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Abstract—This paper provides an analysis to compare the
benefits of spatial and spatiotemporal cooperation between base
stations in the presence of interference in a heterogeneous cellular
network. The focus of the paper is the cooperative retransmission
scenario, where a set of randomly located base stations that are
selected based on their average received power levels, possibly
belonging to different network tiers, jointly transmit data in each
transmission. Using tools from stochastic geometry, an integral
expression for the network coverage probability is derived in the
scenario where the typical user receives one retransmission in
case of failure to decode the message in the first transmission.
An integral expression for the coverage probability is also
derived for the case when the typical user is able to perform
maximum ratio combining (MRC) of the received copies in
two transmissions. Numerical evaluation illustrates that temporal
transmission is often better than spatial cooperation in terms of
backhaul overhead and coverage probability. It also shows that
there are only small gains due to MRC compared to cooperative
retransmission without MRC.

I. INTRODUCTION

The problem of base station cooperation in wireless net-
works has recently gained more importance due to an increas-
ing demand for data traffic over cellular networks [1]. One
of the solutions to address this demand is the deployment
of heterogeneous networks—networks of small base stations
(BSs) along with the existing macro ones. However, deploying
more BSs introduces larger intercell interference, which may
offset the gain from smaller distances between the BSs and
the user. Recently, heterogeneous networks have been studied
by modeling different network tiers as a Poisson point process
(PPP) to use the tools from stochastic geometry to characterize
the outage/coverage probability of the network, e.g., [2]–
[4]. Under this model, it has been shown that the coverage
probability at the typical user with 0 dB threshold is just 56%
if the user connects only to the nearest BS [5]. Therefore, the
most recent discussions in the LTE cellular standard bodies
center around the proposals of coordinated multipoint (CoMP)
techniques [6], where BSs communicate with each other over
a backhaul link to limit the intercell interference and exploit
the benefits of distributed multiple antenna systems [7], hence
increasing the network throughput.
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BSs can cooperate with each other either in space (spatial
cooperation) or in space and time (spatiotemporal cooperation)
using CoMP techniques. If only one BS transmits in each time
slot, we call it temporal transmission. In spatial cooperation,
BSs cooperate proactively to send the message to the user
in a single transmission and hence, they always use extra
resources due to cooperation for all of the users even if it
is not needed. For example, cell-interior users may be able
to decode the message when served by only one BS, while
cell-edge users may always need cooperation [5]. Hence, BSs
end up wasting resources. In spatiotemporal cooperation, BSs
can adapt based on the response from the user in the first
transmission and use extra resources during retransmission,
i.e., BSs use extra resources only when it is needed. Hence,
spatiotemporal cooperation serves all of the users fairly. Also,
the user can employ MRC in case of retransmission to increase
its coverage probability. In this paper, we focus on cooperative

retransmission where we first transmit the message using a few
(or just one) cooperating BSs and if the user is not able to
decode the message, the message is retransmitted using more
cooperating BSs.

Spatial cooperation has been studied for different CoMP
techniques, see [5] and the references therein. In case of
spatiotemporal cooperation, it is important to account for
temporal correlation of the interference since the locations
of the BSs do not change over different transmissions. The
authors of [8]–[13] used tools from stochastic geometry to
better understand the interference correlation in a single-tier
wireless network. Similar tools were used in [14], [15] to
study the benefits of cooperative relaying in a multi-user
scenario. [16] studies the effect of interference correlation on
the performance of MRC in a SIMO setting.

This paper presents a tractable stochastic geometry–based
model for studying the interplay between spatial and spa-
tiotemporal BS cooperation in the downlink of a K-tier
heterogeneous network. While spatial BS cooperation may be
necessary to send time-sensitive information to the receiver,
spatiotemporal BS cooperation may use fewer BSs to serve the
user and hence reduce the backhaul overhead in distributing
the message to other BSs. Although this model can in principle
be used to analyze arbitrary retransmission schemes, the paper
focuses on the cooperative retransmission scenario. Fig. 1
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Fig. 1. Two-tier heterogeneous network with Voronoi cells of tier-1 where
dots and squares denote the base stations from tier-1 and tier-2, respectively,
and stars denote users, which are uniformly distributed. Here, the typical user
connects to two base stations with strongest average received power.

shows one possible realization of a two-tier network where
users are uniformly distributed and denoted by stars. Assuming
that cooperating BSs do not have channel state information
(CSI), and that a user connects to the set of cooperating BSs
that results in the maximum average received power in each
transmission, we derive closed integral-form expressions for
the coverage probability in two different cases:

• Case 1: The receiver is not capable of performing MRC
in the case of retransmission.

