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Abstract—The analytical end-to-end (e2e) performance of a
wireless multihop network is largely unknown, because of the
interconnections between several factors involved. Customarily,
the nodes are often assumed to be spatially uncorrelated so that
they can be analyzed in isolation, which is valid when all the
traffic flows are independent. In practice, however, most traffic
flows are correlated and cause spatial correlation among nodes.
The results based on the assumption of spatially uncorrelated
nodes may be far from the performance of real networks. In this
paper, we aim to study the impact of the spatial correlation on
the e2e delay in a wireless line network (WLN). In particular, we
use queueing theory to reveal that the burstiness, the temporal
correlation of the traffic flow and the underlying medium access
control (MAC), together determine the spatial correlation, from
which an analysis of the e2e delay of a WLN is accomplished.

I. INTRODUCTION
The increasing demand for real-time applications over wire-

less networks necessitates the delay analysis of transmissions
over error-prone channels. In multihop networks, the end-to-
end (e2e) delay is determined by the joint distribution of the
successive delays of a packet traversing multiple nodes. With
network-wide traffic integration, all nodes could be assumed
as independent and analyzed in isolation such that the joint
distribution could be approximated in a product form [1].
However, if there exists a space-time correlation structure, it is
difficult to derive the closed-form joint distribution. Here the
temporal correlation is referred to as the correlation in two
consecutive packet arrivals while the spatial correlation is the
dependence between the activities of two nodes.
In general, the space-time correlation can be ignored under

the conditions that i) the peak rate of each source does not
exceed 5% of the total link capacity; and ii) no more than
10% of the departing sources go to the same immediate
downstream link [2]. In other words, large-scale multiplexing
and splitting are necessary to validate the assumption, which,
however, may be impossible in networks with convergecasting
(i.e., information gathering towards a central node). In an
extreme case where all intermediate nodes are pure relays
(Fig. 1, which is a representative of the area closer to the base
station in random networks with convergecasting), the space-
time correlation is too important to ignore.
The spatial correlation is mainly caused by the temporal

correlation of the traffic flow, to which several factors con-
tribute as well as the original traffic statistics. For instance,
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Fig. 1: Wireless Line Network.

channel errors cause distortions to the traffic flow, which, in
turn, change the temporal correlation. Such distortions may
be further accumulated with multihop transmission [5]. The
other factor is multiple access control (MAC) that schedules
the node transmission order and may incurs access delays,
which certainly change the packet arrival pattern. Therefore,
the study of the spatial correlation should take into account
both the traffic statistics and the distortions caused by wireless
channel errors and MAC.
The spatial correlation analysis is not scalable as it involves

all the nodes in the network. Previous attempts usually focused
on small networks, e.g., two-node [3] or three-node networks
[4], [5]. It was shown in [3] by simulations that a two-state
Markov modulated Bernoulli (MMBP) traffic flow results in
a positive spatial correlation. Earlier in [4], the correlation in
a Jackson network with overtake-free paths was also proven
to be positive. [5] looked at a general three-node network but
assumed correlation exists only between neighboring nodes.
In this paper, we study the spatial correlation in a wireless

line network (WLN) with one source (see Fig. 1). In particular,
we consider three traffic models: i) constant bit rate (CBR),
ii) on-off, and iii) Bernoulli, and two MAC schemes: i) m-
phase time-division multiple-access (TDMA) and ii) persistent
slotted ALOHA. Our contributions are two-fold. First, as an
extension to [6] where the relayed flow convergence process
was proven by entropy theory, we use queueing theory to
analytically reveal that the direction of convergence is traffic-
and MAC-dependent with consideration of both the queueing
and access delays. Second, we explore the impact of the
spatial correlation on the e2e delay. The correlation between
two neighboring nodes is derived through the conditional
probability of an upstream node being backlogged given a
packet departure event to its downstream node. Based on the
study of the direction of convergence, we further calculate the
sign of the e2e correlation. The influence of the correlation
on the e2e delay is examined and confirmed by the e2e delay
variance via simulations.

