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Abstract—The crushing demands for mobile data traffic drive
the current cellular networks to become more heterogeneous,
making the signal-to-interference ratio (SIR) distribution more
difficult to analyze. In this paper we propose a simple approxi-
mative approach to the SIR distribution of heterogeneous cellular
networks (HCNs) based on the ASAPPP method which stands for
“approximate SIR analysis based on the Poisson point process”
and the MISR (mean interference-to-signal ratio)-based gain for
each individual tier of the HCN. The results demonstrate that
this approach gives a tight approximation and asymptotically a
lower bound for the coverage probability.

I. INTRODUCTION

A. Motivation

Heterogeneous cellular networks (HCNs) have been widely
regarded as a solution to address the challenge of the explosive
mobile date traffic growth [1]. As one of the most important
and general metrics, it is important to analyze the signal-
to-interference ratio (SIR) distribution in the interference-
limited HCNs to further obtain performance metrics such as
coverage probability, capacity and throughput. The current
theoretic analysis on the SIR distribution mostly focuses on the
models based on multi-tier homogeneous independent Poisson
point processes (PPPs) [2]. However, for general non-Poisson
networks, such analysis is significantly more difficult than that
of PPP networks and can be obtained merely by large-scale
complicated simulations or at best be expressed using combi-
nations of infinite sums and integrals. Hence it is necessary
to explore techniques that provide good approximations of the
SIR distribution for general HCN models.

B. Related Work

The homogeneous independent PPP (HIP1) model usually
gives us highly tractable results for HCNs [2–5] but does not
capture the spatial dependence between base stations (BSs).
However, for non-Poisson deployments, exact results of the
SIR distribution are hard to derive or, even though they could

1A model whose tiers are independent Poisson point processes is called
HIP model. Its SIR distribution is equivalent to that of the single-tier PPP
model when the power path loss law with Rayleigh fading and strongest base
station association are adopted [3].

be derived, the resulting expressions are very complex to
compute [6–8]. As a result, it is almost impossible to figure out
how the network performance is affected by the parameters,
such as the density, transmit power, etc. In [9], the authors
provide the Padé approximation for the coverage probability
of a cellular network model where the BSs form a β-Ginibre
point process (β-GPP), but the results show that the Padé
approximation becomes very inaccurate as the SIR threshold
increases. In addition, since the Maclaurin coefficient compu-
tation in the approximation involves multiple-level and infinite
integrals, sums and products, the numerical computation of
the coverage probability is still complex and time-consuming.
Moreover, the Padé approximation can be expected to be much
more complex when applied in the heterogeneous scenarios
due to the calculation of the Maclaurin coefficients. Fortu-
nately, as shown in [3, 10], the coverage probability Pc(θ) for
the single-tier network modeled by different point processes
can be tightly approximated by merely scaling the threshold
θ to θ/G, i.e., Pc(θ) ≈ PPPP

c (θ/G), where PPPP
c (θ) is the

coverage probability of PPP networks and G can be quantified
based on the mean interference-to-signal ratio (MISR) and
is called MISR-based gain. We show that the MISR-based
method can be applied to a general HCN, which is modeled
by arbitrary (but stationary and independent) point processes.

C. Contributions

The main objective of this paper is to present an approx-
imative approach that yields highly tractable results for the
SIR distribution in general HCNs. We extend the ASAPPP-
based approximation [11], which stands for “approximate
SIR analysis based on the PPP”, to general HCNs using
the MISR-based gain for each individual tier. Our numerical
results demonstrate that the proposed method is an excellent
approximation to the SIR distribution in general HCNs.

