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Abstract—Using a multi-tier Poisson model, this paper studies
the performance gain of successive interference cancellation
(SIC) in the downlink of K-tier heterogeneous cellular networks
(HCNs). For each tier, a fraction of base stations (BSs) is non-
accessible. By using a framework based on the marked path
loss process with fading and calculating the equivalent access
probability, we analytically characterize the coverage probability,
i.e., the probability of successfully connecting to at least one
accessible BS, for a typical user equipment with finite or infinite
SIC capability. The results show how the performance gain of
SIC depends on many system parameters including path loss
exponent, coding rate, fading distributions and BS accessibilities
and densities. We show for contemporary OFDM-based HCNs,
infinite SIC capability is often unnecessary. In fact, under typical
system parameters, most of the gain of SIC comes from the ability
of canceling only a single non-accessible BS.

I. INTRODUCTION

In heterogeneous cellular networks (HCNs), macrocell base

stations (BSs) are overlaid with many tiers of low power nodes,

e.g., femtocell BSs and picocell BSs. HCNs are believed to be

the solution to the exponentially growing data demands from

mobile users in contemporary cellular networks [1], [2]. How-

ever, the unplanned nature of HCNs incurs concerns about the

interference among different tiers of the network, especially

when some of the tiers have closed subscriber groups (CSGs).

Therefore, novel techniques need to be exploited to mitigate

the inter- and intra-tier interference in order to fully harness

the benefits of network heterogeneity [2], [3].

One of the promising techniques in this context is successive

interference cancellation (SIC). Although being suboptimal

in general, SIC is known to be able to achieve much better

performance than the naive approach of treating interference

as noise in interference-limited networks. In addition, SIC is

more amenable to implementation than its capacity-achieving

alternatives such as joint decoding [4]. The performance gain

of SIC in HCNs has been demonstrated in both the uplink

(see e.g., [5]) and downlink (see e.g., [6]). However, due to

inherent complexity and randomness of HCNs, the network

performance is typically evaluated by system/link level simu-

lation.

In contrast, this paper provides an analytical framework

to quantify the baseline performance of SIC (at the user

equipment (UE) side) in the downlink of a K-tier interference-

limited HCN with accessible and non-accessible BSs1. Using

a stochastic geometry-based model, we characterize how the

coverage probability behaves as a function of many system

parameters including path loss exponent, coding rate, fading

distributions and BS accessibilities and densities. We show that

such a characterization can be elegantly carried out by using a

marked path loss process with fading (PLPF)-based framework

and by calculating the equivalent access probability (EAP).

Our analysis suggests that for contemporary OFDM-based

HCNs, infinite SIC capability is often unnecessary. In fact, un-

der typical system parameters, most of the gain of SIC comes

from the ability of canceling only a single non-accessible BS.

II. SYSTEM MODELS AND THE COVERAGE PROBABILITY

WITHOUT SIC

We model the BSs in a K-tier HCN as a family of marked

Poisson point processes (PPP)2 {Φ̂i, i ∈ [K]}, where Φ̂i =

{(xj , h
(i)
xj , t

(i)
xj )} represents the BSs of the i-th tier, the ground

process Φi = {xj} ⊂ R
2 are uniform3 PPPs with intensity λi,

h
(i)
x is the iid (subject to distribution f

(i)
h (·)) (power) fading

coefficient of the link from x to o, and t
(i)
x is the type of the

BS and is iid Bernoulli with P(t
(i)
x = 1) = π(i) and P(t

(i)
x =

0) = 1 − π(i). If t
(i)
x = 1, we call the BS x accessible and

otherwise non-accessible. For a typical receiver (UE) at o, the

received power from BS x ∈ Φi is P (i)h
(i)
x ‖x‖−α, where P (i)

is the transmit power at BSs of tier i, and α is the path loss

exponent. An example of a two tier HCN is shown in Fig. 1.

As an important quantity in the analysis of cellular net-

works, the coverage probability is the probability of a typical

UE successfully connecting to one of the accessible BSs.

