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Abstract—The meta distribution of the signal-to-interference
ratio (SIR) provides more fine-grained information about the link
performance than the standard success probability. This paper
studies the reliability in cellular networks with physical layer
security constraints using the meta distribution. We consider
a cellular network where the BSs are distributed as Possion
point process. We provide the distribution of the opportunistic
secure spectrum access probability when connection success and
secrecy success occurs simultaneously, taking into account the
interference correlation. We gain insights on the links reliability
in the network under different security levels and the effect on
the link reliability of the distance between legitimate user and
eavesdropper.

I. INTRODUCTION

A. Motivation

Security has always been an important issue in wireless
network transmission. Traditional security schemes operate
at the medium access control (MAC) layer and the network
layer using cryptographic technologies, which are effective in
most cases. But they have limitations, such as their compu-
tational complexity, so it is difficult to implement secret key
management in dynamic wireless networks. As a result, more
and more attention is paid on physical layer security. Most
of the previous papers focused on the secure transmission
of links such as secure connection and secure transmission
rate, but did not consider the overall security of the whole
network. A key quantity of interest in wireless networks
is the success probability ps(θ) , P(SIR > θ) of the
transmission over the typical link, which corresponds to the
complementary cumulative distribution function (CCDF) of
the signal-to-interference ratio (SIR). While this spatially
averaged value is the certainly important, it does not reveal
how concentrated the link success probabilities are. A more
fine-grained performance metric—the meta distribution which
is the CCDF of the conditional success probability—can solve
problems such as “What fraction of users in a Poisson cellular
network achieve 90% link reliability if the required SIR is 5
dB?”.

B. Related Work

The meta distribution of the Poisson bipolar and cellular
networks was introduced in [1], where the b-th moment of the

conditional success probability in both bipolar networks and
cellular networks were derived based on stochastic geometry.
The moments were then used to obtain the meta distribution.
The first and second moments were combined to obtain a
simple beta distribution approximation, which provided an
excellent approximation for the meta distribution. The meta
distribution for device-to-device (D2D) underlay and the local
delay were given in [2]. In [3], the meta distribution of the
millimeter wave communication in the D2D scenario and the
meta distribution of the transmission rate were analysed, and
a general beta distribution as a modified approximation was
given. [4] considered two types of users, namely the typical
user and the cell-corner user, in the downlink coordinated mul-
tipoint transmission/reception (CoMP) including joint trans-
mission (JT) and dynamic point blanking (DPB), and dynamic
point selection/dynamic point blanking (DPS/DPB), and cal-
culated the meta distribution of the SIR.

Information-theoretic security, widely accepted as the
strictest notion of security, was combined with stochastic
geometry for the first time in [5], where the secrecy graph
was introduced, which models the network connectivity under
secrecy constraints. The properties of the secrecy graph were
further analyzed in [6]. Secure coverage in downlink Poisson
cellular networks was introduced and studied in [7]. [8]
defined a performance metric named the secrecy transmission
capacity. The authors used tools and existing results from
stochastic geometry to obtain the secrecy transmission capac-
ity in Rayleigh fading channels. It is shown that the application
of a secrecy guard zone with artificial noise is a simple
technique that can be used to reduce the throughput cost
of achieving secure networks. In [9], the authors quantified
the effect of spatial interference correlation on opportunistic
secure spectrum access (OSSA) in cellular-networks. [10]
studied the meta distribution of the secrecy rate in physical
layer security considering both colluding and non-colluding
eavesdroppers, but ignoring interference.

C. Contributions

In this paper, we focus on the meta distribution of the
SIR under physical layer security. The typical legitimate user
and a nearby eavesdropper are considered. Through analytical



derivations and simulations, we give the opportunistic con-
ditional secure spectrum access probability and its distribu-
tion considering interference correlation. We also obtain the
reliability of the network when different levels of security
are required and explore the effect of the distance between
legitimate user and eavesdropper on the reliability.

