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Abstract—Communication between two neighboring nodes is This definition implies that the transmit powers are noraedi
the most basic operation in wireless networks. Yet very lite to 1, that] = oo if ty, = 1 (y is itself transmitting), and
research has focused on théocal delay, defined as the mean time SIR = 0if t. = 0 The‘fadingh is exponential with mea

- x — Y- Ty

it takes a node to connect to its nearest neighbor. In this pagr, . . . .

we derive the local delay in Poisson networks with ALOHA and and iid forallz, y € ® and over time (block Rayleigh fading).
find the conditions for which the local delay is finite. It tums Time is slotted, and transmission attempts are synchrdnize
out that while the local delay is always finite in highly mobike Let S denote thestatic elementsf the networkj.e., all the
networks, there is a phase transition in static networksj.e, there  randomness that does not change from time slot to time slot.
IS & fneximum transmit probability above which the local dely e study the cass = 0, called the high-mobility case since a
1S infinite. new realization of the PPP is drawn in each timeslot), and the

. INTRODUCTION static caseS = . Let Cs be the event that the typical node

A fundamental necessary condition for a wireless netwofiuated at the origim = (0,0) € R? successfully connects
to provide any useful functionality is that its nodes caff its nearest neighbor in a single transmissemnditioned
connect to their nearest neighbors in a finite amount of tim@N S. Since all events considered are temporally iid, there is
Consequently, théocal delay defined as the mean time, inn® need to add a time index to this event. Conditioning on
numbers of time slots, until a packet is successfully rembiv® having a point at the origin implies that the expectations
over a link between nearest neighbors, is an important gyanthat involve the point process are taken with respect to the
to study. We derive the local delay in interference-limitefalm distribution® of ¢ and denoted byE® [2]. S does
networks with Poisson distributed nodes and ALOHA an@ot include conditioning on the event thatis a transmitter
study the conditions for it to be finite. The network node@r receiver. The partner nodg will be chosen according
are assumed to be either highly mobile, in which case a néyone of the four basic cases of nearest-neighbor communi-
realization of the Poisson point process (PPP) is drawn GAtion: Nearest-receiver transmission (NRT), neareigthter
each time slot, or static, in which case the nodes are fixd@nsmission (NNT), nearest-transmitter reception (NTaRd
for all time. A mathematical framework for the analysis ofiearest-neighbor reception (NNR)?(Cs) is given by

the local (jelay in _Poisson ALOHA ne_tworks is provided in P°(Cs) = P°(SIRy, > 0| S),
[1]. We build on this framework to obtain concrete results fo
different cases of nearest-neighbor communication. whereu = o, v = y for NRT and NNT, andu =y, v = o

for NTR and NNR. A packet whose transmission failed will
Il. NETWORK MODEL X be re-transmitted at subsequent occasions (as per the ALOHA

We consider a marked Poisson point process (RPR} MAC), until successfully received. The local delay is theame
{(wi,ts,)} CR?x{0,1}, where® = {z;} is a homogeneous number of slots needed until success. Conditionedpthe
PPP of intensity\ and the markdt,, } are iid Bernoulli with success events are temporally iid, so the conditional lbekaly
P(t =1) = p=1-¢. A mark of 1 indicates that the nodeis geometric with mear?°(Cs)~!. The local delay is then
transmits whereas @indicates listening. The large-scale patlobtained by integration with respect to (w.r&)
loss is assumed to be' over distance. A transmission from
a nodez to a nodey is successful if the signal-to-interferenceDefinition 1 (Local delay) The local delay is

ratio (SIR) exceeds a threshold For a transmission from R 1
zedtoye d, the SIR is DZE%<O—)-
g Pe(Cs)
SIR,, £ I””y ,
i ConsideringD as a function op, we also define theninimum

whereS,, £ t hy, ||z — y|| = and delayas

—a Dmin £ min{ D P)s,

D S X F pHpw
(2,t.)€D\{(2,tz)} the optimum transmit probabilityas

Popt £ arg mlnp{D(p)} )



and themaximum transmit probabilityfor finite local delay)
as

Pmax = sup{p: D(p) < oo}.

