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Abstract—Rateless codes have been shown to provide robust
error correction over wireless channels. Using a stochastic ge-
ometry model, this paper studies the performance of cellular
downlink with packet transmission based on rateless codes. For
the case of Rayleigh fading, a novel and accurate approximation
is proposed for the distribution of the packet transmission time
of rateless codes. The performance of rateless codes is compared
to that of fixed rate codes by evaluating the user rate and success
probability achievable with the two schemes. Based on both the
proposed analysis and network simulation, the paper shows that
rateless coding provides a throughput gain relative to fixed rate
coding, not only for the typical user but for all users in the
cellular network.

I. I NTRODUCTION

Rateless codes have generated a lot of interest as a promis-
ing forward error correction (FEC) technique [1]. Being able
to adapt both the code construction and the number of parity
symbols to time-varying channel conditions, rateless codes
hold the potential for achieving the capacity with relatively
short delays compared to fixed rate codes, which have fixed
code construction and codeword length [1], [2]. This paper
was mainly motivated by the works of [3], [4]. Using tools
from stochastic geometry, [3] shows that rateless codes lead
to performance improvements in a single hop wireless ad
hoc network (WANET). A robust scheme based on rateless
codes was proposed to achieve the ergodic rate density (ERD)
in a WANET. The Poisson rain model was used to show
that rateless codes enable the WANET to achieve a higher
rate density and havenear ERD performance with signifi-
cantly shorter delays than fixed rate codes. In [4], the meta
distribution of SIR is proposed as a powerful tool to study
the per-user performance. The meta distribution of the SIR
is the success probability of packet transmission conditioned
on the point process. It reveals fine-grained information on
the per-user performance which, in turn, leads to insights on
packet end-to-end delay, QoS levels and congestion across the
network. Since rateless codes result in rates that are matched
to the instantaneous channel, studying their performance in a
framework similar to [4] will lead to new insights in cellular
network design.

Using a stochastic geometry model, we characterize the
performance of cellular downlink channels when rateless codes
are used for FEC and compare it to the case of conventional
fixed rate codes. We quantify the distribution of the packet
transmission time of rateless codes, defined as the number
of channel uses to successfully transmit aK-bit information
packet. The analytical result leads to expressions for coverage

(success) probability and rate on the cellular downlink and
allows a comparison of rateless codes with fixed rate codes.
We show that with rateless codes, the success probability and
rate on cellular downlink increases substantially relative to
fixed rate codes, and we provide expressions for the gain as
a function of system parameters. Simulation results indicate
that every user in the cellular downlink has a throughput gain
under the proposed scheme irrespective of its location within
a cell. The closer a user is to the serving BS, the higher the
gain.

II. SYSTEM MODEL

We consider a cellular network in which BSs are mod-
eled by a homogeneous Poisson point process (PPP)Φ =
{Xi}, i = 0, 1, 2, · · · of intensity λ. It is assumed that
each BSXi communicates with one user randomly located
in its Voronoi cell. The user is located atYi. The distance
betweenXi and its served userYi is Di. Every BS wishes to
communicateK bits to its associated user. When the BSXi

is communicating to its userYi, all other BSs interfere until
they have completed their own transmission. Each BS encodes
theK information bits using an ideal variable-length code i.e.,
rateless code. Each BS uses constant transmit powerρ.

The propagation channel is affected by path loss and small
scale fading. We assume a quasi-static flat fading channel,
i.e., each packet ofK bits is encoded and transmitted within
a single coherence time over a Rayleigh block fading channel.
(On frequency selective fading, OFDM transmission is present
along with rateless coding). For a coherence timeTc and signal
bandwidthWc, each packet transmission ofK bits has a delay
constraint ofN = TcWc channel uses. LetTi denote the
packet transmission time of BSXi to its userYi. Starting
from channel use1, each BSXi has up toN channel uses
to transmit aK-bit packet, i.e.,0 < Ti ≤ N . The medium
access control (MAC) state of BSXi at time t is given by
ei(t) = 1 (0 < t ≤ Ti), where1(·) is the indicator function.