II. SYSTEM MODEL

A. SIR Model

We consider the problem of physical layer security in a
single-tier downlink network. The base stations (BSs) are
distributed according to a homogeneous Poisson point pro-
cess (PPP) ΦBS of intensity λBS. We focus on the downlink
with the nearest-BS association. A cellular user is placed at the
origin, i.e. legitimate user, who, under expectation over ΦBS,
becomes the typical user for any stationary model of users. We
consider passive eavesdropping, where the eavesdropper (Eve)
intercepts the signal without any attack. Eve is located at
v = (v, 0). A realization of this network model is shown
in Fig. 1. The BSs are always active, and the standard path
loss law with path loss exponent α and Rayleigh fading are
adopted, i.e., the channel gain between the transmitter x and
the receiver y including large-scale fading and small-scale
fading can be expressed as hxy‖x−y‖−α, where hxy is i.i.d
exponential with unit mean and α (α > 2) is the path loss
exponent. The effect of thermal noise is neglected.

The SIR of the typical user is given by

SIRu =
PBShx0‖x0‖−α∑

x∈ΦBS\{x0}
PBShx‖x‖−α

=
hx0
‖x0‖−α∑

x∈ΦBS\{x0}
hx‖x‖−α

, (1)

where PBS is the BS’s transmission power, hx0 is the Rayleigh
fading between the typical user and its serving BS x0, and
‖x0‖−α is the path loss. hx is the Rayleigh fading from
interference BSs to the typical user, and ‖x‖−α is the path
loss between interference BS and the typical user.

Denoting the eavesdropper located at v = (v, 0) by e, the
received SIR is given by

SIRe =
PBSgx0

‖v − x0‖−α∑
x∈ΦBS\{x0}

PBSgx‖v − x‖−α

=
gx0
‖v − x0‖−α∑

x∈ΦBS\{x0}
gx‖v − x‖−α

, (2)

where gx0 is the Rayleigh fading from the typical user’s
serving BS to the Eve, and gx is the Rayleigh fading from
the typical user’s interfering BSs to Eve, ‖v − x0‖−α is the
path loss for the eavesdropping link, and ‖v − x‖−α is the
path loss for Eve’s interfering link.

We define the following three success probabilities for the
confidential message transmission.
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Fig. 1. A realization of the network model. The cross markers represent
the BSs, the circle marker represents the typical legitimate user. The typical
user is associated to the nearest BS. A line connecting circle marker and
cross marker indicates the downlink legitimate link. The typical user and BSs
form a cellular network. The star marker represents the eavesdropper, whose
position is offset to the right by a distance of v from the typical legitimate
user. The line connecting the star marker and the cross marker indicates the
eavesdropping link.

• Conditional connection success probability: The prob-
ability that the SIR from the serving BS to the typical
user is above the threshold θu given the point process
ΦBS, denoted by Pcs(θu) = P(SIRu > θu | ΦBS).

• Conditional secrecy success probability: The probabil-
ity that the SIR from the typical user’s serving BS to Eve
is below the threshold θe given the point process ΦBS,
denoted by Pss(θe) = P(SIRe < θe | ΦBS).

• Conditional OSSA probability: The probability of op-
portunistic secure spectrum access (OSSA), which has
been proposed in [9], given the point process ΦBS,
denoted by POSSA. Due to the conditional independence
given ΦBS, POSSA = Pcs(θu)Pss(θe)

B. Meta Distribution

The meta distribution is defined as the CCDF of the random
variable

Ps (θ) , P (SIR > θ | ΦBS) , (3)

which is the conditional SIR CCDF given the point process
ΦBS. Hence, the meta distribution is formally given by

F̄ (θ, x) , F̄Ps
(θ, x) = P (Ps (θ) > x) , x ∈ [0, 1] , (4)

where P is the probability measure of the point process ΦBS.
It is quite likely impossible to calculate the meta distribution
directly from the definition in (4), hence the moments of Ps (θ)
are considered. The b-th moment of Ps (θ) is denoted by