I1l. HIGH-MOBILITY NETWORKS o - /\
In this case, there are no static elementsSse- ), and U \\/
D =P°(C)~t. We need the following Lemma:

Lemma 1 Let H c R? and

I = Z L‘thOCH o, (1) Fig. 1. The shaded area is the integration domain for thefarence in the
(z,t)€D cases of nearest-neighbor transmission (left) and netmegsmitter reception
o . (right). In both cases, the receiver is situated at the rrigi
The conditional Laplace transform défgiven thatH does not

contain any nodes ob is £;(s | H)=
B. Nearest-neighbor transmission (NNT)

Li(s|HN®=0)=exp <—)\P/ %dw> . (2)  Lety be the typical node’s nearest neighbor d@e- ||y||. In
revi s+ 2] this caseR is distributed asfr(r) = 2\ exp(—A7r?), and
Proof: This follows from the probability generating func-having the nearest neighbor at distarigamplies that there
tions for (non-stationary) PPPs [2]. m is no interferer in the ballB,(R) centered ab with radius
The distributional properties of the interferenEedefined R. Soy sees the conditional interference, conditioned on the
in (1), do not depend on where it is measuredHlf= @, the disk B,(R) being empty. By stationarity ob, the situation is
success probability of a transmission between two nodesstatistically the same if the transmitter is located @t0) and
distanceRr is [3] its nearest neighbor at, as shown in Fig.1 (left), with the
o o/ —ORST o 2 typical receiver at the origin. Hence we can apply Lemma 1
PP(C| R)=pgE"(e )=pali(OR") =pqexp(=PART), i3y — B(ro)(R). The left half plane is not affected by
where the empty disk, so we can write

v26**C(a) and C(a) £ 2n?/(asin@r/a)). @)  Li(s|H) = exp(— pC(a)s?*/2) exp(—\pA(R, 5)), (7)
Here~ is thespatial contentiorf4]. It depends on the path lossyhere

exponenta, the SIR threshold, and the network geometry. m/2 oo

Practical values for narrowband transmission range froouab A(R,s) = / / ars drde

5 or 7dB @ = 4, § = 1), to about 530 or 27dBo( = 2.5, L rantess re+s

f=20dB). Asa | 2, v — oo. —_
A'(R,s,¢)

A. Nearest-receiver transmission (NRT)

In this case,R is the distance from the origin to the
nearesteceiverin ®, which is Rayleigh distributed with mean Finding a general closed-form solution for this double

1/(2vaA) [3], e, integral (that would also have to be integrable wiR}.seems
fr(r) = 2g\mr exp(—gAmr?) . hopeless. Instead, we focus on the case= 4 and aim
at finding an accurate and integrable approximation. Lettin

is the integral over the right half plane with the hole, exsex
in polar coordinates (see Fig.1 (left)).

H . . -
ence s =0OR™ = OR*, the inner integral is
0 b
PO = T N ™ 4 cos(9)?
A'(R,0R*, ¢) = =VOR? (— — arctan <7)) )
and ) ) 2 2 Vo
DNRT — mo — 5T ~. (4)  For the integration ovep, we usearctanz S z for z < 1
€ »p m . : - o ~ .
) i o (linear regime) andrctanx g 7/2—1/x for z > 1 (saturation
The optimum transmit probability is regime) as approximations. The transition between theatine
=Ty 5 and the saturation regime occurs @gt= ¢, where ¢y =
Popt(7) = T—7 ®) arccos(0/*/2), valid if < 16. For largerd (high rates), the

arctan is always in the linear regime, hengg = 0. With this

As expected, p, is monotonically decreasing from o > . .
P Popt(7) Y g approximation, integrating over yields A(R,R*) ~