II. QUEUEING THEORY-BASED SYSTEM MODEL

The WLN under consideration is composed of N + 1
transmitting nodes and a base station (BS) (Fig. 1). Denote



node i by ni where a first-in, first-out (FIFO) discipline is
used. A flow of fixed-length packets is generated from the
source n0 at rate λ and all the remaining nodes act purely
as relays. The time is slotted to the duration of one packet
transmission. Assuming that all nodes are synchronized, the
network can be modeled as a discrete-time queueing system.
Due to additive white Gaussian noise (AWGN) and channel

fading, the wireless channels are assumed to have independent
detection errors with a fixed capture rate µ ! Pr{SINR ≥ Θ}
where SINR refers to the received signal-to-interference-plus-
noise ratio and Θ is the target SINR. To guarantee 100% reli-
ability, the failed packets will have to be retransmitted at each
hop until successfully received. The number of transmission
attempts to successfully send a packet follows a geometric
distribution with parameter µ, denoted by Gµ.
The traffic flow generated at n0 is characterized by the

interarrival time A with the probability mass function (pmf)
ak = Pr{A = k}. For the three traffic models considered, in
i) CBR, the interarrival time is an integer constant r = 1/λ
with ak = 1 for k = r and ak = 0 for k "= r; ii) Bernoulli,
a packet is generated with probability λ in each time slot,
i.e., ak = λ(1 − λ)k−1; and iii) on-off, the arrival process is
modulated by a two-state Markov chain that alternates between
ON (1) and OFF (0) states, which is governed by the transition
probabilities a01 and a10. The pmf is therefore given by

ak =

{
1 − a10 k = 1,
a10(1 − a01)k−2a01 k > 1,

and λ =
a01

a10 + a01
.

The on-off source generates a stream of correlated and geo-
metrically distributed bursty and idle periods. The mean burst
size is B = 1/a10. Note that Bernoulli is a degenerate on-off
process with a01 + a10 = 1 and the resulting bursty and idle
periods are independent. Denote the burst size of a Bernoulli
source by BR = 1/(1 − λ). Compared to this reference burst
size BR, an on-off source is said to be heavy or light if its
burst size B > BR or B < BR.
Denote the delay experienced by a packet at ni by Di with

mean Di and variance σ2
i . The e2e delay D =

∑
i Di has the

mean D =
∑

i Di and variance σ2, given by

σ2 =
N∑

i=0

σ2
i + 2

N∑

i=0

N∑

j=i+1

cov(Di, Dj), (1)

where β !
∑N

i=0 σ
2
i , is the e2e delay variance if Di’s were

independent, i.e., cov(Di, Dj) ≡ 0 for any i and j. However,
with the spatial correlation, cov(Di, Dj) "= 0 and thus σ2 "= β.
Henceforth, we regard the e2e correlation as positive if σ2 > β
and negative if σ2 < β.
The analysis of D starts from Di. Taking MAC into

account, the delay Di consists of two parts, the queueing
delay and the access delay. In m-phase TDMA, with full
coordination, a node is scheduled to transmit once in m time
slots, and nodes, m hops apart, can transmit simultaneously.
Define m slots as one frame. In the frame level, given the
independence of channel errors, the service time is S ∼ Gµ

and a TDMA node can be modeled as a GI/Geo/1 system. By
contrast, in persistent slotted ALOHA, every node transmits
independently, with a transmit probability pm, whenever it
has packets. Regarding both the access delay and the failed
transmission attempts as unsuccessful transmissions, a packet

is successfully transmitted if and only if the node attempts to
transmit and the transmission is successful, with probability
µs ! µpm. In other words, the service time is S ∼ Gµs at the
slot level so that an ALOHA node can also be modeled as a
GI/Geo/1 system.
Notably, in TDMA, the arrival process to the GI/Geo/1

system is an accumulated version of the original flow while in
ALOHA, it is the service rate that is scaled by the ALOHA
transmit probability. As such, TDMA acts like a deterministic
traffic regulator that causes a distortion to the traffic flow while
the influence of ALOHA lies in the service process and thus
preserves the traffic statistics of the original flow. We shall
show in the following sections that the distortion caused by
MAC substantially affects the spatial correlation.

