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Abstract—This paper studies the spatial correlation of the
energy harvested from a Poisson field of millimeter-wave (mm-
wave) RF power sources which employ beamforming techniques
to transfer energy directionally. In particular, each node harvests
and stores energy from its nearest RF transmitter and uses it to
power the information transmission. Under this setup, we show
how the actual point process of nodes that successfully harvest
energy looks visually and provide an accurate characterization
of its density and pair correlation function theoretically. Sur-
prisingly, it turns out that the process of the energized nodes
exhibits repulsive correlations for small distances which wears
off as the distance increases. Therefore, we further approximate
the energized point process with a fitted β-Ginibre point process,
which is shown to provide a good approximation of the success
probability in the information transmission. A useful insight
is that there are energy correlations caused by the directional
energy transfer, which should be reflected accurately in modeling
the active mm-wave RF-powered nodes.

I. INTRODUCTION

Wireless energy transfer (WET) is a key enabling tech-
nology in realizing low-powered and self-sustainable wireless
communication networks, especially for the Internet of Things,
where billions of devices and sensors will be deployed, thus
powering or charging them has become a crucial issue in
next-generation networks. Meanwhile, as one of the main
components of the emerging 5G, millimeter-wave (mm-wave)
communication is expected to play an important role in accom-
modating the explosive growth of traffic demands and devices.
Moreover, the very short wavelength makes it possible to adopt
relatively large antenna arrays at the transceivers to achieve
substantial array gains via various beamforming techniques.
However, unlike the conventional sub-6 GHz systems, mm-
wave signals experience high propagation losses and are sus-
ceptible to blockages [1]. While bringing about huge benefits,
the integration of RF-based energy harvesting in mm-wave
band also triggers new problems and challenges.

One of the key challenges in the application of WET over
mm-waves is the lack of tractable models for analysis and
design of such networks. As a consequence, stochastic ge-
ometry models for wirelessly powered networks have recently
received widespread attention due to their capability of captur-
ing the irregularity and variability of the node configurations in
real networks and providing theoretical insights [2–4]. For the
sake of analytical tractability, most existing studies on the joint
consideration of mm-wave and WET use independent Poisson

point processes (PPPs) as models for both RF transmitters
and the active RF-powered nodes that successfully harvest
energy and use it to power their information transmission
[2–5]. However, modeling the active RF-powered nodes as
a PPP means that whether a node succeeds in harvesting
energy is independent of whether a nearby node succeeds,
which does not seem realistic. Nodes powered by different RF
transmitters with directional beams are likely to exhibit spatial
correlation, e.g., the RF-powered nodes residing in the Voronoi
cells of different RF transmitters usually exhibit repulsion.
Therefore, it is important to explore tractable models for
the energized nodes, i.e., the nodes that successfully harvest
energy from mm-wave RF transmitters, accounting for the
spatial correlation, and analyze the corresponding effect on
the communication performance.

Different from the positive energy correlation shown in our
previous work [6] with omni-directional energy transfer, in this
paper we explore the impact of beamforming on the energy
correlation in wirelessly powered networks over mm-wave
bands, where the energy correlation corresponds to the spatial
correlation of nodes that successfully harvest enough energy
from mm-wave RF transmitters. The mm-wave RF transmitters
employ beamforming techniques to transfer energy directed to
the locations of certain RF-powered nodes. Under this setup,
the active RF-powered nodes in the information transmission
phase form a new point process, termed the beamforming-
based energized point process (BEPP). To characterize the
spatial correlation of the BEPP, we derive the first- and second-
order (pair correlation function) statistics. Interestingly, it is
shown that the BEPP exhibits repulsion for small inter-node
distances and such correlation gradually recedes until it tends
to zero or even turns positive as the distance increases. To
assess the effect of such spatial correlation on the commu-
nication performance, we further use a fitted β-Ginibre point
process (β-GPP) [7] to approximate the BEPP, which turns out
to provide a good approximation of the transmission success
probability.

