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Abstract—In all current models for cellular networks, inde-
pendent randomness in the positions of the base stations (BSs)
and the propagation conditions is assumed. In practice, however,
in coverage-oriented deployments, where the goal is to achieve
good baseline coverage, cellular operators place the base stations
further apart if propagation is favorable, and vice versa. We thus
propose a new class of cellular model, where BSs are deployed
such that all cell edge users achieve a minimum target signal
power level from the serving BS. The spatial structure of the BSs
is a result of the propagation environment and the target signal
power. We call such network models joint spatial and propagation
(JSP) models. To formulate such models, we assume the path loss
follows a power law with a variable path loss exponent, so that
the target signal power is achieved at the cell edges, given the
distribution of the BSs. The coverage probability, defined as the
probability that the signal-to-interference-plus-noise-ratio (SINR)
exceeds a threshold, is evaluated and compared with the standard
Poisson and lattice models. Our results show that networks with
Poisson distributed BSs appear to the user like lattice networks
if the dependence between BS placement and propagation is
accounted for.

I. INTRODUCTION

In all current models for cellular networks, independent

randomness in the positions of the base stations (BSs) and the

propagation models (path loss and fading) is assumed, e.g.,

[1]–[6]. In [1], the authors assumed a homogeneous Poisson

distributed network and the power-law path loss model ℓ(x) =
‖x‖−α, where x ∈ R

2 and calculated the coverage probability,

defined as the complementary cumulative distribution function

(CCDF) of the SINR, i.e., Pc(θ) = P(SINR > θ). Under

the assumptions of Rayleigh fading, no noise and α = 4,

Pc(1) = 0.56 and Pc(10) = 0.20. The main reason why the

result is so pessimistic is that mobile users near the edge suffer

from low signal strength in large cells. In [2], the authors used

the β-Ginibre point process, where points exhibit repulsion, to

model the spatial distribution of the BSs and considered the

bounded power-law path loss model ℓ(r) = (max{r0, r})−α,

where r0 is a positive constant and r ∈ R
+. The coverage

probability is better than that of the Poisson network, since in

the β-Ginibre network (β > 0), BSs are less likely to be close

to each other and thus severe interference from nearby BSs is

avoided. Moreover, the variance of the cell size is reduced.

In practice, when the goal of the BS deployment is to

achieve good baseline coverage, cellular operators place the

BSs further apart if propagation is favorable, and vice versa.

Thus, a large cell implies smaller path loss or less severe

shadowing, and vice versa. This dependence between cell sizes

and propagation has been completely ignored, despite (as we

shall see) having a significant impact on the performance ana-

lysis. In large cells, users near cell edges usually suffer from

unsatisfactory communication conditions with low received

signal power, in addition to being subject to relatively high

interference. In reality, to avoid those bad situations, cellular

operators would place another BS to reduce the cell size

and improve the signal strength of edge users. The optimal

situation would be that the received signal strengths along all

cell edges are equal and meet the minimum requirement.

In this paper, we propose a new class of cellular models,

where all users at the cell edges achieve a minimum target

signal power level from their serving BSs. The spatial structure

of the BSs is a result of the propagation environment and

the target signal power. We call such models joint spatial

and propagation (JSP) models. One special case of the JSP

model is the triangular lattice (which has hexagonal cells) with

independent power-law path loss model, where the received

signal power at the cell edges is approximately the same.

In this paper, to formulate JSP models, we assume the path

loss still follows the power law, but the path loss exponent is

variable to satisfy the requirement of the target signal power at

the cell edges, given a distribution of the BSs. We derive the

coverage probability analytically and obtain simulation results.

To our best knowledge, this is the first work that takes into

account the dependence between cell sizes and shapes and

signal propagation.

