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Abstract—Communication between two neighboring nodes is
the most basic operation in wireless networks. Yet very little
research has focused on thelocal delay, defined as the mean time
it takes a node to connect to its nearest neighbor. In this paper,
we derive the local delay in Poisson networks with ALOHA and
find the conditions for which the local delay is finite. It turns
out that while the local delay is always finite in highly mobile
networks, there is a phase transition in static networks,i.e., there
is a maximum transmit probability above which the local delay
is infinite.

I. I NTRODUCTION

A fundamental necessary condition for a wireless network
to provide any useful functionality is that its nodes can
connect to their nearest neighbors in a finite amount of time.
Consequently, thelocal delay, defined as the mean time, in
numbers of time slots, until a packet is successfully received
over a link between nearest neighbors, is an important quantity
to study. We derive the local delay in interference-limited
networks with Poisson distributed nodes and ALOHA and
study the conditions for it to be finite. The network nodes
are assumed to be either highly mobile, in which case a new
realization of the Poisson point process (PPP) is drawn in
each time slot, or static, in which case the nodes are fixed
for all time. A mathematical framework for the analysis of
the local delay in Poisson ALOHA networks is provided in
[1]. We build on this framework to obtain concrete results for
different cases of nearest-neighbor communication.

II. N ETWORK MODEL

We consider a marked Poisson point process (PPP)Φ̂ =
{(xi, txi)} ⊂ R

2 ×{0, 1}, whereΦ = {xi} is a homogeneous
PPP of intensityλ and the marks{txi} are iid Bernoulli with
P(t = 1) = p = 1 − q. A mark of 1 indicates that the node
transmits whereas a0 indicates listening. The large-scale path
loss is assumed to berα over distancer. A transmission from
a nodex to a nodey is successful if the signal-to-interference
ratio (SIR) exceeds a thresholdθ. For a transmission from
x ∈ Φ to y ∈ Φ, the SIR is

SIRxy ,
Sxy

Ixy
,

whereSxy , txhxy‖x − y‖−α and

Ixy ,
∑

(z,tz)∈Φ̂\{(x,tx)}

tzhzy‖z − y‖−α .

This definition implies that the transmit powers are normalized
to 1, that I = ∞ if ty = 1 (y is itself transmitting), and
SIR = 0 if tx = 0. The fadinghxy is exponential with mean1
and iid for allx, y ∈ Φ and over time (block Rayleigh fading).
Time is slotted, and transmission attempts are synchronized.

Let S denote thestatic elementsof the network,i.e., all the
randomness that does not change from time slot to time slot.
We study the caseS = ∅, called the high-mobility case since a
new realization of the PPP is drawn in each timeslot), and the
static caseS = Φ. Let CS be the event that the typical node
situated at the origino , (0, 0) ∈ R

2 successfully connects
to its nearest neighbor in a single transmissionconditioned
on S. Since all events considered are temporally iid, there is
no need to add a time index to this event. Conditioning on
Φ having a point at the origino implies that the expectations
that involve the point process are taken with respect to the
Palm distributionP

o of Φ and denoted byEo [2]. S does
not include conditioning on the event thato is a transmitter
or receiver. The partner nodey, will be chosen according
to one of the four basic cases of nearest-neighbor communi-
cation: Nearest-receiver transmission (NRT), nearest-neighbor
transmission (NNT), nearest-transmitter reception (NTR), and
nearest-neighbor reception (NNR).P

o(CS) is given by

P
o(CS) = P

o(SIRuv > θ | S) ,

whereu = o, v = y for NRT and NNT, andu = y, v = o
for NTR and NNR. A packet whose transmission failed will
be re-transmitted at subsequent occasions (as per the ALOHA
MAC), until successfully received. The local delay is the mean
number of slots needed until success. Conditioned onS, the
success events are temporally iid, so the conditional localdelay
is geometric with meanPo(CS)−1. The local delay is then
obtained by integration with respect to (w.r.t.)S:

Definition 1 (Local delay) The local delay is

D , E
o
S

(
1

Po(CS)

)

.

ConsideringD as a function ofp, we also define theminimum
delayas

Dmin , min
p

{D(p)} ,

the optimum transmit probabilityas

popt , arg minp{D(p)} ,



and themaximum transmit probability(for finite local delay)
as

pmax , sup{p : D(p) < ∞} .

