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Abstract—Motivated by the ongoing discussion on coordinated
multipoint in wireless cellular standard bodies, this paper con-
siders the problem of base station cooperation in the downlink
of heterogeneous cellular networks. The focus of the paper is
the joint transmission scenario, where an ideal backhaul network

allows a set of randomly located base stations, possibly belonging
to different network tiers, to jointly transmit data, so as to
mitigate intercell interference and hence improve coverage and
spectral efficiency. Using tools from stochastic geometry, an
exact integral expression for the network coverage probability is
derived in the scenario where a typical user can non-coherently
combine the received signal from a pool of base stations, that
are selected based on their average received power strengths or
distance from the receiver. In the special case where cooperation
is limited to two base stations, numerical evaluations illustrate
relative gains in coverage probability of up to about 30%
compared to the non-cooperative case.

I. INTRODUCTION

The wireless industry is currently facing an increasing

demand for data traffic over cellular networks, just as the per-

formance of modern point-to-point communication schemes

are fast approaching the fundamental information-theoretic

limits. Therefore, to address this increasing demand, one of

the solutions for increasing network coverage and capacity

is the deployment of heterogeneous networks—networks of

small base stations (BSs) along with the existing macro ones.

In order to address the additional intercell interference caused

by such deployments, the most recent discussions in the

LTE cellular standards bodies are around the proposals of

coordinated multipoint (CoMP) techniques [1], where BSs

communicate with each other over a backhaul link to limit

intercell interference and exploit the benefits of distributed

multiple antenna systems [2], hence increasing the network

throughput.

The concept of base station cooperation in wireless net-

works has been extensively studied in the past few decades.

In the information-theoretic literature, several studies in-

cluding [3]–[6] analyzed the advantages of cooperation

within the framework of the Wyner model [7] for downlink

communication—a widely used model to analyze the capacity

of cellular systems, which is also known to trade off simplicity
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Fig. 1. A heterogeneous network composed by three tier networks: a macro,
a femto, and a pico tier. Terminal node 1 is connected to the two BSs that
result in maximum received power (Case 1), while user 2 is connected to the
closest base station from each tier network (Case 2).

and analytic tractability at the expense of accuracy [8]. We

refer the reader to [9] for an overview on the information-

theoretic techniques to study multi-cell MIMO cooperation in

wireless networks. Another approach that has been recently

followed by several authors is to assume that the BSs are

randomly located, so that tools from stochastic geometry can

be used to characterize the signal-to-interference-plus-noise-

ratio (SINR) at a typical user and hence the outage/coverage

probability of a typical network deployment, see, e.g., [10]

and [11]. Following this approach, [12] characterized the

outage probability in a heterogeneous network without cooper-

ation; [13] studied the impact of backhaul delay in a wireless

network where CoMP takes place in the form of zero forcing

beamforming at the cooperating BSs; [14] also investigated the

role played by a non-ideal backhaul network and analyzed the

performance of a specific two-base-station cooperative scheme

based on rate-splitting, similar to the one proposed in [15]

for the multiple access channel with conferencing encoders;

finally, [16] analyzes a scheme where random clusters of BSs

cooperate by nulling the intercell interference.

This paper presents a tractable stochastic geometry–based

model for studying BS cooperation in downlink communi-

cation of heterogeneous networks. The model consists of K
independent tiers of randomly located BSs, where each tier



is characterized by a different density of BSs and available

power. Base stations within each network are assumed to

be spatially distributed according to a Poisson point process

(PPP). While this model can in principle be used to analyze

arbitrary cooperation schemes, the paper focuses on the joint

transmission scenario, where BSs belonging to different tiers

jointly transmit data to the same user in a synchronous manner,

as if they were forming a single distributed antenna system.

Assuming that a user connects to a set of cooperating BSs and

that the network operates in the interference-limited regime,

i.e., the background thermal noise power is negligible com-

pared to the aggregate interference power, we derive closed

integral-form expressions for the coverage probability in the

entire network in two different cases: (1) the cooperating BSs

are those that result in the maximum average received power

and (2) the cooperating BSs belong to different tiers and are

the closest to the user. See Fig. 1 for an illustration of the two

cases.