III. CONVERGENCE OF RELAYED TRAFFIC FLOWS
To derive Di for i ≥ 2, we first characterize the arrival

processes at the relays. In [6], it has been shown that in a
WLN of GI/Geo/1 nodes, the entropy of the relayed flows at
ni increases with i. Since Bernoulli traffic has the maximum
entropy, the relayed flows spatially converge to Bernoulli. The
question remains whether all traffic flows converge in the
same way regardless of their original statistics. For example,
both CBR and on-off have smaller entropy than Bernoulli but
they have completely different burstiness. Will they converge
similarly or not?
To answer this question, we use queueing theory to discover

the relationship between the direction of convergence and the
traffic statistics. Characterize the departure process of ni (also
the arrival process to ni+1) by the interdeparture time Ti that
is composed of the packet service time S and the node idle
time I . The idle period I can be derived by the delay model
in [7], where the system state is the delay of the head-of-line
(HOL) packet and negative states indicate the number of idle
slots. Observe the system at the packet departure moment and
let the steady-state probabilities be {πk}. Then, Ti is given by

Ti =

{
S with probability P̃B !

∑
k≥0 πk,

S + |k| with probability πk, k < 0.
(2)

The details for the derivation of {πk} can be found in [8].
From (2), we calculate the probability generating functions
(pgf) GTi

(z) of Ti for different MAC and traffic models.
Denote GS(µ, z) as the pgf of a geometric process Gµ. For

TDMA, Ti is measured in the number of frames. Due to the
arrival accumulation, the average arrival rate becomes mλ, the
service rate is µ, and the traffic intensity is ρT = mλ/µ.

• CBR—With a constant interarrival time r < 2m,

GT0
(z) =

[
1 −

(1 − ρT)(1 − z)

mλ

]
GS(µ, z), (3)

corresponding to an on-off process with transition prob-
abilities a(1)

01 = µ and a(1)
10 = (r − m)µ/m. If r > 2m,

the expression of GTi
(z) is too complex to be useful.

• On-off—With transition probabilities (a01, a10), let us
denote a00 = 1 − a01. The pgf can be expressed as

GT0
(z) =

[
P̃B +

(
1 − P̃B

) (1 − am
00)z

1 − am
00z

]
GS(µ, z),

(4)
with P̃B = 1 −

(1 − am
00)(1 − ρT)

mλ
. (5)



For ALOHA, Ti is measured in the number of time slots.
For the GI/Geo/1 system established, the service rate is scaled
to µs = µpm. Thus, the traffic intensity is ρA = λ/µs =
λ/(µpm). Proceeding as for TDMA, we have the pgf for

• CBR:

GT0
(z) =

[
P̃B + (1 − α)z

αr−1 − zr−1

α− z

]
GS(µs, z),

(6)
where α ∈ (0, 1) is the unique root of the polynomial
f(x) = µsxr − x + 1 − µs and

P̃B = αr−1 = ρA −
1 − rµαr−1

rµ
. (7)

• On-off:

GT0
(z) =

[
P̃B +

(
1 − P̃B

) (1 − a00)z

1 − a00z

]
GS(µs, z),

(8)
where P̃B = 1 −

a01(1 − ρA)

λ
. (9)

For Bernoulli traffic, GT0
(z) can be obtained by plugging

a01 + a10 = 1 into (4) and (8), respectively. From (3)–(9),
we observe that the flow departs n0 as bursty and correlated,
regardless of the burstiness and temporal correlation of the
original flow. The only exception is Bernoulli in ALOHA as it
becomes a Geo/Geo/1 system. Since the departure of ni is the
arrival to ni+1, plugging the above departure characterization
into ni+1, the relayed flows of all nodes can be analyzed in
the same way. However, the characterizations would be too
complex and analytically intractable for large-scale networks.
In order to improve the tractability, simplifications have to be
done. On-off, as a special MMBP case, is fairly general and
able to capture both the burstiness and the strong correlation
in time, and yet being analytically tractable [9]. Therefore, we
approximate the departure process as on-off. Using (3)–(8),
we obtain the transition probabilities {a(i)

01 , a(i)
10 } [where the

superscript (i) represents the arrival to ni] of the approximated
on-off process based on a(i)

10 = 1 − Pr{Ti = 1}. For TDMA,
a(i)
01 = mλa(i)

10 /(1 − mλ), and

a(i)
10 =






(r − m)µ

m
, for CBR,

1 − µ + (1 − (a(i−1)
00 )m)

1 − ρT
ρT

for on-off,
(10)

For ALOHA, a(i)
01 = λa(i)

10 /(1 − λ) and

a(i)
10 =






1 − µs

α
for CBR,

1 − µs + a(i−1)
01

1 − ρA
ρA

for on-off.
(11)

In so doing, ni can be analyzed as a GI/Geo/1 system with
on-off arrivals. The corresponding departure process can also
be approximated as on-off with (10) and (11).
Fig. 2 shows the analytical results of a(i)