III. H IGH-MOBILITY NETWORKS

In this case, there are no static elements, soS = ∅, and
D = P

o(C)−1. We need the following Lemma:

Lemma 1 Let H ⊂ R
2 and

I =
∑

(x,t)∈Φ

thx‖x‖−α . (1)

The conditional Laplace transform ofI given thatH does not
contain any nodes ofΦ is LI(s | H)=

LI(s | H ∩ Φ = ∅) = exp

(

−λp

∫

R2\H

s

s + ‖x‖α
dx

)

. (2)

Proof: This follows from the probability generating func-
tions for (non-stationary) PPPs [2].

The distributional properties of the interferenceI, defined
in (1), do not depend on where it is measured. IfH = ∅, the
success probability of a transmission between two nodes at
distanceR is [3]

P
o(C | R)=pqE

o(e−θRαI)=pqLI(θR
α)=pq exp(−γpλR2) ,

where

γ , θ2/αC(α) and C(α) , 2π2/(α sin(2π/α)) . (3)

Hereγ is thespatial contention[4]. It depends on the path loss
exponentα, the SIR thresholdθ, and the network geometry.
Practical values for narrowband transmission range from about
5 or 7dB (α = 4, θ = 1), to about 530 or 27dB (α = 2.5,
θ = 20 dB). As α ↓ 2, γ → ∞.

A. Nearest-receiver transmission (NRT)

In this case,R is the distance from the origin to the
nearestreceiverin Φ, which is Rayleigh distributed with mean
1/(2

√
qλ) [5], i.e.,

fR(r) = 2qλπr exp(−qλπr2) .

Hence

P
o(C) =

pπ

π + γpq−1

and
DNRT =

1

Po(C)
=

1

p
+

γ

πq
. (4)

The optimum transmit probability is

popt(γ) =
π −√

πγ

π − γ
. (5)

As expected,popt(γ) is monotonically decreasing from
popt(0) = 1. SinceP

o(C) is always positive, the local delay is
always finite forp ∈ (0, 1), sopmax = 1. The minimum delay
is

DNRT
min (γ) = 1 + 2

√
γ

π
+

γ

π
. (6)

Fig. 2 shows the local delay as a function ofp for α = 4 and
θ = 10 (high-mobility NRT curve), and Fig. 3 showsDmin(γ).
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Fig. 1. The shaded area is the integration domain for the interference in the
cases of nearest-neighbor transmission (left) and nearest-transmitter reception
(right). In both cases, the receiver is situated at the origin.

B. Nearest-neighbor transmission (NNT)

Let y be the typical node’s nearest neighbor andR = ‖y‖. In
this caseR is distributed asfR(r) = 2λπr exp(−λπr2), and
having the nearest neighbor at distanceR implies that there
is no interferer in the ballBo(R) centered ato with radius
R. So y sees the conditional interference, conditioned on the
disk Bo(R) being empty. By stationarity ofΦ, the situation is
statistically the same if the transmitter is located at(R, 0) and
its nearest neighbor ato, as shown in Fig. 1 (left), with the
typical receiver at the origin. Hence we can apply Lemma 1
with H = B(R,0)(R). The left half plane is not affected by
the empty disk, so we can write

LI(s | H) = exp(−λpC(α)s2/α/2) exp(−λpA(R, s)) , (7)

where

A(R, s) =

π/2∫

−π/2

∞∫

2R cos φ

rs

rα + s
dr

︸ ︷︷ ︸

A′(R,s,φ)

dφ

is the integral over the right half plane with the hole, expressed
in polar coordinates (see Fig. 1 (left)).

Finding a general closed-form solution for this double
integral (that would also have to be integrable w.r.t.R) seems
hopeless. Instead, we focus on the caseα = 4 and aim
at finding an accurate and integrable approximation. Letting
s = θRα = θR4, the inner integral is

A′(R, θR4, φ) =
1

2

√
θR2

(
π

2
− arctan

(
4 cos(φ)2√

θ

))

.