II. SYSTEM MODEL

We introduce a novel cellular downlink model, where all

BSs are always transmitting with equal power P and are well

deployed, which means that the signal power averaged over

the fading from each BS at its cell edge is always equal to

a constant target received power P0 < P , as is illustrated in

Fig. 1. The cell edge is defined as the association boundary

for mobile users, inside which at any location, the received

signal power averaged over the fading from the BS in the

cell is larger than the signal power from any other BS. We

assume the frequency reuse factor is 1. Thus all other BSs act

as interferers. All signals are assumed to experience path loss
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Fig. 1. BSs (denoted by ’×’) and cell edges (e.g., the Voronoi tessellation).
For any point on the cell edges, the received signal power averaged over the
fading from any one of the closest two or three BSs is a constant P0.

and independent (small-scale) Rayleigh fading with mean 1.

Without loss of generality, in our model, we assume P = 1.

Due to the factors such as terrain contours, environment

(urban or rural, vegetation and foliage), propagation medium,

etc., which influence the path loss of a signal, the cell shape in

real networks and in our model is not hexagonal but irregular.

From a global perspective, the BSs appear to be deployed

randomly and thus may be modeled as a homogenous Poisson

point process (PPP) or some non-Poisson point process, such

as the Ginibre process. In the rest of the paper, we assume

that the BSs follows a homogeneous PPP with intensity λ.

The path loss in our model is not modeled as the con-

ventional one, i.e., a power law path loss model with a

fixed path loss exponent. Instead, we consider the power law

path loss model from x to the origin o as ℓ(x) = ‖x‖−α,

where α is variable. The path loss exponent α is affected

by the aforementioned factors and some other factors such

as refraction, diffraction, reflection and absorption. Therefore,

it is α that determines the shape of a cell. For simplicity, we

assume in a cell Ci, the path loss exponent is a function of

the direction ω from the BS, denoted by αi(ω). We call this

path loss exponent local path loss exponent.

III. POISSON NETWORKS AND VORONOI TESSELLATIONS

The BS placement and the cell edges are a function of

the propagation environment. Assuming that the resulting

deployment is a PPP, we can reverse engineer the local path

loss exponents α if the cell edges are known. We assume

the cells correspond to the Poisson-Voronoi tessellation, which

means that the serving BS of a mobile user is the one closest

to the user. An illustration of our system model is shown in

Fig. 1. Given a specific deployment of BSs on the plane, the

cell edges are known from the Voronoi tessellation, and αi(ω)
in each cell Ci can then be calculated.

In this section, we mainly analyze the coverage probability,

defined as the CCDF of the signal-to-interference-plus-noise

ratio (SINR), i.e., Pc(θ) , P(SINR > θ). We consider a

typical user at the origin o, as is shown in Fig. 1, and denote

the cell that contains o as C0 and its size as S0.

The interference to the typical user is the accumulated signal

power from all BSs other than the serving BS. Analyzing the

interference is difficult for two reasons:

1) In the Poisson-Voronoi tessellation, conditioned on the

Voronoi cell C0 containing o, the locations of the inter-

fering BSs in the adjacent Voronoi cells are determined,

which means the received signal power is correlated with

the interference. But such correlation is not necessarily

difficult to deal with since we know we can handle it

with the standard path loss model. It is only together

with the dependent propagation model that this becomes

difficult. To tackle the problem, in the rest of this paper,

we approximate irregular cell shapes as disks1 of the

same cell size and we make assumptions that the serving

BS at x0 is still the closest BS to the origin (regardless

of the shape of the cell in the approximation we have

made—”disk”) and the interfering BSs follow a PPP

with intensity λ outside the disk b(o, ‖x0‖).
2) In the Poisson-Voronoi tessellation, it is hard to ana-

lyze the path loss that the interfering signal from an

interfering BS experiences. The path loss depends on

the path the signal traverses, and the local path loss

exponents vary from cell to cell and also depend on the

direction, which makes an exact calculation of the path

loss intractable. To simplify the analysis, we assume that

all interfering signals experience a path loss with a fixed

path loss exponent ᾱ.

A. Cell Shape: Irregular Shape and Disk

Consider the Voronoi cell Ci and assume the BS of Ci is

at the origin, as is shown in Fig. 2. Bi is disk First, we make

some comparisons between the actual shape of Ci and the disk

Bi with the same size.