The received signal at userYi is given by

yi(t) = hiiD
−α/2
i xi +

∑

k 6=i

hki|Xk − Yi|−α/2ek(t)xk

+ zi, 0 < t ≤ Ti, (1)

whereα is the path loss exponent,1st term represents the
desired signal from BSXi and the2nd term represents the
interference from BSs{Xk}, k 6= i.



The interference power and SINR at userYi at time t are
given by

Ii (t) =
∑

k 6=i

ρ|hki|2|Xk − Yi|−αek(t) (2)

and

SINRi (t) =
ρ|hii|2D−α

i

1 + Ii(t)
, (3)

respectively. For brevity, the noise power in (3) is set to 1.
The time averaged interference at userYi up to time t is

given by

Îi(t) =
1

t

∫ t

0

Ii(τ) dτ. (4)

We assume userYi employs a nearest-neighbor decoder
performing minimum Euclidean distance decoding based on
only CSIR [5], then the achievable rateCi(t) is

Ci(t) = log2

(

1 +
ρ|hii|2D−α

i

1 + Îi(t)

)

. (5)

Every interfering BS transmits aK bit packet to its user and
after receiving the acknowledgment (ACK) signal becomes
silent leading to a monotonic interference, i.e., bothIi(t) and
Îi(t) are decreasing functions oft. Based on (5), the time to
decodeK information bits and thus the packet transmission
time Ti are given by

T̂i = min {t : K < t · Ci(t)} (6)

Ti = min
(

N, T̂i

)

. (7)

A characterization of the distribution of the packet timeTi

in (7) is essential to quantify the performance advantages of
using rateless codes for FEC in a cellular network.

III. PACKET TRANSMISSIONTIME

To study the distribution of the packet time, consider the
typical user located at the origin. Using a nearest neighbor
decoder, the typical user also achievesC(t) in (5). To charac-
terize the CCDF of the packet transmission timeT , we first
note that the CCDFs ofT and T̂ are related as

P (T > t) =

{

P

(

T̂ > t
)

t < N

0 t ≥ N.
(8)

Next we consider the two events

E1(t) : T̂ > t

E2(t) :
K

t
≥ log2

(

1 +
ρ|h|2D−α

1 + Î(t)

)

. (9)

Based on standard information theoretic results, a key obser-
vation is that for a givent, the eventE1(t) is true if and only
if E2(t) holds true. Thus

P

(

T̂ > t
)

= P

(

K

t
≥ log2

(

1 +
ρ|h|2D−α

1 + Î(t)

))

(10)

= P

(

ρ|h|2D−α

1 + Î(t)
≤ 2K/t − 1

)

. (11)

Assuming a high enough BS densityλ, we ignore the noise
term for the remainder of the paper. We letθt = 2K/t−1 and,
without loss of generality, setρ = 1. (11) can be written out
as

P

(

T̂ > t
)

= E

[

1− P

(

|h|2D−α

Î(t)
≥ θt

∣
∣
∣D

)]

(a)
= E

[

1− LÎ(t) (θtD
α)
]

, (12)

where (a) follows from Rayleigh fading andLY (s) =
E
[
e−sY

]
is the Laplace transform of random variableY .

An expression for̂I(t), the average interference up to time
t at the typical user, can be obtained from (4):

Î(t) =
∑

k 6=0

|hk|2|Xk|−αηk(t) (13)

ηk(t) =
1

t

∫ t

0

ek(τ) dτ = min (1, Tk/t) . (14)

The marksηk(t) are correlated for differentk, which makes
it impossible to find the exact CCDF in (12).

In the following, two approaches to study the CCDF are
discussed.

A. Lower Bound

From (11), the CCDF can be lower bounded by considering
a lower bound to the interferencêI (t). Hence we consider the
nearest-interferer lower bound tôI (t).