For the integration overφ, we usearctanx / x for x 6 1
(linear regime) andarctanx ' π/2−1/x for x > 1 (saturation
regime) as approximations. The transition between the linear
and the saturation regime occurs atφ = φ0, where φ0 =
arccos(θ1/4/2), valid if θ < 16. For largerθ (high rates), the
arctan is always in the linear regime, henceφ0 = 0. With this
approximation, integrating overφ yields A(R, θR4) ≈

2

φ0∫

0

θR2

8 cos(φ)2
dφ + 2

π/2∫

φ0

√
θ

2

(
π

2
− 4 cos(φ)2√

θ

)

dφ . (8)

A general solution exists but would not be integrable w.r.t.R.
However, forθ > 16, we obtainA(R, θR4) ' πR2(π

√
θ/4−



1) = R2(γ/2 − π). The spatial contention from the left half
plane isγ/2, (see (7)), so at high rates,

P
o(C | R) / pq exp(−λpR2(γ − π)) .

This shows that the effect of the hole is an improvement of the
spatial contention byπ. For θ < 16, where both integrals in
(8) are positive, we find thatA(R, θR4) = Θ(θ3/4), θ → 0,
indicating that we can writeA(R, θR4) ≈ cθ3/4 for small
θ. We use this approximation for the rangeθ ∈ [0, 16) and
choosec such that the approximation is continuous:

A(R, θR4) ≈ πR2

(
π − 1

8

)

, θ 6 16

Inserting this in (7) and deconditioning w.r.t.R gives

P(C)

{
/ 2pq

πp
√

θ+2q
, θ > 16 ,

≈ 8pq

2πp
√

θ+pθ3/4(π−1)+8
, θ 6 16 .

(9)

For θ > 16, This is exactly the same probability that we
found in the nearest-receiver case! So forα = 4 and when
θ is large, we can reach the nearest node with the same
success probability as the nearest receiver, even if we do not
know whether it is transmitting or receiving. The uncertainty
about the transmission state of the nearest neighbor is exactly
offset by the certainty of not having an interferer around the
transmitter. The local delay forα = 4 is

DNNT

{

' π
√

θ
2q + 1

p , θ > 16

≈ 1
pq + π

√
θ

4q + (π−1)θ3/4

8q , θ 6 16
(10)

In the high-rate case, the optimum transmit probability and
minimum delay are the same as for NRT, see Figs. 2 and 3,
while for smallθ, there is a small difference in favor of NRT.

When comparing the NRT and NNT schemes, it also needs
to be factored in that the distance to the nearest receiver isa
factor q−1/2 larger than the distance to the nearest neighbor.
So the main benefit of NRT is that more distance is covered.

C. Nearest-transmitter reception (NTR)

Next we consider the case where the typical node ato,
receives from its nearest transmitter, sayy. This implies that
there are no interferers in the disk of radiusR = ‖y‖ around
the receiver. So in this case, we apply Lemma 1 withH =
Bo(R), see Fig. 1 (right). Forα = 4, this situation has been
analyzed in the context of CSMA in [6, Sec. 3.7]. Taking the
Laplace transform [6, Eqn. (3.46)] and replacings by θR4

yields

P
o(C | R) = q exp

(

−λpπR2
√

θ

[
π

2
− arctan

(
1√
θ

)])

.

For θ > 1, 1/
√

θ ' arctan(1/
√

θ), and we obtain

P
o(C | R) / q exp

(

−λpπR2
(√

θ
π

2
− 1
))

= q exp(−pλR2(γ − π)) , (α = 4, θ > 1) .

So, as in the case of high-rate nearest-neighbor transmission,
the spatial contention is reduced byπ. This can be explained
as follows: In the NRT case, givenR, the success probability

equals the probability that a disk of areaA0 of sizeγR2 around
the receiver is free of interferers. In NNT, the receiver sits on
the boundary of a disk of radiusR known to be interferer-free,
while in the NTR case, it is in the center of such a disk. Ifγ
is large enough, larger than about4π, the holeH is a subset
of A0 for both NTR and NNT and the success probability
is the probability thatA0 is empty given thatH is empty.
The difference is that in the NTR case, this spatial contention
benefit already materializes for smallθ sinceA0 andH are
concentric.

In the NTR case, R is distributed as fR(r) =
2πpλr exp(−pλπr2). Integration yields

DNTR =
π
√

θ

2q
, (11)

which is minimized atp = 0. This result is modeling artefact,
since due to the lack of noise, the benefit of reducing the
interferer density compensates for the increased transmission
distance. See Figs. 2 and 3 again for the plots.

