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Abstract—This paper proposes a location-based MAC (LMAC) to denote the radius of the TA; for the square TA, we assume
scheme for wireless networks with randomly placed nodes. This each side of the TA i2r,. Fig. 1 shows a “snapshot” of a

scheme regulates channel access by sharing local location infor- random wireless network using the LMAC scheme.
mation among transmitters. A lattice approximation approach is

used to derive upper and lower bound for the success probability

for a typical transmission attempt. Numerical results show that xx X X X " xR0
with the node density and link distance fixed, the optimal LMAC 3t @ @ Q @ X Q
provides a much higher density of successful transmissions than * % x X %% %
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CSMA and ALOHA.
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I. INTRODUCTION

In wireless networks, different users try to access the same
medium. Thus, contention becomes a limiting factor of the

,_.

MAC layer performance, and managing spatial reuse is a >< e
critical issue. The spatial reuse problem gets even moee-int °F @ @ Q ‘ XX @ @
esting in mobile wireless networks, where off-line schedyl o o XXXX X
process is impossible due to the network topology dynamics.  -i¢ *@ @ x Q @ s @ @
In such scenarios, CSMA and ALOHA with spatial reuse X; S
are intensively investigated (e.g. [1]). The former hasnbee Sl XX * X:*
accepted in existing standards (e.g. 802.11), while therlat XX o @ Q ) @X @ @ &@
also of interest due to its simplicity. X x L

The location-based MAC (LMAC) scheme presented in this | @* % NeE @ @ QM@

X

paper achieves spatial reuse by sharing location infoomati = = = . . ; s

among nearby users. LMAC is especially suitable for mObEFig 1: An example for LMAC, with transmitters distributed as
ne;tworks, where fairness is ]nherently achieved. .For fix@ghisson point process (PPP) and= 12. The TAs are circular
wireless networks, some modifications need to be introduca@as centered on latticed;, = 1 andr, = 0.2. All markers

to ensure fair medium access. Similar MAC schemes thagicates a potential transmitter, among Which stars are those who
explore the use of the location information at each user ean € transmitting.

found in [2]-[5], where the scheme in [2] is the closest to our I
scheme in the sense of focusing on spatial reuse with a single o
channel. However, [2] focuses on information propagatioh. Network and Transmission Model

speed, whereas this paper analyzes the spatial throughput iwe consider a wireless network on the plaRé, where
the context of point-to-point communication. Moreover] [2the potential transmitters are distributed according tmdo
considers only the 1D case, while this paper deals with t@%neous Poisson point process (PPP) with intensitach
2D scenario. potential transmitter is associated with a dedicated vecei
The scheduling in LMAC is based on the two critéria  which is located at distanc& from the transmitter. This
o A node can transmit only when it is within one of thenetwork model is frequently referred to as the Poisson hipol
transmission areas (TAS). model in the literature [7].
« If there are multiple potential transmitters inside the eam We assume that each potential transmitter is backlogged
TA, only the one closest to the center of this TA transmitand thus transmits whenever it is scheduled to transmit. All
All the TAs are centered at the vertices on a square lattice the nodes in the network share the same unit bandwidth and
We usedy, to denote the distance between two nearest vertidégnsmit at unit power.
on the latticel.. We will consider two kinds of TA shapes: the
circular TA and the square TA. For the circular TA, we uge B. Reception Model
We shall consider a Rayleigh fading case. The large-scale

_ 'These two criteria are only principles. There are many waymflement  path |oss is-* over distance:. The analysis will be based on
it. For example, each potential transmitter can set a timerrdow to its th . | to interf tio (SIR d t bil
distance to the TA center. The node whose timer expires fisadmasts a the signal to interference ratio (SIR) and outage proligbili

signal to declare channel access. with SIR threshold). Suppose there is a transmitterygabind