II. SYSTEM MODEL

A. Network Model

We consider a mm-wave network powered solely by mm-
wave RF transmitters, where the locations of RF transmitters
follow a point process Φp. Based on the point process Φp,



we model the locations of the RF-powered nodes as a point
process on R2, which is denoted by Φd and defined as follows

Φd ≜ {x ∈ Φp : U(Vx)}, (1)

where Vx is the Voronoi cell of x, and U(B), B ⊂ R2

presents a point chosen uniformly at random from B which is
independent for different B and independent from everything
else. This model is suitable for a fully loaded wirelessly pow-
ered network, where each RF-powered node harvests energy
from its nearest RF transmitter and each RF transmitter is
equipped with a directional antenna array synthesizing a highly
directional energy beam pointing to a RF-powered node.
Hence, the densities of Φd and Φp are the same, i.e., λd = λp.
Under this setup, we formally define the BEPP, denoted by
Φe, which is formed by the mm-wave RF-powered nodes that
succeed in harvesting enough energy from directional energy
transfer beams. Obviously, we have Φe ⊂ Φd.

Definition 1 (Beamforming-based energized point process,
BEPP). Let Φp be the point process of RF transmitters and Φd

be the point process of performing mm-wave energy harvesting
from Φp. The beamforming-based energized point process Φe

is defined as

Φe ≜ {x ∈ Φd : E(x,Φp) = 1}, (2)

where E is the energy indicator function describing whether
enough energy can be harvested from Φp at location x.

In this paper, Φp is assumed to be a homogeneous PPP of
density λp. As a result, Φd is identical to the user point process
of type I in [8], which also provides a good approximation of
the pair correlation function for Φd, given by

gd(r) ≈ 1− e−(9/4)
√
λdr + (1/2)λdr

2e−(5/4)λdr
2

, (3)

and the distance distribution between the RF-powered node
and its associated RF transmitter is accurately approximated
by the density function [8]

f(r) ≈ 2(13/10)λpπre
−(13/10)λpπr

2

. (4)

A realization of such a mm-wave wirelessly powered network
modeled with Φp, Φd and Φe portrayed by a Voronoi tessel-
lation is given in Fig. 1.

B. mm-Wave Energy Harvesting Model

Since the harvested energy depends on the aggregate re-
ceived signal strength at the receiver, we consider an energy
harvesting model that includes the practical factors in the
mm-wave propagation environment, namely the blockage and
the large beamforming gain from directional antenna arrays.
To capture the blockage effect, the line-of-sight (LOS) ball
model [9] is adopted, where the LOS probability of mm-wave
propagation channel between two nodes with separation d is

PLOS(d) = 1(d < RB), (5)

where 1(·) is the indicator function, and RB is the maximum
length of a LOS propagation channel. Due to the severe

Fig. 1. A Voronoi network topology, where each mm-wave RF transmitter
energizes the RF-powered node residing in its Voronoi region.

attenuation over mm-waves, the power of NLOS signals is
negligible [10]. Thus, for a RF-powered node located at x, the
relevant RF transmitters are denoted by Φ̃p = Φp ∩ b(x,RB),
where b(x,RB) is a disk centered at x with radius RB. The
path loss function with distance r is

ℓ(r) =

{
r−α, r ≤ RB

0, r > RB,
(6)

where α is the path loss exponent with α ∈ [1.9, 2.5].
We assume that all nodes in mm-wave networks are

equipped with uniform linear arrays (ULA), and analog di-
rectional beamforming technique is applied to overcome the
severe attenuation in the mm-wave bands. For the ULA com-
posed of N antennas, the actual antenna pattern is expressed
as [10]

Gact(φ) =
sin2(πNφ)

N sin2(πφ)
, (7)

where φ = d
ρ cosϕ is the cosine direction corresponding

to the physical angle of departure (AoD) ϕ, termed as the
spatial AoD, with d and ρ representing the antenna spacing
and wavelength, respectively. The configuration of d = ρ/2
is usually set to enhance the directionality of the beam and
avoid grating lobes, and thus we have φ ∈ [−0.5, 0.5]. Due to
the sine terms, the actual pattern is not analytically tractable,
and thus a normalized flat-top antenna model [11] is adopted
to approximate the actual antenna pattern. It is given by

Gx(φ) =

{
Gx,m, if |φ| ≤ wx,m/2
Gx,s, otherwise,

(8)

where x denotes the node with the antenna size Nx, Gx,m

is the maximum array gain, wx,m is chosen as the half-
power beamwidth (HPBW), and Gx,s is chosen to satisfy∫ 0.5