P

(

T̂ > t
)

= P

(

|h|2D−α

Î(t)
≤ θt

)

(a)

≥ P

( |h|2D−α

I(t)
≤ θt

)

≥ P

( |h|2D−α

|h1|2|X1|−α 1 (t ≤ T1)
≤ θt

)

(15)

(b)
= P

( |h|2D−α

|h1|2|X1|−α
≤ θt

)

︸ ︷︷ ︸

P1

P (t ≤ T1)
︸ ︷︷ ︸

P2

, (16)

where in (a)I(t) is the instantaneous interference at timet,
which is monotonically decreasing witht, and hence,̂I(t) ≥
I(t). Splitting (15) by conditioning on the eventt ≤ T1 and
its complementt > T1 leads to (b).

Let Tni be the packet transmission time based on interfer-
ence fromonly the nearest interferer with the assumption that
it is always ON.

In the following, the distribution ofTni is given.

Proposition 1. The CCDF ofTni is given by

P (Tni > t) = 1− 2F1 ([1, δ] ; 1 + δ;−θt) , (17)

where2F1 ([a, b]; c; z) is the Gauss hypergeometric function,
δ = 2/α and θt = 2K/t − 1.

Proof: Similar to (10), the CCDF ofTni is given by

P (Tni > t) = P

(
K

t
≥ log2

(

1 +
|h|2D−α

|h1|2|X1|−α

))

. (18)



To compute (18), letV = D/|X1|. The distribution ofV is
known [6, Lemma 3].

P (Tni > t) = P

( |h|2
|h1|2

V −α ≤ θt

)

(19)

= 1− E

[

E

[

exp
(
−θt|h1|2V α

)
∣
∣
∣V
]]

= 1− E

[
1

1 + θtV α

]

= 1−
∫ 1

0

1

1 + θtvα
dv2

= 1−
∫ 1

0

δyδ−1

1 + θty
dy

= 1− 2F1 ([1, δ] ; 1 + δ;−θt) .

Note that the CCDF ofTni in Proposition 1 is the same as
the termP1 in (16).P2 = P (t ≤ T1) is the probability that the
nearest-interfererX1 transmits up to timet and unfortunately
it does not seem possible to find an expression. However, in the
next subsection, we illustrate the applicability ofP1 in (17) to
study the distribution of the typical user’s packet transmission
time.

B. Independent Thinning Approximation

To characterize the dependence of the typical user’s trans-
mission time on the time varying interference of the cellular
network, we make a simplifying approximation. The assump-
tion is that the interfering BSs transmit for a random duration
T̄k from time t = 0 and then become inactive, irrespective
of their packet success or failure. Statistically thēTk are
assumed iid with CDFF (t̄) and hence this approximation
is termed independent thinning model. Under this model, the
instantaneous interference at typical user can be written as

Ĩ (t) =
∑

k 6=0

|hk|2|Xk|−α1
(
t ≤ T̄k

)
. (20)

The time averaged interference at the typical user is given by

Ī (t) =
∑

k 6=0

|hk|2|Xk|−αη̄k(t) (21)

η̄k(t) = min
(
1, T̄k/t

)
.

From now onwards, we just usēη instead ofη̄(t) for brevity.
Under the independent thinning model, the typical user

packet transmission timeT is

T̂ = min

{

t : K < t · log2
(

1 +
|h|2D−α

Ī(t)

)}

T = min
(

N, T̂
)

. (22)

The CCDF of the typical user’s packet transmission timeT
in (22) is bounded in the following theorem.

Theorem 1. An upper bound on the CCDF of typical user
packet transmission time under the independent thinning
model,T in (22), is given by

P (T > t) ≤
{

Pub(t) t < N

0 t ≥ N,
(23)

where

Pub(t) = 1− 1

2F1 ([1,−δ] ; 1− δ;−θt min (1, µ/t))
, (24)

and

µ =

∫ N

0

(

1− 2F1

(

[1, δ] ; 1 + δ; 1− 2K/t
))

dt. (25)

Proof: See Appendix A.
The CCDF of packet transmission time from the inde-

pendence thinning approximation in Theorem 1 serves as a
simplified model of the exact cellular network in (7). The
predicted performance of cellular network from the resultsof
Theorem 1 will be compared to the actual cellular network
performance through simulation in Section V.