01 . In TDMA, a
(i)
01 →

mλ while in ALOHA, a(i)
01 → λ, corresponding to the average

arrival rates of the established GI/Geo/1 systems for TDMA
and ALOHA, respectively. Since an on-off process with a01 =
λ reduces to a Bernoulli process, the relayed flows converge
to a Bernoulli process, sometimes referred to as the limiting
Bernoulli process as in [6] by entropy theory. It is worth noting

that due to the arrival accumulation, the Bernoulli source in
TDMA is not the limiting Bernoulli process while in ALOHA,
the Bernoulli source itself is the limiting Bernoulli. Moreover,
our analysis has revealed the following facts:

• The relayed flows converge to Bernoulli in a direction
in accordance with the relative burstiness of the limiting
Bernoulli. For instance, CBR and heavy on-off have
different burstiness and therefore converge to Bernoulli
from opposite directions.

• MAC plays an important role in determining the direction
of convergence. In TDMA, the accumulated versions
of both on-off and Bernoulli sources are more bursty
than the limiting Bernoulli process and hence converge
from the same direction. On the other hand, in ALOHA,
without arrival accumulation, heavy and light on-off con-
verge from opposite directions because of their different
burstiness compared to the limiting Bernoulli.
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Fig. 2: The convergence of the analytical a
(i)
01 to mλ and λ in TDMA and

ALOHA networks with N = 14.
The dependence of the direction of convergence on traffic

burstiness can be explained from the viewpoint of traffic reg-
ulation. Regard the geometric server as a Bernoulli regulator
that regulates the traffic flows by randomly inserting “holes”
into the arrival flows [10]. The insertion limits the maximum
burstiness that the traffic flow can sustain as it traverses
through the network. In the WLN, after hop-by-hop regulation,
the flow is turned into Bernoulli that possesses the “natural”
level of burstiness favored by the network under a given traffic
load. As such, a heavy bursty flow will converge with the
burstiness decreasing while a smooth flow will converge with
the burstiness increasing. Notice that here the traffic burstiness
is the one after MAC regulation. In other words, the direction
of convergence is burstiness- and MAC-dependent.

IV. DERIVATION OF THE SPATIAL CORRELATION
As shown in (1), the e2e delay variance σ2 is determined by

cov(Di, Dj), which depends on the spatial correlation between
ni and nj . In this section, we first study the correlation
between neighboring nodes and then proceed to the e2e
correlation based on the direction of convergence.
In a WLN (Fig. 1), the correlation between ni and ni+1 can

be reflected through the queueing activities of ni and ni+1

when a packet departs from ni and arrives at ni+1. As shown
in (2), the interdeparture time Ti depends on the node backlog
state and the idle period. Denote the backlogged probability
of ni upon a packet departure by P̃B [defined in (2)] and
the backlogged probability at any moment by PB(= ρ). It is
well known that P̃B "= PB if the traffic flow is temporally
correlated [11]. Denote θ = P̃B − PB . Previous work on



queueing theory showed that for memoryless Bernoulli traffic,
not only θ = 0, but also there is no spatial correlation. On the
other hand, for temporally correlated traffic like on-off and
CBR, the spatial correlation exists and θ "= 0. Naturally, θ
could be used to evaluate the spatial correlation. Between ni

and ni+1, if θ > 0, upon the departure moment, ni is more
backlogged than usual that will lead to increasing queueing
delays at ni. Meanwhile, because of the non-zero idle period,
the packets depart a backlogged ni in a more bursty manner
than departing an idle ni. Based on queueing theory, a bursty
flow results in a longer delay in ni+1 than a smooth flow.
Therefore, θ > 0 indicates an increase in both Di and Di+1,
i.e., Di and Di+1 are positively correlated. Similarly, if θ < 0,
ni is less backlogged at the packet departure moment than
usual andDi andDi+1 are negatively correlated. To start with,
we calculate θ for n0 and n1 with P̃B obtained from (5), (7)
and (9). For TDMA,

θ =






−
(r − m)(1 − ρ)

m
< 0, for CBR,

(1 − ρ)
mλ− (1 − am

00)

mλ
> 0, for on-off,

(1 − ρ)
mλ− (1 − λm)

mλ
> 0, for Bernoulli.