1) Distribution of the Desired Signal Power Averaged over

the Fading: For a mobile user at x in Ci, the received signal

power averaged over the fading, denoted as Pr(x), is expressed

as Pr(x) = ‖x‖−αi(∠x), which depends on the distance to the

origin ‖x‖ and the corresponding local path loss exponent

αi(∠x), where ∠x the angle from the serving BS to x.

For a mobile user who is uniformly distributed in the cell,

the cumulative distribution function (CDF) of the desired

signal power P̂r averaged over the fading is denoted by

F
P̂r
(y) = P(P̂r < y), where y ≥ P0. In the rest of

this subsection, we compare the CCDF of the desired signal

power averaged over the fading in the Voronoi cell Ci of size

Si = S > 0 with that in Bi.

As is illustrated in Fig. 2, denote by r(ω) the distance from

the BS to its Voronoi cell edge with angle ω. It follows that

S = 1
2

∫ 2π

0
(r(ω)2)dw. Since r(ω)−αi(ω) = P0, we have

1In [7], it has been proved that asymptotically, large cells are indeed disks.
So the disk assumption makes sense at least when cell size is large. In Section
IV, we will show by simulations that the approximation is good.
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Fig. 2. The Voronoi cell Ci of size Si = S and its corresponding disk Bi

of the same size. r(ω) is the distance from the BS to its cell edge with angle

ω. R =
√

S

π
is the radius of Bi.

αi(ω) = − lnP0

ln r(ω) . We have αi(ω) < 0 if r(ω) < 1, and

αi(ω) > 0 if r(ω) > 1. Therefore, for 1 ≥ y ≥ P0,

F c
Pr
(y) = P(Pr > y) = Ex∈Ci

[1(‖x‖−αi(∠x) > y)]

=
1

S

∫ 2π

0

∫ y
−

1
αi(ω)

0

1(r(ω) > 1)zdzdw

=
1

2S

∫ 2π

0

y
− 2

αi(ω) 1(r(ω) > 1)dw

=
1

2S

∫ 2π

0

(r(ω)2)
ln y

ln P0 1(r(ω) > 1)dw. (1)

In disk Bi of size S with radius R =
√

S
π

, to meet the

assumption of equal power at the cell edge, the local path

loss exponent α is the same everywhere in Bi, and we have

R−α = P0. So, α = − 2 lnP0

lnS−lnπ
.

For S > π, we have α > 0 and R > 1. The CCDF of

the desired signal power P̃r averaged over the fading in Bi,

denoted as F c

P̃r
, is

F c

P̃r
(y) = P(P̃r > y) = Ex∈b(o,R)[1(‖x‖−α > y)]

=
1

S

∫ 2π

0

∫ y
−

1
α

0

zdzdw

=
1

S
πy−

2
α =

π

S

(

S

π

)

ln y

lnP0

. (2)

Since 1 ≥ y ≥ P0, H(x) = x
ln y

lnP0 is a concave function for

x > 0. By Jensen’s inequality, we have

F c

P̂r
(y) =

π

S

1

2π

∫ 2π

0

(r(ω)2)
ln y

lnP0 1(r(ω) > 1)dw

≤ π

S

1

2π

∫ 2π

0

(r(ω)2)
ln y

lnP0 dw

≤ π

S

(

1

2π

∫ 2π

0

(r(ω)2)dw

)

ln y

lnP0

=
π

S

(

S

π

)

ln y

lnP0

= F c

P̃r
(y). (3)

According to (3), P̃r in Bi stochastically dominates P̂r in

Ci. In the rest of the paper, we approximate the cell shape with

a disk of the same size. In doing so, for cell size S > π, the

CCDF of the desired signal power averaged over the fading

becomes larger and thus, the average received signal power

Pr over the whole cell 1
|Ci|

∫

x∈Ci
Pr(x)dx becomes larger.