Popt (0) = 1. SinceP?(C) is always positive, the local delay is

always finite forp € (0, 1), SOpmax = 1. The minimum delay o W/Q\/_
s OR? 0 (7 4dcos(¢)?
2/7@5 + 2/—(——7)@. 8
DYET(y) =1+ 2\/§+ T 6) ] Scos(9) 2 \2 " o (8)
™ ™ 0

Fig. 2 shows the local delay as a functionzofor o = 4 and A general solution exists but would not be integrable wi.t.
6 = 10 (high-mobility NRT curve), and Fig. 3 shows,,;,(y). However, ford > 16, we obtainA(R, §R*) X, wR? (76 /4 —



1) = R%*(y/2 — m). The spatial contention from the left halfequals the probability that a disk of arda of sizeyR? around
plane isvy/2, (see (7)), so at high rates, the receiver is free of interferers. In NNT, the receives sih
. the boundary of a disk of radiu8 known to be interferer-free,
P°(C| R) £ pgexp(-ApR*(y — 7)) while in the NTR case, it is in the center of such a disky If
This shows that the effect of the hole is an improvement of tlig large enough, larger than about, the hole is a subset
spatial contention byr. For @ < 16, where both integrals in of Ay for both NTR and NNT and the success probability
(8) are positive, we find thatl(R, §R*) = 9(93/4), 6 — 0, Iis the probability thatd, is empty given that{ is empty.
indicating that we can writed(R, 0R*) ~ c03/* for small The difference is that in the NTR case, this spatial conbenti
6. We use this approximation for the rangec [0,16) and benefit already materializes for sméllsince 4, and # are

choosec such that the approximation is continuous: concentric.
1 In the NTR case, R is distributed as fr(r) =
A(R,OR") ~ nR? (W ) , 0 < 16 2mpAr exp(—pAnr?). Integration yields
. .. .. . . NTR 7T\/§
Inserting this in (7) and deconditioning w.rk gives D =5 (11)
pp— | 0> 16 e ~ - -
P(C) ~ mpVo+2q’ - which is minimized ap = 0. This result is modeling artefact,
N 0 <16 since due to the lack of noise, the benefit of reducing the

his | v th bability th interferer density compensates for the increased trasgmis
For 0 > 16, This is exactly the s:’;\me probability that Weyisiance. See Figs. 2 and 3 again for the plots.
found in the nearest-receiver case! So for= 4 and when .. 1, usingarctanz 2 7/2 — 1/, we find
0 is large, we can reach the nearest node with the same ~
success probability as the nearest receiver, even if we tlo no P°(C | R) % qexp(—ApmOR?).
know whether it is transmitting or receiving. The uncertgin D. Nearest-neighbor reception (NNR)
about the transmission state of the nearest neighbor iglgxac™ "~ o . _
offset by the certainty of not having an interferer aroune th This is quite similar to NTR, with the difference that the

transmitter. The local delay far = 4 is nearest neighbor is at distanﬂ:gé(2\/X) on average and that
the delay increases by a factbfp since the nearest neighbor
DNNT 2 ﬁQ—qe +2, 6 > 16 only transmits with probability.
1 Ve, (r—1)e%/4 (10)
Nopgt g T s 016 IV. STATIC NETWORKS

In the high-rate case, the optimum transmit probability and Here, S = ®, and as before, the typical node attempts to
minimum delay are the same as for NRT, see Figs. 2 andc®nnect to its nearest receiver or nearest neighbor. Byedéns
while for smalld, there is a small difference in favor of NRT.inequality, we already have a bound from the previous sectio
When comparing the NRT and NNT schemes, it also needamely D > P(C)~!, but as we shall see, this bound is often
to be factored in that the distance to the nearest receiver igery loose. The reason is the correlation of the interfezenc
factor ¢—1/2 larger than the distance to the nearest neighbtine static case.
So the main benefit of NRT is that more distance is covered.The following lemma is the conditional counterpart to
C. Nearest-transmitter reception (NTR) Lemma 1:

Next we consider the case where the typical nod®,at | emma 2 LetI denote the interference as definedi H C
receives from its nearest transmitter, sayThis implies that g2 and let

there are no interferers in the disk of radiis= ||y|| around

the receiver. So in this case, we apply Lemma 1 With= Li(s|®,H)=E(exp(—sl | 2, NH =0))

