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Abstract—This paper proposes a location-based MAC (LMAC)
scheme for wireless networks with randomly placed nodes. This
scheme regulates channel access by sharing local location infor-
mation among transmitters. A lattice approximation approach is
used to derive upper and lower bound for the success probability
for a typical transmission attempt. Numerical results show that
with the node density and link distance fixed, the optimal LMAC
provides a much higher density of successful transmissions than
CSMA and ALOHA.

I. I NTRODUCTION

In wireless networks, different users try to access the same
medium. Thus, contention becomes a limiting factor of the
MAC layer performance, and managing spatial reuse is a
critical issue. The spatial reuse problem gets even more inter-
esting in mobile wireless networks, where off-line scheduling
process is impossible due to the network topology dynamics.
In such scenarios, CSMA and ALOHA with spatial reuse
are intensively investigated (e.g. [1]). The former has been
accepted in existing standards (e.g. 802.11), while the latter is
also of interest due to its simplicity.

The location-based MAC (LMAC) scheme presented in this
paper achieves spatial reuse by sharing location information
among nearby users. LMAC is especially suitable for mobile
networks, where fairness is inherently achieved. For fixed
wireless networks, some modifications need to be introduced
to ensure fair medium access. Similar MAC schemes that
explore the use of the location information at each user can be
found in [2]–[5], where the scheme in [2] is the closest to our
scheme in the sense of focusing on spatial reuse with a single
channel. However, [2] focuses on information propagation
speed, whereas this paper analyzes the spatial throughput in
the context of point-to-point communication. Moreover, [2]
considers only the 1D case, while this paper deals with the
2D scenario.

The scheduling in LMAC is based on the two criteria1:
• A node can transmit only when it is within one of the

transmission areas (TAs).
• If there are multiple potential transmitters inside the same

TA, only the one closest to the center of this TA transmits.
All the TAs are centered at the vertices on a square latticeL.

We usedL to denote the distance between two nearest vertices
on the latticeL. We will consider two kinds of TA shapes: the
circular TA and the square TA. For the circular TA, we userg

1These two criteria are only principles. There are many ways toimplement
it. For example, each potential transmitter can set a timer according to its
distance to the TA center. The node whose timer expires first broadcasts a
signal to declare channel access.

to denote the radius of the TA; for the square TA, we assume
each side of the TA is2rg. Fig. 1 shows a “snapshot” of a
random wireless network using the LMAC scheme.
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Fig. 1: An example for LMAC, with transmitters distributed as
Poisson point process (PPP) andλ = 12. The TAs are circular
areas centered on lattices,dL = 1 and rg = 0.2. All markers
indicates a potential transmitter, among which stars are those who
are transmitting.

II. SYSTEM MODEL AND METRICS

A. Network and Transmission Model

We consider a wireless network on the planeR
2, where

the potential transmitters are distributed according to homo-
geneous Poisson point process (PPP) with intensityλ. Each
potential transmitter is associated with a dedicated receiver
which is located at distanceR from the transmitter. This
network model is frequently referred to as the Poisson bipolar
model in the literature [7].

We assume that each potential transmitter is backlogged
and thus transmits whenever it is scheduled to transmit. All
the nodes in the network share the same unit bandwidth and
transmit at unit power.

B. Reception Model

We shall consider a Rayleigh fading case. The large-scale
path loss isrα over distancer. The analysis will be based on
the signal to interference ratio (SIR) and outage probability
with SIR thresholdθ. Suppose there is a transmitter aty and



a receiver atz, wherey, z ∈ R
2. The transmission attempt

from y to z is successful, iff

SIR(y, z) ,
H‖y − z‖−α

∑

X∈Φt
HX‖X − z‖−α

≥ θ, (1)

whereΦt is the point process of all other concurrent trans-
mitting nodes;H andHX represent the fading for the desired
transmitter and interferers and are temporally and spatially iid.

C. Performance Metric

The spatial throughput is a widely accepted metric for
spatial reuse in wireless networks. It is defined as the mean
number of successful transmission per unit area, i.e.,

Ts = λtps(λt, R),

whereλt ≤ λ is the mean number of transmitting nodes per
unit area;ps(λt, R) is the success probability of a typical
transmission attempt.

Note thatTs is not directly associated with any fixedλ. As
a result,Ts fails to characterize the utilization of each link,
i.e. it cannot guarantee the fraction of time in which each
link is activated. For example, if we defineη = λt/λ and let
T̄s(λ) = maxη ηλps(ηλ,R), it can be shown that for small
enoughR, argmaxλ T̄s(λ) → ∞, which means each link is
activated with probability0! Moreover, in a practical wireless
network, the optimal routing strategy always chooses one of
the nearby nodes as desired next hop receiver. Thus, it makes
sense to choose a smallerR for a largerλ.