. SYSTEM MODEL AND METRICS



a receiver atz, wherey,z € R2. The transmission attempt 1. L ATTICE APPROXIMATION

from y to z is successful, iff Due to the randomness in the location of the transmitting
Hly — 2| nodes, an exact evaluation of thg success probabhilityn
SIR(y, z) & — >0, (1) LMAC is hard. However, the lattice structure of the TAs
2Lxea, Hx[|X = 2|7 indicates that we can use a lattice to approximate the locati

where @, is the point process of all other concurrent trangf interferers. In the square lattice case, let us consfuecase
mitting nodes;H and H x represent the fading for the desired"’here exactly one interferer is located right on each veofex

transmitter and interferers and are temporally and spatidl Square latticell\ {o}, wher_eo Is the origin.' Let|'A| be the'_
size of a TA. Then, each interferer transmits with probapili

p = 1 — e Al which is the probability that at least one

potential transmitter is inside this TA. We defipg to be the
The spatial throughput is a widely accepted metric fasuccess probability of a transmission attempt to a receiver

spatial reuse in wireless networks. It is defined as the meanwhere the subscrigt. implies lattice approximation. Here,

C. Performance Metric

number of successful transmission per unit area, i.e., the position of the transmittey is not specified but according
to our bipolar model it must satisfR = ||y — z||. Then, we
Ts = Aeps (A, R), have the following result:

where \; < X is the mean number of transmitting nodes peProposition 2. If the interferers are located at\{o}, The
unit area;ps(\, R) is the success probability of a typicalsuccess probability of a transmission satisfies
transmission attempt. ;

Note thatT, is not directly associated with any fixed As logp; = — Z lz = 2 0,p,5)|s=0Re,
a result, 7, fails to characterize the utilization of each link, zel\{o}
i.e. it cannot guarantee the fraction of time in which each N s
link is activated. For example, if we define= ),/ and let where R = ||y — z|| and{(z; ., p, s) = —log (1 B W) :
T5(A) = max, nAps(nA, R), it can be shown that for small  proof: For any TA centered at € L\{o}, the Laplace
enoughR, argmax, 75(A) — oo, which means each link is yransform of its interference to the pointis
activated with probability)! Moreover, in a practical wireless
network, the optimal routing strategy always chooses one of Lo (s) = |z — 2||*
the nearby nodes as desired next hop receiver. Thus, it makes Lo |z —2]|% +s

sense to choose a smallBrfor a largerA. . L
. . Then, the Laplace transform of the interference is simply
Therefore, this paper focuses on the normalized transmis-

+1—p.

sion density defined as Lr(s) = H ( M +1—p)
= = )
. T, ciulo} |z — 2| + s
A lR=1/vX Also, it is well known that for Rayleigh fading case, the

ccess probability can be expressed by the Laplace tramsfo
interference (e.g. [1]). As a result, we hayé(y) =
S)|S:0Ra, whereR = Hy_Z” |
Proposition 1. For any given shape of the TA and reception Some properties df(z; «, p, s) will be explored in the later
thresholdd, if the ratio of the TA size to the size of the Vorongiections of the paper. For the sake of simplicity, we will use
cell is held constant, i.dTA(0)|/d? = C, we have I'(-) to denotel(-; a, p, s) if there is no confusion.

Note that1/v/)\ is twice the mean distance of the neare%tlfJ
receiver for the typical node in a PPP network of dengity Lo

1 N V. TRANSMISSIONAREA SHAPE
Di(X,dy) = Dy <k)" \/Edl> , VEERT A natural question in designing the LMAC is that given
) . ) . the size of the transmission area (TA)|, what is the best
_ This proposition meaps th_e foIIowmg two scalings resughape of TA? Exploring all the possible shapes of $itis
in the same change db;: 1) fix the lattice and scalé by & iyimidating, both analytically and numerically. Howeyen

factor of; 2) fix A and scale the lattice constafif by a factor jhyitive answer can be obtained if we consider the limiting
of 1/v/k. This result holds because we only consider SIR. Hase of\ = 0o (and thusp — 1). Then

noise is considered, such an equivalent scaling statemiént w
not be true. The proof of Proposition 1 is straightforward. P = H (1 7 s )
L — @