• Case 2: The receiver employs MRC in the case of
retransmission.

In both the cases, the coverage probability is independent
of the number of network tiers, network tier density, and
available power (see Theorems 1 and 2). The results are used
to quantify the benefits of cooperation and retransmission.
Numerical evaluation illustrates that temporal transmission is
often better than spatial cooperation in terms of backhaul
overhead and coverage probability. It also shows that there
are only small gains by employing MRC.

Throughout the paper, we denote by ∥u∥p the Lp-norm
of a vector u = (u1, u2, . . . , un) ∈ Rn, i.e., ∥u∥p =

(
∑n

i=1|ui|p)
1/p

, and we drop the subscript p in the special
case p = 2 of Euclidean distance. The function (z)+ equals z
for z > 0 and zero otherwise.

II. SYSTEM MODEL

A. Heterogeneous Network Model

We consider a heterogeneous wireless network composed of
K independent network tiers of BSs with different deployment
densities and transmit powers. It is assumed that the BSs be-
longing to the jth tier have transmit power Pj and are spatially
distributed according to a two-dimensional homogeneous PPP
Φj of density λj , j = 1, . . . ,K . We focus on the typical

user, that is without loss of generality assumed to be located
at the origin (0, 0) ∈ R2. A subset of the total ensemble of
BSs cooperate by jointly transmitting a message to the typical
user. If the user is not able to decode the message in the first
transmission, we assume that the negative acknowledgement
(NACK) is heard by all cooperating BSs and the message is
retransmitted. We denote by Ci ⊂

⋃K
j=1 Φj the set of the

cooperating BSs in the i-th transmission with |Ci| = ni. In this
paper, we only consider one retransmission, i.e., i ∈ {1, 2},
and we assume that the network operates in the interference-
limited regime, i.e., the background thermal noise power is
negligible compared to the total aggregate interference power.
The received channel output at the typical user in the i-th
transmission can be written as

∑

x∈Ci

P 1/2
ν(x)

∥x∥α/2
h(i)
x X +

∑

x∈Cc
i

P 1/2
ν(x)

∥x∥α/2
h(i)
x X(i)

x , i = 1, 2 (1)

where ν(x) is the index of the network tier to which BS

located at x ∈ R2 belongs, i.e., ν(x) = j iff x ∈ Φj ; h(i)
x

denotes the random fading coefficient between the BS located
at x and the user located at the origin; α > 2 denotes the
path loss exponent; X denotes the channel input symbol that
is sent by the cooperating BSs in Ci; Cc

i :=
⋃K

j=1 Φj \ Ci
denotes the BSs that are not in the set of cooperating BSs

during the i-th transmission; X(i)
x denotes the channel input

symbol sent by the BS located at x ∈ Cc
i . Throughout

the paper it is assumed that the fading coefficients h(i)
x are

i.i.d. ∼ CN (0, 1) independent of everything else (Rayleigh
fading) for each transmission, a legitimate assumption in a
rich scattering environment.

Assuming that the X(i)
x and X in (1) are independent zero-

mean random variables of unit variance, the resulting signal-
to-interference-ratio (SIR) at the typical user during the i-th
transmission due to (1) for a given realization of the PPPs and
the fading coefficients is given by

SIRi =
|
∑

x∈Ci
P 1/2
ν(x)∥x∥

−α/2 h(i)
x |2

∑K
j=1 PjI

(i)
j

, i = 1, 2 (2)

where we defined

I(i)j :=
∑

x∈Φj\Ci

|h(i)
x |2∥x∥−α (3)

as the aggregate interference power due to the non-cooperating
BSs in tier j during i-th transmission. Notice that the interfer-

ence terms in each transmission I(i)j are correlated since the
distances between the typical user and the interfering BSs do
not change in the time frame of a transmission which occurs
milliseconds apart from each other.