In both cases, the expressions derived for the coverage

probability illustrate the impact of the underlying network

parameters, such as the density of BSs, the available transmit

powers, and the fading coefficients, on the overall system

performance. An interesting observation is that in Case 1

the coverage probability does not depend on the number

of network tiers, nor on the network density and available

power (see Theorem 1). This means that the gains in coverage

provided by cooperation can also be achieved by a single ho-

mogeneous network, provided that an ideal backhaul network

allows cooperation among spatially distributed BSs and that

users can connect to the BSs that result in the highest received

power. On the contrary, in Case 2 the coverage probability does

depend on the parameters describing each network tier (see

Theorem 2) and tends to decrease as the density goes beyond

a critical value because of the net increase in interference in

the entire network (see, e.g., Fig. 4). The results obtained

are used to quantify the benefits of cooperation. Numerical

evaluation in the case where cooperation is limited to two

BSs illustrates gains in coverage probability of up to about

30% for both cooperative cases compared to non-cooperative

case (see Fig. 2).

This paper is organized as follows. Section II introduces

the system model. Section III presents the main results of the

paper, the coverage probabilities in the two cases described

above. Section IV includes numerical evaluations of the de-

rived expressions illustrating the gains of cooperation over the

non-cooperative case. Section V concludes the paper. Through-

out we denote by ‖u‖p the Lp-norm, p > 1, of a vector

u = (u1, u2, . . . , un) ∈ R
n, i.e., ‖u‖p = (

∑n
i=1|ui|p)1/p,

and we drop the subscript p in the special case p = 2 of

Euclidean distance.

II. SYSTEM MODEL

We consider a heterogeneous wireless network composed by

K independent network tiers of BSs with different deployment

densities and transmit powers. It is assumed that the BSs be-

longing to the ith tier have transmit power Pi and are spatially

distributed according to a two-dimensional homogeneous PPP

Φi of density λi, i = 1, . . . ,K . We focus on a typical user

located at origin (0, 0) ∈ R
2 and assume that a subset of

the total ensemble of BSs cooperate by jointly transmitting a

message to this tagged receiver. In the following, we denote

by C ⊂ ⋃K
i=1 Φi the set of locations of the cooperating BSs. In

this setup, the received channel output at the typical receiver

can be written as

∑

x∈C

P
1/2
ν(x)

‖x‖α/2 hx X +
∑

x∈Cc

P
1/2
ν(x)

‖x‖α/2 hx Xx + Z, (1)

where ν(x) returns the index of network tier to which BS

located at x ∈ R
2 belongs, i.e. ν(x) = i iff x ∈ Φi; hx

denotes the random fading coefficient between the BS located

at x and the user located at the origin; α > 2 denotes the path

loss exponent; X denotes the channel input symbol that is non-

coherently sent by the cooperating BSs; Cc :=
⋃K

i=1 Φi \ C
denotes the locations of the BSs that are not in the set of

cooperating BSs; Xx denotes the channel input symbol sent by

the BS located at x ∈ Cc; finally, Z ∼ CN (0, σ2) is a standard

additive circular complex white Gaussian random variable

modeling the background thermal noise at the typical receiver.

Throughout the paper it is assumed that the fading coefficients

{hx} are i.i.d. ∼ CN (0, 1) independent of everything else (i.e.,

Rayleigh fading assumption), a legitimate assumption in a rich

scattering environment.

Assuming that the channel inputs {Xx} and X in (1) are

independent zero-mean random variables of unit variance, the

SINR at the typical receiver for a given realization of the PPPs

and the fading coefficients is given by

SINR =
|∑x∈C P

1/2
ν(x)‖x‖−α/2 hx|2

σ2 +
∑

x∈Cc Pν(x)‖x‖−α |hx|2

If we further assume that the network operates in the

interference-limited regime, i.e., the background thermal noise

power σ2 is negligible compared to the total aggregate inter-

ference power, the resulting signal-to-interference-ratio (SIR),

obtained ignoring the noise term in the SINR expression is

given by

SIR =
|∑x∈C P

1/2
ν(x)‖x‖−α/2 hx|2
∑K

i=1 PiIi
,

where we defined

Ii :=
∑

x∈Φi\C

|hx|2‖x‖−α

as the aggregate interference power due to the non-cooperative

BSs in tier i.