II. SYSTEM MODEL

We first consider a coverage-oriented heterogeneous cellular
network (HCN) model comprising two types of nodes, i.e.,
the macro-BSs (MBSs) and the pico-BSs (PBSs), where the



locations of the MBSs are modeled as a stationary point
process Φm with density λm and the locations of the PBSs are
modeled as an another independent stationary point process Φp

with density λp. We assume that each user is associated with
the BS that offers the strongest average received power. Due
to the stationarity of both Φm and Φp, we consider the typical
user located at the origin. Thus, the SIR is expressed as

SIR ,
S

I
=

µx0
`(|x0|)h0∑

x∈Φm
⋃

Φp\{x0}
µx`(|x|)hx

, (1)

where x0 denotes the location of the serving BS of the typical
user and µx denotes the transmit power of node x: if x ∈
Φm, µx = µm; otherwise, µx = µp. We assume a power
path loss law `(r) = r−α with a path loss exponent α and
Rayleigh fading with unit mean, E(h) = 1. Then, the coverage
probability is given by

Pc(θ) = P(SIR > θ)

= P(SIR > θ, x0 ∈ Φm) + P(SIR > θ, x0 ∈ Φp),(2)

where θ is the SIR threshold. In Section V, the two-tier model
will be extended to a K-tier model.

III. THE ASAPPP-BASED APPROACH

The approach used in this paper is based on the ASAPPP
method [11], which stands for “approximate SIR analysis
based on the PPP” and can also be read as “as a PPP”,
indicating that the network is first treated as if it forms
a PPP and then a shift is applied to the SIR distribution.
Consequently, the SIR distribution of non-Poisson networks
(NPNs) can be accurately approximated by that of a PPP
network through scaling the threshold θ with the MISR-based
gain G, i.e., PNPN

c (θ) ≈ PPPP
c (θ/G), and the approximation

is asymptotically exact as θ → 0. It is shown in [3] that the
MISR-based gain G for a single-tier network Φ is closely
related to the corresponding MISR, defined as

G ,
MISRPPP

MISRΦ
, (3)

and the MISR is the mean of interference-to-(average)-signal
ratio, defined by

MISR , E
{
IΦ

S

}
, (4)

where S is the desired signal power averaged over the fading
and IΦ represents the sum power of all interferers from the
network Φ. The MISR for PPP networks is MISRPPP =
2/(α−2), which also holds for the HIP model with an arbitrary
number of tiers, densities and transmit powers [3].

The MISR-based gain for HCNs is different for different
types of point processes and density and transmit power ratios.
We investigate how to extend the ASAPPP method to the
general HCNs upon the MISR-based gains of the individual
tiers constituting the HCNs. Based on the aforementioned
discussions, when a user accesses a BS from a non-Poisson
tier, this tier is replaced by a PPP, and the corresponding

threshold θ is shifted to θ/G. The interference from the other
tier is assumed to be approximated by that from another PPP
network with the same density, which is another instance of “as
a PPP”. Approximating a repulsive point process2 with a PPP
yields an interference power that stochastically dominates the
actual interference power. Consequently, the resulting coverage
probability is a lower bound to the exact coverage probability,
and it turns out to be tight from our numerical results.

IV. TWO-TIER HETEROGENEOUS CELLULAR NETWORKS

A. Main Result

We first focus on two-tier HCNs and assume that the MISR-
based gain for the single-tier network Φm is denoted by Gm

and the one for Φp is Gp. Let δ , 2/α, ω =
λp

λm

(
µp

µm

)δ
and

T (α, θ) = 1 + θδ
∫∞
θ−δ

1
1+tα/2

dt, which can be expressed in
terms of the Gaussian hypergeometric function 2F1 as [12]

T (α, θ) = 2F1(1,−δ, 1− δ,−θ). (5)

The following theorem gives an accurate approximation and
asymptotic bound on the coverage probability.

Theorem 1. Let

P̂c(θ) ,
1

T
(
α, θ

Gm

)
+ ωT (α, θ)

+
1

T
(
α, θ

Gp

)
+ 1
ωT (α, θ)

. (6)

For two-tier HCNs where the typical user is served by the
BS with the strongest average received power, the coverage
probability Pc(θ) is approximated by

Pc(θ) ≈ P̂c(θ). (7)

Moreover,

Pc(θ) & P̂c(θ), (8)

where ’&’ stands for an asymptotic lower bound, i.e., ∃t > 0
s.t. Pc(θ) > P̂c(θ) ∀θ < t.

