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Abstract—In [1], it was conjectured that the permanent of
a P-lifting θ

↑P of a matrix θ of degree M is less than
or equal to the M th power of the permanent perm(θ), i.e.,

perm(θ↑P) 6 perm(θ)M and, consequently, that the degree-M
Bethe permanent permM,B(θ) of a matrix θ is less than or equal

to the permanent perm(θ) of θ, i.e., permM,B(θ) 6 perm(θ). In
this paper, we prove these related conjectures and show some
properties of the permanent of block matrices that are lifts of
a matrix. As a corollary, we obtain an alternative proof of the
inequality perm

B
(θ) 6 perm(θ) on the Bethe permanent of the

base matrix θ, which, in contrast to the one given in [2], uses
only the combinatorial definition of the Bethe-permanent.

The results have implications in coding theory. Since a P-lifting
corresponds to an M -graph cover and thus to a protograph-
based LDPC code, the results may help explain the performance
of these codes.

I. INTRODUCTION

A. Background

The concept of the Bethe permanent was introduced in [3],

[4] to denote the approximation of a permanent of a non-

negative matrix1 by solving a certain minimization problem

of the Bethe free energy with the sum-product algorithm.

In his paper [1], Vontobel uses the term Bethe permanent

to denote this approximation and provides reasons for which

the approximation works well by showing that the Bethe free

energy is a convex function and that the sum-product algorithm

finds its minimum efficiently.2

In the recent paper [2], Gurvits shows that the permanent

of a matrix is lower bounded by its Bethe permanent, i.e.,

permB(θ) 6 perm(θ), and discusses conjectures on the

constant C in the inequality perm(θ) 6 C ·permB(θ). Related

to the results of Gurvits, Vontobel [1] formulates a conjecture

that the permanent of an M -lift θ↑P of a matrix θ is less than

or equal to the M th power of the permanent perm(θ), i.e.,

perm(θ↑P) 6 perm(θ)M and, consequently, that the degree

M -Bethe permanent permM,B(θ) of a matrix θ is less than

or equal to the permanent perm(θ) of θ, i.e., permM,B(θ) 6
perm(θ). A proof of his conjecture would imply an alternative

1A non-negative matrix contains only non-negative real entries.
2Although its definition looks simpler than that of the determinant, the

permanent does not have the properties of the determinant that enable efficient
computation [5]. In terms of complexity classes, the computation of the
permanent is in the complexity class ♯P [6], where ♯P is the set of the counting
problems associated with the decision problems in the class NP. Even the
computation of the permanent of 0-1 matrices restricted to have only three
ones per row is ♯P-complete [7].

proof of the inequality permB(θ) 6 perm(θ) that uses only

the combinatorial definition of the Bethe-permanent.3

In this paper, we prove this conjecture and explore some

properties of the permanent of block matrices that are lifts

of a matrix; these matrices are the matrices of interest when

studying the degree-M Bethe permanent. Additional examples

and explanations of the techniques used can be found in [8].

B. Related work

The literature on permanents and on adjacent areas (of

counting perfect matchings, counting 0-1 matrices with spec-

ified row and column sums, etc.) is vast. Apart from the

previously mentioned papers, the most relevant papers to our

work are the one by Chertkov & Yedidia [4] that studies

the so-called fractional free energy functionals and resulting

lower and upper bounds on the permanent of a non-negative

matrix, the papers [9] (on counting perfect matchings in

random graph covers), [10] (on counting matchings in graphs

with the help of the sum-product algorithm)4, and [3], [11],

[12] (on max-product/min-sum algorithms based approaches

to the maximum weight perfect matching problem). Relevant

is also the work on approximating the permanent of a non-

negative matrix using Markov-chain-Monte-Carlo-based meth-

ods [13], or fully polynomial-time randomized approximation

schemes [14] or Bethe-approximation based methods or sum-

product-algorithm (SPA) based method [3], [15].5

C. Notation and definitions

A non-negative matrix is here a matrix with non-negative

real entries. Rows and columns of matrices and entries of

vectors will be indexed starting at 1. For a positive integer M ,

we will use the common notation [M ] , {1, . . . ,M}. We will

also use the common notation hij or Hij to denote the (i, j)th
entry of a matrix H when there is no ambiguity in the indices

and hi,j or Hi,j , respectively, when one of the two indices

is not a simple digit, e.g., hi,m−1, Hi,m−1, respectively. |α|
denotes the cardinality (number of elements) of the set α. For

positive integers m,M , the set of all permutations on the set

[m] is denoted by Sm, while the set of all M×M permutation

matrices is denoted by PM . In addition, Mm(PM ) will be the

3The formal definition of the Bethe and M -Bethe permanents is given in
Definition 1.