The quantity of interest in this paper is the coverage

probability Pc at the typical receiver, i.e., the probability that

the SIR is greater than a given threshold θ

Pc = P(SIR > θ). (2)



Assuming capacity-achieving Gaussian codebooks, the cover-

age probability can be directly related to the rate of com-

munication from the cooperating BSs to the typical user.

After taking the logarithm at both sides of the inequality

in (2), Pc can be interpreted as the probability that an ergodic

communication rate of R(θ) = log2(1 + θ) is achievable.

III. COVERAGE PROBABILITIES

Thus far we have made no assumption on the way the set

of cooperating BSs is selected. In this section, we derive the

coverage probability (2) at the typical receiver located at the

origin in two cases of practical interest.

First, we consider the case where the typical receiver

connects to the n BSs that result in the strongest average

received power among the ensemble of BSs in the K network

tiers. In this case C in (1) denotes the locations of the n BSs

with strongest received power Pν(x)‖x‖−α, i.e.,

C =

{

(x1, . . . , xn) : x = arg max
x∈(

⋃
K
j=1

Φj)n

n
∑

i=1

Pν(xi)

‖xi‖α

}

(3)

where xi 6= xj for i 6= j. Notice that the cooperative BSs

belong in general to different network tiers. We denote this as

Case 1, see Fig. 1. Although not in the context of CoMP, this

case has been previously considered in the literature, e.g., [17]

considered a similar setup for non-cooperative homogeneous

network (K = 1). As we will see, our result generalizes the

one in [17] to the case K > 1. This case is applicable to

wireless networks where users keep a list of the neighboring

BSs with the strongest received power to initiate handoff

requests.

Second, we consider a case where the typical receiver can

only connect to the nearest BS from each network tier. In this

case the set C is defined as

C =

{

(x1, . . . , xn) : xi = argmax
x∈Φi

‖x‖−α, i ∈ I
}

, (4)

where I ⊆ {1, . . . ,K} is an index set of cardinality n ≤ K .

Notice that if j 6∈ I, then the typical terminal does not connect

to any BS from the jth tier. This case is motivated by the

fact that in practical deployments cooperation across network

tiers (e.g., between a macro and pico cell) is instrumental for

offloading users from the macro base stations (e.g. see [12])

and might be easier to implement than within BSs in the same

network tier. We denote this as Case 2.

A. Case 1: Cooperation among the BSs with strongest re-

ceived power

The main result for the coverage probability in this case is

given in Theorem 1.

Theorem 1: Let the set C be defined as in (3). Then, the

coverage probability Pc in (2) is

∫

0<u1<...<un<∞

exp



−un



1 + 2
F (‖ũ‖1/2α/2 θ

−1/α)

‖ũ‖α/2 θ−2/α







 du,

(5)

where ũ :=
(

un

u1
, un

u2
. . . , un

un

)

and F (x) :=
∫∞

x
r

1+rα dr.

Proof: See Appendix A.

Theorem 1 provides a general integral expression for the

coverage probability at the typical receiver that only depends

on the number of cooperating BSs n, the threshold θ, and

the path-loss exponent α. Equation (5), in fact, is independent

of the number of network tiers K and their respective power

levels and deployment densities. A similar observation was

made in [12, Eq. (3)] for non-cooperative interference-limited

heterogeneous networks although in a slightly different setup.

This means that in a practical deployment composed by

multiple small cells, the coverage probability is independent

of the intensity of BSs within each cell, contrary to the

belief that a higher density of BSs leads to a greater amount

of intercell interference and hence to a degraded network

performance. Another implication of this result is that the same

gains in coverage probability provided by cooperation in a

heterogeneous network can also be achieved by a single ho-

mogeneous network, provided that an ideal backhaul network

allows cooperation among spatially distributed BSs and that

users can connect to the BSs that result in the highest received

power. The intuition behind this result is that a variation in the

number of network tiers or density of BSs leads to changes

in the total received power as well as in the total aggregate

interference power but the scaling of these two quantities is

such that their ratio remains constant.