Mb (θ) , E
(
Ps(θ)

b
)

=

∫ 1

0

xbdFPs (x)

=

∫ 1

0

bxb−1F̄Ps
(x)dx, (5)



and the standard success probability can be expressed as
ps(θ) ≡ M1(θ), i.e., the first moment of the conditional suc-
cess probability. The exact meta distribution can be obtained
by the Gil-Pelaez theorem [11] from the purely imaginary
moments Mjt = E(Ps (θ)

jt
), j

∆
=
√
−1, t ∈ R+. It is still

difficult to calculate numerical results of meta distribution,
so we approximate the meta distribution by matching its
first and second moment to the beta distribution, which has
been found to be an excellent match. The meta distribution
can provide detailed information compared with the mean
success probability. First, the success probability is the mean
of the conditional probability random variable, while the meta
distribution fully characterizes the random variable. It can
answer questions such as “What fraction of users in a Poisson
cellular network achieve 90% link reliability if the required
SIR is 5 dB?”. It’s −1st moment provides the mean local
delay, defined as the mean numbers of transmissions needed
untill successful reception [12].

III. ANALYTICAL RESULTS FOR INTERFERENCE
CORRELATED

A. Moments of the Conditional OSSA Probability

In this section, we first derive the b-th moment of the
conditional OSSA probability, and then we use the first and
second moments to obtain the beta distribution, which gives
an excellent approximation for the meta distribution.

Due to the nearest-BS association, a BS serves all the users
in its Voronoi cell, and the serving BS is the one who is the
nearest to the typical user. The distance between the typical
user located at origin and its serving BS is denoted by γBS =
‖x0‖. The PDF of γBS can be obtained according to the void
probability of PPP as

fγBS
(r) = 2πλBSr exp

(
−πλBSr

2
)
. (6)

Theorem 1 (The b-th Moment of POSSA) The b-th moment
Mb (b ∈ C) of the conditional OSSA probability POSSA is

Mb =

∞∑
k=0

(
b

k

)
(−1)k

∫ 2π

0

∫ ∞
0

fγBS(r)

2π

· exp

(
−
∫ 2π

0

∫ ∞
r

Gb,k λBSxdxdφ

)
drdθ, (7)

where

Gb,k = 1− (1 + θur
αx−α)

−b(
1 + θe

(
r2+v2−2rvcosθ
x2+v2−2xvcosφ

)α/2)k . (8)

Proof: The conditional connection success probability for
the typical user is given by

Pcs(θu) = P (SIRu > θu | ΦBS)

= P
(
hx0

> θu

∑
x∈ΦBS\{x0}

hx
‖x0‖α

‖x‖α
| ΦBS

)
(a)
= Ehx

exp
(
− θu

∑
x∈ΦBS\{x0}

hx
‖x0‖α

‖x‖α
)
| ΦBS


= Ehx

 ∏
x∈ΦBS\{x0}

exp

(
−θu‖x0‖α

‖x‖α
hx

)
(b)
=

∏
x∈ΦBS\{x0}

1

1 + θu‖x0‖α
‖x‖α

, (9)

where (a) is according to the moment generating function of
hx0
∼ exp(1) and (b) follows since hx are i.i.d. exponential

with unit mean.
In the same way, the conditional secure success probability

for Eve is given by

Pss(θe) = P (SIRe < θe | ΦBS)

= 1− P (SIRe > θe | ΦBS)

= 1− P
(
gx0 > θe

∑
x∈ΦBS\{x0}

gx
‖v − x0‖α

‖v − x‖α
| ΦBS

)

= 1− Egx

exp
(
− θe

∑
x∈ΦBS\{x0}

gx
‖v − x0‖α

‖v − x‖α
)
| ΦBS


= 1−

∏
x∈ΦBS\{x0}

1

1 + θe‖v−x0‖α
‖v−x‖α

. (10)