Corollary 1. Any D, achievable in the unit square lattice case z€L\{o} ==l + s

(d. = 1) is achievable in the unit potential transmitter density gjnce for eitherT, or D,, the success probability, is the

case @ = 1). only factor that will be affected by the shape of TA, the ogtim
Corollary 1 enables us to compare any valudpfachieved shape of a TA of areaA| maximizes

in the unit lattice case to the unit potential transmittensity p, = Ez[p?] = By [EZ[p? | Y]],

case. The former is our setup, while the latter is often assum
in the analysis of ALOHA and CSMA (e.g. [1]). where X is the position of the desired transmitter.

s=0R> '
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Fig. 3: Interferers on a line.
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Meanwhile, it can be easily verified thé{z; o, p,s) =
o(x72%), asz — oo for a > 2. Thus, we can use the idea

provided in [6] to find a decent upper bound 6F(s):
Fig. 2: The optimal TA shape in square lattice for different TA sizes.

Here,p =1, R =0.1. —log L;(s) = Z I(z;a,p, )
If we define the mean success probability for a transmitter at e€l\{o}
locationy asp, (y) £ Ez [p? | Y =y, whereZ is uniformly K1 Ke1
distributed on the ring of radiu® centered at, we can >4 V(R +4 ) U (V2k)
plot the contour ofy, (y) for all positions within the Voronoi k=1 k=1
cell of o. For example, Fig. 2a and 2b show the contour for Ke1k—1 : g
o = 3 and4. In the limiting casen — oo, it is easily shown +8 Y Y UV +2) +8Y K(ck),  (2)
that log(1 — Q_H) o(log(1 — T—i—s)) Yy > xo > 0, k=2 i=1 K.

which means whem — oo, it suffices to consider only the whereK, = [T.] ande 2 f+ L —log(ﬂ—l)) ~ 1.1775.
interference from the nearest interferer. This fact ermbie The last term in (2) can be further lower bounded in terms of

to analytically characterizg, (y) for a — oo (Fig. 2c). the Riemann zeta functiog(-):
As expected, Fig. 2 shows. (y) becomes smaller ag
moves away fromo. Let the set of contours in Fig. 2 be
a set of TA shapes. Then, the outer contours always have kz;( K (ck) Z klog(1 ) s)

lower E[p. (Y)], sinceY is distributed in the associated TA.

Meanwhile, any other set of shapes cannot have such property < Z kps

Thus, these contours are the optimal TA shapes. ck)® + s
In principle, we can plot the optimal TA shapes for any set

o0

of parameters. Yet, by comparing the contours in Fig. 2, we psKg 1-a
: . . > ——° § k
conclude that for reasonabte either a circle or a square is K& + s
. . k=K.

close to the the optimal TA shape. In fact, numerical results K1

show that in most cases, the performance difference between  psKY 1 . AR

circular TA and square TA is small. In the following, we will T K2 +s Cla—1) - kz '
=1

focus on square and circular TA. _ _
Consequently, we have a strict lower bound fof;(s) in

V. BOUNDS ON THESUCCESSPROBABILITY p, terms of the Riemann zeta function, and thus an correspgndin
In this section, we boung, by evaluating the successupper bound fop?. Sincep® > p,, this upper bound is also
probability of a virtual transmitter-receiver paif, Z2) while an strict upper bound fop, .
disabling all other potential transmitters in the centrédl T
TA(0). Again, || —Z|| = R. We define this success probabilityB- Lower bound for,
asp~. Since the pairy, z) is reasonable only ifj € TA(o), Similarly, using the virtual transmitter-receiver paigas
we will restrict 7 ¢ TA(0) @ b(o, R), whereb(o, R) is a disk ment, we can derive a lower bound pf. Before doing that,
centered ab with radius R and@ is the Minkowski addition. We give some results dealing with intereference from part of
the lattice network to an arbitrary receiver position
A. Upper bound fop, 1) Interference from a line of interfereraMVe first consider
First, we try to upper bound the success probabifify the interference from a line of interferers. Fig. 3 shows a
i.e. Z = o. Note that this is essentially the best case faimple example of one dimensional interferers, where all
p,, because, among all positions within A @ b(o, R), o the solid dots are the interferers and the desired recedver i
provides the best spatial separation from interferencen fraassumed to be located at Generally, a line of interferers is