It should also be remarked that (5) depends on the semi-

open integral defined in F (x). Although in general F (x) can

not be solved explicitly, closed-form expressions exist for

specific values of α > 1. For example, it can be easily verified

that if α = 3, then

F (x) =
1

6
log

(

1 +
3x

1− x+ x2

)

+
1√
3
tan−1

( √
3

2x− 1

)

,

while

F (x) =
1

2
tan−1(x−2)

in the special case α = 4.

Making use of Theorem 1, it is possible to derive an

expression for the coverage probability in the case of no

cooperation.

Corollary 1: In the special case n = 1, i.e., when the typical

receiver connects to a single BS, the coverage probability Pc

simplifies to

1

1 + 2θ2/αF (θ−1/α)
. (6)

The expression for the coverage probability in Corollary 1

coincides with the one derived in [17, Theorem 2] in the

special case of a homogeneous network. Therefore, in this case

Theorem 1 provides a generalization of [17] to the general case

K > 1 of a heterogeneous network.
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Fig. 2. Comparison of the coverage probabilities for BS cooperation Case 1
and 2 vs no cooperation against the threshold in dB, under the assumption
that α = 4, K = 2, P1 = 25, P2 = 1, λ1 = (5002π)−1, and λ2 =
5(5002π)−1.

B. Case 2: Cooperation among the closest BS to the receiver

in each network tier

The main result for the coverage probability in this case is

given in Theorem 2.

Theorem 2: Let the set C be defined as in (4). Then, the

coverage probability Pc in (2) is

∫

R
n
+

K
∏

i=1

Li

(

θPi
∑

j∈I Pjd
−α
j

)

∏

i∈I

fDi(di) dd (7)

where fDi(di) = 2πλidie
−πλid

2
i for di ≥ 0 and

Li(s) =

{

e−2πλis
2/αF (dis

−1/α), i ≤ n,

e−πλis
2/αsinc−1(2/α), i > n.

Proof: See Appendix B.

Note that unlike (5) the expression for the coverage prob-

ability given in Theorem 2 does depend on the parameters

describing each network tier, namely the spatial densities and

the available transmit powers at each BS. As an application

of Theorem 2, it is possible to derive an expression for the

coverage probability in the case of no cooperation, i.e., n = 1.

Without loss of generality, suppose that I = {1}, so the typical

receiver only connects to the nearest BS from network tier 1.

Then, we have the following result.

Corollary 2: In the special case where I = {1}, (7)

simplifies to

1

1 + θ2/α2F (θ−1/α) + θ2/α

sinc(2/α)

∑K
i=2

λi

λ1

P
2/α
i

P
2/α
1

. (8)

By comparing (6) with (8), notice that the former does not

contain the sum of terms dependent on powers and densities
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Fig. 3. Relative rate gain compared to no cooperation against fixed coverage
probabilities for Case 1 and Case 2 with K = 2, α = 4, P1 = 25, P2 = 1,
λ1 = (5002π)−1, and λ2 = 5(5002π)−1

that appears in the latter. Since each term in the sum is

nonnegative, it follows that the coverage probability in (6) is

in general larger than the one in (8). This is consistent with the

fact that (6) was derived under the assumption that the user

connects to the strongest BS in the entire network and not

only within network tier 1. Clearly, (8) is equal to (6) when

K = 1.

IV. NUMERICAL RESULTS

In this section, we present numerical evaluations of the

integral expressions for the coverage probability derived in

Section III. We focus on the special case of two network

tiers consisting of a macro–tier overlaid with a pico–tier.

Specifically, we assume that α = 4 and that the first tier

has spatial intensity λ1 = (5002π)−1 and available power

P1 = 25, while the second tier has spatial intensity λ2 = 5λ1

and available power P2 = P1/25.

Fig. 2 illustrates the effect of the SIR threshold θ on the

coverage probability (2). By comparing the performance of

the cooperative schemes in Case 1 and Case 2 to the baseline

case of no cooperation in (6), we observe that around 0 dB

cooperation yields relative gains in coverage probability of up

to about 30% compared to non-cooperative case in Case 1,

while the relative gain in Case 2 is of about 20%.