(12)

In contrast to conventional queueing theory, even if the original
flow is Bernoulli, spatial correlation exists and θ "= 0 since
TDMA, as a deterministic regulator, destroys the memoryless
property of the Bernoulli source. For ALOHA,

θ =






−
1 − rµαr−1

rµ
< 0, for CBR,

(1 − ρ)(1 − a01 − a10) < 0, for light on-off,
(1 − ρ)(1 − a01 − a10) > 0, for heavy on-off,

0, for Bernoulli,

(13)

where α ∈ (0, 1) is the root of f(x) = µsxr − x + 1 − µs.
Because the local minimum xmin of f(x) is between 1 and α,
f ′(α) = µrαr−1 − 1 < 0, leading to θ < 0. As a Bernoulli
regulator, ALOHA does not change the temporal correlation
property and hence θ = 0 for Bernoulli.
Like the direction of convergence, Bernoulli and light on-

off traffic flows cause different θ in TDMA and ALOHA. In
TDMA, the accumulated versions of both on-off and Bernoulli
become more bursty than the limiting Bernoulli process and
have θ > 0. Their burstiness remain the same in ALOHA,
which is consistent with θ < 0 for light on-off and θ = 0 for
Bernoulli. In both TDMA and ALOHA, heavy on-off (resp.
CBR) is always more (resp. less) bursty than the limiting
Bernoulli process and thus has consistent θ > 0 (resp. θ < 0).
Therefore, θ and the corresponding spatial correlation depend
on the MAC-regulated traffic burstiness, which is a function
of both MAC and the original traffic burstiness.
Similar correlations exist in (ni+1, ni+2), (ni−1, ni), and

so on. As a result, ni is correlated with all nj’s. To determine
the e2e correlation, recall that in Section III, we reveal that
if the source flow is more bursty than Bernoulli, then the
relayed flows will converge with the burstiness decreasing,
i.e., all the relayed flows are more or equally bursty than
the limiting Bernoulli. Then, all the neighboring nodes are
positively correlated with θ > 0. This correlation will extend

to nodes more than one hop away, say ni and ni+2, and so
on so forth. Overall, the e2e correlation is positive as well.
Similarly, if the source flow is smoother than Bernoulli, then
the e2e correlation is negative. As a result, the sign of the
correlation between ni and ni+1 can be used as the sign of
the e2e correlation.
Though we have derived the sign of the correlation, it is

still difficult to explicitly derive cov(Di, Dj), especially if |j−
i| > 1. Even in a simple tandem system of two D/M/1 nodes,
the calculation involves of partitioning the state space into
four parts and solving them individually [12]. Instead, we use
simulation to explore the degree of the e2e correlation.

V. SIMULATION RESULTS

In the simulations, all traffic flows have the same rate
λ = 0.25 and all channels have the same probability of
success µ = 0.8. In TDMA, m = 3. In ALOHA, we let
the transmit probability be pm = 1/m so that the average
number of transmission opportunities and the traffic intensity
ρ are equal for TDMA and ALOHA. The transition probabil-
ities (a01, a10) for heavy and light on-off are (0.125, 0.375)
and (0.292, 0.875), respectively. Delays are measured in the
number of time slots the packet stays.

A. Convergence

We first justify the impact of traffic burstiness and MAC
on the direction of convergence. Fig. 3 provides the simulated
mean Di of per-node delays in TDMA and ALOHA. The av-
erage per-node delays converge as the node index i increases.
The asymptotic delay means are those for a Geo/Geo/1 system
with Bernoulli arrivals. Moreover, a traffic flow with a longer
burst size causes a longer delay and thus converges from above
while a flow with a shorter burst size converges from below,
consistent with our analysis on a(i)

01 in Section III.
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Fig. 3: The mean Di of single node delays at ni in TDMA and ALOHA
WLN with N = 14.

The influence of MAC is also confirmed. In TDMA, the
asymptotic value lies between the smooth CBR and the three
more bursty flows [see Fig. 2(a) and Fig. 3(a)]. In contrast, in
ALOHA, the original Bernoulli process itself is the limiting
Bernoulli. So the asymptotic value lies between the heavy on-
off and the light on-off [see Fig. 2(b) and Fig. 3(b)]. In short,
as a single flow traverses multiple nodes, the relayed flows
converge in a direction that highly depends on the original
traffic burstiness and the MAC scheme although they will
be shaped into the same Bernoulli process regardless of the
original burstiness.