4Computing the permanent is related to counting perfect matchings.
5See [1] for a more detailed account of these and other related papers.



set of all m×m block matrices with entries in PM , i.e., the

entries are permutation matrices of size M ×M :

Mm(PM ) , {P = (Pij) | Pij ∈ PM , ∀i, j ∈ [m]}.

Finally, the permanent of an m ×m-matrix with real entries

is defined to be

perm(θ) ,
∑

σ∈Sm

∏

i∈[m]

θiσ(i) .

Note that in contrast, the determinant of θ is

det(θ) ,
∑

σ∈Sm

sgn(σ)
∏

i∈[m]

θiσ(i) ,

where sgn(σ) is the signature operator.

Definition 1. Let m,M be two positive integers and θ be a

non-negative m×m matrix.

• For a matrix P ∈ Mm(PM ), the P-lifting θ↑P of θ of

degree M is defined as

θ↑P ,







θ11P11 . . . θ1mP1m

...
...

θm1Pm1 . . . θmmPmm






,

i.e., as an m×m block matrix with its (i, j)-th entry equal

to the matrix θijPij , where Pij is an M×M permutation

matrix in PM . (It results in an mM ×mM matrix.)

• The degree-M Bethe permanent of θ is defined as

permB,M (θ) ,
(

〈

perm(θ↑P)
〉

P∈Mm(PM )

)1/M

,

where the angular brackets represent the arithmetic av-

erage of perm(θ↑P) over all P ∈ Mm(PM ).
• The Bethe permanent of θ is then defined as

permB(θ) , lim sup
M→∞

permB,M (θ).

Since the permanent operator is invariant to the elementary

operations of interchanging rows or columns, when taking the

permanent, we can assume, without loss of generality, that

matrices P ∈ Mm(PM ) have P1j = Pi1 = IM , for all i, j ∈
[m], where IM is the identity matrix of size M ×M . We call

such matrices reduced.

Definition 2. A matrix P = (Pij) ∈ Mm(PM ) is reduced if

P1j = Pi1 = IM , for all i, j ∈ [m].

Remark 1. Note that a P-lifting of a matrix θ corresponds to

an M -graph cover of the protograph (base graph) described by

θ. Therefore we can consider θ↑P to represent a protograph-

based LDPC code and θ to be its protomatrix (also called its

base matrix or its mother matrix) [16]. �

II. THE PERMANENT OF A MATRIX LIFT

In [1], it was conjectured that for any non-negative square

matrix θ and for any P ∈ Mm(PM ), we have the inequality

perm(θ↑P) 6 perm(θ)M .

In this section we prove this conjecture and several related

results on the structure of the perm(θ↑P) of the lift θ↑P of

the matrix θ, for any non-negative matrix θ.

A. Rewriting the permanent products of lifts of matrices

In this subsection, we present an algorithm that lets us

rewrite the permanent-products of a P-lifting of θ into a form

useful for proving the conjecture.

Let θ = (θij) be a non-negative matrix of size m×m and

let P = (Pij) ∈ Mm(PM ). Let τ ∈ SmM be a permutation

on the set [mM ] and let

Aτ ,
∏

i∈[mM ]

(θ↑P)iτ(i)

be a non-zero permanent-product of θ↑P, which is a non-zero

term of

perm(θ↑P) =
∑

τ∈SmM

∏

i∈[mM ]

(θ↑P)iτ(i).

We first observe that, since Aτ is assumed to be non-

zero, for each i ∈ [mM ], there exists j, l ∈ [m] such that

(θ↑P)iτ(i) = θjl. Indeed, let i ∈ [mM ], then i ∈ J and

τ(i) ∈ L, for some j, l ∈ [m], where I , {(j − 1)M +
1, . . . , jM} and L , {(l − 1)M + 1, . . . , lM}. Therefore

(θ↑P)iτ(i) is a non-zero entry in the matrix-entry θjlPjl of

θ↑P. Since all its nonzero entries of θjlPjl are equal to

θjl, we obtain that (θ↑P)iτ(i) = θjl. Therefore, the product

Aτ ,
∏

i∈[mM ]