−0.5
Gx(φ)dφ = 1 (as in (7)). Hence, we have Gx,m = Nx,

wx,m = 2G−1
act(Nx/2), and Gx,s = (1 − wx,mGx,m)/(1 −



wx,m). It is assumed that the spatial AoD between a RF-
powered node and its associated RF transmitter φ is uniformly
distributed in [−0.5, 0.5] and thus the spatial AoD from other
RF transmitters to this RF-powered node is also uniformly
distributed in [−0.5, 0.5], as proven in [10]. For a non-
associated transmitter-receiver pair x and y, the total antenna
array gain denoted by Gxy = Gx(φx)Gy(φy) is a discrete
random variable under the normalized flat-top antenna model,
where the probability mass function is given by

Gxy =


G1 = Gx,mGy,m, w.p. q1 = wx,mwy,m

G2 = Gx,mGy,s, w.p. q2 = wx,mwy,s

G3 = Gx,sGy,m, w.p. q3 = wx,swy,m

G4 = Gx,sGy,s, w.p. q4 = 1−q1−q2−q3,

(9)

and the specific expression is determined by the antenna sizes
of x and y. For the associated transmitter-receiver pair, we
assume that both nodes know the exact direction and align
their beams to obtain the maximum antenna array gain G1.
Denote Np and Nd by the number of antenna elements of RF
transmitters and RF-powered nodes, respectively. The transmit
power of each RF transmitter is set to one. Using the linear
energy harvesting model and neglecting the small-scale fading,
the harvested energy ε(x,Φp) at x is quantified as

ε(x,Φp) = G1ℓ(y0 − x) +
∑

y∈Φ!
p

Gyxℓ(y − x), (10)

where Φ!
p = Φp\{y0} denotes the non-associated RF trans-

mitters for the RF-powered node x, and Gyx is the total
antenna array gain between the transmitter-receiver pair y and
x. Therefore, in this model, we have

E(x,Φp) = 1(ε(x,Φp) ≥ ξ), (11)

where ξ is the energy threshold.
Fig. 2 shows a comparison between realizations of the BEPP

and the PPP with the same density. It is observed that the
spatial distribution of the active RF-powered nodes exhibits
repulsion relative to the PPP.

C. Communication Model

For simplicity, we assume that wireless energy transfer and
information transmission adopt different frequency bands to
avoid the mutual interference, and a time-switched “harvest-
then-transmit” strategy is considered. Firstly, each RF-powered
node is associated with its nearest RF transmitter and per-
forms energy harvesting based on the directional beamforming
technique. Then, if the harvested energy exceeds the prede-
fined energy threshold, the RF-powered node becomes active
and transmits a message to its dedicated receiver. Each RF-
powered node is assumed to be battery-less and the instanta-
neously harvested energy from the RF transmitter is utilized
to supply its operation. Furthermore, the dedicated receiver is
assumed to be located at distance rd from its transmitter (i.e.,
the active RF-powered node) in a random orientation. Similar
to the energy transfer phase, the transmit power is set to one,
and each receiver is also equipped with a ULA composed of
Nr antennas and adopting analog beamforming.

TABLE I. Symbols and descriptions

Symbol Description Default
λp The density of mm-wave RF transmitters 0.01
α The path loss exponent 2.5
RB The radius of the LOS ball model 100
Nx The antenna size of node x 8
ξ The energy threshold 1
rd The communication distance 5
β The fitted parameter of β-GPP N/A

Fig. 2. Comparison of the BEPP (left) and PPP (right) with Np = Nd = 16,
ξ = 2, and other parameters are set to their default values in Table I. For
both point processes, the density is 0.008.

Table I summarizes the notations of the parameters in the
system model with their descriptions, and default values are
given where applicable.

III. ANALYTICAL RESULTS FOR THE BEPP

In this section, the analytical results for the first- and
second-order statistics are provided to characterize the BEPP.

A. The Density of the BEPP

Denoting by λe the density of the BEPP, we have λe =
Psλp, where Ps is the probability of successful energy har-
vesting of a RF-powered node. Considering the typical RF-
powered node at the origin, we have Ps = P(E(o,Φp) = 1).
In the following, we first give a complex yet highly accurate
result on the density of the BEPP by considering the aggregate
energy harvesting from all the RF transmitters. Next, a simple
yet effective bound is proposed by merely considering the
associated RF transmitter.