Bo(R), see Fig.1 (right). For = 4, this situation has been o e conditional Laplace transform givenand given that
analyzed in the context of CSMA in [6, Sec. 3.7]. Taking thfhere is no transmitte?irH Then ¢ g

Laplace transform [6, Eqn. (3.46)] and replaciagy OR* '

yields B < 1 > Cex / ps
——— | =exp| A ——dx | ,
) Wik 1 Li(s|®,H) r2\1 5¢ + [|z[|*
P°(C | R) = qgexp (—)\pr 0 {5 — arctan <ﬁ)]> . (12)
Ford > 1, 1/v/6 Z arctan(1/+/6), and we obtain which for 1 = () evaluates to
o 2 m 2/«
P(C I R) S gexp (-dpnit? (V5 -1) —op (PEO) 0 9
= gexp(-pAR*(y — 7)),  (a=4,0>1). !

] ) ) . with C(a) as defined in(3). The local delay conditioned on
So, as in the case of high-rate nearest-neighbor trangmissy, |ink distanceR is obtained by replacing by 0R®.
the spatial contention is reduced by This can be explained

as follows: In the NRT case, giveR, the success probability Proof: Follows from [1, Lemma 16.6.5]. [ ]



A. Nearest-receiver transmission with fixed partitionihgR(T) 150

Here we consider the case where the partitioning into po
tential transmitters and receivers is fixede., the transmitters

- o -high-mobility NRT
- = high—mobility NNT
—e— high—mobility NTR

. . —static NRT
are chosen from® with probability p, as before, but there _ - _static NRT bounds
exists another, independent PPP of receiviersof intensity 100 —=— static NNT |

A = gA. S0, in this model, the nodes inthat do not transmit
are not available as receivers. This assumption maintams t
same density of (actual) transmitters and receivers asen th
other models.

~
o

=

[a]

50

Proposition 1 If the nodes are partitioned into a set of
potential transmitter® of intensity\ and a set of receiver$,.

of intensity\,. = g, the local delay at the typical transmitter
is

DNRT _ 1 = (14) 0 0.2 0.4 0.6 08 1
p m—ypg¥/*2 P

i 2/a—2
if pq o2 < /. Fig. 2. The local delay for the high-mobility and static cases a function
. ) . of the channel access probabilipyfor o = 4 andé = 10. The curves for the
Proof: Replacings in (13) by 0R“ yields the success two high-mobility cases NRT and NNT are essentially idesitend thus not

probability given a link distancer. SinceC(a)(@Ro‘)Q/o‘ — distinguishable in the plot; the difference is orily02/q for the parameters
~+R?, deconditioning onR yields chosen.
1 oo )\ ,],.2 100 - T —
DNRT — —27Tq/\/ exp <—11772 ) rexp(—mgAr?)dr, — high mobility NRT
P o gl—2/a 90 - - - high-mobility NNT 1

—e—static NRT

which evaluates to (14). [ ] 80H —— static NNT

Due to the termy?/“—2, the expression for the local delay is
slightly unwieldy. Sinc&/a—2 € (-2, —1), we obtain upper
and lower bounds for the delay by replacing the exponen __
2/a—2 by —1 and—2, respectively. So we havl > D > D 5

min

for o
— 1 T 9
D=-——, w<qTm (15)
pm™—="7pq
1 T
D=-——, w<gr (16)
pT™—="pq
The condition for a finite upper delay bouddlyields alower 0 ‘ ‘ ‘ ‘
. 0 5 10 15 20 25
bound forp,.x, and vice versa. Thereforg,,.. = Pmax = 6 [dB]
. for
Fig. 3. The minimum achievable delay as a functionéofor the high-
_ s v 4 mobility and the static cases. The difference between NRITNINT is rather
Pmax = Py ) Prax = 1+ o L—y/1+ 7 : small in both cases.