Proof: We first define the nearest-point operator

NP(Φ) , arg min{x ∈ Φ: |x|} (9)

and the reduced point process

Φ! , Φ \ {NP(Φ)}. (10)

When the user accesses an MBS, we have x0 = NP(Φm). Let
ω = (µp/µm)

1/α, A = {|y| ≥ ω|x0|}, and we have

P(SIR > θ, x0 ∈ Φm)

= E

exp

−θ
∑

x∈Φ!
m

µm`(|x|)hx +
∑
y∈Φp

µp`(|y|)hy

µm`(|x0|)

1x0∈Φm


=E

 ∏
x∈Φ!

m

(
1+

θ`(|x|)
`(|x0|)

)−1∏
y∈Φp

(
1+

θµp`(|y|)
µm`(|x0|)

)−1

1A


2A point process whose pair correlation function is at most 1



(a)
≈E

 ∏
x∈Φ!PPP

m

(
1+

θ`(|x|)
Gm`(|x0|)

)−1∏
y∈Φp

(
1+

θµp`(|y|)
µm`(|x0|)

)−1

1A


(b)

&E

 ∏
x∈Φ!PPP

m

(
1+

θ`(|x|)
Gm`(|x0|)

)−1∏
y∈ΦPPP

p

(
1+

θµp`(|y|)
µm`(|x0|)

)−1

1A


(c)
=

∞∫
0

fm(r)exp

−λm

∞∫
r

2πtdt

1+Gmtα

θrα

−πλp

r2ω2+

∞∫
rω

2tdt

1+ µmtα

θµprα

dr

=

∫ ∞
0

exp (−rT (α, θ/Gm)− rωT (α, θ)) dr

=
1

T (α, θ/Gm) + ωT (α, θ)
, (11)

where fm(r) = 2λmπre
−λmπr

2

is the distribution of
|NP(ΦPPP

m )|. Step (a) uses the ASAPPP approximation of Φm

by shifting θ to θ/Gm and replacing Φm by a PPP. In step (b)
the interference from Φp is upper bounded by that of a PPP,
which provides a lower bound for the coverage probability.
Since ASAPPP is asymptotically exact and accurate for a large
range of θ, the approximation in step (a) is asymptotically
exact and step (b) gives an asymptotic lower bound and
provides an approximation for the coverage probability. The
probability generating functional (PGFL) of the PPP [13] is
used in step (c).

When the user accesses a PBS, let B = {|x| ≥ |x0|/ω},
and we have

P(SIR > θ, x0 ∈ Φp)

& E

 ∏
x∈ΦPPP

m

(
1+

θµm`(|x|)
µp`(|x0|)

)−1

1B
∏

y∈Φ!PPP
p

(
1+

θ`(|y|)
Gp`(|x0|)

)−1


=
1

T (α, θ/Gp) + 1
ωT (α, θ)

. (12)

By substituting (11) and (12) into (2), we obtain the result.
When the ASAPPP-based method is applied to two-tier HIP

networks, (7) reduces to Pc(θ) ≈ 1/T (α, θ), which is the exact
result for the coverage probability of two-tier HIP networks
and consistent with Eq. (16) in [4]. In the following, we divide
this highly general model into two types, where for the first
one, one tier is a non-Poisson (NP) network and the other is
a PPP network; while for the second one, both tiers are NP
networks.

B. NP/PPP Deployment

In this subsection, we consider two kinds of NP point
processes, namely, the β-GPP and the lattice model.

1) Special Case: β-GPP/PPP: The locations of the MBSs
Φm are modeled by a β-GPP, and the locations of the PBSs Φp

are modeled by a PPP. Through simulations, we find that the
MISR-based gain of the β-GPP is quite exactly G ≈ 1 +β/2,
irrespective of α, as can be seen in Figure 1. Therefore, the
coverage probability of the user served by a β-GPP network is
approximately the same as that of a user served by a Poisson
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Fig. 1. The MISR-based gain of β-GPP for different α.
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Fig. 2. The ASAPPP-based approximation of β-GPP network for different α
and β.

network and scaling the SIR threshold θ to θ/G, which is
verified in Figure 2.