Theorem 1. Let δ ≜ 2/α, R̃ ≜ min{RB, (G1/ξ)
1/α}, j ≜√

−1 and

P̃s(ξ) ≜ 1− 1

2

(
e−(13/10)λpπR̃

2

+ e−(13/10)λpπR
2
B

)
+

RB∫
R̃

∞∫
0

f(r)

πt
ℑ
(
e−jt(ξ−G1r

−α)−λpπ(R
2
B−r2)(1−ϱ(t))

)
dtdr,(12)

where ℑ(z) denotes the imaginary part of z ∈ C, and

ϱ(t) =
4∑

i=1

qiδ(−jtGi)
δ

R2
B − r2

(
γ(−δ,

−jtGi

rα
)− γ(−δ,

−jtGi

Rα
B

)
)
.

(13)
The success probability of mm-wave energy harvesting is
approximated by Ps ≈ P̃s(ξ).



Proof: Letting Io = σy∈Φ!
p
Gyℓ(y) and ξ̃(r) = ξ−G1r

−α,
the success probability of the energy harvesting for the typical
RF-powered node is given by

Ps = E
[
P
(
Io ≥ ξ̃(r)

)
| y0

]
(a)
≈

∫ RB

0

f(r)
[
1ξ̃(r)≤0 + 1ξ̃(r)>0 P

(
Io ≥ ξ̃(r)

)]
dr

=

∫ R̃

0

f(r)dr︸ ︷︷ ︸
A1

+

∫ RB

R̃

f(r)P
(
Io ≥ ξ̃(r)

)
dr︸ ︷︷ ︸

A2

, (14)

where step (a) uses the approximative distance distribution
in (4), and R̃ = min{RB, (G1/ξ)

1/α}. The first term A1 =
1 − exp

(
− (13/10)λpπR̃

2
)

captures the contribution of the
associated RF transmitter to the harvested energy, and the
second term A2 captures the contribution from other RF
transmitters if the energy harvested from the associated RF
transmitter does not exceed the energy threshold.

To derive A2, we characterize the complementary cumu-
lative distribution function of Io given that |y0| = r via the
conditional characteristic function of Io, i.e., ϖ(t) = E(ejtIo |
r). Due to the LOS ball model of mm-wave propagation,
the contributors from other RF transmitters randomly and
independently lie in the annulus with the outer radius RB and
inner radius r. Letting Nc ∼ Poisson

(
λpπ(R

2
B − r2)

)
be the

number of RF transmitters lying in the annulus, the conditional
Laplace transform of Io is given by

ϖ(t) = exp
(
− λpπ(R

2
B − r2)(1− ϱ(t))

)
, (15)

where ϱ(t) = E(ejtGyℓ(y)). Since each of these RF trans-
mitters uniformly lies in the annulus, the probability density
function (PDF) of the distance between the RF transmitter and
the origin is f̃(x) = 2x

R2
B−r2

, and we have

ϱ(t) = E
[ 4∑

i=1

qie
jtGiℓ(y)

]
=

4∑
i=1

qiδ(−jtGi)
δ

R2
B − r2

(
γ(−δ,

−jtGi

rα
)− γ(−δ,

−jtGi

Rα
B

)
)
,

where γ(s, x) =
∫ x

0
ts−1e−tdt is the lower incomplete gamma

funciton. Through the Gil-Pelaez theorem, we have

P(Io ≥ x) =
1

2
+

1

π

∫ ∞

0

ℑ
(
e−jtxϖ(t)

)
t

dt. (16)

Substituting (16) into (14), the final result is obtained.
Since the numerical evaluation of the analytical expression

in Thm. 1 is complicated, we further give a simpler approx-
imation for the density of the BEPP by considering that the
RF-powered node merely harvests energy from its associated
RF transmitter in the following.

Corollary 1. Letting P̂s(ξ) ≜ 1 − exp
(
− (13/10)λpπR̃

2
)
,

the success probability of mm-wave energy harvesting is
approximated as Ps ≈ P̂s(ξ).
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Fig. 3. The density of the BEPP versus ξ for Np = 8, 16, 32, 64, 128.

Fig. 3 shows the density of the BEPP with the comparison
between the analytical and simulation results with Nd = 8. We
observe that the proposed two approximations match the simu-
lation results quite well, which implies that the performance of
energy harvesting is dominantly determined by the associated
RF transmitter in mm-wave wirelessly powered networks.

B. The Pair Correlation Function of the BEPP

The pair correlation function (pcf) g(r) [12, Def. 6.6] is
usually used to characterize the spatial correlation, where r
denotes the distance between two locations of the plane. Since
the pcf of the BEPP is related to the statistics of the shapes of
the Voronoi cells, it is difficult to derive an accurate expression
and we resort to an asymptotic analysis and approximation as
r → 0. For notational convenience, we let g(r) = Θ(z(r))
denote that g(r)/z(r) tends to a positive constant in the limit
indicated, and for x ∈ Φe, px ∈ Φp denotes the RF transmitter
of the Voronoi cell that x resides in.

