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Abstract—The stochastic geometry-based downlink analysis of
a cellular network modeled as a Poisson point process (PPP)
has traditionally focused on the typical user placed at the origin,
which does not lie in the typical cell. In order to characterize the
performance of the typical cell, one needs to explicitly consider
the point process of users scheduled in a given resource block
(RB), which is dependent on the base station (BS) point process.
Therefore, we model the locations of the scheduled users using the
so-called Type I user process, which places one user uniformly at
random in each cell. However, this dependency in the locations
of the BSs and users complicates the characterization of the
point process of interferers as seen by the typical user of the
Type I process. In order to overcome this challenge, we present
a general approach to determine the pair correlation function
(pcf) of stationary point processes with respect to a reference
point. This approach is used to approximate the pcf the point
process of interferers with respect to the typical user of the Type
I process. With the pcf in hand, we provide the tightest known
approximation of the point process of interfering BSs as seen
by the typical user of Type I process, which is used to derive
remarkably tight expressions for the moments of the downlink
signal-to-interference-ratio (SIR) meta distribution for the typical
cell.

Index Terms—Cellular networks, Poisson point process, meta
distribution, success probability, pair correlation function.

I. INTRODUCTION

Owing to its unparalleled tractability, the homogeneous PPP
has become a popular model to analyze cellular networks
[1], [2], wherein the BS locations are modeled using a PPP
independently of the user locations. Given the stationarity of
the BS point process, the typical user can be simply placed at
the origin for the downlink analysis. This places the typical
user in the Crofton cell which is bigger on an average than
the typical cell [3]. Naturally, the typical user in this case does
not represent the performance of the typical cell. In order to
characterize the performance of the typical cell, one needs
to explicitly consider the point process of users scheduled in
a given RB, which is not independent of the point process
of BSs. It is therefore useful to start directly with the point
process of scheduled users for which one can consider the
Type I user point process, defined in [3], wherein a single user
is distributed uniformly at random in each cell independently
of all other cells. In this setting, the typical user belongs to the
typical cell. This means that the link performance observed by
the typical user is the same as the link performance observed
by the typical cell.
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Two key intermediate steps in the analysis of cellular
networks are the characterization of the service link distance
and the point process of interferers. The placement of the
typical user independently of the BS locations allows to
characterize the link distance distribution using the contact
distribution of PPP and the point process of interferers as
a PPP beyond the serving link distance, which makes the
analysis tractable (see [1] for more details). However, the
analysis is usually significantly more challenging when the
user locations are dependent on the BS point process, which
is the case in the Type I process considered in this paper. While
this dependence has been recently captured in the cellular
network models using Poisson cluster processes [4]–[6], the
mathematical structure of the Type I process does not allow a
similar analytical treatment. As a result, the exact analysis of
the Type I process is currently a key open problem in this area.
Not surprisingly, the prior art investigating the Type I process
mostly resort to sensible approximations and empirical results.

In [7], we derived an exact multi-integral expression and
a closed-form approximation of the service link distance
distribution for the Type I process. In addition, the approximate
pcf of the point process of interfering users as seen by the
typical BS is derived in [8]. Building on this, the authors
of [9] presented the meta distribution analysis for the uplink
of the Type I process using the empirically obtained service
link distance distribution and an approximation of the point
process of interfering users as a non-homogeneous PPP whose
density function is governed by the pcf derived in [8].
Therein, the meta distribution analysis for the downlink of the
Type I process was also presented using the approximation
of the point process of interfering BSs as a homogeneous
PPP beyond the service link distance from the typical user.
Similar approximations were then used in [10] for the meta
distribution analysis in non-orthogonal medium access-enabled
cellular networks. However, as will be evident shortly, the
homogeneous PPP approximation of the point process of
interfering BSs underestimates the interference power at the
typical user which results in the overestimation of the moments
of the meta distribution in the downlink.

