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Abstract—Reliable communication is a key requirement in
wireless networks. For ad hoc networks, satisfying this require-
ment is challenging due to the interference caused by uncoor-
dinated concurrent transmissions. In this regard, we provide
a simple distributed way for a transmitter to meet the target
reliability in an interference-limited network. Specifically, for
the Poisson bipolar network with Rayleigh fading, we propose a
method for a transmitter to decide on its rate (or, equivalently
the signal-to-interference ratio threshold) such that each link
in the network achieves a certain success probability. Here the
distributed means that the transmitter only knows the distance
from its receiver to the nearest interferer and the fading statistics.
Based on this spatial local information, we present a semi-
heuristic approach to find the distribution of the signal-to-
interference ratio (SIR) threshold corresponding to the total
interference power from all interferers. For this purpose, we
use the property of the interference that it follows a stable
distribution for the standard path loss model. We show that the
SIR threshold follows the Weibull distribution.

Index Terms—Stochastic geometry, reliability, interference,
Poisson point process, SIR threshold distribution, rate control.

I. INTRODUCTION

Wireless ad hoc networks typically operate in an uncoor-
dinated and decentralized manner. Hence the transmissions
over multiple links occur simultaneously, which causes mutual
interference and deteriorates the quality of service (QoS).
In such framework, the outage probability of a link (or,
equivalently, the success probability of a link) is an important
QoS metric. It indicates that how reliably a link can transmit
in the presence of interference, fading, and path loss. For
example, in an interference-limited network, the link success
probability effectively captures these three detrimental factors
and is defined as the probability that the signal-to-interference
ratio (SIR) at the receiver of the link under consideration is
above a certain threshold. Usually the locations of interferers
are uncertain (e.g., due to mobility) and therefore can be
modeled by a random point process.

A. Motivation

In the framwork of modeling node locations by a random
point process, a popular approach has been the calculation
of the success probability of transmissions over the typical
link [1]–[4]. But it is merely an average of individual link
success probabilities given a realization of the point pro-
cess [5]. To gain fine-grained information on the network, it
is important to consider individual link success probabilities

that may vary greatly across the network for the same mean
success probability [6].

To guarantee a reliable transmission over a link, it is nec-
essary to impose a constraint on the link success probability.
A link is considered reliable if it achieves the target success
probability. The goal of this paper is that each link should be
able to achieve a success probability that is equal to the target
reliability 1−ϵ. One simple way to do this is to control the rate
of transmission, which is directly related to the SIR threshold
through the spectral efficiency. Since each link—based on its
relative location to interferers—experiences different levels
of interference and fading, the SIR threshold for which the
link success probability equals 1− ϵ is different for different
links. In fact, due to random interferer locations and fading,
the SIR threshold at a receiver is a random variable, which
we denote by T . Hence we need to find the distribution
of T (or, equivalently, the distribution of the rate R) such
that each link achieves the target reliability, which we wish
to do in a distributed manner. In ad hoc networks, because
of its uncoordinated structure, often a transmitter does not
have the complete spatial information about the network. On
the contrary, obtaining information about other nodes within
a certain geometric vicinity is often feasible, which usually
includes the knowledge of the location of the nearest interferer.
As we shall see, such spatial local information allows us to
find the distribution of the SIR threshold corresponding to the
total interference power in a distributed fashion.

B. Contributions

This paper makes the following contributions:
• For the Poisson bipolar network with Rayleigh fading,

we propose a simple and local way for a transmitter
to determine its rate (or the SIR threshold) such that a
transmission achieves the target reliability of 1− ϵ.

• We show that the SIR threshold follows the Weibull
distribution and thus has a heavy tail.

• Using simulations we show that the spatial local infor-
mation which includes the knowledge of the nearest-
interferer power can be exploited to obtain the distribution
of the SIR threshold corresponding to the total interfer-
ence power at a receiver.

C. Background and Related Works

This work is closely related to the meta distribution of the
SIR proposed in [5]. The meta distribution is defined as the



complementary cumulative distribution function (ccdf) of the
conditional link success probability and can be expressed as

η(θ, x) , P!t(Ps(θ) ≥ x), θ > 0, x ∈ [0, 1], (1)

where Ps(θ),1 given the point process Φ, is the conditional link
success probability calculated by averaging over the fading
and the medium access scheme (if random) of interferers, and
P!t(·) is the reduced Palm probability of the point process,
given that a transmitter is present at the prescribed location,
and the SIR is calculated at its associated receiver. Hence the
conditional link success probability can be expressed as

Ps(θ) , P(SIR > θ | Φ). (2)