Theorem 2. When Φp is a homogeneous PPP of density λp,

g(r) ∼ cλ1/2
p P−1

s r, r → 0, (17)

where c is a constant that does not depend on λp, Ps, and r.

Proof: According to [12, Def. 6.8], Ripley’s K function
is defined as K(r) = 1

λE
!
oΦ

(
b(o, r)

)
, where E!

o is the
expectation w.r.t. the reduced Palm measure. The pcf is

g(r) =
1

2πr

d

dr
K(r) =

1

2λπr

d

dr
E!
oΦ

(
b(o, r)

)
. (18)

Condition Φe to have a point at the origin o. Denote by Do

the distance from o to the nearest boundary of the Voronoi cell
Vpo , and let y ∈ Φd be the RF-powered node located in the
adjacent Voronoi cell across that boundary. For r → 0, Φe ∩
b(o, r) is either {o, y} or {o}, and thus E!

oΦ
(
b(o, r)

)
equals the

conditional probability of the joint event Φe∩ b(o, r) = {o, y}
and y succeeds in energy harvesting given that o ∈ Φe. Similar



to the proof of [8, Lemma 1], we have

E!
oΦ

(
b(o, r)

)
∼ E

(
r|∂Vpo |
|V (po)|

S(Do, r)

|V (py)|
Pjoint(o, y | Φp)

P(ε(o,Φp) ≥ ξ | Φp)

)
, r → 0, (19)

where ∂Vpo is the boundary of Vpo , |∂Vpo | and |Vpo | denote the
perimeter and area of Vpo , respectively, S(Do, r) is the area of
the disk segment b((−Do, 0), r)∩ (R+ ×R), and Pjoint(o, y |
Φp) denotes the joint success probability that both the two
points at locations y and o succeed in energy harvesting. For
r → 0, y and o approach the common boundary of Vpo and
Vpy , and |po−o| tends to |py−y|. Hence, we have Pjoint(o, y |
Φp) ∼ P(ε(o,Φp) ≥ ξ | Φp) with r → 0, and further obtain

E!
oΦ

(
b(o, r)

)
∼ E

(
r|∂Vpo |
|V (po)|

S(Do, r)

|V (py)|

)
, r → 0. (20)

Since S(Do, r) = Θ(r2), the area and perimeter of the Voronoi
cell scale with λp and

√
λp, respectively, and the expectation

over the Φp does not affect the exponent of r and the scaling
law of λp, we have E!

oΦ
(
b(o, r)

)
= λ

3/2
p Θ(r3), r → 0, and

g(r)=
1

2πλpPsr

d

dr

[
λ3/2
p Θ(r3)

]
∼ cλ1/2

p P−1
s r, r → 0, (21)

where c is a constant, independent of λp, Ps, and r.
To obtain a concrete g(r), we further assume that the

Voronoi cells of RF transmitters are square-shaped and their
areas are independently gamma-distributed variables with PDF
[13]

fA(x) =
3.53.5

Γ(3.5)
λ3.5
p x2.5e−3.5λpx. (22)

Hence, we have

E!
oΦ

(
b(o, r)

)
≃ E

(
r|∂Vpo |
|V (po)|

)
E
(
S(Do, r)

|V (py)|

)
(a)
≃

9
√
λpr

2
× 14

15
λpr

2, r → 0, (23)

where ≃ denotes an approximation that becomes better asymp-
totically and step (a) follows from the same reasoning as in
[8], and we further obtain

g(r) ≃ 2λ1/2
p P−1

s r, r → 0, (24)

i.e., the constant c in (17) is approximately 2.
Fig. 4 illustrates simulations and fitted functions of the pcfs

with Np = 16 and Nd = 8, where the fitted functions include

g̃(r) = 1−e−a
√

λpr/Ps + b(
√

λpr/Ps)
2e−c(

√
λpr/Ps)

2

, (25)

and the one in (3). It is observed that the pcfs are first
smaller and then larger than in the PPP case (g(r) = 1)
and finally tends to the PPP case with the increase of r,
which demonstrates the correlation behavior of the active RF-
powered nodes in a wide range of distances. Comparing the
two fitting results per (25) and (3), the former fits well for
both cases while the later only applies to certain cases with
high probability of successful energy transfer. Specifically, for
small r, the locations of the nodes exhibit obvious repulsion.
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Fig. 4. The pcfs of the BEPP with different λp.