IV. PERFORMANCECOMPARISON

In this section, we outline a methodology to quantify the
benefits of using rateless codes by studying the performance
of a cellular network under two scenarios. In one scenario,
the cellular network employs rateless codes for FEC while in
the second scenario, conventional fixed rate codes are used for
FEC.

When the cellular network uses fixed rate codes for FEC,
each BS encodes aK bit information packet using a fixed
rate code, e.g., an LDPC code or turbo code and transmits the
entire codeword ofN parity symbols. The user receives theN
parity symbols over the downlink channel and tries to decode
the information packet using the BCJR or Viterbi algorithm.
Depending on the instantaneous channel conditions, the single
decoding attempt may be successful or not.

When the cellular network uses rateless codes for FEC, each
BS encodes aK bit packet using a variable length code, e.g., a
Raptor code or a LT-concatenated code [1]. The parity symbols
are incrementally generated and transmitted untilK bits are
decoded at the user or the maximum number of parity symbols
N is reached. The user performs multiple decoding attempts
to decode the information packet using the Belief Propogation
or Sum-Product algorithm. An outage occurs ifK bits are not
decoded withinN parity symbols.

The metrics used to compare the performance of the two
FEC approaches are the typical user rate and success proba-
bility, which are defined below for both fixed rate coding and
rateless coding schemes.

A. Fixed Rate Coding

The SIR threshold for fixed rate coding is given byθ =
2K/N − 1. The SIR of the typical user is obtained from (2)
and (3) withek(t) = 1 for all k (and ignoring the noise term).



The success probability and rate of the typical user are defined
and given as

ps(N) , P

(

SIR > 2K/N − 1
)

=
1

2F1

(
[1,−δ] ; 1− δ; 1− 2K/N

) . (26)

RN , ps(N) log2(1 + θ)

=
K/N

2F1

(
[1,−δ] ; 1− δ; 1− 2K/N

) . (27)

The two terms inRN exhibit a tradeoff as a function ofN ,
namely the success probabilityps(N) is increasing and the
rate log2(1 + θ) is decreasing withN . Let Nf be the optimal
value ofN to maximizeRN in (27).

B. Rateless Coding

The SIR threshold for rateless coding at timet is given by
θt = 2K/t − 1. The success probability and rate of the typical
user are defined as

ps(N) , 1− P

(

T̂ > N
)

(28)

RN ,
Kps(N)

E [T ]
. (29)

Note that as per (7),T is a truncated version of̂T at N .
Let Nr be the optimal value ofN to maximizeRN in (29).
The complement of the success probability in (26) and (28) is
the information outage probability, interpreted as the limiting
value of the probability of decoding error of specific channel
codes for large codeword length [7].

In the following, we quantify the performance gains of using
rateless codes.

Proposition 2. The success probability gain of rateless codes
relative to fixed rate codes under the independent thinning
model is bounded as

Gs ≥ 2F1

(
[1,−δ] ; 1− δ; 1− 2K/N

)

2F1

(
[1,−δ] ; 1− δ;

(
1− 2K/N

)
µ/N

) . (30)

Proof: The gain is obtained by taking the ratio of success
probabilities for both rateless coding and fixed rate coding.
Under the independent thinning model, the success probability
for rateless coding can be obtained by combining (40)-(42) at
t = N , which yields

p̃s(N) ≥ 1

2F1 ([1,−δ] ; 1− δ;−θmin (1, µ/N))
. (31)

Taking the ratio of abovẽps(N) to that in (26) yields theGs

in (30). Note thatµ < N always and hence,Gs > 1.
The SIR thresholdθ is valuable to assess the performance

gain in a cellular network [8]. Hence one interpretation of (30)
is given below.