For S < π, we have α < 0, R < 1 and F c

P̃r
(y) =

Ex∈b(o,R)[1(‖x‖−α > y)] = 0. Thus, F c

P̂r
(y) ≥ F c

P̃r
(y). P̂r

in Ci stochastically dominates P̃r in Bi. When the intensity

of the PPP becomes small, the case of S < π can be ignored.

2) Distribution of the distance from a user to the BS: For a

user who is uniformly distributed in Ci, denote the CDF of the

distance from it to the BS d̂ as F
d̂
. For a user who is uniformly

distributed in the disk Bi with the same size as Ci, denote the

CDF of the distance from it to the BS d̃ as Fd̃. It is obvious

that Fd̃(x) ≥ F
d̂
(x), for all x ≥ 0. d̃ in Bi stochastically

dominates d̂ in Ci. Therefore, with the approximation, the

mean distance from a user to the BS becomes smaller.

B. Coverage Analysis

As is mentioned in Section III-A, we assume all Voronoi

cells can be treated as disks. In [8], it has been derived that the

normalized probability density function (PDF) of the Voronoi

cell sizes in the plane can be approximated as

fS̄(x) =
cc

Γ(c)
xc−1 exp(−cx), (4)

where c = 7
2 and S̄ = λS is the normalized cell size. (The

mean of Voronoi cell size S for any stationary point process

with intensity λ is 1
λ

.) Thus, the Voronoi cell size S for a

PPP with intensity λ follows the gamma distribution with

parameters c and 1
λc

, denoted as gamma(c, 1
λc
), and the PDF

of S is

fS(x) =
(λc)c

Γ(c)
xc−1 exp(−λcx). (5)

For the typical user at o with serving cell size S0, condi-

tioned on S0, the serving BS is uniformly distributed on the

disk B0 of size S0, and thus the CDF of the distance d from

the BS to the origin is F̂d(x) = π
S0
x2, for 0 ≤ x ≤

√

S0

π
.

Therefore, conditioning on the serving cell size S0 and the

serving BS at x0, which is subject to S0 > πx2
0, we have the

desired received power at the origin o

Pr = h0‖x0‖−α0 , (6)

where h0 is the fading parameter satisfying h0 ∼ Exp(1) and

α0 = − 2 lnP0

lnS0−lnπ
. The interference can be expressed as

Ix0 =
∑

x∈Φ\b(o,‖x0‖)

hx‖x‖−ᾱ, (7)



where {hx} are the i.i.d. fading parameters that follow Exp(1)
and are independent of h0. Assume the thermal noise is

additive and constant with power W . This gives the SINR

expression

SINR =
h0‖x0‖−α0

∑

x∈Φ\b(o,‖x0‖)
hx‖x‖−ᾱ +W

. (8)

In this section, for the interfering signal, we assume the

fixed path loss exponent ᾱ is the average of the local path

loss exponent (under the disk approximation) over the plane,

which is given as

ᾱ =

∫∞

0 αxxfS(x)dx
∫∞

0 xfS(x)dx
, (9)

where αx , − 2 lnP0

ln x−lnπ
. However, by the properties of the

logarithmic integral function, we have
∫ π

0 αxdx = −∞ and
∫ ζ

π
αxdx = +∞ for any π < ζ < ∞. To avoid considering

the singularity of αx, we choose a constant τ0 > π and define

ᾱ as

ᾱ =

∫∞

τ0
αxxfS(x)dx +

∫ τ0

0
ατ0xfS(x)dx

∫∞

0 xfS(x)dx

=

∫ ∞

0

−2 lnP0

ln(max{x, τ0})− lnπ

(λc)c+1

Γ(c+ 1)
xc exp(−λcx)dx,

(10)

where ατ0 , − 2 lnP0

ln τ0−lnπ
. In the rest of the paper, we set

τ0 = 4. The coverage probability is given in the following

theorem.