other lattice cells. defined as interferers located :aJ ixy, 1=1,2,3,....1In
Before deriving the upper bound, we introduce the followinghe example in Fig. 3y, = 1, ()] For the sake of simplicity,
lemma, which states the convex-tail naturel @f; o, p, s). we further assuméz|| < ||z, Vi.
Lemma 1. I(z; a, p, 8) is @ monotonically decreasmg functionproposition 3. VK5 € Z*, defme the two constantg £
of ||z|| and is convex for: > T, £ (2‘“)3. Iz = xp i1l = Iz = zxpll, b1 = ”Z_xKB”_ClKB Then,
Il atl VK € Z", such thatK > max{T,; + 3, Kp}:
The proof of Lemma 1 is omitted in this paper. The basic 0o
idea is to find the range of where the second derivative of U(lz -zl < l[i‘(bl + (K — })),
l(r;a,p, s) is positive. Py C1



Proof: By the definition ofzy, ;, it is obvious that|xy, ; —

° ° e ... Z>lxg1—z],¥i> 1. Combining this with the monotonicity
T54 Ted Trd of I'(x), we haver;l1 U(llwk,— =) < (k=) ([|lxg1—=])-
o . . . Similar to the argument we made in Proposition 3, we have
T3 53 Tos3 I73 |2z — 2| > llekp — 2l + (k= Kp)e,Vk > Kp,k € Z7.
;;372 ;42 ;5_’2 ;62 ;772 """ Then, using the monotonicity df(x) proved in Lemma 1 as
well as the convexity ofx — 1)1’ (b + cox) proved in Lemma
3 o ° ° ° ° ° ° .- : > L
f 51 Ts1 au1 Tea Tea ara 2, we have: for allk > max{Kp,Tc1,Tc2 + 3},
20 b+
s Vo =20 < [ (o= DV (ba + canee
—— k—%

Fig. 4: Interferers in a triangular region. . .
9 9 9 Summing over allk > K > max{Kp,T.1,T.2 + 3} yields

where I3 (z) 2 [* I'(t)dt. the desired res.ulf[. "
”’ Note that, similar tolt°(x), IS°(x) can be expressed in
Proof: Since for anyk € Z7, terms of gamma function and hypergeometric function.
Because the whole lattice network (except for the central
lwrsr = 2l = llz = 2l < llzpse = 2l = llzper = ], point o) can be divided into eight triangular regions and eight
we know that for anyk > K interferer lines, the above two propositions can provide an
upper bound fol_, ; \ (,, I'([|z—z||) and thus a lower bound
ler — z|| > ek, — 2| + (k — Kg)ea. for p7. Sincemin,ctao)en(o,r) P° < py, if we can find the

worst realization ofz, we have a lower bound fop, . This
forst casez depends on the TA shape we choose, but we
know it must be located on the boundary of (BA® b(o, R).

By the monotonicity and convexity proved in Lemma 1, w
have: for anyk > max{Kp,T.1 + 3},

ket Specifically, simulation results show that for circular TAs
U(||z = zil]) < V(b + c1k) < / I'(by + ¢yz)de. of radiusr,, we have
E—1
? arg min p; =arg min p7, 3

Summing this inequality for alt > K > max{Kp,T. 1+ 1} 2€TA(0)Bb(0,R) #€{z1.22}

yields the desired result. . B wherez; = [0,R+ry]T, 2 = [%(RJFTQ)’ %(RJFTQ)]T_
Note that I7°(x) is not in closed form, but it can be For square TA with each side af,, (3) still holds but with
expressed by gamma function and hypergeometric function, — [0,R+7y)T, 25 =[R+ Lry, R+ Lr,T.
and thus can be evaluated with arbitrary numerical pretisio J vz g vz o
2) Interference from a triangular regionFig. 4 shows an C. Numerical Example

example of interferers in a triangular region, where all the Fig. 5 plots the transmission densify, as a function of\

solid dots are interferers, all the dotted circles in therBgare for different TA sizes. Here, the TA shape are chosen to be
only for reference. Generally, we defing; = kzro + izio  square. By the figures, we can see our upper and lower bound
as the intereferers in a triangular region, where- 2,3,...,  approximates the, of LMAC pretty well when the TA is