For an ergodic point process, the meta distribution can also be
interpreted as the fraction of active links that achieve a certain
success probability in a realization of the point process. The
work in [5] considers the same SIR threshold at all receivers
and calculates the distribution of the conditional link success
probability (or, equivalently, the link outage probability), i.e.,
the meta distribution of the SIR. The work in [6] introduces
a new notion of capacity, termed the spatial outage capacity
(SOC), which is the maximum density of concurrently active
links that achieve a certain success probability. For the Poisson
bipolar network with ALOHA, using the tool of the meta
distribution, it is shown that the SOC is achieved when all
transmitters are always active, i.e., the transmit probability of
a transmitter is 1. This paper takes a dual approach to [5] and
[6]: It treats the SIR threshold as a random variable (which
depends on the fading, path loss, and interferers’ locations)
and calculates its distribution such that the conditional link
success probability equals the target reliability 1− ϵ.

In the framework of random point process, for ad hoc
networks, there have been works on the use of some kind
of local information to calculate certain performance met-
rics. For example, the work in [7] calculates the probability
of successful transmission for a link in a Poisson bipolar
network by approximating the aggregate interference by the
interference from the nearest interferer. An adaptive ALOHA
scheme based on the local information about neighbors within
a certain geometric vicinity is proposed in [8] for the Poisson
bipolar network where the nodes have a full-duplex capability.
The work in [9] uses five different levels of information
about the potential interferer point process to predict the
transmission success probability at the typical link. The levels
of information vary from zero knowledge to full knowledge of
the network, with the knowledge of nearby potential interferers
as an intermediate case. The works in [7]–[9] consider no
reliability constraint and assume a fixed SIR threshold.

II. NETWORK MODEL

We consider the Poisson bipolar network model where the
transmitters form a homogeneous Poisson point process (PPP)
Φ ⊂ R2 with intensity λ, and each transmitter is paired with

1Note that θ denotes the deterministic SIR threshold, while T denotes the
random SIR threshold.

a receiver located at unit distance from the transmitter in
a uniformly random direction [4, Def. 5.8]. In a time slot,
each transmitter in Φ sends packets to its associated receiver
at unit power. The channels in the network are modeled as
independent Rayleigh fading, where the channel power gains
are i.i.d. exponential random variables with mean 1. The
transmission between two nodes is subject to the standard path
loss model with the path loss exponent α.

We consider an interference-limited network where the
transmission between a transmitter and its associated receiver
is successful if the SIR at the receiver exceeds the threshold
θ. We add a transmitter at (1, 0) to the network model (which
does not belong to the PPP) and its associated receiver at the
origin. With a slight abuse of terminology, we call this link
the typical link even before taking the expectation with respect
to the PPP. Then the meta distribution is the probability that
the typical link achieves a success probability that exceeds the
threshold x.

We focus on the scenario where a transmitter has only the
spatial local information about its vicinity, which includes
the location of its nearest transmitter. This means that the
transmitter knows the distance of its receiver to the nearest
interferer. In addition, the transmitter has the knowledge of
fading statistics (and the path loss exponent). We also assume
that each transmitter is always active. This assumption is
reasonable in our framework, as it was shown in [6] that, in
the high-reliability regime where ϵ → 0, a transmitter being
always active maximizes the density of concurrently active
links that achieve a success probability at least 1− ϵ.

III. DISTRIBUTION OF THE SIR THRESHOLD

In this section we find the distribution of the SIR threshold
such that each link achieves a conditional link success proba-
bility equal to 1−ϵ. In other words, we are interested in finding
the distribution of the rate such that each link has a reliability
1−ϵ. Calculating the SIR threshold T that results in Ps = 1−ϵ
after averaging over the fading and the interferer locations, the
transmitter decides on its rate as R = log(1 + T ). The goal
here is to find the distribution of T based on the spatial local
information only, i.e., based on the knowledge of the location
of the nearest interferer and the fading statistics.

A. The Nearest-Interferer Case

In this subsection, we provide the distribution of the SIR
threshold when only the nearest interferer is present. Then in
the next subsection, we shall show the use of this case in
obtaining the distribution of the SIR threshold corresponding
to the total interference power without even having the knowl-
edge of locations of all interferers. Let T̃ denote the random
SIR threshold corresponding to the nearest-interferer power.

Theorem 1. Assuming only the nearest interferer exists, the
cdf of the SIR threshold T̃ is given by

FT̃ (θ) = 1− exp

(
−λπ

(
(1− ϵ)θ

ϵ

)δ
)
, θ > 0, (3)



where δ , 2/α and δ ∈ (0, 1).