(θ↑P)iτ(i) can be rewritten as a product of entries

θjl of the matrix θ, j, l ∈ [m]. Let

ατ
jl , {i ∈ J | τ(i) ∈ L} , (1)

rτjl , |ατ
jl|. (2)

Then, (θ↑P)iτ(i) = θjl, for all i ∈ αjl and for all j, l ∈ [m],
therefore

∏

i∈J

(θ↑P)iτ(i) = θ
rj1
j1 θ

rj2
j2 · · · θ

rjm
jm =

m
∏

l=1

θ
rjl
jl , ∀j ∈ [m].

Since each row and each column of θ↑P must contribute to

the product exactly once, the matrix ατ , (ατ
jl)j,l with the

set ατ
jl as its entry (j, l) satisfies

ατ
jl

⋂

ατ
jl′ = ∅, ∀j, l, l′ ∈ [m], l 6= l′,

m
⋃

l=1

ατ
jl = J , (3)

from which it follows that 0 6 rτjl 6 M, ∀j, l ∈ [m] and

m
∑

l=1

rτjl = M, ∀j ∈ [m],

m
∑

j=1

rτjl = M, ∀l ∈ [m]. (4)

Therefore, the matrix Rτ , (rτij)i,j∈[m] corresponding to

Aτ has positive entries and all row and column sums equal

M . It will henceforth be referred to as the exponent matrix.

For each σ ∈ Sm, let Pσ ∈ Pm be the m × m

permutation matrix corresponding to σ and let tτσ ,
min{rτ1σ(1), r

τ
2σ(2), . . . , r

τ
mσ(m)} > 0. Then Rτ − tτσPσ is

a positive matrix with the sums of all entries on each row and

2



each column equal to M − tτσ and with all its entries equal

to the ones on the same positions of Rτ except for the entries

corresponding to the permutation σ, which decreased by the

same amount tτσ. We can index the set {σ ∈ Sm} , {σk ∈
Sm, k ∈ [m!]} and compute sequentially

Rτ,1 , Rτ

Rτ,k+1 , Rτ,k − tτσk
Pσk

= Rτ −
k
∑

s=1

tτσs
Pσs

, k > 2,

where the sums of all entries on each row and each column

of Rτ,k+1 are all equal to M −
k
∑

s=1
tτσs

. The algorithm runs

until all non-zero entries get changed into zero entries, see

Example 1 for an illustration of this process. Consequently,

the matrix R−
∑

σ∈Sm

tτσPσ = 0. This yields R =
∑

σ∈Sm

tτσPσ,

leading to Aτ =
∏

i∈[mM ](θ
↑P)iτ(i) =

m
∏

j=1

m
∏

l=1

(θjl)
rjl

=
∏

σ∈Sm

(

θ1σ(1)θ2σ(2) · · · θmσ(m)

)tτσ

and
∑

σ∈Sm

tτσ = M .

This algorithm always terminates, which follows from the

Birkhoff-von Neumann theorem on the decomposition of

doubly stochastic matrices6 into a convex combination of

permutation matrices7. Hence the doubly stochastic matrix
1
MRτ can be written as a convex sum of permutation matrices.

We will refer to this algorithm of rewriting any permanent-

product in perm(θ↑P) as a product of powers of permanent-

products in θ as the decomposition algorithm, and the decom-

position is called the standard decomposition.

Example 1. Let M = 7 and θ ,





a b c

d e f

g h i



 . Suppose that

Aτ , a3b2c2e3f4g4h2i is a product in perm(θ↑P). Then, this

product corresponds to the following exponent matrix Rτ and

the corresponding θRτ , (θ
rτij
ij ) :

Rτ ,





3 2 2
0 3 4
4 2 1



 , θRτ =





a3 b2 c2

d0 e3 f4

g4 h2 i1





Following the algorithm we obtain

Rτ =





3 2 2
0 3 4

4 2 1



→ (aei) →





2 2 2
0 2 4

4 2 0



→ (bfg)2

→





2 0 2

0 2 2
2 2 0



→ (ceg)2 →





2 0 0
0 0 2

0 2 0



→ (afh)2.

6A matrix is doubly stochastic if it has positive entries and both its rows
and columns sum to 1.

7See http://staff.science.uva.nl/∼walton/Notes/Hall Birkhoff.pdf for a short
presentation of the Birkhoff-von Neumann theorem and the decomposition
algorithm.