Figure 3 and 4 show the coverage probability of the hetero-
geneous networks with different α and β when λm = λp =
10−5, µm = µp = 1. It is apparent that the approximation is
excellent over a wide range of θ in different cases, which
validates the effectiveness of the proposed ASAPPP-based
method. The tiny gap between each simulation and its corre-
sponding approximation can be attributed to the approximation
of the interference from the NP tier by that of a PPP, which
yields the lower bound to the coverage probability.

2) Special Case: Square lattice/PPP: The locations of the
MBSs Φm are modeled by a square lattice point process3 and
the locations of the PBSs Φp are modeled by a PPP. From
[3], the MISR of the square lattice is quite exactly half of

3This is a randomly translated square lattice and thus a stationary point
process.
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Fig. 3. The ASAPPP-based approximation of β-GPP/PPP networks for
different α with β = 1.

Fig. 4. The ASAPPP-based approximation of β-GPP/PPP networks for
β = 0.5.
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Fig. 5. The ASAPPP-based approximation of the square lattice network
with α = 4.

Fig. 6. The ASAPPP-based approximation of the square lattice/PPP
networks for different α.

that of the PPP, irrespective of the path loss exponent, i.e.,
Gsquare ≈ 2. Figure 5 gives the ASAPPP approximation for
the single-tier square lattice networks and the approximation is
tight for coverage probabilities above 70% and becomes less
but acceptably accurate as θ increases. Figure 6 shows the
coverage probability with different α when λm = λp = 10−5,
µm = µp = 1, which further corroborates the effectiveness
of the ASAPPP-based method. We can see the gap between
the simulation and its corresponding approximation is bigger
than in the β-GPP/PPP case. It can be explained as follows:
the less accurate ASAPPP-based approximation for the square
lattice deployment leads to a less accurate approximation in
this kind of HCNs.

C. NP/NP Deployment

In this subsection, we again consider two types of HCNs:
one is composed of two independent β-GPP deployments, and

the other consists of a square lattice and a β-GPP deployment.
1) Special Case: Two independent β-GPPs: The locations

of the MBSs Φm and the PBSs Φp are modeled by two inde-
pendent β-GPPs. Figure 7 shows the coverage probability with
different α when λm = λp = 10−5, µm = µp = 1, β = 1,
which again demonstrates the accuracy of the ASAPPP-based
approximation. We also see from (6) and (7) that the coverage
performance for the two-tier independent GPP networks is the
worst with ω = 1 (while better than that of PPP networks)
because in this case the independence between the two tiers
reduces the regularity property of a single GPP the most.
Conversely, as ω tends to zero or infinity, these HCNs tend to
single-tier GPP networks, since of the two tiers dominates.

2) Special Case: Square lattice/β-GPP: The locations of
the MBSs Φm are modeled by a square lattice point process
and the locations of the PBSs Φp are modeled by a β-GPP.
Figure 8 gives the coverage probability for different α when



−20 −15 −10 −5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ (dB)

C
o
v
e
ra

g
e
 P

ro
b

a
b
ili

ty

 

 

Sim. w. α=4

Sim. w. α=3.5

Sim. w. α=3

Sim. w. α=2.5

ASAPPP−based Approx.

−20 −15 −10 −5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ (dB)

C
o

v
e

ra
g

e
 P

ro
b

a
b

ili
ty

 

 

Sim. w. α=4

Sim. w. α=3.5

Sim. w. α=3

Sim. w. α=2.5

ASAPPP−based Approx.

Fig. 7. The ASAPPP-based approximation of the two-tier GPP networks
for different α.

Fig. 8. The ASAPPP-based approximation of square lattice/GPP net-
works for different α.