B. Set of cooperating BSs

The set of cooperating BSs in the i-th transmission Ci
consists of the ni BSs in

⋃K
j=1 Φj with the strongest received

power averaged over fading, as depicted in Fig. 1 and it is



given as

Ci = arg max
(x1,...,xni )⊂∪K

j=1Φj

ni
∑

k=1

Pν(xk)

∥xk∥α
. (4)

Notice that the BSs in Ci belong in general to different network
tiers. This setup is applicable to a heterogeneous wireless
network where users keep a list of the neighboring BSs with
the strongest received power to initiate handoff requests. If we
assume n1 ≤ n2, C1 ⊆ C2 since the distances between the BSs
and the typical user as well as the transmit powers of BSs do
not change in different transmissions.

C. Definition of coverage probability

Throughout the paper, we focus on the coverage probability
as the performance metric. Depending on whether the user
employs MRC or not, we consider two cases.

1) Case 1: Retransmission without MRC: In this case, the
coverage probability provided by the cooperative retransmis-
sion with n1 cooperating BSs in the first transmission and
n2 cooperating BSs in the second transmission, Pn1,n2 at a
receiver located at the origin with coverage threshold θ is
defined as

P(SIR1 > θ) + P(SIR2 > θ | SIR1 < θ) · P(SIR1 < θ)

! P
(1)
n1

(θ) + P
(2)
n2

(θ) · (1− P
(1)
n1

(θ)), (5)

where P
(1)
n1

(θ) denotes the probability that it is able to decode
the message successfully due to n1 cooperating BSs in the first
transmission for threshold θ; P(2)

n2
(θ) denotes the probability

that the typical user is able to decode the message successfully
due to retransmission by n2 cooperating BSs for the threshold
θ given that the first transmission was unsuccessful.

2) Case 2: Retransmission with MRC: In this case, the
receiver is able to perform MRC of two received copies of the
message in two transmissions. Similar to the analysis in [16],
we can get the combined SIR due to MRC as SIR1 + SIR2.
Hence for a given threshold θ, we can define the coverage
probability P

MRC
n1,n2

as

P(SIR1 > θ) + P(SIR1 + SIR2 > θ | SIR1 < θ) · P(SIR1 < θ)

= P(SIR1 > θ) + P(SIR1 + SIR2 > θ, SIR1 < θ). (6)

This method is called chase combining; it is one of the
methods of soft combining in hybrid automatic repeat request
(HARQ).

III. COVERAGE PROBABILITIES

In this section, we first derive a computable expression for
the coverage probability (5) at the typical user for the case
when the user does not employ MRC in Theorem 1. Second,
we derive the coverage probability for the case when the user
is capable of performing MRC in Theorem 2.

A. Case 1: Retransmission without MRC

We prove the following result for the case when receiver
does not employ MRC for two received copies of the message.

Theorem 1: Let the set Ci be defined as in (4). Then, the
coverage probability Pn1,n2 in (5) is

Pn1,n2 = g1(n1, θ) + g1(n2, θ)− g2(n1, n2, θ), (7)

where g1(n, θ) is given by

∫

0<u1<...
...<un<∞

exp

⎛

⎝−un

⎛

⎝1 + 2
F (∥ũn,n∥1/2α/2 θ

−1/α)

∥ũn,n∥α/2 θ−2/α

⎞

⎠

⎞

⎠ du;

with ũm,n :=
(

un
u1

, un
u2

. . . , un
um

)

and F (x) :=
∫∞
x

r
1+rαdr.

g2(n1, n2, θ) for n1 ≤ n2 is given by

∫

0<u1<...
...<un2<∞

exp

(

−2un2G

(

θ

∥ũn1,n2
∥α/2
α/2

, θ

∥ũn2,n2
∥α/2
α/2

))

eun2
∏n2

i=n1+1

(

1 + θ∥ũn1,i∥
−α/2
α/2

) du,

where G(x, y) :=
∫∞
1

(

1− 1
(1+xr−α)·(1+yr−α)

)

r dr which

can be expressed in terms of F (x) as

G(x, y) =

{

x1+2/αF (x−1/α)−y1+2/αF (y−1/α)
x−y ., x ̸= y;

(1 + 2/α)x2/αF (x−1/α) + x
α(1+x) , x = y.