Proof: Let x̃ = argmin{x ∈ Φ: ∥x∥} be the location of
the nearest interferer. Setting the target conditional link success
probability to 1− ϵ, we have

1− ϵ = P
(

h

hx∥x̃∥−α
> θ | Φ

)
(4)

= E
(
h > θhx∥x̃∥−α | Φ

)
= E(e−θhx∥x̃∥�α

| Φ), (5)

where h and hx are independent exponentially distributed
channel power gains (with mean 1) on the desired link and
on a link to the interferer from the receiver corresponding to
the desired link, respectively. Averaging over the fading, it
follows that

1− ϵ =
1

1 + T̃∥x̃∥−α
. (6)

Rewriting in terms of T̃ , we have

T̃ =
ϵ∥x̃∥α

1− ϵ
. (7)

Then we can write the cdf of T̃ as

FT̃ (θ) = P
(
ϵ∥x̃∥α

1− ϵ
< θ

)
= P

(
∥x̃∥ <

(
(1− ϵ)θ

ϵ

)1/α
)

(a)
= 1− exp

(
−λπ

(
(1− ϵ)θ

ϵ

)δ
)
, θ > 0, (8)

where (a) follows from the nearest neighbor distribution in a
homogeneous PPP [10].

B. The Total-Interference Case

We now provide a semi-heuristic approach to obtain the dis-
tribution of the SIR threshold corresponding to the total inter-
ference power. We use the fact that the total interference power
and the nearest-interferer power are of the same order [11,
Chapter 3.4]. In particular, for Poisson bipolar networks with
Rayleigh fading and standard power law path loss model, the
total interference power follows a stable distribution with the
power law tail same as that of the Fréchet distribution, i.e., as
exp(−y−δ). Similarly, the nearest-interferer power, denoted
by Ĩ , follows the Fréchet distribution, i.e., its cdf can be
expressed as FĨ(y) = exp(−λπy−δ) (see [11, (3.31)]). This
result implies that

C(α)hx∥x̃∥−α d
=
∑
x∈Φ

hx∥x∥−α, (9)

where C(α) ≥ 1 is a preconstant which depends on the
path loss exponent α, and “ d

=” means “equal in distribution.”
Thus once the preconstant C(α) is found, we can use the
information about the location of the nearest interferer to
obtain the distribution of the SIR threshold as if we have the
information about all interferers’ locations.

To this end, we can express the conditional link success
probability as

Ps(θ) = 1− ϵ = P
(

h∑
x∈Φ hx∥x∥−α

> θ | Φ
)

(b)
= P

(
h

C(α)hx∥x̃∥−α
> θ | Φ

)
, (10)

where (b) follows from (9). Note that the denominator
C(α)hx∥x̃∥−α in (10) is just a scaled version of hx∥x̃∥−α

in (4). Hence following the proof of Thm. 1, the cdf of the
SIR threshold T corresponding to the total interference power
can be given as

FT (θ) = 1− exp

(
−λπ

(
(1− ϵ)θC(α)

ϵ

)δ
)
, θ > 0. (11)

Corollary 1. We have

FT (θ) = FT̃ (C(α)θ), C(α) ≥ 1. (12)

Proof: Comparing (8) and (11) gives the desired result.

Remark: Cor. 1 reveals the surprisingly simple result that
the random SIR threshold corresponding to the total interfer-
ence power is just a scaled version of that corresponding to
the nearest-interferer power.

This remark implies that knowing only the location of the
nearest interferer and fading statistics, one could obtain the
SIR threshold distribution corresponding to the total interfer-
ence power such that each link achieves the target reliability
1 − ϵ and that too without even knowing the locations of all
interferers. For C(α) = 1, we get the SIR threshold distri-
bution corresponding to the nearest-interferer power. Hence,
given only the location of the nearest interferer, if θ is the SIR
threshold for which a link is reliable, then by simply dividing
θ by a constant C(α) yields the SIR threshold for which a link
is reliable when the total interference power is considered.

Using (8), Fig. 1 plots the cdf FT̃ (C(α)θ) for different
values of λ and C(α) such that each link achieves a reliability
equal to 0.9. Observe that, for any λ, the curve corresponding
to C(α) = 2 can be obtained by shifting that corresponding
to the nearest-interferer case, i.e., corresponding to C(α) = 1,
by approximately 3 dB to the left. Also, as expected, the
distribution of T̃ is spread more widely at a small value of
λ compared to that at a large value of λ. Because at a small
λ, the nearest interferer is located at a relatively far distance
compared to that at a large λ, which increases the SIR at
the receiver. This allows a link to set a higher SIR threshold
while maintaining the conditional link success probability at
its target value.