Using a similar proof as in [1], the b-th moment for the
conditional OSSA probability of the typical user can be
obtained by

Mb = E[P bOSSA] = E
[
P bcs(θu)P bss(θe)

]
= E

[
P bcs(θu)(1− P̄ss(θe))b

]
=

∞∑
k=0

(
b

k

)
(−1)k E

[
P bcs(θu)P̄ kss(θe)

]︸ ︷︷ ︸
Mb,k

, (11)

where

Mb,k = E

 ∏
x∈ΦBS\{x0}

( 1

1 + θu‖x0‖α
‖x‖α

)b( 1

1 + θe‖v−x0‖α
‖v−x‖α

)k
(a)
= EγBS

[
exp

(
−
∫ 2π

0

∫ ∞
r

Gb,k λBSxdxdφ

)]
(b)
=

∫ 2π

0

∫ ∞
0

exp

(
−
∫ 2π

0

∫ ∞
r

Gb,kλBSxdxdφ

)
fγBS

(r)

2π
drdθ,

(12)

and (a) employs the probability generating functional (PGFL)
of the PPP [13], and (b) uses the PDF of γBS. Substituting
the result of (11), Theorem 1 can be obtained.



Remark 1: It is easy to obtain M1 (the OSSA probability)
and M2 from Theorem 1. The first moment M1 of the
conditional OSSA probability POSSA is

M1 =
1

2F1 (1,−δ; 1− δ;−θu)

−
∫ 2π

0

∫ ∞
0

exp

(
−λBS

∫ 2π

0

∫ ∞
r

G1,1xdxdφ

)
fγBS

(r)

2π
drdθ,

(13)

and the second moment M2 of the conditional OSSA proba-
bility POSSA is

M2 =
1

2F1 (2,−δ; 1− δ;−θu)

− 2

∫ 2π

0

∫ ∞
0

exp

(
−λBS

∫ 2π

0

∫ ∞
r

G2,1xdxdφ

)
fγBS(r)

2π
drdθ

+

∫ 2π

0

∫ ∞
0

exp

(
−λBS

∫ 2π

0

∫ ∞
r

G2,2xdxdφ

)
fγBS(r)

2π
drdθ.

(14)

Generally, if b is a positive integer, the infinite sum in (7)
reduces to a finite sum from 0 to b.

Remark 2 (Asymptotic property of θe): When θe → ∞,
we have P (SIRe < θe | ΦBS)→ 1, hence

Mb = E[P (SIRu > θu | ΦBS)
b P (SIRe < θe | ΦBS)

b
]

=
1

2F1 (b,−δ; 1− δ;−θu)
, (15)

i.e., Mb will approach to the standard b-th moment without
secrecy constraint, as shown as Fig. 6.

Remark 3 (The b-th moment for independent interfer-
ence): When the interferences are independent for typical
user and its eavesdropper, the b-th moment is given by

Mb = E[P (SIRu > θu | ΦBS)
b
]E[P (SIRe < θe | ΦBS)

b
]

=
1

2F1 (b,−δ; 1− δ;−θu)
Mbe, (16)

where

Mbe =

∞∑
k=0

(
b

k

)
(−1)k

∫ 2π

0

∫ ∞
0

fγBS
(r)

2π

· exp

(
−
∫ 2π

0

∫ ∞
r

GkeλBSxdxdφ

)
drdθ (17)

and

Gke = 1−
(
1 + θe

( r2 + v2 − 2rvcosθ

x2 + v2 − 2xvcosφ

)α
2
)−k

(18)

is the b-th moment for Eve.

