wireless networks.
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