Theorem 1. In the JSP model consisting of disk-shaped cells

whose sizes follow gamma(c, 1
λc
), the coverage probability is

Pc(θ) =

∫ ∞

0

2π

υ

∫

√
υ
π

0

exp

(

− yαυθW − 2πλ

·
∫ ∞

y

(

1− 1

1 + yαυθz−ᾱ

)

zdz

)

ydyfS0(υ)dυ, (11)

where αx , − 2 lnP0

ln x−lnπ
, fS0(x) = (λc)c+1

Γ(c+1) x
c exp(−λcx) and

ᾱ is expressed in (10).

Proof: Let us first derive the CDF FS0(x) of the size S0

of the cell that contains o. Since the probability of o falling

into a cell with size smaller than x is equal to the area ratio of

all cells with size smaller than x to the entire plane, we have

FS0(x) = P(S0 < x) =

∫ x

0 z (λc)c

Γ(c) z
c−1 exp(−λcz)dz

∫∞

0
z (λc)c

Γ(c) z
c−1 exp(−λcz)dz

= λ

∫ x

0

(λc)c

Γ(c)
zc exp(−λcz)dz. (12)

(12) is shown in a more general context in [9]. The PDF

of S0 is thus fS0(x) = (λc)c+1

Γ(c+1) x
c exp(−λcx). So, S0 ∼

gamma(c+ 1, 1
λc
).

The coverage probability can be expressed as

Pc(θ) = P(SINR > θ)

=

∫ ∞

0

P(SINR > θ | S0 = v)fS0(v)dv. (13)

Conditioning on S0 = v, we have the coverage probability

in the following form.

P(SINR > θ | S0 = v) = Ex0P

(

h0‖x0‖−αv

Ix0 +W
> θ | x0

)

= Ex0EIx0

(

exp(−‖x0‖αvθ(Ix0 +W ))
)

=

∫

√
v
π

0

exp(−yαvθW )EIy

(

exp(−yαvθIy)
)

f̂d(y)dy, (14)

where f̂d(y) = 2π
S0

y, for 0 ≤ y ≤
√

S0

π
is the PDF of the

distance d from the serving BS to the origin, αx , − 2 lnP0

ln x−lnπ

and Iy =
∑

x∈Φ\b(o,y) hx‖x‖−ᾱ. Since the Laplace transform

of Iy is

LIy (s) = EIy (exp(−sIy))

= E

(

exp
(

− s
∑

x∈Φ\b(o,y)

hx‖x‖−ᾱ
)

)

= exp

(

− 2πλ

∫ ∞

y

(

1− 1

1 + sz−ᾱ

)

zdz

)

, (15)

combining (14) and (15) yields that

P(SINR > θ | S0 = v)

=
2π

v

∫

√
v
π

0

exp

(

− yαvθW

− 2πλ

∫ ∞

y

(

1− 1

1 + yαvθz−ᾱ

)

zdz

)

ydy. (16)

Combining (13) and (16), we obtain (11).

IV. SIMULATIONS

We have analyzed the JSP model in Poisson networks by

approximating irregular cell shapes as disks. In this section, we

first investigate whether such approximation has good accuracy

by comparing the approximation results with the simulation

results of the JSP model with irregular cell shapes. Then, the

distribution of the local path loss exponent is investigated.

Finally, we make a comparison between our JSP model and

the conventional models, where the path loss exponent is a

constant and the desired received signal power averaged over

the fading at cell edges is not a constant [1], [3].

As is discussed in Section III-A, for any user at x in the

Voronoi cell Ci in the JSP model with irregular cell shapes,

the local path loss exponent αi(∠x) for the desired received

signal is determined by the angle from the serving BS to x
and the cell shape, i.e. αi(∠x) = − lnP0

ln r(∠x) . For all interfering

signals from other BSs, we assume the path loss exponent is

constant and given in (10).

The simulations are performed on a 4000 × 4000 square.