Contributions: The key technical contribution of this paper
is a new method to determine the pcf of general stationary
point processes from a reference point that may not necessarily
be independent of the point process. The proposed method
solely relies on the knowledge of the distributions of distances
of a few neighboring points of the point process from the
reference point and is hence applicable to point processes
for which these distributions may be known (or are easy to
approximate). We then apply this method to derive the pcf of



the point process of interfering BSs as seen from the typical
point of the Type I user process. Since the distributions of
the distances from this typical point to a few neighboring BSs
is not known, we approximate these distributions using the
tabulated parameters obtained through one-time simulations.
Such approaches are not uncommon in the stochastic geometry
literature. For instance, note that the well-known area distri-
bution of the typical Poisson Voronoi (PV) cell is also based
on a simulation-driven approach [11]. The derived pcf shows
that the interfering BSs exhibit a clustering effect at distances
slightly larger than the service link distance which cannot be
captured by the homogeneous PPP approximation assumed in
[9], [10]. Further, we use the pcf to approximate the point
process of interferers using a non-homogeneous PPP which we
then use to derive the moments of the meta distribution of the
downlink SIR. We also provide an accurate beta approximation
of the meta distribution. Numerical results demonstrate that
the moments and beta approximation derived in this paper
are more accurate compared to those derived in [9] using the
homogeneous PPP approximation.

II. SYSTEM MODEL

We consider a cellular network in which the BS locations
are modeled using a homogeneous PPP Φ of density λ and
the users follow the Type I user process [8] such that each BS
is associated with a single user which is placed uniformly at
random in its cell. The cell associated with the BS at x ∈ Φ
is the PV cell corresponding to the nucleus x and is given by

Vx = {y ∈ R2 : ∥y − x∥ ≤ ∥x′ − y∥, ∀x′ ∈ Φ}. (1)

Therefore, the user point process Ψ becomes

Ψ , {U(Vx) : x ∈ Φ} (2)

where U(A) is a point chosen uniformly at random from set
A. This system can be thought of as an orthogonal frequency
division multiple access system wherein Ψ denotes the point
process of the users active in a given RB. By virtue of
Slivnyak’s theorem, we know that conditioning on a point at
x ∈ Φ is the same as adding x to Φ. Therefore, without
loss of generality, we assume that the nucleus of the typical
cell of the point process Φ ∪ {o} is located at the origin o.
By the above construction, the typical user of Ψ falls in the
typical cell and its location is y = Ψ ∩ Vo (or, equivalently
y ∼ U(Vo)). Hence, Φ is the point process of interfering BSs
for the typical user at y ∈ Vo. Let Ro = ∥y∥ be the typical
link distance, i.e., the distance between the typical user and
its serving BS. Let Dxi

= ∥xi − y∥ be the distance from the
typical user at y ∈ Vo to the interfering BS at xi ∈ Φ. Fig.
1 illustrates the network model wherein the BS of the typical
cell, containing the typical user, is at the origin.

We assume that each BS transmits at fixed power P and the
path loss follows the standard power law path loss model with
exponent α > 2. Assuming independent Rayleigh fading, we
model the fading gains hxi

of the links between the typical
user and the BSs as i.i.d. exponential random variables with
unit mean, i.e., hxi ∼ exp(1). The SIR at the typical user at
y ∈ Vo is given by

o

RoDxi

xi

y

Figure 1. Illustration of the typical user at y ∈ Vo. The star, circle, and plus
marks denote the locations of typical user, serving BS and interfering BSs,
respectively.

SIRy =
hoR

−α
o∑

x∈Φ

hxD
−α
x

. (3)

Now, we define the pcf and the meta distribution of the
downlink SIR [12], which are the key metrics of interest for
this paper.

Definition 1. The pcf of a point process P w.r.t. point y is

g(r) =
1

2πλr

d

dr
K(r), (4)

where K(r) = E[P(By(r))] is Ripley’s K function and By(r)
is the disk of radius r centered at y.

Definition 2. The meta distribution of the downlink SIR is
defined as

F̄ (β, x) , FPs
(β, x) = P[Ps(β) > x], (5)

where x ∈ [0, 1] and Ps(β) = P[SIRy > β | Φ,y] is the
conditional success probability averaged over the fading gains
for given user location y and BS point process Φ.

In the next section, we provide an accurate approximation
of the point process of interferers for the Type I process which
will then be used for the meta distribution analysis.

III. POINT PROCESS OF INTERFERING BSS

The key steps in the SIR analysis of the typical user
involve the joint characterization of the service link distance
distribution and the point process of interfering BSs. However,
the exact characterization of the point process as seen from the
typical point of the Type I user process is an open problem.
In such cases, it is very useful to determine the pcf of the
point process using which one can accurately approximate
the original point process with more tractable point processes,
such as the PPP. With this in mind, we first develop a new
method to evaluate the pcf of a motion-invariant point process
as seen from a reference point that may not necessarily be
independent of the point process.