Corollary 1. Rateless coding in cellular downlink leads to a
SIR gain ofNµ relative to fixed rate coding.

Remark: The SIR thresholdθ is reduced by a factorNµ
and hence, the above result under independent thinning proves
that rateless coding leads to improved coverage on cellular
downlink. Note that from (25),µ/N depends on path loss
exponentα and fixed rateK/N .

To compute the rate in (29) analytically, the expected packet
time is bounded as

E [T ] ≤
∫ N

0

Pub(t) dt, (32)

wherePub(t) is obtained from Theorem 1.

Proposition 3. The rate gain in cellular downlink when
rateless codes perform FEC relative to fixed rate codes under
the independent thinning model is

Gr = Gs
N

E [T ]
. (33)

Comparing the rates in (27) and (29) gives the above result.
Note that N

E[T ] > 1 can be viewed as a gain in packet time.
The packet time and success probability gains act in tandem
to produce a rate gainGr > 1. However, it does not seem
possible to simplifyGr further.

The claims of Propositions 2 and 3 are numerically validated
in Section V.

V. NUMERICAL RESULTS

In this section, we present numerical results that illustrate
the performance benefits of using rateless codes for FEC in
a cellular network. Inspired by [4], the numerical results are
presented under two frameworks in the subsections below, with
one offering insights into the typical user performance while
the other provides a higher level of detail.

A. Spatial Averaged Performance

In this framework, computing either success probability or
rate based on (26) to (29) involves spatial averaging of the
performance metric over the PPP. This computation can be
accomplished both by simulation and the analytic expressions
in Sections IV-A and IV-B. For the simulation, the cellular
network was realized on a square of side60 with wrap around
edges. The BS PPP intensity isλ = 1. The information packet
size isK = 75 bits. The cellular network performance was
evaluated for varying path loss exponentα and delay constraint
N . The network is simulated as per the exact model described
in (2)-(7) while the independent thinning model of Section
III-B is used for analysis.

In Fig. 1, the success probability is plotted as a function of
the delay constraint for both fixed rate coding and rateless cod-
ing based on (26) and (31). It is observed that forα ∈ {3, 4},
rateless coding leads to a higher success probability relative to
fixed rate coding. In a cellular network with rateless coding,
BSs with good channel conditions transmit theK bits to
their users with small to moderate packet time and turn OFF.
This process reduces the interference for the remaining BSs,
allowing them to communicate to their users with improved
SIR conditions. Hence for a givenN , a cellular network
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Fig. 1. The success probability as a function of the delay constraintN in a
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and rateless coding based on (26) and (31) respectively.

with rateless coding has a higher number of successful packet
transmissions relative to fixed rate coding.
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Fig. 2. The typical user rateRN in a cellular network withλ = 1 as a
function of N . For fixed rate coding, the rate is based on (27) while for
rateless coding, the approximation is obtained by combining (29), (31) and
(32).

Fig. 2 shows the rateRN for both fixed rate coding and
rateless coding as a function ofN . For both schemes, there is
an optimalN which maximizes the rate, balancing the tradeoff
between increasingps(N) and E [T ] (or N for fixed rate
coding). For rateless coding, the success probability increases
faster, and the expected packet time grows slowly withN
relative to fixed rate coding. Hence it is observed thatNr is
higher thanNf , and the maximal rate for rateless coding is
higher than that of fixed rate coding. TheNr from simulation
and analytical results of Theorem 1 match very well, validating
the proposed independent thinning model.
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Fig. 3. The typical user rate in a cellular network withλ = 1 for both fixed
rate coding and rateless coding against the path loss exponent α. For eachα,
the typical user rate for rateless coding at both valuesNf andNr are plotted.

Fig. 3 plots the typical user rate as a function of the path
loss exponentα. For fixed rate coding, at eachα, the typical
user rate is computed at the maximizingNf . For rateless
coding, the rate at both valuesNf andNr are plotted. Fig. 3
clearly illustrates the performance advantage of using rateless
codes. At eachα, it is observed that the throughput gain is
approximately constant when operating at eitherNf or Nr.