As pointed out at the end of Section II, the coverage

probability can be directly related to the ergodic rate of

communication from the cooperating BSs to the typical re-

ceiver. By replacing θ by 2R − 1 in (5), (6), and (7), setting

the resulting expression equal to Pc and solving for R, the

expressions derived in Section III yield the maximum ergodic

rates R(1)(Pc), R
(n)(Pc), and R(2)(Pc), that can be achieved

with probability Pc in Case 1, no-cooperation, and Case 2,

respectively. Fig. 3 illustrates the relative rate gain for Case j,

j = 1, 2, over the no-cooperation case, which is computed as

R(j)(Pc)−R(n)(Pc)

R(n)(Pc)
, j = 1, 2.
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Fig. 4. Comparison of the coverage probabilities for BS cooperation Case 1
and 2 vs no cooperation against the intensity ratio of two tiers with K = 2,
under the assumption that α = 4, P1 = 25, P2 = 1, λ1 = (5002π)−1, and
θ = 2 dB

Notice that the rate gains of cooperation increase with Pc and

when Pc ≈ 1 the relative gain is more than 100% in Case 1

and more than 60% in Case 2.

Finally, Fig. 4 illustrates the coverage probability as a

function of the ratio λ2/λ1, under the assumption that λ1

is kept fixed at (5002π)−1 and θ = 2 dB. As expected,

the coverage probability in Case 1 does not depend on the

intensity of the tiers and yields a gain in coverage probability

of about 35% compared to no cooperation case. Notice that

the coverage probability in Case 2 reaches a maximum at a

critical value for λ2, after which it decreases because of the

net increase in interference in the entire network. Also notice

that the curve for Case 2 always lies between the ones for

Case 1 and for the no-cooperation case and it can be proved

that the lower bound is attainable in the special case where

λ2 = 0 and λ2 → ∞.

V. CONCLUSION

In this paper, we considered the problem of joint trans-

mission in heterogeneous cellular networks. Using tools from

stochastic geometry, we derived an integral expression for the

coverage probability in two cases: 1) a typical receiver located

at the origin can combine the received signal from the BSs

with maximum average received power strength, and 2) the

set of cooperating BSs includes the BS in each network tier

that is closest to the origin. The analysis presented in this

paper assumes no channel state information at the transmitters

and that all BSs and the receiving user are equipped with

a single antenna. Future work includes the generalization to

the MIMO case as well as to the case where cooperating

BSs have partial or perfect channel state information. Finally,

the presented results do not take into account the possibility

of linear precoding at the cooperating BSs and the cost of

establishing cooperation among BSs belonging to different

tiers. This topic is currently being investigated.

APPENDIX A

PROOF OF THEOREM 1

For every i = 1, . . . ,K , let Ξi = {‖x‖α/Pi, x ∈ Φi} denote

the normalized path loss between each BS in Φi and the typical

receiver located at the origin. By the mapping theorem [18,

Theorem 2.34], Ξi is a non-homogeneous PPP with intensity

λi(x) = λi
2π
α P

2/α
i x2/α−1, x ∈ R. From the independence

of the PPPs Φ1, · · · ,ΦK , it follows that Ξ1, · · · ,ΞK are

also independent and thus the process Ξ =
⋃K

i=1 Ξi is a

non-homogeneous PPP with density λ(x) =
∑K

i=1 λi(x).
Without loss of generality, suppose that the elements of Ξ
are re-indexed in increasing order of magnitude, such that

‖x1‖α/Pν(x1) ≤ ‖x2‖α/Pν(x2) ≤ ‖x3‖α/Pν(x3) ≤ · · · , and

define γk : ‖xk‖α/Pν(xk) as the normalized path loss between

the typical receiver and the k-th BS in the ordered list. Since

the typical receiver connects to the n BSs with strongest

average received power, it follows that the normalized path

loss of the cooperating BSs in C is given by γ = {γ1, . . . , γn}.