B. Beta Approximation

The beta distribution provides an excellent approximation
of the meta distribution [1], [4], [14]. The PDF of a beta
distributed random variable X is

fX(x) =
x
µ(β+1)−1

1−µ (1− x)β−1

B(µβ/(1− µ), β)
, (19)

where B(:, :) is the beta function. The mean is µ, and the
variance is

σ2 = var X =
µ(1− µ)2

β + 1− µ
. (20)

Matching mean µ = M1, variance σ2 = M2 −M2
1 , we find

β =
µ(1− µ)2

σ2
− (1− µ) =

(µ−M2)(1− µ)

M2 − µ2
. (21)

With M1 and M2 given in (13) and (14), respectively, this
beta distribution approximates the distribution of POSSA.

IV. NUMERICAL RESULTS

The intensity of the BSs used in this section is λ = 10/km2.
And we use the relationship v = 1

2
√
λ

in most figures of this
paper, since the Eve can be placed in a half of the average
distance of two BSs due to this relationship. It is also used in
[9]. We set θu = θe +0.1 (all in dB) for the OSSA probability,
variance and the meta distribution, and use various values of α,
θe and v into account for comparison. According to Wyner’s
encoding scheme [15], here we require θu > θe in order to
communicate securely.
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and α = 4 for the network. The solid lines show the OSSA probability and
variance when interferences are correlated. The dashed lines show the OSSA
probability and variance when interferences are independent.

Fig. 2 is the plot of the OSSA probability and variance
against θu (and θe) when the interferences are correlated
or not. It shows that the interference correlation leads to a
decrease in the OSSA probability and variance for thresholds
around 0 dB. Fig. 3 shows the meta distribution of the
network. For the chosen parameters, with the increase of
the required reliability, the number of links is gradually
decreasing, and it has a tendency to decrease slowly after
a quick decrease. Fig. 4 shows that with the increase of α,
OSSA probability and variance increase, and the peak of the
OSSA probability will shift to the right, while the variance
stays basically the same. Fig. 5 indicates that as α decreases,
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α = 4. The solid line shows the meta distribution approximated by the beta
distribution. Markers show the Monte Carlo simulations.

-30 -20 -10 0 10 20 30

u
=

e
+0.1 (all in dB)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

 M
e

a
n

 a
n

d
 V

a
ri
a

n
c
e

 o
f 

P
O

S
S

A

Mean, =4

Variance, =4

Mean, =3

Variance, =3

Fig. 4. The mean M1 and the variance M2 −M2
1 of POSSA at v = 1

2
√
λ

for the network. The solid lines and the dashed lines show the mean and
variance with α = 3, 4 respectively.

the meta distribution overall decreases, and it decreases faster
when x is smaller. Fig. 6 shows when θu = 0 dB, and θe

changes, where a smaller θe means a higher security level,
the link reliability of the network will decrease. And as the
secrecy constraint decreases, the curves will approach the
standard meta distribution quickly. Fig. 7 shows that when the
eavesdropper is far away from the typical user relative to the
distance from the user to its serving BS, the link reliability
of the network will also increase and approach to the meta
distribution without secrecy constraint gradually.

V. CONCLUSIONS

In this paper, a framework for network reliability of secrecy
transmission based on the meta distribution is proposed. We
first derive the moments on the conditional success probability
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.
The solid line and the dashed line show the meta distribution with α = 3, 4
respectively.
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. The
solid line shows the meta distribution without secrecy constraint, and the
dashed lines show the meta distribution with secrecy constraint when θe =
30, 15, 0,−15,−30 dB.

Pcs for the legitimate user and Pss for the eavesdropper and
the conditional OSSA probability for the network, taking into
account the interference correlation. Then an exact expression
as well as a simple yet accurate approximation for the meta
distribution of the SIR is provided. Finally we derive the
distribution for perfect secrecy transmission which was used
to study the impact of physical layer security in the whole
network.

Using this framework, we explore the effect of the differ-
ences in the thresholds θu − θe on the performance of the
network. The effect of the distance between eavesdropper and
the typical user on the percentage of users that are covered
securely with a certain reliability is also studied.
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