B. Per-user Performance

The numerical results in the previous subsection provide the
performance of the typical user, which is the spatial average
of all users performance. While the spatial averages allow
to compare the performance of rateless coding to fixed rate
coding, they do not reveal the behavior of individual BS-UE
pairs in a given network realization [4]. How does a user near
to (or far from) the BS benefit from rateless coding? In this
subsection, we attempt to answer the question by focusing on
the per-user performance in a given network realization. The
numerical results presented are based purely on simulation.

Fig. 4 shows a snapshot of a cellular network with BSs and
users represented by× and ◦ respectively. For this network
realization, the rates achieved by each BS-UE pair for both
FEC schemes is computed. Since the network is fixed, the
rates are averaged only over fading. For each pair, the rate for
rateless coding is shown first while that for fixed rate coding
is below it. It is observed that the users very close to their
serving BS achieve the most benefit.

The insights from Fig. 4 are verified in Fig. 5, which shows
the ratio of rates of the two FEC schemes for every BS-
UE pair in the cellular network as a function of the BS-UE
distance. This plot illustrates thatevery user in the cellular
network with PPP realization has a throughput gain> 1 by
using rateless codes. Since a PPP is inclusive of other point
processes, the insight from Fig. 5 is very supportive of using
rateless codes for FEC. On average, it may appear that the
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Fig. 5. The ratio of rate with rateless coding to the rate withfixed rate coding
for every BS-UE pair as a function of the BS-UE distanceD in a cellular
network realization withλ = 1 at α = 4 andN = 50.

closer a user is to its serving BS, the larger its gain. But more
details can be obtained from Fig. 5. For a given value ofD,
it is observed that different BS-UE pairs can possibly achieve
different throughput gains. For example, the BS-UE pairs with
a distance of0.1 may achieve a gain anywhere from1 to
around7. Similarly for a distance of0.6, the gains can be
from 1 to 4. For a given value ofD, the plotted rates are
averaged over the fading process and hence the gains depend
on the interferer locations. For a fixedD, smaller cells have
nearby interferers leading to a lower gain whereas bigger cells
have interferers further away and hence achieve a higher gain.

Fig. 6 plots the per-user rates for rateless coding and fixed
rate coding against the BS-UE distanceD at α = 3 and
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Fig. 6. The per-user rates for rateless coding and fixed rate coding in a cellular
network realization as a function ofD at α = 3 andN = 75.

N = 75. Again the network realization is fixed. Since rateless
codes adapt the amount of redundancy to instantaneous chan-
nel conditions, i.e., BS-UE distance and interferer locations
in Fig. 6, the users close to the serving BS get much higher
rates under rateless coding relative to fixed rate coding with
fixed redundancy. For a given network realization, these higher
per-user rates under rateless coding lead to positive effects on
network congestion, packet end-to-end delay, and QoS levels.
In terms of implementation complexity, the number of XOR
operations for encoding and decoding grow only linearly with
the packet size for a Raptor code and quadratically for a Reed-
Solomon code.

VI. CONCLUSION

The paper proposes rateless codes as a viable FEC technique
in a cellular downlink setting and investigates its advantage
over fixed rate codes. An independent thinning model was
proposed to study the effects of time varying interference
on the packet transmission time. The potential of rateless
codes to improve coverage probability, provide a throughput
gain for every user in the network, and achieve per-user
rates which lead to efficient network operation relative to
fixed rate codes was demonstrated through numerical results
representing both spatial averaged and per-user performance
measures for practically significant network scenarios.

APPENDIX A
PROOF OFTHEOREM 1

From (8), the CCDF ofT is the same as the CCDF of̂T
when t < N and is0 elsewhere.

The CCDF of T̂ has the same form as in (12) with the
interference term being replaced bȳI (t) in (21), for which
the Laplace transformL (·) is given by [9]

LĪ(t)|D(s) = exp

(

−πλEh,η̄

[∫ ∞

D

(

1− e−s|h|2η̄v−α
)

dv2
])

.