Therefore, this paper focuses on the normalized transmis-
sion density defined as

Dt ,
Ts

λ

∣

∣

∣

R=1/
√
λ
.

Note that 1/
√
λ is twice the mean distance of the nearest

receiver for the typical node in a PPP network of densityλ.

Proposition 1. For any given shape of the TA and reception
thresholdθ, if the ratio of the TA size to the size of the Voronoi
cell is held constant, i.e.|TA(o)|/d2

L
= C, we have

Dt(λ, dL) ≡ Dt

(

kλ,
1√
k
dL

)

, ∀k ∈ R
+.

This proposition means the following two scalings result
in the same change ofDt: 1) fix the lattice and scaleλ by a
factor ofk; 2) fix λ and scale the lattice constantdL by a factor
of 1/

√
k. This result holds because we only consider SIR. If

noise is considered, such an equivalent scaling statement will
not be true. The proof of Proposition 1 is straightforward.

Corollary 1. AnyDt achievable in the unit square lattice case
(dL = 1) is achievable in the unit potential transmitter density
case (λ = 1).

Corollary 1 enables us to compare any value ofDt achieved
in the unit lattice case to the unit potential transmitter density
case. The former is our setup, while the latter is often assumed
in the analysis of ALOHA and CSMA (e.g. [1]).

III. L ATTICE APPROXIMATION

Due to the randomness in the location of the transmitting
nodes, an exact evaluation of the success probabilityps in
LMAC is hard. However, the lattice structure of the TAs
indicates that we can use a lattice to approximate the location
of interferers. In the square lattice case, let us consider the case
where exactly one interferer is located right on each vertexof
square latticeL\{o}, where o is the origin. Let |A| be the
size of a TA. Then, each interferer transmits with probability
p = 1 − e−λ|A| which is the probability that at least one
potential transmitter is inside this TA. We definepz

L
to be the

success probability of a transmission attempt to a receiverat
z, where the subscriptL implies lattice approximation. Here,
the position of the transmittery is not specified but according
to our bipolar model it must satisfyR = ‖y − z‖. Then, we
have the following result:

Proposition 2. If the interferers are located atL\{o}, The
success probability of a transmission satisfies

log pz
L
= −

∑

x∈L\{o}
l(x− z;α, p, s)|s=θRα ,

whereR = ‖y − z‖ and l(x;α, p, s) , − log
(

1− ps
‖x‖α+s

)

.

Proof: For any TA centered atx ∈ L\{o}, the Laplace
transform of its interference to the pointz is

LIx(s) = p
‖x− z‖α

‖x− z‖α + s
+ 1− p.

Then, the Laplace transform of the interference is simply

LI(s) =
∏

x∈L\{o}
(p

‖x− z‖α
‖x− z‖α + s

+ 1− p).

Also, it is well known that for Rayleigh fading case, the
success probability can be expressed by the Laplace transform
of interference (e.g. [1]). As a result, we havepz

L
(y) =

LI(s)|s=θRα , whereR = ‖y − z‖.
Some properties ofl(x;α, p, s) will be explored in the later

sections of the paper. For the sake of simplicity, we will use
l′(·) to denotel(·;α, p, s) if there is no confusion.

IV. T RANSMISSIONAREA SHAPE

A natural question in designing the LMAC is that given
the size of the transmission area (TA)|A|, what is the best
shape of TA? Exploring all the possible shapes of size|A| is
intimidating, both analytically and numerically. However, an
intuitive answer can be obtained if we consider the limiting
case ofλ → ∞, (and thusp → 1). Then

pz
L
=

∏

x∈L\{o}

(

1− s

‖x− z‖α + s

)

∣

∣

∣

s=θRα
.

Since for eitherTs or Dt, the success probabilityp
L

is the
only factor that will be affected by the shape of TA, the optimal
shape of a TA of area|A| maximizes

p
L
= EZ [p

Z
L
] = EY

[

EZ [p
Z
L
| Y ]

]

,

whereX is the position of the desired transmitter.
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(c) α → ∞

Fig. 2: The optimal TA shape in square lattice for different TA sizes.
Here,p = 1, R = 0.1.