So a3b2c2e3f4g4h2i = (aei)(bfg)2(ceg)2(afh)2. It can be

easily seen that this factorization is unique (which is not

always the case though).

B. Grouping entries in the permanent product

The rewriting algorithm presented in Section II-A provides

a way to rewrite the product
m
∏

j=1

m
∏

l=1

(θjl)
rjl as a product

∏

σ∈Sm

(

θ1σ(1)θ2σ(2) · · · θmσ(m)

)tτσ
but does not tell us exactly

how to combine the entries (θ↑P)iτ(i) to obtain this rewriting.

Is there a way to algorithmically combine the indices of the

sets ατ
jl to form the products

(

θ1σ(1)θ2σ(2) · · · θmσ(m)

)tτσ
for

all σ ∈ Sm? The answer is yes, as we explain in the next

example of a concrete P-lifting of θ from Example 1 with P

reduced.

Before presenting it, let us introduce a new matrix ατ ,
(ατ

jl) obtained from ατ by substituting each index (j−1)M+k

in an entry set by k, k ∈ [M ]. Then, the properties (3) of the

matrix ατ carry over to the following properties of the matrix

ατ :

ατ
jl

⋂

ατ
jl′ = ∅, ∀j, l, l′ ∈ [m], l 6= l′,

m
⋃

l=1

ατ
jl = [M ]. (5)

The following example uses the matrix α and provides a

unique method of combining the indices ατ
jl to obtain the

desired rewriting of the product Aτ . This method follows the

steps of the algorithm illustrated in Example 1 for modifying

the matrix Rτ .

Example 2. Let θ be the 3 × 3 matrix in Example 1, P =
(Pij) ∈ P3

3 , θ↑P and Aτ = a2bdf2h2i as follows:

P ,





I3 I3 I3
I3 Q Q2

I3 I3 Q2



 , Q ,





0 0 1
1 0 0
0 1 0



 , Q2 ,





0 1 0
0 0 1
1 0 0



 ,

θ↑P,





































a1 0 0 b1 0 0 c1 0 0

0 a2 0 0 b2 0 0 c2 0

0 0 a3 0 0 b3 0 0 c3

d1 0 0 0 0 e1 0 f1 0

0 d2 0 e2 0 0 0 0 f2

0 0 d3 0 e3 0 f3 0 0

g1 0 0 h1 0 0 0 i1 0

0 g2 0 0 h2 0 0 0 i2

0 0 g3 0 0 h3 i3 0 0





































(6)

where I3 denotes the identity matrix of size 3 and the entries

boxed in θ↑P correspond to the permutation τ that gives the

product Aτ = a2bdf2h2i. Here we wrote the matrix θ↑P with

its entries indexed by their row, e.g., a1 = a2 = a3 = a and

ai is on the ith row of the first block P11.

3



The matrices ατ , ατ and Rτ are

ατ =













{1,3} {2} ∅

{2} ∅ {1,3}

∅ {1,3} {2}













, Rτ =





2 1 0
1 0 2
0 2 1



 .

Note that ατ corresponds to the indices of the boxed entries

in θ↑P. In the matrix ατ , we use circles and boxes to

show how to group the boxed entries of θ↑P: we combine

entries in θ↑P in rows indexed by the circled entries in

ατ , and we combine entries in θ↑P in rows indexed by the

boxed entries in ατ , thus obtaining a unique rewriting of the

product Aτ as Aτ = (afh)2(bdi), which is in correspondence

to the rewriting steps of the matrix Rτ . In terms of the

indexed entries of θ↑P, the above grouping corresponds to

Aτ = (a1f1h1)(a3f3h3)(b2d2i2) which is exemplified through

circles, boxes and shaded boxes in the version of θ↑P with

indexed entries in (6).

Is a decomposition like the one drawn in ατ of Example 2

always possible? The answer is yes due to the following simple

fact. Each row and column of θ↑P participates with exactly

one element to a permanent-product. In the matrix θ↑P of (6),

once we choose d on the second column, or, equivalently, d2,

none of the entries a2 or g2 on that column can be part of the

permanent-product anymore and, therefore, the second row of

matrix P11 (where a2 is positioned) and the second row of

the matrix P31 (where g2 is positioned) must contribute each

with exactly one entry other than the entries a2 and g2 that are

not allowed. These are the boxed entries b2 and i2. We group

these entries with d2 uniquely and continue the same way to

group each of the a entries with the entries f and h that are

on the two rows associated with the other two entries on the

columns of the entries a to obtain (a1f1h1) and (a3f3h3).