Lemma 1. Let P be a motion-invariant point process of
density λ and y a reference point that is a function of P .
Let Rn−1 denote the distance from y to the n-th closest point
in P . Then the pcf of P w.r.t. y is



g(r) =
1

2πλr

∞∑
n=0

fRn
(r) for r > 0, (6)

and the pcf of P \ {xo} w.r.t. y such that xo =
arg minx∈P ∥x− y∥ is

g(r | R0) =
1

2πλr

∞∑
n=1

fRn(r | R0) for r > R0, (7)

where R0 = ∥xo − y∥, fRn(r) and fRn(r | R0) are
respectively the probability density function (pdf) of Rn and
conditional pdf of Rn given R0.

Proof. Since P(By(r)) =
∑∞

n=0 1[Rn < r], Ripley’s K
function is given by K(r) =

∑∞
n=0 FRn

(r). Thus, (6) directly
follows from the definition of the pcf given in (4). The
conditional pcf in (7) follows using similar arguments.

The pcf obtained using (7) can be used to approximate the
point process of interfering BSs solely using the knowledge
of the distributions of Rn for the given underlying point
processes of users and BSs. It is reasonable to assume that
the BSs that are far from the typical user do not exhibit any
coupling with the typical user location (if the point process
is mixing, this is guaranteed). Thus, the point process of
interferers can be approximated using a PPP beyond a certain
distance from the typical user which implies that the pcf

is unity at higher values of r. Therefore, the pcf can be
accurately evaluated using the distributions of the distances
of the N closest BSs. In the following, we apply this method
to derive the best-known approximation of the pcf of the point
process of interferers as seen by the typical user at y ∈ Vo of
the Type I process. We will then use it for the meta distribution
analysis of the Type I process in the next section. Let Rn−1

denote the distance from the typical user at y ∈ Vo to its n-th
closest BS. The approximate cumulative distribution function
(CDF) of Ro, i.e., the service link distance, is [7]

FRo(r) = 1− exp
(
−πρoλr

2
)
, for r ≥ 0, (8)

where ρo = 9
7 is the correction factor (CF), which corresponds

to the ratio of the mean volumes of the Crofton and typical
cells. Similar to the fact that the distribution of Ro closely
follows the distribution of the closest point in the PPP of
density ρoλ, we approximate the CDF of Rn with the CDF

of (n+1)-th closest point in a PPP [13] by including the CF
ρn as follows

FRn
(r) ≈ 1

Γ(n+ 1)
γ(n+ 1, πλρnr

2), (9)

where Γ(·) and γ(·, ·) are the gamma function and lower
incomplete gamma function, respectively. By matching the
mean values, we can obtain the CF ρn as listed in Table I
by solving

ρ
1
2
n =

Γ
(
n+ 3

2

)
(πλ)

1
2µnΓ(n+ 1)

, (10)

where µn is the mean of Rn. While it is difficult to analytically
determine µn, it is straightforward to do a one-time simulation
to obtain it for a given value of λ (say λ = 1). We provide

the resulting values for λ = 1 (and the corresponding CFs
ρn) in Table I and the corresponding Matlab script in [14].
It is important to note that the scale-invariance property of
the distributions of Rn (i.e. F (λ)

Rn
(r) ≡ F

(1)
Rn

(r
√
λ)) allows us

to use the tabulated CFs ρn for λ = 1 from Table I for any
BS density λ. From Table I and (8), it can be seen that the
analytically approximated (ρo = 9

7 ≈ 1.2857) and empirically
obtained (ρo = 5

4 = 1.25) values of ρo are reasonably close.
In order to be consistent with how we obtain ρn for n > 0, we
use the empirically obtained value for ρo as well (from Table
I) throughout our analysis. Fig. 2 illustrates the accuracy of
the approximated CDF of Rn given in (9) for n ∈ {0, . . . , 14}
and λ = 1. Now, in the following theorem, we approximate
the pcf of the point process of interferers with respect to the
typical user at y ∈ Vo of the Type I process.
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Figure 2. Approximated CDF of Rn for λ = 1 and n ∈ {0, . . . , 14}.