We take, unless otherwise specified, the intensity of the PPP

λ = 3.5 × 10−5, which is reasonable if the distance unit is

meter, since it is close to the density of BSs in one typical

urban region in the UK (see [4] for details). We set P0 =
1×10−8 unless otherwise specified. If the power unit is Watt,
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Fig. 3. The coverage probability Pc(θ) vs. θ for the JSP model with irregular
cell shapes and disk approximation of the cell shape in three parameter setting
cases. Case 1: λ = 3.5 × 10−5, P0 = 1 × 10−8, ᾱ = 4.0; Case 2: λ =
3.5 × 10−5, P0 = 1 × 10−7, ᾱ = 3.5; Case 3: λ = 1 × 10−4, P0 =
1× 10−8, ᾱ = 4.5.

we have P = 30 dBm and P0 = −50 dBm, hence the signal

power decay is reasonable. By (10) with τ0 = 4, we have

ᾱ ≈ 4.0. In simulations, we only consider the interference-

limited networks, i.e., the noise power is assumed to be 0.

A. Cell Shape: Irregular Shape vs. Disk

Fig. 3 compares the coverage probability for the JSP model

with irregular cell shapes and disk approximation of the cell

shape given different values of (λ, P0), where ᾱ is given

in (10). The disk approximation of the cell shape is quite

accurate, especially in the high-reliability regime, i.e., when θ
is small, for all values of (λ, P0) that we choose. Consider the

parameter setting Case 1 with (λ, P0) = (3.5×10−5, 1×10−8)
as a reference. Case 3 with (λ, P0) = (1 × 10−4, 1 × 10−8)
has better coverage probability, while Case 2 with (λ, P0) =
(3.5 × 10−5, 1 × 10−7) has worse coverage probability. One

dominating reason is the difference of ᾱ. For example, com-

pared to Case 1, Case 2 has a larger P0 and a larger desired

received signal power averaged over the fading. Case 2 should

have a better coverage than Case 1, if the interference levels

(indicated by ᾱ) were the same. But in fact, the interference

in Case 2 is much higher and Case 2 has a worse coverage,

as is shown in Fig. 3, which implies that ᾱ is a dominating

factor.

B. Distribution of the Local Path Loss Exponent

In Fig. 4, the empirical PDF of the local path loss ex-

ponent for the desired received signal the JSP model with

irregular cell shapes is drawn. We choose the known prob-

ability distributions—the gamma distribution and the inverse

gamma distribution and use the maximum likelihood estima-

tion (MLE) method to approximate the empirical PDF. For

the gamma distribution, the PDF is expressed as fgamma(x) =
xk−1 exp(−x/a)/(akΓ(k)), the mean is ka and the variance is

ka2. For the inverse gamma distribution, the PDF is expressed
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Gamma, k = 124.90, a = 0.03
Inverse Gamma, κ = 134.8, a = 520.1

Fig. 4. Empirical PDF of the local path loss exponent for the desired
received signal and the fits of the gamma distribution and the inverse gamma
distribution (λ = 3.5 × 10−5 , P0 = 1× 10−8 and ᾱ = 4.0). The average
of the empirical local path loss exponents is 3.89.
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Fig. 5. Comparison between the JSP models with irregular cell shapes
((P0, λ, ᾱ) = (1×10−8, 3.5×10−5, 4.0), (1.24×10−8, 3.5×10−5, 3.95))
and conventional models—the conventional PPP model and the conventional
triangular lattice model (λ = 3.5× 10−5 and α = 4.0). For the JSP model
with fixed ᾱ = 4 (the dashed line), P0 = 1.24 × 10−8, λ = 3.5 × 10−5

and ᾱ is not given in (10), but is a constant 4.

as figamma(x) = aκ−1x−κ−1 exp(−a/x)/Γ(κ), the mean is

a/(κ−1) and the variance is a2/((κ−1)2(κ−2)). Fig. 4 shows

that both fits provide good matches with the inverse gamma

distribution fit slightly better than the gamma distribution fit.

We observe that most empirical local path loss exponents falls

in the range [3.5, 4.5]; outside the range, according to the

fitting results, the PDF decays fast.