In terms of the entries of the matrix ατ , this corresponds to

the grouping we showed in Example 2 because the matrix P is

reduced, so the first matrices Pl1 in each row and P1l in each

column are equal to the the identity matrix, for all l ∈ [m].
Therefore, for each of the first M columns, the nonzero entries

on the jth column are all positioned on the jth row of the

matrices Pl1, for all l ∈ [m]. Of course, this is not valid for

a column that is not among the first M . Indeed, the boxed i

of θ↑P in (6) is on row 2 of matrix P33 and has the nonzero

entries on rows 3 of matrix P13 and 2 of matrix P23. However,

it still holds that the rows corresponding to these non-zero

entries must contribute to the product with exactly one entry

that cannot be on the column of i. In this case, d2 on position

(2, 2) in P21 and a3 on position (3, 3) of P11 are these entries.

We can group these together as well. In fact any such grouping

of three where two of them are on the rows corresponding to

the non-chosen entries of the column of the third of the group

is a good association; the permanent-product Aτ is then a

product of some of these three-products with the property that

the entries in the products are taken only once and they cover

all the entries in the permanent-product Aτ (i.e., they form

a partition). Such a partition is surely given by the three-sets

of the boxed entries in the first M columns, because each

of these sets must be disjoint and they are exactly M , the

number of boxed entries from the first M columns, so the

union of all entries in these products is equal to all entries in

the product Aτ . In fact, any three-sets associated to the boxed

entries in a set (j−1)M+1, . . . , jM of columns corresponds

to a partition of the entries in Aτ . For simplicity, however,

we choose the partition corresponding to the first M columns,

or, equivalently, to the matrix ατ . We call this decomposition

same-index decomposition.

Therefore, the same-index decomposition of a permanent-

product in θ↑P is the writing of the permanent-product as a

product of M sub-products of m entries in θ each indexed by

the same row index, e.g., (a1f1h1)(b2d2i2)(a3f3h3).

C. Decompositions that contain illegal sub-products

So far in our example, the same-index decomposition of a

permanent-product is equal to its standard decomposition. In

the following section, we see that this is not always the case.

For example, this following decomposition in ακ could also

occur:








1 2 3

1 2 3

1 2 3









,

yielding the following permanent-products of θ↑P:

a1a2a3 e1e2f3 h1i2i3 = (a1e1h1)
†(a2e2i2)(a3f3i3)

†

= (a1e1i3)(a2e2i2)(a3f3h1).

In this case, not all of the products of 3 entries of the same

index correspond to permanent-products in the matrix θ; we

marked with † the ones that do not, for example, (a1e1h1)
†

corresponds to aeh in θ which is not a permanent-product.

We call such a product illegal. This illegal three-product

needs to be grouped with another illegal three-product in

the same grouping, in this case (a3f3i3)
†, and rearranged

as (a1e1i3)(a3f3h1) to obtain a standard decomposition, i.e.,

a product of permanent-products of θ. We call these sub-

products that correspond to a permanent-product in θ legal.

D. Mapping illegal products into legal products

Next we show that we can always assume that all

permanent-products in θ↑P are products of θ-permanent-

products by showing that any permanent-product of θ↑P

containing some illegal sub-products can be mapped uniquely

into some product of M same-index permanent-products of

θ. In addition, this product has the same exponent matrix

as the original permanent-product but is not a permanent-

product of θ↑P. This way, we establish a one-to-one corre-

spondence between permanent-products of θ↑P and products

of M permanent-products in θ.

This correspondence illustrated in the previous example can

be generalized to all permanent-products of θ↑P with same-

index decompositions that contain some illegal sub-products

in the following way.

4



• Let θ be an m × m non-negative matrix and θ↑P be a

reduced matrix of degree M .

• Let τ be a permutation on [mM ] and Aτ be a permanent-

product in θ↑P that is not trivially zero. Let Rτ be its

exponent matrix.

• Write Aτ as the same-index decomposition; Aτ can or not

contain illegal same-index sub-products, i.e., products of

m entries in θ of the same index that are not permanent-

products in θ.