Theorem 1. For a given Ro, the pcf of the point process
of interferers as seen by the typical user of the Type I user
process can be approximated as

g(r | Ro) =

{
0 for r ≤ Ro,

1 + h(r,Ro) for r > Ro,
(11)

where h(r,Ro) =

N∑
n=1

1

Γ(n)
v2n−2
r exp

(
−v2r

) [
ρ̃nn exp(−(ρ̃n − 1)v2r)− 1

]
,

and ρ̃n is the solution of

(πλ)−
1
2

Γ(n)

∫ ∞

0

(
t

ρ̃n
+ πλR2

o

) 1
2

tn−1 exp(−t)dt− µ̃n = 0,

such that v2r = πλ(r2 − R2
o), µ̃n = E[Rn | Ro] and N is

number of closest interfering BSs used to approximate the pcf.

Proof. Please refer to Appendix A for the proof.

Fig. 3 demonstrates the accuracy of the pcf derived in
Theorem 1 using the approximated distributions of Rn (given
in (16)) for Ro ∈ {0.3, 0.6, 0.9} and N = 14. It may
be noted that the conditional CF ρ̃n is obtained using the
empirically obtained mean of Rn for given Ro. We have
verified the accuracy of the approximation of the conditional
distributions of Rn which is also apparent from the accuracy
of the pcf depicted in Fig. 3. Besides, through simulation



Table I
MEAN AND CORRECTION FACTOR OF Rn

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
µn 0.45 0.66 0.83 0.98 1.12 1.25 1.36 1.47 1.57 1.67 1.76 1.85 1.93 2.01 2.10 2.16 2.24 2.31 2.28
ρn 1.25 1.30 1.27 1.24 1.20 1.18 1.15 1.14 1.12 1.11 1.10 1.09 1.08 1.08 1.07 1.06 1.06 1.05 1.04
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Figure 3. pcf of the point process of interferers observed by the typical user for given Ro = {0.3, 0.6, 0.9}.

results, we observe that the sequence of conditional CFs ρ̃n
closely follows the sequence of the marginal CFs ρn for the
values of Ro in the range of interest. Fig. 3 also depicts that
the approximated pcf closely follows the simulation result for
ρ̃n = ρn. Thus, we will henceforth use ρ̃n = ρn as this will
allow us to analytically analyze the performance of the typical
user just by using the CFs ρn given in Table I. In other words,
we will not have to empirically obtain µ̃n = E[Rn | Ro].
In the following, we approximate the point process of

interferers using the pcf derived in Theorem 1 which will
be used for the meta distribution analysis in the next section.

Approximation 1. We approximate the point process of in-
terferers as seen by the typical user at y ∈ Vo using the
non-homogeneous PPP with the density function

λI(z) =

{
λg(∥z∥ | Ro), for ∥z∥ ≥ Ro,

0, otherwise.
(12)

where z = z′ − y, z′ ∈ R2, Ro = ∥y∥ and g(r | Ro) is given
by Theorem 1.

IV. META DISTRIBUTION OF THE DOWNLINK SIR

Here, we analyze the meta distribution of the downlink SIR

using the point process of interferers from Approximation 1.
Since it is difficult to derive the meta distribution directly [12],
we derive its moments in the following theorem.

Theorem 2. The b-th moment of the downlink meta distribu-
tion for the Type I user point process is given by Mb =

2πρoλ

∫ ∞

0

exp

(
−πλρov

2 − πλ

∫ ∞

0

f(u, v)du

)
vdv, (13)

where f(u, v) = g̃(u)

1−(1 + ( v2

u+ v2

) 1
δ

β

)−b
 ,

g̃(u) = 1 +
N∑

n=1

(πλu)n−1

Γ(n)
[ρnn exp(−πλρnu)− exp(−πλu)] ,

δ = 2
α and b ∈ C.

Proof. Please refer to Appendix B for the proof.

Since the dominant interfering BS, say xd, contributes most
of the interference power, we can explicitly consider the inter-
ference from this BS and then approximate the point process
of the remaining interfering BSs using the homogeneous PPP
beyond the distance R1 = ∥xd − y∥ from the typical user at
y ∈ Vo. Using this insight, we present a simpler yet accurate
expression for the b-th moment Mb in the following corollary.