C. JSP Model and Conventional Model

Since the JSP model is brand new, it is crucial to compare

our model with the conventional model to see how different

our model performs. We use the simulation result of the JSP

model with irregular shapes to do the comparison, not the

approximation result (i.e., the JSP model with disk approxima-



tion of the cell), although our approximation provides accurate

coverage probability in the high-reliability regime. Consider

the JSP model with irregular cell shapes (λ = 3.5 × 10−5,

P0 = 1 × 10−8 and by (10), ᾱ = 4.0). We assume a path

loss exponent α = 4 and the same intensity λ = 3.5 × 10−5

for the conventional model. Fig. 5 compares the JSP model

with irregular cell shapes and two conventional models—

the conventional PPP model and the conventional triangular

lattice model. Note that in the conventional PPP model [1],

Pc(θ) = (1 +
√
θ arctan(

√
θ))−1. It has been shown that in

conventional models, the coverage curve of a general point

process is quite accurately approximated by a horizontal shift

(gain) of the curve of the PPP [3], [6]. The triangular lattice

has the largest gain of 3.4 dB.

We observe that the coverage probability of the JSP model

lies between that of the two conventional models and is close

to that of the conventional triangular lattice model. The actual

network perceived by the typical user is approximately a

conventional triangular lattice network. The small gap (roughly

1 dB horizontal difference) between the JSP model and the

conventional lattice model mainly results from the fact that

the received signal powers averaged over the fading at the cell

edges are not equal for the two models. If we approximate

the hexagonal cell shape as a disk, we can obtain the received

power at cell edges, which is 1.24 × 10−8 and is larger than

1× 10−8.

Consider the JSP model with λ = 3.5 × 10−5 and P0 =
1.24 × 10−8. By (10), ᾱ = 3.95. We observe in Fig. 5 that

this JSP model has the same performance as the JSP model

with λ = 3.5×10−5 and P0 = 1×10−8. There is a roughly 1

dB horizontal gap between the JSP model and the conventional

lattice model. It is mainly because the interference level in the

JSP model is higher than that in the conventional lattice model,

since ᾱ < 4.0.

To investigate how much impact the path loss exponent ᾱ
for the interference has on the coverage probability in the JSP

model, we here assume ᾱ is not given in (10), but is a constant

4.0 for the JSP model with λ = 3.5× 10−5 and P0 = 1.24×
10−8. As is shown in Fig. 5, the new case nearly overlaps with

that of the conventional lattice model. Therefore, the difference

in ᾱ is the main reason of the 1 dB gap between the JSP model

and the conventional lattice model.

V. CONCLUSIONS

In this paper, we argue that a new class of models is

needed—the joint spatial and propagation models, where BSs

are deployed to make all users at cell edges achieve a minimum

target signal power level from the serving BS. In other words,

the BSs are deployed “optimally” given the surrounding signal

propagation conditions. We proposed an instance of such a

JSP model, where the target signal power on the cell edges is

achieved using a variable path loss exponent. Then, for net-

works where the BSs form a homogeneous PPP, we obtained

the expressions of the coverage probability by approximating

the irregular Voronoi cell shapes as disks of the same cell

size. Simulation results showed that the approximation is quite

accurate.

It is insightful to contrast our results with those in [5],

where it is proved that with increasing shadowing variance,

the received powers at the origin for all motion invariant

point processes and lattices converge weakly to those of a

PPP, which means that the actual network is perceived by a

typical user as an equivalent Poisson point process distributed

network, provided shadowing is strong enough.

Our results show that the JSP model exhibits a coverage

performance that is very similar to that of a triangular lattice.

Hence we come to the opposite conclusion of [5], which

stated that wireless networks appear Poissonian due to strong

shadowing. Here we have demonstrated that Poisson networks

appear like lattices due to dependence between propagation

and BS placement. This shows that even though BSs may

geographically form a PPP, the resulting performance is not

as bad as previously assumed if the dependence between cell

sizes and propagation conditions is accounted for.
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