B. The e2e Delay Variance
The e2e correlation is evaluated by the difference between

σ2 and β. In Fig. 4, the solid lines are for the simulated delay
variance σ2 and the dash-dotted lines represent β, the variance
as if the nodes were spatially uncorrelated as assumed in the
previous works. Obviously, σ2 = β occurs only when the
arrival process is Bernoulli in the established GI/Geo/1 model,
e.g., Bernoulli in ALOHA, Fig. 4(b). Otherwise, a gap exists
between σ2 and β. Sometimes, this gap is too large to ignore
the spatial correlation, e.g., for heavy on-off.
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Fig. 4: The e2e delay variance in TDMA and ALOHA WLN with N = 5.

In Section IV we have proven that if the source flow
is more bursty (smooth) than the limiting Bernoulli, then
θ > 0(< 0) and the correlation should be positive (negative).
More specifically, our analysis concludes that in TDMA, CBR
results in θ < 0 and negative correlation, which is confirmed
by σ2 < β in Fig. 4(a) and 4(b). Similarly, all other three
flows cause θ > 0, meaning a positive correlation supported
by σ2 > β. In ALOHA, both CBR and light on-off are less
bursty than Bernoulli giving θ < 0 and hence σ2 < β as
expected. The only flow with a heavier burstiness is heavy
on-off that has σ2 > β to give θ > 0. Therefore, the sign
of θ is sufficient to indicate the sign of the e2e correlation.
Remarkably, unlike [3], our results have revealed that with
MAC, on-off, as a special MMBP flow, could give rise to
both positive and negative correlations.
Smooth traffic causes not only a small per-node delay,

but also a negative correlation and a decreased e2e delay
variance compared to the uncorrelated case. In contrast, bursty
traffic incurs both large per-node delays and a positive e2e
correlation. That explains the huge gap between the e2e delay
variances of CBR and heavy on-off traffic in Fig. 4, e.g., in
TDMA, σ2

heavy on-off ≈ 14σ2
CBR and in ALOHA, σ2

heavy on-off ≈
11σ2

CBR. In order to guarantee the delay performance of delay-
sensitive applications, the heavy bursty flow should be shaped
before entering the network by traffic regulation.
Though θ itself is not sufficient to determine the degree

of the e2e correlation, it still provides an insight. To show
this, we define η = σ2/β. If η → 1, then the correlation
coefficient decreases to zero. Simulation results show that for
bursty traffic, η is non-increasing while for smooth traffic,
η is non-decreasing. A similar relationship can be found in
the analytical quantity θ′ = ∂θ

∂µ
where θ′ is decreasing and

increasing with µ for bursty and smooth traffic, respectively.
More importantly, the separation between θ′ for different
traffic models is consistent to that between η, showing a great
potential of analyzing the e2e delay correlation degree by θ′.

It is interesting to observe that even with the correlations,
the e2e delay variance is almost linear with the number of
nodes (Fig. 4). Then it is reasonable to assume that the impact
of the correlations is uniform in a line network and a product-
form joint distribution of all Di’s could be possible. Moreover,
a huge η, say η > 2, implies that strong correlations exist not
only between neighboring nodes, but also between nodes that
are more than one hop away [Fig. 4(a) for heavy on-off]. In this
case, the assumption used in previous work that the correlation
mainly exists between neighboring nodes does not hold.

VI. CONCLUSIONS
This paper has adopted queueing theory to analyze the e2e

delay variance of a WLN with spatial correlation among nodes.
Using a correlated bursty on-off model to approximate the
relayed flows, we have confirmed the convergence behavior
in [6]. More importantly, we have revealed that although
all relayed flows converge to the same Bernoulli process,
they converge from different directions depending on the
original traffic burstiness and the underlying MAC. The other
contribution is to derive the sign of the correlation between two
neighboring nodes through the parameter θ, which, confirmed
by simulation, is sufficient to indicate the sign of the e2e delay
correlation. Furthermore, the derivative of θ can well indicate
the degree of the e2e delay correlation.
Since it is the traffic burstiness that affects the e2e corre-

lation, our work could be extended to non-linear networks
with inter-flow coupling and other MAC schemes, whose
influence could be regarded as “traffic regulator”. For instance,
multiplexing could be considered as a burstiness booster while
splitting reduces traffic burstiness. The combined burstiness
determines how the nodes are correlated.
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