Corollary 1. The approximate b-th moment of the downlink
meta distribution for the Type I user point process is given by

Mb ≈ ρ2o

∫ ∞

1

1

(1 + βu− 1
δ )b

1

(ρou+ h(u))2
du, (14)

where h(u) =

∫ ∞

u

(
1− [1 + βt−

1
δ ]−b

)
dt.

Proof. Please refer to Appendix C for the proof.

Fig. 4 depicts the mean and variance of the conditional
success probability for α ∈ {3, 4}. It can be seen that the
moments derived in Theorem 2 (using the approximated pcf)
closely match the simulation results, whereas the moments
presented in Corollary 1 are still a better match compared to
the moments derived in [9, Theorem 3].

Now, in the following subsection, we provide a tight approx-
imation of the meta distribution using its first two moments
obtained in Theorem 2 and Corollary 1.

A. Beta Approximation
The meta distribution can be directly obtained using the

moments derived in Section IV and the Gil-Pelaez inversion
theorem [15]. However, considering the complexity of the
Gil-Pelaez theorem, similar to [9], [12], we provide the beta
distribution approximation for the meta distribution. Thus,

F̄ (β, x) ≈ 1− 1

B(θ1, θ2)

∫ x

0

tθ1−1(1− t)θ2−1dt, (15)

where B(·, ·) is the beta function and the parameters θ1 and
θ2 are obtained by simultaneously solving

M1 =
θ1

θ1 + θ2
and M2 =

θ21
(θ1 + θ2)2

(
θ2

θ1(θ1 + θ2 + 1)
+ 1

)
.
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Figure 4. Mean and variance of the meta distribution for α = 3 (top) and
α = 4 (bottom).

Let Beta1 and Beta2 denote the beta approximations evalu-
ated using the moments obtained in Theorem 2 and Corollary
1, respectively. Fig. 5 depicts the beta approximation for
α ∈ {3, 4}. It can be observed that Beta1 closely matches
the meta distribution, whereas Beta2 is not as tight as Beta1,
especially for α = 4. But Beta2 still is more accurate than
the beta approximation provided in [9].

V. CONCLUSION

In this paper, we characterized the meta distribution of the
downlink SIR for the typical cell in a cellular network whose
BS locations are modeled using a PPP. The main technical
contribution is the accurate derivation of the pcf of the point
process of interfering BSs as seen from the typical user of
the so-called Type I user point process (in which one user
is placed uniformly at random in each cell). Unlike the usual
analyses that focus on the typical user placed at the origin (and
hence in the Crofton cell), this derivation is not straightforward
because of the dependence in the locations of the users and
BSs. Our characterization of the pcf demonstrates that the
interfering BSs at distances slightly larger than the service
link distance exhibit a clustering effect. We then use the
pcf to approximate the point process of the interfering BSs
using a non-homogeneous PPP which is then used to derive a
tight approximation of the moments of the meta distribution
of the downlink SIR. In general, the proposed approach of

approximating the pcf from the distance distributions to a
few neighboring points is quite general and can be applied to
point processes for which these distributions are either known
or can be easily approximated.

APPENDIX A
PROOF OF THEOREM 1

The conditional CDF of the distance R̃n of the n-th closest
point in PPP from an arbitrary point (e.g., the origin o) is
FR̃n

(r | R̃o) = 1
Γ(n−1)γ(n − 1, πλ(r2 − R̃2

o)) for r ≥ R̃o

where R̃o is the distance to the closest point. Thus, similar to
(9), we approximate the CDF of Rn given Ro as follows

FRn
(r | Ro) =

γ(n, ρ̃nv
2
r)

Γ(n)
, for vr ≥ 0, (16)

where v2r = πλ(r2 −R2
o) and ρ̃n is the conditional CF given

Ro. By matching the means, we obtain ρ̃n as the solution of

(πλ)−
1
2

Γ(n)

∫ ∞

0

(
t

ρ̃n
+ πλR2

o

) 1
2

tn−1 exp(−t)dt = µ̃n,

where µ̃n = E[Rn | Ro]. The pdf of Rn given Ro becomes

fRn
(r | Ro) =

2πλr

Γ(n)
ρ̃nnv

2n−2
r exp(−ρ̃nv

2
r), for vr > 0. (17)

Now, using Lemma 1 and (17), we can write the pcf of the
point process of interferers of the typical user at y ∈ Vo as

g(r | Ro) =

{∑∞
n=1

1
Γ(n) ρ̃

n
nv

2n−2
r exp(−ρ̃nv

2
r), for r > Ro

0, for r ≤ Ro.
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Figure 5. Beta approximation for α = 3 (top) and α = 4 (bottom). Beta1 and
Beta2 denote the beta approximations evaluated using the moments obtained
using Theorem 2 and Corollary 1, respectively.