• List all distinct products of M same-index permanent-

products in θ corresponding to all standard decomposi-

tions of Rτ that start with the entries in Aτ that are in

the first M columns of θ↑P. Call them A′
τ,1, . . . , A

′
τ,l

and reorder, if needed, the entries in the sub-products of

Aτ and A′
τ,1, . . . , A

′
τ,l such that the entries from the first

M columns are always first in the subproduct, followed

by the entries ordered by the row index in θ increasingly

from 1 to m and such that the indices of the θ-permanent-

products are ordered increasingly from 1 to M .

This procedure, henceforth called standard mapping, is for-

malized in the following lemma.

Lemma 1 (Standard mapping). Initially, set L :=
{A′

τ,1, . . . , A
′
τ,l}.

Start Let 0 6 s 6 M and 1 6 t < m be such that

• Aτ and each A′
τ,j ∈ L have their first s θ-permanent-

products equal and

• Aτ and each A′
τ,j ∈ L have their (s+1)th θ-permanent-

products either equal in the first t entries or have all of

the first t entries distinct except for the first entry and

• Aτ and A′
τ,i ∈ L have their (s + 1)th θ-permanent-

product equal in the (t + 1)th entry, while there exists

A′
τ,j 6= A′

τ,i, such that Aτ and A′
τ,j have the (s + 1)th

θ-permanent-product distinct in the (t+ 1)th entry.

Let {A′
τ,j1

, . . . , A′
τ,jk

} ⊂ {A′
τ,1, . . . , A

′
τ,l}, 1 6 k < l, such

that Aτ and each A′
τ,jn , n ∈ [k], have their (s + 1)th θ-

permanent-product equal in the (t+ 1)th entry.

Map Aτ 7→ A′
τ,i if k = 1, otherwise update L := Lk and

repeat the steps from Start .

Then, this map is a well-defined one-to-one (injective) map

from the set of all permanent products of θ↑P of a certain

exponent matrix to the set of all products of M θ-permanent-

products of the same exponent matrix. This gives a one-to-one

map from the set of all permanent-products in θ↑P to the set

of all products of M θ-permanent-products.

Proof: The fact that the map is well defined is easy to

see since there can only be one matrix A′
τ,i satisfying the

conditions, while the existence of this matrix is ensured by the

decomposition algorithm presented in Section II-A. Indeed,

the decomposition algorithm based on the exponent matrix

guarantees the existence of the list of products of θ-permanent-

products, which has cardinality at least one. It also guarantees

the existence of a standard decomposition of the permanent-

product into legal sub-products not necessarily of the same

index. The standard decomposition can be mapped into a prod-

uct of same-index θ-permanent-products, thus guaranteeing the

existence of the map.

The fact that no two permanent-products can be mapped into

the same A′
τ,i is also ensured by the conditions of the mapping;

if two different permanent products Aτ and Aν map into the

same A′
τ,i, then they must have a first entry in which they

differ; this entry must be necessarily after the first s entries.

This means, however, that there must exist an A′
τ,j that shares

with Aν that entry but not with A′
τ,i. Therefore, Aν cannot get

mapped into the same A′
τ,i as Aτ , proving that the function

is one-to-one. In addition, if Aτ contains illegal same-index

sub-products, then A′
τ,i such that Aτ 7→ A′

τ,i cannot be a

permanent-product in θ↑P. To see this, erase from θ↑P all rows

and columns corresponding to the entries that the two share.

Suppose that there are k entries in which the two products are

different, say, x1, x2, . . . , xk in Aτ and x′
1, x

′
2, . . . , x

′
k in A′

τ,i.

Because the two products Aτ , A
′
τ,i have the same exponent

matrix, so do the two products x1x2 . . . xk and x′
1x

′
2 . . . x

′
k.

Therefore, in each block in which there exists some xi, i ∈ [k],
there must exist also a j ∈ [k] such that x′

j is also in that block.

We can reorder x′
1, x

′
2, . . . , x

′
k so that each x′

l is in the same

block as x′
l. Note that there can be more entries in one block,

but to each entry xl corresponds a unique entry x′
l in the same

block. Since there is only one column in the k× k submatrix

crossing the term xi and since x′
j 6∈ {x1, . . . xk}, we obtain

that xi and x′
j must be on the same column which contradicts

the fact that the block is a weighted permutation matrix.