If we define the mean success probability for a transmitter at
locationy asp

L
(y) , EZ

[

pZ
L
| Y = y

]

, whereZ is uniformly
distributed on the ring of radiusR centered aty, we can
plot the contour ofp

L
(y) for all positions within the Voronoi

cell of o. For example, Fig. 2a and 2b show the contour for
α = 3 and4. In the limiting caseα → ∞, it is easily shown
that log(1 − s

xα
1
+s ) = o(log(1 − s

xα
2
+s )), ∀x1 > x2 > 0,

which means whenα → ∞, it suffices to consider only the
interference from the nearest interferer. This fact enables us
to analytically characterizep

L
(y) for α → ∞ (Fig. 2c).

As expected, Fig. 2 showsp
L
(y) becomes smaller asy

moves away fromo. Let the set of contours in Fig. 2 be
a set of TA shapes. Then, the outer contours always have
lower E[p

L
(Y )], sinceY is distributed in the associated TA.

Meanwhile, any other set of shapes cannot have such property.
Thus, these contours are the optimal TA shapes.

In principle, we can plot the optimal TA shapes for any set
of parameters. Yet, by comparing the contours in Fig. 2, we
conclude that for reasonableα either a circle or a square is
close to the the optimal TA shape. In fact, numerical results
show that in most cases, the performance difference between
circular TA and square TA is small. In the following, we will
focus on square and circular TA.

V. BOUNDS ON THESUCCESSPROBABILITY p
L

In this section, we boundp
L

by evaluating the success
probability of a virtual transmitter-receiver pair(ỹ, z̃) while
disabling all other potential transmitters in the central TA
TA(o). Again,‖ỹ− z̃‖ = R. We define this success probability
as p̃z̃

L
. Since the pair(ỹ, z̃) is reasonable only if̃y ∈ TA(o),

we will restrict z̃ ∈ TA(o)⊕ b(o,R), whereb(o,R) is a disk
centered ato with radiusR and⊕ is the Minkowski addition.

A. Upper bound forp
L

First, we try to upper bound the success probabilityp̃o
L
,

i.e. z̃ = o. Note that this is essentially the best case for
p

L
, because, among all positions within TA(o) ⊕ b(o,R), o

provides the best spatial separation from interference from
other lattice cells.

Before deriving the upper bound, we introduce the following
lemma, which states the convex-tail nature ofl(x;α, p, s).

Lemma 1. l(x;α, p, s) is a monotonically decreasing function

of ‖x‖ and is convex forx > Tc ,

(

2αs
α+1

)
1
α

.

The proof of Lemma 1 is omitted in this paper. The basic
idea is to find the range ofx where the second derivative of
l(r;α, p, s) is positive.
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Fig. 3: Interferers on a line.

Meanwhile, it can be easily verified thatl(x;α, p, s) =
o(x−2), as x → ∞ for α > 2. Thus, we can use the idea
provided in [6] to find a decent upper bound forLI(s):

− logLI(s) =
∑

x∈L\{o}
l(x;α, p, s)

> 4

Kc−1
∑

k=1

l′(k) + 4

Kc−1
∑

k=1

l′(
√
2k)

+ 8

Kc−1
∑

k=2

k−1
∑

i=1

l′(
√

k2 + i2) + 8
∞
∑

Kc

kl′(ck), (2)

whereKc = ⌈Tc⌉ andc ,
√
2
2 + 1

4 (1−log(
√
2−1)) ≈ 1.1775.

The last term in (2) can be further lower bounded in terms of
the Riemann zeta functionζ(·):

∞
∑

k=Kc

kl′(ck) = −
∞
∑

k=Kc

k log(1− ps

(ck)α + s
)

>

∞
∑

k=Kc

kps

(ck)α + s

>
psKα

c

cαKα
c + s

∞
∑

k=Kc

k1−α

=
psKα

c

cαKα
c + s

(

ζ(α− 1)−
Kc−1
∑

k=1

k1−α

)

.

Consequently, we have a strict lower bound for−LI(s) in
terms of the Riemann zeta function, and thus an corresponding
upper bound forpo

L
. Sincepo

L
≥ p

L
, this upper bound is also

an strict upper bound forp
L
.

B. Lower bound forp
L

Similarly, using the virtual transmitter-receiver pair argu-
ment, we can derive a lower bound ofp

L
. Before doing that,

we give some results dealing with intereference from part of
the lattice network to an arbitrary receiver positionz.