Letting s = θtD
α,

LĪ(t)|D (θtD
α)

= exp

(

−πλEh,η̄

[∫ ∞

D

(

1− e−θtD
α|h|2η̄v−α

)

dv2
])

= exp

(

−πλEη̄

[∫ ∞

D

(

1− 1

1 + θt (D/v)
α
η̄

)

dv2
])

(a)
= exp

(

−πλD2δθδtE

[
∫ θt

0

(

1− 1

1 + η̄y

)
dy

y1+δ

])

,

(34)

where (a) follows from the substitutiony = θt (D/v)
α.

For notational simplicity in (34), we define

H(t) , δθδtE

[
∫ θt

0

(

1− 1

1 + η̄y

)
1

y1+δ
dy

]

. (35)

Using the fact thatD ∼ Rayleigh
(

1/
√
2πλ

)

, from (12) the

CCDF of T̂ is given as

P

(

T̂ > t
)

= E
[
1− exp

(
−πλH(t)D2

)]

= 1− 1

H(t) + 1
. (36)

The CCDF of T̂ depends on the distribution of interferer
packet timeT̄ through the termH(t). In the following, a
simple expression forH(t) is derived.

H(t) = δθδtE

[
∫ θt

0

η̄

[1 + yη̄] yδ
dy

]

=
θtδ

1− δ
E [η̄ 2F1 ([1, 1− δ] ; 2− δ;−θtη̄)] (37)

=
θtδ

1− δ

[
∫ t

0

t̄

t
2F1

(

[1, 1− δ] ; 2− δ;− t̄

t
θt

)

dF (t̄)

+ (1− F (t)) 2F1 ([1, 1− δ] ; 2− δ;−θt)

]

, (38)

whereF (t̄) = P
(
T̄ ≤ t̄

)
, which is assumed to be given.

Combining (36) and (38) leads to an expression for the
CCDF of T̂ . Although exact, the expression forH(t) in (38)
is computationally intensive since it involves an integralover
the hypergeometric function for every value oft.

Hence a simpler upper bound is derived forH(t) by writing
it as an expectation over the following function ofT̄ ,

g
(
T̄
)
=

1

1 + ymin
(
1, T̄ /t

)

H(t) = δθδt

∫ θt

0

E
[
1− g

(
T̄
)] 1

y1+δ
dy. (39)

The functiong
(
T̄
)

is convex in T̄ . Letting µ = E
[
T̄
]
,

using Jensen’s inequality for convex functions results in the
following upper bound forH(t) in (39)

H(t) ≤ δθδt

∫ θt

0

(1− g (µ))
1

y1+δ
dy

= δθδt

∫ θt

0

min (1, µ/t)

[1 + ymin (1, µ/t)] yδ
dy

=
δ

1− δ
θt min (1, µ/t) 2F1

(

[1, 1− δ] ;

2− δ;−θt min (1, µ/t)
)

, Hub(t). (40)

Thus combining (36) and (40), an upper bound for CCDF
is given by

P

(

T̂ > t
)

≤ 1− 1

Hub(t) + 1
. (41)

For Hub(t) in (40), applying the following hypergeometric
identity simplifies the upper bound in (41) and yields (24).

δ

1− δ
β 2F1 ([1, 1− δ] ; 2− δ;−β) + 1

≡ 2F1 ([1,−δ] ; 1− δ;−β) . (42)

To complete the proof, we need to provide an expression
for the mean interferer packet transmission timeµ. We specify
the interferer packet time distribution to follow the distribution
of packet time based on the always ON nearest interferer case
given in Proposition 1. Thus,

µ =

∫ N

0

(

1− 2F1

(

[1, δ] ; 1 + δ; 1− 2K/t
))

dt (43)

(a)
= K log 2

∫ ∞

0

1− 2F1 ([1, δ] ; 1 + δ; 1− v)

v log2 v
dv, N → ∞,

where (a) follows fromv = 2K/t.
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