For θ < 1, usingarctanx ' π/2 − 1/x, we find

P
o(C | R) ' q exp(−λpπθR2) .

D. Nearest-neighbor reception (NNR)

This is quite similar to NTR, with the difference that the
nearest neighbor is at distance1/(2

√
λ) on average and that

the delay increases by a factor1/p since the nearest neighbor
only transmits with probabilityp.

IV. STATIC NETWORKS

Here,S = Φ, and as before, the typical node attempts to
connect to its nearest receiver or nearest neighbor. By Jensen’s
inequality, we already have a bound from the previous section,
namelyD > P(C)−1, but as we shall see, this bound is often
very loose. The reason is the correlation of the interference in
the static case.

The following lemma is the conditional counterpart to
Lemma 1:

Lemma 2 LetI denote the interference as defined in(1), H ⊂
R

2, and let

LI(s | Φ,H) = E
o(exp(−sI | Φ, Φ ∩H = ∅))

be the conditional Laplace transform givenΦ and given that
there is no transmitter inH. Then

E
o

(
1

LI(s | Φ,H)

)

= exp

(

λ

∫

R2\H

ps

sq + ‖x‖α
dx

)

,

(12)

which forH = ∅ evaluates to

= exp

(
pλC(α)s2/α

q1−2/α

)

, (13)

with C(α) as defined in(3). The local delay conditioned on
a link distanceR is obtained by replacings by θRα.

Proof: Follows from [1, Lemma 16.6.5].



A. Nearest-receiver transmission with fixed partitioning (NRT)

Here we consider the case where the partitioning into po-
tential transmitters and receivers is fixed1, i.e., the transmitters
are chosen fromΦ with probability p, as before, but there
exists another, independent PPP of receiversΦr of intensity
λr = qλ. So, in this model, the nodes inΦ that do not transmit
are not available as receivers. This assumption maintains the
same density of (actual) transmitters and receivers as in the
other models.

Proposition 1 If the nodes are partitioned into a set of
potential transmittersΦ of intensityλ and a set of receiversΦr

of intensityλr = qλ, the local delay at the typical transmitter
is

DNRT =
1

p

π

π − γpq2/α−2
(14)

if pq2/α−2 < π/γ.

Proof: Replacings in (13) by θRα yields the success
probability given a link distanceR. SinceC(α)(θRα)2/α =
γR2, deconditioning onR yields

DNRT =
1

p
2πqλ

∫ ∞

0

exp

(
λpγr2

q1−2/α

)

r exp(−πqλr2)dr ,

which evaluates to (14).
Due to the termq2/α−2, the expression for the local delay is

slightly unwieldy. Since2/α−2 ∈ (−2,−1), we obtain upper
and lower bounds for the delay by replacing the exponent
2/α−2 by −1 and−2, respectively. So we haveD > D > D
for

D =
1

p

π

π − γpq−2
, γp < q2π (15)

D =
1

p

π

π − γpq−1
, γp < qπ (16)

The condition for a finite upper delay boundD yields alower
bound forpmax, and vice versa. Therefore,pmax > pmax >
p
max

for

pmax =
π

γ + π
; p

max
= 1 +

γ

2π

(

1 −
√

1 +
4π

γ

)

.

(17)
As γ → ∞, the bounds are tight, since

pmax =
π

γ
− π2

γ2
+ O(γ−3)

p
max

=
π

γ
− 2π2

γ2
+ O(γ−3) .

The tightness of the bounds is confirmed in Fig. 2, where
the local delayD(p) and the two bounds are shown forα = 4
and θ = 10, and in Fig. 4, which plotspmax(θ) and the two
bounds.

In the following, we are using this lower boundD to obtain
closed-form results on the other quantities of interest.

1The standard NRT scheme where the marks are iid from time slotto time
slot cannot be analyzed in the same way since the transmission success events
are not conditionally independent.

0 0.2 0.4 0.6 0.8 1
0

50

100

150

p

D
(p

)

 

 

high−mobility NRT
high−mobility NNT
high−mobility NTR
static NRT
static NRT bounds
static NNT

Fig. 2. The local delay for the high-mobility and static cases as a function
of the channel access probabilityp for α = 4 andθ = 10. The curves for the
two high-mobility cases NRT and NNT are essentially identical and thus not
distinguishable in the plot; the difference is only0.02/q for the parameters
chosen.