Therefore, if Aτ contains illegal same-index sub-products,

then Aτ is mapped through the above mapping into a product

A′
τ,i that is not a permanent-product in θ↑P. This also implies

that an all-legal permanent-product Aτ and a permanent-

product containing some illegal same-index sub-products Aκ

do not map into the same product of M θ-permanent-products,

which in this case would be Aτ . Indeed, if Aτ does not

contain any illegal sub-products, i.e., it is a product of M

θ-permanent-products, then Aτ = A′
τ,i, for some i, and the

mapping corresponds to Aτ 7→ Aτ as expected.

Such a mapping can be defined for each exponent matrix,

which proves the existence of the overall one-to-one map from

the set of all permanent-products in θ↑P to the set of all

products of M θ-permanent-products.

E. Upper bounding the permanent of a lifting of a matrix

The mapping in Section II-D allows us to compute, for

a fixed exponent matrix R = (rij), the coefficient of
m
∏

j=1

m
∏

l=1

(θjl)
rjl in perm(θ↑P), or, equivalently, the maximum

possible number of permutations τ ∈ SmM such that Aτ =
m
∏

j=1

m
∏

l=1

(θjl)
rjl is a permanent-product with exponent matrix

R that is not trivially-zero, and, using this, to prove the upper

bound perm(θ↑P) 6 perm(θ)M .

The following corollary is an immediate consequence of the

one-to-one mapping.

Corollary 1. Let R = (rij) be an exponent matrix of

some permanent-product in perm(θ↑P). For each τ ∈ SmM

5



with Aτ =
m
∏

j=1

m
∏

l=1

(θjl)
rjl , let A′

τ,1, . . . , A
′
τ,l be the possible

products of M θ-permanent-products associated with R. For

each j ∈ [l], denote by Nτ,j the number of products of M θ-

permanent-products that are equivalent to A′
τ,j , i.e., they can

be obtained from A′
τ,j by applying an M -permutation on the

indices. Then, the coefficient of
m
∏

j=1

m
∏

l=1

(θjl)
rjl in perm(θ↑P)

is upper bounded by
∑l

j=1 Nτ,j .

The following lemma determines Nτ,j for all j ∈ [l].

Lemma 2. For each j ∈ [l] and σ ∈ Sm, let 0 6
tj,σ 6 M such that

∑

σ∈Sm

tj,σ = M and A′
τ,j =

∏

σ∈Sm

(

θ1σ(1)θ2σ(2) · · · θmσ(m)

)tj,σ
. Then Nτ,j =

(

M
tj

)

where

(

M
tj

)

is the multinomial coefficient associated with the vector

tj , (tj,σ)σ∈Sm
.

Proof: The entries that lie in the first M columns of

θ↑P uniquely determine the way the products of θ-permanent-

products
(

θ1σ(1)θ2σ(2) · · · θmσ(m)

)tj,σ
are formed. We can

choose these in
(

M
tj

)

ways.

The main result of the paper now follows immediately.

Theorem 2. Let θ = (θij) be a non-negative matrix of size

m×m and let P = (Pij) ∈ Mm(PM ). Then

perm(θ↑P) 6 perm(θ)M .

Proof: The upper bound follows immediately from

Lemma 2 and the expansion of perm(θ)M as

perm(θ)M =

(

∑

σ∈Sm

θ1σ(1)θ2σ(2) · · · θmσ(m)

)M

=
∑

|tj|=M

(

M

tj

)

∏

σ∈Sm

(

θ1σ(1)θ2σ(2) · · · θmσ(m)

)tj,σ
.

III. CONCLUSIONS

The consequences of the results in this paper are more

than just purely theoretical. They provide new insight into

the structure of the permanent of a P-lifting of a matrix,

which can be exploited algorithmically to decrease the com-

putational complexity of the permanent of the P-liftings. Such

an algorithm can search for products of groups of entries

formed according to the groupings we presented in this paper

to check if they form valid permanent-products. In addition,

the structure of the permanent-products of P-liftings of a

matrix may have some implications on the constant C in the

inequality perm(θ) 6 C · permB(θ).
Lastly, since a P-lifting of a matrix θ corresponds to an

M -graph cover of the protograph (base graph) described by

θ, which, in turn, correspond to LDPC codes, these results

may help explain the performance of these codes through

the techniques presented in [17]–[21], which are based on

explicit constructions of codewords and pseudo-codewords

with components equal to determinants or permanents, of some

m × m submatrices of H over the binary field or over the

integers.
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