1) Interference from a line of interferers:We first consider
the interference from a line of interferers. Fig. 3 shows a
simple example of one dimensional interferers, where all
the solid dots are the interferers and the desired receiver is
assumed to be located atz. Generally, a line of interferers is
defined as interferers located atxi = ix1, i = 1, 2, 3, . . . . In
the example in Fig. 3,x1 = [1, 0]T . For the sake of simplicity,
we further assume‖z‖ ≤ ‖xi‖, ∀i.
Proposition 3. ∀KB ∈ Z

+, define the two constantsc1 ,

‖z− xKB+1‖− ‖z− xKB
‖, b1 , ‖z− xKB

‖− c1KB . Then,
∀K ∈ Z

+, such thatK ≥ max{Tc,1 +
1
2 ,KB}:

∞
∑

k=K

l′(‖z − xk‖) ≤
1

c1
I∞1 (b1 + c1(K − 1

2
)),
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Fig. 4: Interferers in a triangular region.

whereI∞1 (x) ,
∫∞
x

l′(t)dt.

Proof: Since for anyk ∈ Z
+,

‖xk+1 − z‖ − ‖xk − z‖ ≤ ‖xk+2 − z‖ − ‖xk+1 − z‖,

we know that for anyk ≥ KB

‖xk − z‖ ≥ ‖xKB
− z‖+ (k −KB)c1.

By the monotonicity and convexity proved in Lemma 1, we
have: for anyk ≥ max{KB , Tc,1 +

1
2},

l′(‖z − xk‖) ≤ l′(b1 + c1k) ≤
∫ k+ 1

2

k− 1
2

l′(b1 + c1x)dx.

Summing this inequality for allk ≥ K ≥ max{KB , Tc,1+
1
2}

yields the desired result.
Note that I∞1 (x) is not in closed form, but it can be

expressed by gamma function and hypergeometric function,
and thus can be evaluated with arbitrary numerical precision.

2) Interference from a triangular region:Fig. 4 shows an
example of interferers in a triangular region, where all the
solid dots are interferers, all the dotted circles in the figure are
only for reference. Generally, we definexk,i = kxk0 + ixi0

as the intereferers in a triangular region, wherek = 2, 3, . . . ,
1 ≤ i ≤ k − 1, and xk0, xi0 ∈ R

2 are orthogonal constant
vectors. In the previous example,xk0 = [1, 0]T , xi0 = [0, 1]T .
Again, we assume‖z‖ ≤ ‖xk,i‖, ∀k, i.
Lemma 2. ∀b2, c2 ∈ R

+, f(x) , (x−1)l′(b2+c2x) is convex

for x ≥ Tc,2 , max{3+ 6b2
αc2

, (6
1
α −b2)/c2,

1
c2

(

6b2s
αc2

)
1
α − b2

c2
}.

We omit the proof of Lemma 2 which is simply bounding
the second derivative of(x− 1)l′(b2 + c2x).

Proposition 4. ∀KB ∈ Z
+, define the two constantsc2 ,

‖xKB+1,1− z‖−‖xKB ,1− z‖, b2 , ‖xKB ,1− z‖− c2. Then,
∀K ∈ Z

+, such thatK ≥ max{KB , Tc,1, Tc,2 +
1
2}:

∞
∑

k=K

k−1
∑

i=1

l′(‖z − xk,i‖) <
1

c22
I∞2

(

b2 + c2(K − 1

2
)

)

− b2 + c2
c22

I∞1

(

b2 + c2(K − 1

2
)

)

,

whereI∞1 (x) ,
∫∞
x

l′(t)dt and I∞2 (x) ,
∫∞
x

tl′(t)dt.

Proof: By the definition ofxk,i, it is obvious that‖xk,i−
z‖ ≥ ‖xk,1−z‖, ∀i ≥ 1. Combining this with the monotonicity
of l′(x), we have

∑k−1
i=1 l′(‖xk,i−z‖) ≤ (k−1)l′(‖xk,1−z‖).

Similar to the argument we made in Proposition 3, we have

‖xx,1 − z‖ ≥ ‖xKB ,1 − z‖+ (k −KB)c, ∀k ≥ KB , k ∈ Z
+.

Then, using the monotonicity ofl′(x) proved in Lemma 1 as
well as the convexity of(x−1)l′(b2+ c2x) proved in Lemma
2, we have: for allk ≥ max{KB , Tc,1, Tc,2 +

1
2},

l′(‖xk,1 − z‖) ≤
∫ k+ 1

2

k− 1
2

(x− 1)l′(b2 + c2x)dx.

Summing over allk ≥ K ≥ max{KB , Tc,1, Tc,2 +
1
2} yields

the desired result.
Note that, similar toI∞1 (x), I∞2 (x) can be expressed in

terms of gamma function and hypergeometric function.
Because the whole lattice network (except for the central

point o) can be divided into eight triangular regions and eight
interferer lines, the above two propositions can provide an
upper bound for

∑

x∈L\{o} l
′(‖x−z‖) and thus a lower bound

for p̃z
L
. Sinceminz∈TA(o)⊕b(o,R) p̃

z
L
≤ p

L
, if we can find the

worst realization ofz, we have a lower bound forp
L
. This

worst casez depends on the TA shape we choose, but we
know it must be located on the boundary of TA(o)⊕ b(o,R).