(8)

Proof: See Appendix A.

The result in Theorem 1 is not limited to the case n1 ≤ n2.
The coverage probability for n1 > n2 can be obtained by
interchanging n1 and n2 in the above expression. The result in
Theorem 1 only depends on the number of cooperating BSs n1

and n2, the threshold θ, and the path loss exponent α. Hence,
we can draw similar conclusions on the fact that Equation (7)
is independent of the number of network tiers K , and their
respective power levels and deployment densities as in [5,
Theorem 1].

Notice that the expression of coverage probability in The-
orem 1 is a consequence of the inclusion-exclusion formula
in set theory applied to Pn1,n2 = P(

⋃2
i=1{SIRi > θ}) with

g1(ni, θ) = P(SIRi > θ) and g2(n1, n2, θ) = P(SIR1 >
θ, SIR2 > θ).

It should also be remarked that F (x) in (7) and (8) can not
be expressed in closed form in general. However, closed-form
expressions exist for specific values of α > 2. For example, it
can be easily verified that if α = 3, then

F (x) =
1

6
log

(

1 +
3x

1− x+ x2

)

+
1√
3
tan−1

( √
3

2x− 1

)

,

while for α = 4, F (x) = 1
2 tan

−1(x−2). Also, making use
of Theorem 1, it is possible to derive an expression for the
coverage probability in the case of no cooperation.



Corollary 1: In the special case n1 = n2 = 1, i.e., when
the typical user connects to a single BS and in case of failure
in the first transmission, the message is retransmitted by only
that BS, the coverage probability simplifies to

P1,1 =
2

1 + 2θ2/αF (θ−1/α)
− 1

1 + 2G(θ, θ)
. (9)

In the special case α = 4, (9) admits the closed form
expression

2

1 +
√
θ tan−1(

√
θ)

− 1

1 + 3
2

√
θ tan−1(

√
θ) + θ

2(1+θ)

.

Thus far, we have assumed the same SIR threshold for both
transmisions. But, it may be sensible to use different thresholds
in each transmission. For example, in speech compression,
we may send coarser content encoded at lower rate in the
retransmission to increase the reliability. If we consider the
thresholds θ1 for the first transmission and θ2 for the second
transmission, the coverage probability Pn1,n2 for Case 1 can
be generalized to

P(SIR1 > θ1) + P(SIR2 > θ2 | SIR1 < θ1) · P(SIR1 < θ1)

= P
(1)
n1

(θ1) + P
(2)
n2

(θ1, θ2) · (1 − P
(1)
n1

(θ1)). (10)

We prove the following result in Proposition 1.

Proposition 1: For different coverage thresholds θ1 and
θ2 for the first and the second transmission respectively, the
coverage probability Pn1,n2 in (10) is

g1(n1, θ1) + g1(n2, θ2)− g4(n1, n2, θ1, θ2), (11)

where g4(n1, n2, θ1, θ2) for n1 ≤ n2 is given by

∫

0<u1<...
...<un2<∞

exp

(

−2un2G

(

θ1
∥ũn1,n2

∥α/2
α/2

, θ2
∥ũn2,n2

∥α/2
α/2

))

eun2
∏n2

i=n1+1

(

1 + θ1∥ũn1,i∥
−α/2
α/2

) du,

The coverage probability for n1 > n2 can be obtained by
interchanging n1, n2, and θ1, θ2. Making use of Proposition 1,
we can also derive the coverage probability without retrans-
mission by letting θ1 → ∞ and substituting n2 = n. This
way, we recover the result in [5, Theorem 1]:

In the special case when the n BSs cooperate to send the
message to the typical receiver and there is no retransmission,
the coverage probability simplifies to

∫

0<u1<...
...<un<∞

exp

⎛

⎝−un

⎛

⎝1 + 2
F (∥ũ∥1/2α/2 θ

−1/α)

∥ũ∥α/2 θ−2/α

⎞

⎠

⎞

⎠ du.