From Table I, it is reasonable to deduce that the conditional
CF ρ̃n approaches unity for large values of n. Therefore, we
set ρ̃n = 1 for all n > N . Hence, for r > Ro, we have

g(r | Ro) =
N∑

n=1

1

Γ(n)
ρ̃nnv

2n−2
r exp(−ρ̃nv

2
r)

+
∞∑

n=N+1

1

Γ(n)
v2n−2
r exp(−v2r)

=
N∑

n=1

1

Γ(n)
v2n−2
r exp

(
−v2r

) [
ρ̃nn exp(−(ρ̃n − 1)v2r)− 1

]
+

∞∑
n=1

1

Γ(n)
v2n−2
r exp(−v2r)

= 1 +
N∑

n=1

1

Γ(n)
v2n−2
r exp

(
−v2r

) [
ρ̃nn exp(−(ρ̃n − 1)v2r)− 1

]
.

This completes the proof.

APPENDIX B
PROOF OF THEOREM 2

The downlink success probability of the user at y ∈ Vo,
conditioned on Φ and ∥y∥ = Ro, is given by

Ps(β) = P

 hoR
−α
o∑

x∈Φ

hxD
−α
x

> β | Φ

 (a)
=
∏
x∈Φ

1

1 + βRα
oD

−α
x

,

where step (a) follows directly as hx are i.i.d. exponential
random variables. Thus, the b-th moment of the downlink meta
distribution becomes

Mb = ERo
EΦ

[∏
x∈Φ

1(
1 + βRα

oD
−α
x

)b | Ro

]

(a)
= ERo exp

−
∫

R2\By(Ro)

(
1−

(
1 + βRα

oD
−α
x

)−b
)
Λ(dx)


(b)
= ERo

exp

−2πλ

∞∫
Ro

g(r | Ro)(
1− (1 + βRα

o r
−α)

−b
)−1 rdr

 ,

where step (a) follows from the fact that all interfering BSs
to the typical user at y ∈ Vo are outside the disk By(Ro)
and the application of the probability generating functional
(PGFL). Step (b) follows from the non-homogeneous PPP ap-
proximation of the point process of the interfering BSs (given
in Approximation 1) and the Cartesian-to-polar coordinate
conversion after the substitution of x− y = z. Finally, using
the distribution of Ro given in (8) and some simplifications, we
obtain the b-th moment Mb as given in (13). This completes
the proof.

APPENDIX C
PROOF OF COROLLARY 1

Let xd ∈ Φ be the dominant interfering BS to the typical
user at y ∈ Vo and R1 = ∥xd∥. The success probability for
user at y ∈ Vo, conditioned on Φ and ∥y∥ = Ro, is given by

Ps(β) =
1

1 + βRα
oR

−α
1

∏
x∈Φ̃

1

1 + βRα
oD

−α
x

,

where Φ̃ = Φ \ {xd}. Thus, the b-th moment of the meta
distribution becomes

Mb = ERo,R1
EΦ̃

∏
x∈Φ̃

(
1 + βRα

oR1
−α
)−b(

1 + βRo
αDx

−α
)b | Ro, R1


(a)
≈ ERo,R1

[
1(

1 + βRα
oR1

−α
)b×

exp

(
−2πλ

∫ ∞

R1

(
1−

(
1 + βRα

o r
−α
)−b
)
rdr

)]
, (18)

where step (a) follows using the homogeneous PPP approxi-
mation of Φ̃ beyond R1 from the typical user. Now, using (8)
and (16) along with ρ1 = ρo, we obtain the joint distribution
of Ro and R1 as

fRo,R1
(ro, r1) = (2πρ2oλ)ror1 exp(−πλρor

2
1). (19)

Finally, using (19) and (18) along with some mathematical
simplifications, we obtain (14). This completes the proof.
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