Specifically, simulation results show that for circular TAs
of radiusrg, we have

arg min
z∈TA(o)⊕b(o,R)

p̃z
L
= arg min

z∈{z1,z2}
p̃z

L
, (3)

wherez1 = [0, R + rg]
T , z2 = [ 1√

2
(R + rg),

1√
2
(R + rg)]

T .
For square TA with each side of2rg, (3) still holds but with
z1 = [0, R+ rg]

T , z2 = [R+ 1√
2
rg, R+ 1√

2
rg]

T .

C. Numerical Example

Fig. 5 plots the transmission densityDt as a function ofλ
for different TA sizes. Here, the TA shape are chosen to be
square. By the figures, we can see our upper and lower bound
approximates theps of LMAC pretty well when the TA is
small (for rg = 0.1 and rg = 0.2). As expected, the lower
bound becomes looser whenrg = 0.4, where the worst case
effect is mitigated by choosing the transmitter nearest to the
TA center.

VI. COMPARISON WITH ALOHA AND CSMA

The performance of ALOHA is analytically tractable [1].
However, the exact performance of CSMA is still generally not
well characterized. Almost all the analysis for CSMA involves
certain level of approximation. In the following two subsec-
tions, we will base our comparison to CSMA on two analytical
results which are presented in [1] and [7] respectively.

A. Comparison 1: Matern Process Approximation

Fig. 6 uses the upper and lower bound ofps derived above
to characterize the normalized transmission density for LMAC
and compares it with CSMA and ALOHA schemes. The lower
bound of LMAC is calculated in a max-min fashion, i.e. it is
the maximum of the lower bound ofDt among all choices
of λ and rg. The upper bound in the figure is the upper
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Fig. 5: Calculated Transmission Density using 1)p
L

upper bound, 2)p
L

lower bound, 3) simulation results.α = 4, R = 1, λ = 1, θ = 10.

bound of Dt when λ and rg are chosen as the value that
maximizes the lower bound. The performance of CSMA and
ALOHA are cited from [1], where the authors approximate
concurrent transmitter in CSMA to form a Matern hard core
process. Its density isλRcs

= (1 − e−πλR2
cs)/(πR2

cs), where
Rcs = 2√

3
R (2θζ(α− 1))

1/α is the corresponding carrier
sensing range. To get normalized transmission density, we
simply applyλ = 1 andR = 1 to the functions above.
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Fig. 6: Comparison of normalized transmission density among dif-
ferent MAC schemes, whereθ = 10. Here, the CSMA and ALOHA
performance are cited from [1]. The performance of LMAC is
evaluated by the analytical lower bound.

Fig. 6 shows for (at least)2.5 ≤ α ≤ 5.5 even the lower
bound of the LMAC outperforms both CSMA and ALOHA.

B. Comparison 2: Poisson Process Approximation

Table I compares the normalized transmission density of
LMAC with ALOHA and CSMA. Here, the results about
CSMA are obtained by approximating the transmitting point
processΦt to be a Matern point process then approximating
it by an inhomogeneous Poisson point process [7]. In such a
framework, whenR = 1, the transmitting success probability
of a typical transmittion attempt is

pCS
s (Po) ≈ exp

(

−λ

∫

R+

∫ 2π

0

τh(τ, Po)

1 + (τ2+1−2τ cosφ)α/2

θ

dφdτ

)

,

wherePo is the detection threshold for carrier sensing and
h(r, Po) is the probability of two node, at distancer, access
the medium at the same time.h(r, Po) can be written in the
form of an integral over theR2 plane. Then, the normalized
transmission density isppCS

s (Po), wherep = (1 − eN̄ )/N̄ is
the transmitting probability of each node and̄N = 2πΓ(2/α)

αP
2/α
o

.

The value shown in Table I ismaxPo
ppCS

s (Po).

TABLE I: Performance Comparison of Different MAC Schemes in
2D case: fixα = 4, R = 1, λ = 1, θ = 10.

Scheme maxDt D ps
LMAC 0.047 0.068 0.69
CSMA 0.037 0.072 0.52

ALOHA 0.024 0.064 0.38

Table I shows that: in terms of normalized transmission
density, LMAC outperforms CSMA by 27% and ALOHA by
96%. It also demonstrates that LMAC has better transmission
success probability than CSMA or ALOHA, which can po-
tentially reduce the local delay [8] and the energy spent on
unsuccessful transmissions.
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