λm = λp = 10−5, µm = µp = 1 and β = 1. We can see that
similar to the case of square lattice/PPP, the ASAPPP-based
approximations are tight when θ tends to zero and become less
accurate as θ increases. The reason is the same, i.e., the less
accurate ASAPPP-based approximation for the square lattice
deployment leads to the less accurate approximation in the
HCNs.

V. K-TIER HETEROGENEOUS CELLULAR NETWORKS

Based on the ASAPPP method for two-tier HCNs, we now
extend the above analysis to general K-tier heterogeneous
networks where Φk, k = 1, 2, . . . ,K are the locations of the
BSs in the k-th tier and Gk is the corresponding MISR-based
gain. Let µk and λk be the transmit power and node density
of the k-th tier, respectively.

Theorem 2. Let

P̂c(θ) ,
∑
k∈[K]

1

T (α, θ/Gk)+
∑

i∈[K]!

λi
λk

( µiµk )δT (α, θ)
. (13)

For K-tier HCNs where the typical user is served by the
BS with the strongest average received power, the coverage
probability Pc(θ) is approximated by

Pc(θ) ≈ P̂c(θ). (14)

Moreover,

Pc(θ) & P̂c(θ). (15)

Proof: When a user is served by a BS in the k-th tier, we
have x0 = NP(Φk). Let Ai,k = {µi`(|x|) ≤ µk`(|x0|)} and
we have

P(SIR > θ, x0 ∈ Φk)

& E

⋂
i∈[K]!

∏
x∈ΦPPP

i

(
1+
θµi`(|x|)
µk`(|x0|)

)−1

1Ai,k
∏

y∈Φ!PPP
k

(
1+

θ`(|y|)
Gk`(|x0|)

)−1


=

∫ ∞
0

2πλkrexp

(
−πλkr2−2πλk

∫ ∞
r

tdt

1+Gktα

θrα

−
∑
i∈[K]!

πλi

(
r2

(
µi
µk

)δ
+

∫ ∞
r(
µi
µk

)
1
α

2tdt

1+ µktα

θµirα

)dr

=

∫ ∞
0

2πλkrexp

(
πλkr

2T (α, θ/Gk)

−
∑
i∈[K]!

πλir
2

(
µi
µk

)δ
T (α, θ)

)
dr

=

∫ ∞
0

exp
(
−rT (α, θ/Gk)−

∑
i∈[K]!

ρi,krT (α, θ)
)

dr

=
1

T (α, θ/Gk) +
∑

i∈[K]!
ρi,kT (α, θ)

, (16)

where ρi,k = λi
λk

( µiµk )δ , [K] = {1, 2, . . . ,K} and [K]! = [K]\
{k}. The result follows by summing over [K].

As for the two-tier networks, when the ASAPPP-based
method is applied to K-tier HIP networks, (14) reduces to the
exact result for K-tier HIP networks, i.e., Pc(θ) = 1/T (α, θ).
We give an example of K-tier heterogeneous networks with
K = 3 based on the β-GPP. Figure 9 shows the coverage
probability for three-tier HCNs with β1 = 1, β2 = 0.5 and
β3 = 0, i.e., GPP, 0.5-GPP and PPP for different α. It is shown
that ASAPPP can also approximate the simulation results in
the three-tier HCNs case, which demonstrates the effectiveness
of the proposed method for K-tier heterogeneous networks.

VI. CONCLUSIONS

In this paper, we provided a simple approximative approach
to the SIR analysis in general HCNs based on the MISR-
based gain for each individual tier. We first established the
ASAPPP-based approximation for general two-tier HCNs and
then extended it to K-tier HCNs. The results indicate that
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Fig. 9. The coverage probability of three-tier networks for different α with
λ1 = 10−5, µ1 = 1, λ2 = 2λ1, µ2 = µ1/5, λ3 = 5λ1 and µ3 = µ1/25.

the approximations are tight lower bounds to the coverage
probability over a wide range of SIR thresholds, thus providing
useful approximations for practical network models where an
exact calculation of the SIR distribution is unfeasible.
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