Since the β-GPP [7] has been widely used as a model with
repulsion, we also use a fitted β-GPP to approximate the BEPP
with the pcf function as

ggin(r) = 1− exp(−λpPsπr
2/β). (26)

It turns out that the repulsive behavior at a small r can
be exactly captured by the fitted β-GPP through moment
matching. In contrast, as r increases, the repulsive correlation
weakens and clustering occurs instead.

IV. INFORMATION TRANSMISSION PERFORMANCE

The performance of the information transmission is highly
correlated to the spatial distribution of the BEPP. Conditioning
on that the typical RF-powered node is at the origin, we focus
the success probability of the typical receiver at z = (rd, 0).
Letting Φ!

e = Φe \{o} and I(z) =
∑

x∈Φ!
e
Gxzℓ(x−z)hxz be

the interference at the typical receiver, the (received) signal-
to-interference ratio (SIR) is

SIR = G1r
−α
d hoz/I(z), (27)

and the success probability is defined as P (θ) ≜ P(SIR > θ)
where θ is the SIR threshold. With Rayleigh fading, we have
P (θ) = LI(z)(θr

α
dG

−1
1 ), where

LI(z)(s) = E exp
(
− s

∑
x∈Φ!

e

Gxzℓ(x− z)hxz

)

= E!
o

( ∏
x∈Φe

4∑
i=1

qi
1 + sGiℓ(x− z)

)
. (28)

Hence the success probability is given by the reduced Palm
distribution of the BEPP, and thus an exact calculation seems
unfeasible. Thus next, we approximate it with common point
processes through the first- and second-order statistics.

1) PPP Approximation: We first use a PPP with density
λs to approximate the BEPP. From Slivnyak’s theorem [12],
the reduced Palm distribution is the same as the original
distribution. Due to the PPP approximation, the interference at



z is equally distributed as that at the origin and hence, LI(z)(s)
can be approximated by

LIPPP(s)= exp
(
− 2πλe

4∑
i=1

qi

∫ RB

0

rdr

1 + (sGi)−1rα

)
, (29)

where the integral upper limit is obtained by the path loss
function in (6).

2) β-GPP Approximation: Since g(r) ̸= 1, the PPP approx-
imation is inaccurate. Thus we provide another approximation
of the BEPP with a fitted β-GPP using the first- and second-
order statistics. Since the typical receiver is located at z, the
interfering RF-powered nodes lie in b(z,RB) per the path
loss function in (6). Hence, using the Palm measure and the
properties of β-GPPs [7], LI(z)(s) is approximated by

LIgin(s)=

∞∏
k=2

(
1−β+β

4∑
i=1

qi

∞∫
0

(λeπ
β r)ke−

λeπr
β dr

Γ(k)r(1 + sGir−
α
2 )

)
. (30)

Fig. 5 illustrates the success probabilities with PPP and β-
GPP approximations for different λp. It is observed that the
β-GPP-based results match the simulation results extremely
well, while PPP approximation shows obvious deviations. The
reason is that the higher-order statistics of the BEPP strongly
affect the information transmission performance. Therefore,
compared with the PPP, the β-GPP is a more suitable model
for capturing such repulsion of the energized nodes via di-
rected mm-wave energy transfer.

V. CONCLUSIONS

This paper considered a mm-wave wirelessly powered net-
work, where the RF transmitters employed a directed energy
transfer policy and each RF-powered node harvested energy
from its nearest RF transmitter. Due to the directed energy
transfer, the harvested energy from different RF transmitters
is correlated, which determines the properties of the point
process of nodes (the BEPP) that successfully harvest enough
energy. Within a stochastic geometry-based framework, we
derived the first- and second-order statistics for the BEPP,
respectively. The results indicate that (1) with directed energy
transfer, the energized nodes exhibit repulsive behavior at
small distances which gradually wears off with increasing
distance; (2) as the distance increases, the energized nodes
exhibit a clustering behavior. Furthermore, we compared the
widely-used PPP approximation with the β-GPP approxima-
tion to the BEPP, and the results show that the transmission
success probability via the β-GPP approximation coincides
quite exactly with the simulation curves. Overall, both the
analysis and approximation show that the energy correlation
caused by the directed energy transfer has a non-negligible
impact on the communication performance.
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