(12)

B. Case 2: Retransmission with MRC

The following theorem addresses the case when the typical
user is able to perform MRC on the two received copies of
the desired message.

Theorem 2: Let the set Ci be defined as in (4). Then, the
coverage probability P

MRC
n1,n2

with n1 ≤ n2 in (6) is

g1(n1, θ) +

∞
∫

0

[

g3(n1, n2, z, (θ − z)+)− g3(n1, n2, z, θ)
]

dz,

(13)

where g3(n1, n2, z, a) is given by

∫

0<u1<...
...<un2<∞

2un2e
−un2H

(

z

∥ũn2,n2
∥α/2
α/2

, a

∥ũn1,n2
∥α/2
α/2

)

∥ũn2,n2
∥α/2α/2

∏n2

i=n1+1

(

1 + a

∥ũn1,i∥
α/2
α/2

)

× exp

⎛

⎝−2un2G

⎛

⎝

z

∥ũn2,n2
∥α/2α/2

,
a

∥ũn1,n2
∥α/2α/2

⎞

⎠

⎞

⎠du

with H(x, y) := ∂
∂xG(x, y) =

∫∞
1

r1−α

(1+xr−α)2·(1+yr−α)dr.

Proof: Due to the limited space, we only provide an
outline of the proof here. The first term in (6) equals g1(n1, θ)
from Theorem 1. To compute the second term in (6), we can
first condition on SIR2 and

⋃K
j=1 Φj . Following similar steps

as in the proof of Theorem 1 in Appendix A, we obtain the
coverage probability given SIR2 and

⋃K
j=1 Φj . Then, we can

calculate the probability distribution function (pdf) of SIR2

given
⋃K

j=1 Φj and take the expectation with respect to SIR2.
Finally, we take the expectation over the PPPs.

Again, similar to the result in Theorem 1, the coverage
probability is independent of the number of network tiers K
and their respective power levels and deployment densities.

Making use of Theorem 2, it is possible to derive the
expression of coverage probability for different cases of n1

and n2.

Corollary 2: In the special case when n1 = n2 = n, i.e.,
the number of cooperating BSs does not change between two
transmissions, the coverage probability with MRC simplifies
to

P
MRC
n,n =

∫ ∞

0
g3(n, n, z, (θ − z)+)dz. (14)

Using the fact that H(x, y) = ∂
∂xG(x, y) gives us g1(n, θ) =

∫∞
0 g3(n, n, z, θ)dz and reduces (13) into (14).

Corollary 3: In the special case when n1 = n2 = 1,
i.e., there is no cooperation between BSs during the two
transmissions, the coverage probability at the typical user with
MRC, PMRC

1,1 simplifies to

1

1 + 2θ2/αF (θ−1/α)
+

∫ θ

0

2H(z, θ− z)

(1 + 2G(z, θ − z))2
dz. (15)



In comparison to the case when there is no retransmission
in [5, Corollary 1], we can see that there is a gain in coverage
probability due to retransmission, given by the integral in the
above expression.

C. Numerical Evaluation

Here, we present numerical evaluations of the integral
expressions for the coverage probability derived in this paper.
We focus on the case of n1 = n2 with α = 4. Fig. 2
illustrates the effect of threshold θ on the coverage probability
and compares the coverage probabilities for Case 1 and 2 with
the case without retransmission as described in Corollary III-A
for n1 = n2 = 1 and 2. Using this figure, we can compare
the case when two BSs cooperate in the first transmission
and there is no retransmission (spatial cooperation) with the
case when one BS transmits the message and retransmits it
again in case of failure in the first transmission (temporal
transmission). In the first case, two resource blocks are used
while in the second case, the expected number of used resource
blocks is 1 + 1 · P(SIR1 < θ) = 2 − 1