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

θ [dB]

D
m

in
(θ

)

 

 

high mobility NRT
high−mobility NNT
static NRT
static NNT

Fig. 3. The minimum achievable delay as a function ofθ for the high-
mobility and the static cases. The difference between NRT and NNT is rather
small in both cases.

For the delay-minimizing channel access probability, we
find

popt = 1 −
√

γ

γ + π
.

Interestingly, lettingqmin = 1−pmax, we haveqopt =
√

qmin.
The delay diverges asq ↑ 1 andq ↓ qmin, and the optimumq
is the geometric mean between these two values.

B. Nearest-neighbor transmission (NNT)

Here S = Φ and the transmission occurs to the nearest
neighbor. We again focus on the caseα = 4. Applying Lemma
2 to the case whereH = B(R,0)(R) gives for the local delay
given R

DR = exp
(
λpR2(γ/(2

√
q) + A(R, θ, q))

)
,
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Fig. 4. The maximum transmit probabilitypmax for finite local delay in the
static NRT case (solid line) with the two bounds (17) (dashedlines) and for
NNT as a function ofθ for α = 4.

whereγ/(2
√

q) = π2
√

θ/4
√

q stems from the integral over
the hole-less left half plane andA(R, θ, q) =

√
θ

2
√

q

π/2∫

−π/2

∞∫

2R cos φ

(
π

2
− arctan

(
4 cos(φ)2√

θq

))

drdφ .

Similarly to the high-mobility NNT case, we approximate the
double integral in the high-rate regime as

A(R, θ, q) ' π

(

π
√

θ

4
√

q
− 1

q

)

, θq > 16 . (18)

So in this case, the high-rate regime starts atθ > 16/q. It
follows that

DR /
1

pq
exp

(

λpπR2

√
q

(

π
√

θ

2
− 1√

q

))

and by deconditioning onR we get the result:

Proposition 2 In the NNT model with static nodes, the local
delay forα = 4 and θ > 16/q is

DNNT /
1

p

π

π − γp
√

q
(19)

for p < π/(γ
√

q).

It follows that p < π/γ is a conservative condition for finite
local delay, see the dash-dotted curve in Fig. 4.

V. COMPARISON OF THEASYMPTOTICS

Fig. 3 shows the minimum achievable delay as a function
of θ. In the static case, both upper and lower bounds on the

minimum delay have an asymptotic slope of4/π; in the high-
mobility case, the slope is1/π. So we have asγ → ∞:

high-mobility: Dmin(γ) ∼ γ

π
= Θ(θ2/α)

static:Dmin(γ) ∼ 4γ

π
= Θ(θ2/α)

γ → ∞ occurs asα ↓ 2 or θ → ∞, hence for fixed
α these asymptotics provide a high-SIRrate-delay trade-off:
Assuming the rate of transmission isρ , log2(θ), valid for
largeθ, then in all cases

Dmin(ρ) = Θ(22ρ/α) , θ → ∞ .

We conclude that the delay increases exponentially in the rate
of transmission, and that the effect of the mobility is hidden
in the pre-constant.

VI. CONCLUSIONS

We have analyzed the local delay in mobile and static
Poisson ALOHA networks for different cases of nearest-
neighbor pairs. A finite local delay means that the fraction
of nodes that cannot connect to their nearest neighbor in finite
time is negligible.

Highly mobile network provide enough time diversity to
keep the local delay finite in all cases, and the local delay is
quite robust against deviations from the optimum. We calculate
the local delay for the extreme case, where a new realization
of the point process is drawn in each time slot. The situation
is more challenging to analyze when the nodes do not move,
and only fading and the transmitter/receiver state of the nodes
remain as sources of randomness. In this case, the local delay
becomes infinite when the transmit probabilityp exceeds a
certain threshold,i.e., there is a phase transition, and deviations
from the optimump can be costly.

An asymptotic comparison of highly mobile and fully static
networks (with fixed transmitter and receiver sets) revealsthat
the difference in the minimum local delays is a factor of four
as the spatial contentionγ goes to infinity. For finiteγ, the
difference is smaller. This gives upper and lower bounds for
all practical networks.
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