Then, by defining gk := |hxk
|2 and I =

∑

k>n gkγ
−1
k , the

coverage probability in (2) can be re-written as:

Pc = P

(∣

∣

∣

∑

k≤n

γ
−1/2
k hk

∣

∣

∣

2

> θ
∑

k>n

gkγ
−1
k

)

(a)
= Eγ,I

(

exp

(

− θI
∑n

k=1 γ
−1
k

))

(b)
= Eγ

(

L
(

θ
∑n

k=1 γ
−1
k

))

=

∫

γ1<...<γn

L
(

θ
∑n

k=1 γ
−1
k

)

fΓ(γ) dγ, (9)

where (a) follows from the fact that |∑k≤n γ
−1/2
k hk|2 ∼

exp
(

(
∑n

k=1 γ
−1
k

)−1
)

, because of the Rayleigh fading as-

sumption, and the fact that (h1, . . . , hn) are mutually inde-

pendent, while (b) makes use of the Laplace transform of I
L(s) = E

(

e−sI
)

.

The joint distribution of γ can be obtained by following

similar steps as in the derivation of the joint distribution of

the nearest points in a homogeneous PPP [19]. It can be easily

verified that for any 0 < γ1 < . . . < γn < ∞,

fΓ(γ) =
(

πδ
K
∑

i=1

λiP
δ
i

)n

e−π
∑K

i=1
λiP

δ
i γδ

n

n
∏

i=1

γi
δ−1 (10)

where δ = 2/α.

Next, notice that the Laplace transform of I can be re-

written as follows

L(s) =E
(

e−sI
)

(a)
= EΞ

(

e−s
∑

k>n gkγ
−1

k

)

=EΞ

(

∏

k>n

Egk

(

e−sgkγ
−1

k

)

)

(b)
= EΞ

(

∏

k>n

1

1 + sγ−1
k

)



(c)
= exp

(

−
∫ ∞

γn

[

1− 1

1 + sx−1

]

λ(x) dx

)

(d)
= exp

(

−2πs2/αF ((γns
−1)1/α)

K
∑

i=1

λiP
2/α
i

)

, (11)

where (a) uses the definition of I; (b) uses the fact that the

moment generating function of an exponential random variable

with parameter a is equal to (1 − t/a)−1; (c) is due to the

probability generating functional for a PPP [18, Theorem 4.9];

(d) follows from the transformation x = stα and the definition

of F (x).
Finally, after substituting (10) and (11) into (9) and perform-

ing the change of variable ui =
∑K

j=1 λjP
δ
j πx

δ
i , i = 1, . . . , n,

it can be easily verified that (9) reduces to (5).

APPENDIX B

PROOF OF THEOREM 2

Without loss of generality, permute the indices of the K
network tiers such that I = {1, · · · , n}. For every i ∈ I,

let di denote the distance between the cooperating BS from

the ith network tier and the typical receiver. Then, (2) can be

re-written as

Pc =EI,d

(

exp

(

−θ

∑K
i=1 PiIi

∑

i∈I Pid
−α
i

))

=Ed

(

K
∏

i=1

Li

(

θPi
∑

j∈I Pjd
−α
j

))

, (12)

where the second equality is written in terms of the Laplace

transform of Ii and follows from the mutual independence of

the PPPs {Φi}, which implies the independence of I1, . . . , IK .

By following similar steps as in (11), we write

Li(s) = E
(

e−sIi
)

= EΦi

(

e−s
∑

x∈Φi\xi
gx‖x‖

−α
)

= EΦi





∏

x∈Φi\xi

Egx

(

e−sgx‖x‖
−α
)





= EΦi





∏

x∈Φi\xi

1

1 + s‖x‖−α





= exp

(

−
∫

‖x‖>di

[

1− 1

1 + s‖x‖−α

]

λi dx

)

. (13)

Next, notice that for every i > n, xi is the null set and hence

di = 0. Therefore, by switching to polar coordinates

Li(s) = exp

(

−2πλi

∫ ∞

0

sr−α

1 + sr−α
r dr

)

= exp

(

− πλis
2/α

sinc(2/α)

)

. (14)

On the other hand, notice that |x| ≥ di for every x ∈ Φi \ xi

and i ≤ n, so in this case

Li(s) = exp

(

−2πλi

∫ ∞

di

sr−α

1 + sr−α
r dr

)

= exp
(

−2πλis
2/αF (dis

−1/α)
)

. (15)

Finally, substituting the values of Li(s) into (12) and using

the fact that the nearest distances di’s in a PPP are Rayleigh

distributed [18, Eq. (2.12)] gives the desired result as stated

in (7).
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