1+
√
θ tan−1(

√
θ)

, which

is less than two resource blocks. Also, the second case with
MRC provides a higher coverage probability than the first case
upto the threshold of 5 dB and both the coverage probabilities
are comparable thereafter. Hence, temporal transmission can
provide a higher coverage probability than spatial coopera-
tion while also using fewer resource blocks on average and
eliminating the backhaul overhead in distributing the message
to the other BSs. Also, notice that the slope of the curve
for no retransmission with n = 2 cooperating BSs is less
than the slope of the curves for Case 1 and Case 2 with
n1 = n2 = 1, which suggests that we get diversity gain due
to retransmission similar to the result in [13, Proposition 3].
Therefore, temporal transmission is often better than spatial
cooperation. This figure also shows that Case 2 provides a
relative gain of 9% for n1 = n2 = 1 and 5% for n1 = n2 = 2
compared to Case 1 at threshold of 0 dB. It means that we do
not gain much by employing MRC.

IV. CONCLUSION

In this paper, we considered the problem of cooperative
retransmission in heterogeneous wireless networks. We de-
rived an integral expression for the coverage probability in
two cases based on whether the receiver can employ MRC
or not. The analysis presented in this paper can be used to
compare the benefits of spatial and spatiotemporal cooperation
and numerical results show that temporal transmission is often
better than spatial cooperation in terms of average number
of used resource blocks, backhaul overhead and coverage
probability.

APPENDIX A
PROOF OF THEOREM 1 AND PROPOSITION 1

For every i = 1, . . . ,K , let Ξi = {∥x∥α/Pi, x ∈ Φi}
denote the normalized path loss between each BS in Φi

and the typical user located at the origin. By the mapping
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Fig. 2. Coverage probabilities with and without retransmission us-
ing (7), (9), (14), (15) and (12) with α = 4.

theorem [17, Theorem 2.34], Ξi is a PPP with intensity

λi(x) = λi
2π
α P 2/α

i x2/α−1, x ∈ R+. From the independence
of the PPPs Φ1, · · · ,ΦK , it follows that Ξ1, · · · ,ΞK are
also independent and thus the process Ξ =

⋃K
i=1 Ξi is a

non-homogeneous PPP with density λ(x) =
∑K

i=1 λi(x).
Without loss of generality, suppose that the elements of Ξ
are indexed in increasing order, such that ∥x1∥α/Pν(x1) ≤
∥x2∥α/Pν(x2) ≤ ∥x3∥α/Pν(x3) ≤ · · · , and define γk =
∥xk∥α/Pν(xk) as the normalized path loss between the typical
user and the k-th BS in the ordered list.

The expression for P(1)
n1

(θ1) in (11) has been proved in [5,
Theorem 1] as g1(n1, θ1). Assuming n1 ≤ n2, the normal-
ized path loss of the cooperating BSs in C2 is given by

γ = {γ1, . . . , γn2}. Then, by defining g(i)k := |h(i)
xk |2 for

i = 1, 2, g =
(

g
(1),g(2)

)

, interference in the i-th transmission

as I(i) =
∑

k>ni
g(i)k γ−1

k , P(2)
n2

(θ1, θ2) can be written as:

P
(2)
n2

= P

(

SIR2 > θ2 | SIR1 < θ1
)

=
P

(

S2 > θ2I(2), S1 < θ1I(1)
)

1− P
(1)
n1

(θ1)
(16)

where we define Si =
∣

∣

∣

∑

k≤ni
γ−1/2
k h(i)

k

∣

∣

∣

2
. Using the fact

that h(1)
k and h(2)

k are mutually independent and the fact that
Si is exponentially distributed with mean

∑ni

k=1 γ
−1
k because

of the Rayleigh fading assumption, the numerator in the above
expression can be expressed as

Eγ,Ξ,g

[

exp

(

− θ2I(2)
∑

k≤n2
γ−1
k

)

·
(

1− exp

(

− θ1I(1)
∑

k≤n1
γ−1
k

))]

= Eγ,Ξ,g

[

exp

(

− θ2I(2)
∑

k≤n2
γ−1
k

)]