Remarks:

• For any λ, the curve of the cdf FT̃ (C(α)θ) can be
obtained by shifting that corresponding to the nearest-
interferer case, i.e., that corresponding to FT̃ (θ), by
10 log10 C(α) dB to the left.
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Fig. 1. The cdf FT̃ (C(α)θ) (given by (8)) with C(α) = 1 (the nearest-
interferer case) and C(α) = 2 such that each link achieves the link success
probability of 1 � ϵ. λ = 1/10, 1/5, 1, α = 4, and ϵ = 0.1. For any
λ, the curve corresponding to C(α) = 2 can be obtained by shifting that
corresponding to the nearest-interferer case by 10 log10 2 = 3.01 dB to the
left.

• The SIR threshold follows the Weibull distribution, which
has the scale parameter β = ϵ(λπ)�1/δ

(1−ϵ)C(α) and the shape
parameter γ = δ. To see this, we rewrite (11) as

FT (θ) = 1− exp

(
−
(
C(α)

(1− ϵ)θ

ϵ(λπ)−1/δ

)δ
)
, θ > 0

(13)

and then compare it with the form of the cdf of the
Weibull distribution given as 1 − e−(θ/β)γ . Hence the
SIR threshold distribution has a heavy tail. Furthermore,
the probability density function of T can be expressed as

fT (θ) =
γ

β

(
θ

β

)γ−1

e−(θ/β)γ , θ > 0. (14)

• The distribution of T allows us to obtain the distribution
of the rate R = log(1 + T ) as follows:

FR(r) = P (log(1 + T ) < r)

= FT (e
r − 1)

= 1− exp

(
−
(
C(α)(1− ϵ)(er − 1)

ϵ(λπ)−1/δ

)δ
)
, r > 0.

(15)

Fig. 2 shows the distribution of R corresponding to the
distribution of T̃ in Fig. 1.

C. Throughput Density

To compare the case of random SIR threshold with that of
the fixed SIR threshold, we use the throughput density as a
performance metric. It is given as

S , λE[log(1 + T )Ps(T )], (16)

where Ps(T ) denotes the link success probability correspond-
ing to the total interference power obtained using the spatial
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Fig. 2. The cdf of R (given by (15)) for C(α) = 1 (the nearest-interferer
case) and C(α) = 2 such that each link achieves the link success probability
of 1� ϵ. λ = 1/10, 1/5, 1, α = 4, and ϵ = 0.1.

local information. This metric takes into account unreliable
links as well. Our second throughput metric includes the meta
distribution, i.e., the fraction of reliable links. This metric is
called the reliable throughput density and is given as

Srel , λE[log(1 + T )1(Ps(T ) > 1− ϵ)], (17)

where 1(·) denotes the indicator function. The reliable
throughput density considers only reliable links in the cal-
culation of the throughput.

IV. NUMERICAL AND SIMULATION RESULTS

In this section, using simulations, we calculate the value
of C(α), which allows us to find the distribution of T ,
(equivalently, the distribution of R) corresponding to the total
interference power.

A. Simulation Setup

We consider a square region with the side length 200
centered at the origin. The locations of interferers form a PPP
with intensity λ. To find C(α) and evaluate our performance
metrics such as the meta distribution and throughput densities,
we average over N = 10, 000 realizations of this PPP of
interferers and collect the statistics at the typical receiver
located at the origin.

We divide the simulations in three parts:
1) Obtain C(α).
2) Show the distribution of link success probability Ps(T )

(the meta distribution) corresponding to the total interfer-
ence power obtained using the spatial local information.

3) Calculate throughput densities.

B. Simulation Methodology to Obtain C(α)

The steps to obtain C(α) are as follows:
1) For the given values of α, λ, and ϵ, generate a realization

and calculate the SIR threshold such that the success
probability of the typical link corresponding to the total



TABLE I
VALUES OF C FOR DIFFERENT α

α C Average of the ratio θ̃/θ

6 1.69 1.51
5.5 1.82 1.59
5 1.94 1.68
4.5 2.51 1.82
4 2.82 2.03
3.5 2.95 2.38
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Fig. 3. The empirical cdfs of the SIR threshold corresponding to the total
interference (obtained through simulations) and FT̃ (Cθ) (given by (8)) for
different values of α. λ = 1/5 and ϵ = 0.1.

interference power equals 1 − ϵ. Obtain SIR thresholds
for N realizations. Plot the empirical cdf of the SIR
threshold.