(17)

As , the bounds are tight, since N -
T e g For the delay-minimizing channel access probability, we

find

_ 77 _
Y v Dot =1 — .
T 2m? v+
S .

Prnax = Interestingly, lettingzmin = 1 — pmax, W& havegept = /Gmin-
The tightness of the bounds is confirmed in Fig.2, wherde delay diverges ag 1 andq | gmin, and the optimuny
the local delayD(p) and the two bounds are shown for= 4 IS the geometric mean between these two values.
andé = 10, and in Fig. 4, which plot®,.x(¢) and the two
bounds.
In the following, we are using this lower bourigl to obtain
closed-form results on the other quantities of interest.

B. Nearest-neighbor transmission (NNT)

Here § = & and the transmission occurs to the nearest
neighbor. We again focus on the case- 4. Applying Lemma
2 to the case whergl = B (R) gives for the local delay

1The standard NRT scheme where the marks are iid from timeiskime — given R
slot cannot be analyzed in the same way since the transmisszess events 5
are not conditionally independent. Dg =exp ()\pR (v/(2v/q) + A(R, 0, q))) ,
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0.05¢
0 L L L L
0 5 10 15 20 25
6 [dB]

Fig. 4. The maximum transmit probabilifymax for finite local delay in the
static NRT case (solid line) with the two bounds (17) (dasliees) and for
NNT as a function of for o = 4.

where/(2,/q) = 72V0/4,/q stems from the integral over
the hole-less left half plane and(R, 6, q) =
)) drde.

/2 oo
i | | G

—n/22Rcos ¢

4 cos(¢)?

Jaq

minimum delay have an asymptotic slopedgfr; in the high-
mobility case, the slope /7. So we have ay — c:

high-mobility: Dyin(7) ~ - = ©(6%/)
s

~ 4_’7 — @(92/&)

™
v — oo occurs asa | 2 or § — oo, hence for fixed
« these asymptotics provide a high-St&e-delay trade-off
Assuming the rate of transmission js= log,(#), valid for

larged, then in all cases
Duin(p) = ©(27/%),

We conclude that the delay increases exponentially in ttee ra
of transmission, and that the effect of the mobility is hidde
in the pre-constant.

static: Dpin(7)

0 — oco.

VI. CONCLUSIONS

We have analyzed the local delay in mobile and static
Poisson ALOHA networks for different cases of nearest-
neighbor pairs. A finite local delay means that the fraction
of nodes that cannot connect to their nearest neighbor it fini
time is negligible.

Highly mobile network provide enough time diversity to
keep the local delay finite in all cases, and the local delay is
quite robust against deviations from the optimum. We caleul
the local delay for the extreme case, where a new realization
of the point process is drawn in each time slot. The situation
is more challenging to analyze when the nodes do not move,
and only fading and the transmitter/receiver state of thdeso

Similarly to the high-mobility NNT case, we approximate theemain as sources of randomness. In this case, the local dela

double integral in the high-rate regime as

ﬂ'\/@ 1

4./9 q

So in this case, the high-rate regime startgat 16/q. It

follows that
Apm R? < _ _))

1
Dr 5 —exp
g Ve 2 Va

and by deconditioning oi® we get the result:

A(R,e,q>§w< ) 0g>16. (18)

ﬂ'\/@ 1

becomes infinite when the transmit probabiljtyexceeds a
certain threshold,e., there is a phase transition, and deviations
from the optimump can be costly.

An asymptotic comparison of highly mobile and fully static
networks (with fixed transmitter and receiver sets) revteds
the difference in the minimum local delays is a factor of four
as the spatial contention goes to infinity. For finitey, the
difference is smaller. This gives upper and lower bounds for
all practical networks.
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Proposition 2 In the NNT model with static nodes, the local

delay fora =4 and 6 > 16/q is

DNNT < 1 7T

ST wa (19)
for p < 7/(vy/a)-

It follows thatp < =/~ is a conservative condition for finite
local delay, see the dash-dotted curve in Fig. 4.
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