− Eγ,Ξ,g

[

exp

(

− θ2I(2)
∑

k≤n2
γ−1
k

− θ1I(1)
∑

k≤n1
γ−1
k

)]

. (17)

The first term in the above expression equals g1(n2, θ2)
defined in (7) as proved in [5, Theorem 1]. The second term
can be expressed as

Eγ EΞ,g

⎡

⎣e
−

θ2
∑

k>n2
g
(2)
k

γ−1
k

∑

k≤n2
γ−1
k

−
θ1
∑

k>n1
g
(1)
k

γ−1
k

∑

k≤n1
γ−1
k

∣

∣ γ1, . . . , γn2

⎤

⎦

=

∫

0<γ1<...
...<γn2<∞

EΞ,g

⎡

⎣e
−

θ2
∑

k>n2
g
(2)
k γ−1

k
∑

k≤n2
γ−1
k

−
θ1
∑

k>n1
g
(1)
k γ−1

k
∑

k≤n1
γ−1
k

∣

∣ γ

⎤

⎦×

fΓ(γ) dγ, (18)

where fΓ(γ) is the joint distribution of γ which can be
obtained by following the similar steps as in the derivation of
the joint distribution of the nearest points in a homogeneous
PPP [18]. It can be easily verified that for any 0 < γ1 < . . . <
γn2 < ∞, the joint distribution of γ is given by

fΓ(γ) = e−π
∑K

i=1 λiP
δ
i γ

δ
n2

n2
∏

i=1

⎛

⎝

K
∑

j=1

πλjδP
δ
j γ

δ−1
i

⎞

⎠ (19)

with δ = 2/α. Given γ, the expected value inside the integral
in (18) can be expressed as

EΞ,g

[

exp

(

−
θ1
∑n2

k=n1+1 g
(1)
k γ−1

k
∑

k≤n1
γ−1
k

)

×

exp

⎛

⎝−
∑

j>n2

(

g(2)j θ2
∑

k≤n2
γ−1
k

+
g(1)j θ1

∑

k≤n1
γ−1
k

)

γ−1
j

⎞

⎠

⎤

⎦

(a)
=

n2
∏

i=n1+1

(

1 +
θ1γ

−1
i

∑

k≤n1
γ−1
k

)−1

×

EΞ

⎡

⎣

∏

j>n2

(

1 +
θ2γ

−1
j

∑

k≤n2
γ−1
k

)−1

·
(

1 +
θ1γ

−1
j

∑

k≤n1
γ−1
k

)−1
⎤

⎦

(b)
=

n2
∏

i=n1+1

(

1 +
θ1γ

−1
i

∑

k≤n1
γ−1
k

)−1

×

e
−

∫ ∞

γn2

(

1−

(

1+
θ2x−1

∑

k≤n2
γ−1
k

)−1

·

(

1+
θ1x−1

∑

k≤n1
γ−1
k

)−1)

λ(x)dx

(c)
=

n2
∏

i=n1+1

(

1 +
θ1γ

−1
i

∑

k≤n1
γ−1
k

)−1

×

exp

(

−2π
K
∑

i=1

λiP
2/α
i γ2/α

n2
G

(

θ1γ−1
n2

∑n1

k=1 γ
−1
k

,
θ2γ−1

n2
∑n2

k=1 γ
−1
k

)

)

,

(20)

where (a) uses the fact that g(1)k and g(2)k are mutually
independent and exponentially distributed with unit mean; (b)
is due to the probability generating functional for a PPP [17,
Theorem 4.9]; (c) follows from the transformation x = γn2t

α

and the definition of G(x, y) in (7). Substituting (20) in (18)

and using the transformation ui = π
∑K

j=1 λjP
2/α
j γ2/α

i gives
us the second term in (17) as g4(n1, n2, θ1, θ2) defined in (11),
and we already know the value of the first term in (17).
Substituting (17) in (16), we have the value of P(2)

n and hence
we get the desired result in (11). Substituting θ1 = θ2 = θ
gives us the result in Theorem 1.
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