2) Plot FT̃ (Cθ) (given by (8)) for different values of C.
3) Compare these two cdfs. The value of C is the one for

which FT̃ (Cθ) is as close as possible to the empirical cdf
corresponding to the total interference power obtained in
Step 1.

Following these steps, Table I lists the values of C(α) and
Figs. 3(a)-3(d) plot corresponding cdfs at those values of C.
At the receiver associated with the typical link, in a realization,
let θ and θ̃ denote the SIR thresholds corresponding to the total
interference power and the nearest-interferer power (obtained
through simulations). Table I also gives the average of the
ratio θ̃/θ over N realizations. This average value gives a
rough estimate about the value of C(α) and hence can be
used as a starting estimate of C(α). Observe from Table I
that C(α) monotonically decreases with α since the effect
of far interferers becomes negligible as α increases, i.e., the
SIR threshold distribution in the case of all interferers can be
approximated by that in the case of the nearest interferer.
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Fig. 4. The empirical meta distribution of the SIR corresponding to the total
interference power, calculated using the spatial local information. λ = 1/5
and ϵ = 0.1.

C. Distribution of the Link Success Probabilities Obtained
using the Spatial Local Information

We now show how the link success probabilities Ps(T )
corresponding to the total interference power obtained using
the spatial local information are distributed across the network.
For this purpose, we plot the empirical meta distribution. In
a realization, the link success probability is calculated by
comparing the SIR value corresponding to the total interfer-
ence power to the SIR threshold value that follow the cdf
FT̃ (Cθ). The empirical ccdf of Ps(T ) gives the empirical meta
distribution. As Fig. 4 shows, for α = 4, almost 80% of the
links achieve a success probability greater that 0.9 when the
SIR threshold corresponding to the total interference power is
set using the spatial local information. Hence the knowledge
of the location of the nearest interferer is sufficient to allow a
high fraction of links to achieve the target reliability.

In Fig. 4, note that for the case of α = 4 with C = 1 (the
case corresponding to the nearest interferer), there are no links
that achieve a success probability larger than 1 − ϵ, i.e., 0.9,
because the case of C = 1 underestimates the interference and
the support of Ps is [0, 1 − ϵ). The reliability equal to 1 − ϵ
would only be achieved if only the nearest interferer existed.
To ensure that most links have success probabilities at least
1− ϵ, C > 1 is needed.

D. Throughput Density

Fig. 5 compares the throughput densities (given by (16)) for
different fixed SIR thresholds (denoted by θ) with that obtained
using the spatial local information, i.e., for the random SIR
threshold. For this metric, the proposed distributed way is
better than the fixed threshold setting for small and large
values of fixed SIR thresholds. Fig. 5 also visualizes the trade-
off between the link success probability and the link spectral
efficiency. The throughput metric in (16), however, does take
into account unreliable links, i.e., the links which do not meet
the target reliability of 1 − ϵ. Hence in an effort to make
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Fig. 5. Throughput densities, given by (16), for the random SIR threshold
(dashed red curve) and the fixed SIR threshold (solid blue curve) settings.
λ = 1/5, ϵ = 0.1, α = 4, and C = 2.82.
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Fig. 6. Reliable throughput densities (which includes the meta distribution),
given by (17), for the random SIR threshold (dashed red curve) and the fixed
SIR threshold (solid blue curve) settings. λ = 1/5, ϵ = 0.1, α = 4, and
C = 2.82.

all links the same in terms of the reliability, our distributed
approach has to bear a cost in terms of the throughput
compared to the fixed SIR threshold case for a range of the
values of fixed SIR thresholds (e.g., for θ ∈ [0.2239, 8.414] in
Fig. 5).

Fig. 6 plots the reliable throughput density (given by (17)),
which shows that the local adaptive choice of SIR threshold
outperforms the case of fixed SIR threshold for the complete
range of fixed SIR thresholds. This is because our distributed
method allows a transmitter to set its SIR threshold adaptively
such that its link achieves a high reliability, making a large
fraction of links in the network reliable.

V. CONCLUSIONS

This paper has provided a simple distributed approach that
allows a transmitter—when it knows only the distance of
its receiver from the nearest interferer—to set its rate such

that each link in the network achieves a certain success
probability. We observe that the SIR threshold follows the
Weibull distribution. We can obtain the distribution of the
SIR threshold corresponding to the total interference power
(due to all interferers in the network) by simply scaling the
SIR threshold corresponding to the nearest-interferer power
by a factor. We found this factor using simulations, where we
showed that the spatial local information is sufficient to allow
a high fraction of links to achieve the target reliability.
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