1 <i< k-1, anday,zi € R® are orthogonal constantsmall (for r, = 0.1 andr, = 0.2). As expected, the lower
vectors. In the previous examplexo = [1,0]”, 20 = [0,1]".  bound becomes looser whep = 0.4, where the worst case

in, < |lzk,ll, Yk, 1. effect is mitigated by choosing the transmitter neares
Again, we assuméz|| < |zkll, Vk,i fect tigated by ch the t tt heo t
Lemma 2. Vbo, co € R, f(z) 2 (2—1)I'(by +cox) is convex TA center.
1
A 6b. i 1 (6bas )™ _ b VI. COMPARISON WITHALOHA AND CSMA
fOrZCzTc’Q —maX{3+a7622,<6@_b2>/027a (7112‘2) _é}

) L ) The performance of ALOHA is analytically tractable [1].
We omit the proof of Lemma 2 which is simply boundingowever, the exact performance of CSMA is still generally no
the second derivative dfr — 1)1 (b + cox). well characterized. Almost all the analysis for CSMA invedv

Proposition 4. VK5 € Z*, define the two constants 2 certain level of approximation. In the following two subsec

Ik pi11— 2 = |eKg1 — 2|, b2 2 ||zxy1 — 2| —c2. Then, tions, we will base our comparison to CSMA on two analytical
VK & 7+, such thatie > max (Kp, T, 1,BTC s+ 1y results which are presented in [1] and [7] respectively.
o k-1 ) ) A. Comparison 1: Matern Process Approximation
Z Zl/(nz —rp4l|) < 5157 <b2 + (K — 2)) Fig. 6 uses the upper and lower boundpgfderived above
k=K i=1 2 to characterize the normalized transmission density foAOM
by + 2 o 1 and compares it with CSMA and ALOHA schemes. The lower
2 I7° bz +ea(K — 5) » bound of LMAC is calculated in a max-min fashion, i.e. it is

the maximum of the lower bound ab; among all choices
whereIt°(z) £ [ I'(t)dt and I5°(x) & [ tl'(t)dt. of A and r,. The upper bound in the figure is the upper
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Fig. 5: Calculated Transmission Density usingpl)upper bound, 2p, lower bound, 3) simulation results&. =4, R =1, A =1, 6 = 10.

bound of D; when A and r, are chosen as the value thatvhere P, is the detection threshold for carrier sensing and
maximizes the lower bound. The performance of CSMA andr, P,) is the probability of two node, at distaneg access
ALOHA are cited from [1], where the authors approximat¢he medium at the same timg(r, P,) can be written in the
concurrent transmitter in CSMA to form a Matern hard corform of an integral over théR? plane. Then, the normalized
process. Its density i8z,. = (1 — e~™FB%)/(7R2,), where transmission density ispCS(P,), wherep = (1 — V)/N is
Res = %R(%C(a — 1))1/“ is the corresponding carrierthe transmitting probability of each node ant= %.
sensing range. To get normalized transmission density, Wge value shown in Table | isiaxp, ppSS(P,) ’

simply applyA = 1 and R = 1 to the functions above. e

TABLE I: Performance Comparison of Different MAC Schemes in
2D case: fixa =4, R=1, A =1, 6 = 10.

R dyd - Scheme  max Dy D Ps
LMAC 0.047 0.068 0.69
CSMA 0.037 0.072 0.52
ALOHA 0.024 0.064 0.38

0.06 -

Table | shows that: in terms of normalized transmission
density, LMAC outperforms CSMA by 27% and ALOHA by
96%. It also demonstrates that LMAC has better transmission
success probability than CSMA or ALOHA, which can po-
tentially reduce the local delay [8] and the energy spent on
unsuccessful transmissions.
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