Defining the event of coverage as the received signal-to-

interference ratio (SIR) at a typical receiver at o being above

a threshold θ, the standard coverage probability (without SIC)

1The non-accessible BSs can be interpreted as overloaded/biased BSs [1],
femtocell BSs with closed-access configuration, or simply interferers outside
the cellular system.

2The PPP model for HCN downlink is recently justified by comparison with
the conventional Wyner model and with real BS placement. The reasonable
accuracy of this model together with its tractability makes it particularly
interesting in studying the HCN downlink [3].

3Although we only consider uniformly distributed BSs in this paper, with
the results in [7], generalizing the results to non-uniform (power-law density)
HCN is straightforward.
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Fig. 1: A 2-tier HCN with 10% of Tier 1 (macrocell) BSs (denoted
by +) overloaded and 30% of Tier 2 (femtocell) BSs (denoted by
×) configured as closed. A box is put on the BS whenever it is non-
accessible (i.e., either overloaded or configured as closed). The o at
origin is a typical receiver.

can be written as

Pc = P

(

P (j)h
(j)
y ‖y‖−α

∑K
i=1

∑

x∈Φi\{y}
P (i)h

(i)
x ‖x‖−α

> θ

)

, (1)

where (j, y) , argmax(i,x) t
(i)
x P (i)h

(i)
x ‖x‖−α. In words, Pc

is the probability that the received SIR from the strongest

accessible BS is above θ.

III. SUCCESSIVE INTERFERENCE CANCELLATION

A. The (Marked) Path Loss Process with Fading (PLPF)

For the sake of notational convenience, we use a path

loss process with fading (PLPF) based framework to study

the downlink coverage in HCNs. First introduced in [8], this

framework has been shown to be quite amenable to analyzing

the performance of SIC [7].

Definition 1. The marked PLPF corresponding to the tier

i network is Ξ̂i = {( ‖x‖α

h
(i)
x P (i)

, tx) : x ∈ Φi}, with Ξi ,

{ ‖x‖α

h
(i)
x P (i)

: x ∈ Φi} being the (ground) PLPF.

Furthermore, we denote the union of the K marked PLPFs

and (ground) PLPFs as Ξ̂ ,
⋃K

i=1 Ξ̂i and Ξ ,
⋃K

i=1 Ξi,

respectively. Then, the received powers from all the BSs are

captured by Ξ. For example, we can rewrite the (standard)

coverage probability defined (1) in terms of the marked PLPF,

i.e.,

Pc = P

(

ξ−1
∗

∑

ξ∈Ξ\{ξ∗}
ξ−1

> θ

)

, (2)

where ξ∗ , argmaxξ∈Ξ tξξ
−1.

B. Coverage Probability with SIC

Without loss of generality, we write Ξ = {ξi} and Ξ̂ =
{(ξi, ti)} where the index i is introduced in the way that {ξi}
is increasingly ordered, i.e., ξi < ξj for all i < j. In other

words, ξ−1
i is the received power from the ith strongest BS at

a typical receiver at o.

In the case of perfect interference cancellation, once a BS is

successfully decoded, its signal component can be completely

subtracted from the received signal. Assuming the decoding

order is always from the stronger users to the weaker users4

and the UE can decode as many BSs as possible (infinite SIC

capability), we can define the following event of coverage.

Definition 2 (Coverage with infinite SIC capability). A UE

with infinite SIC capability is covered iff there exists l ∈ N

and k ∈ {i : ti = 1} such that ξ−1
i > θIi, ∀i ≤ l and

ξ−1
k > θI !kl , where Ii =

∑∞
j=i+1 ξ

−1
j and I !kl ,

∑j 6=k
j≥l+1 ξ

−1
j .

We will use P SIC
c to denote the coverage probability for UEs

with infinite SIC capability.

Analogously, we can define the coverage probability when

the UE can only successively decode n BSs.

Definition 3 (Coverage with n-layer SIC capability). A UE

with n-layer SIC capability is covered iff there exists l ∈ [n]
and k ∈ {i : ti = 1} such that ξ−1

i > θIi, ∀i < l and

ξ−1
k > θI !kl .

We will use P SIC
c,n to denote the coverage probability for a

typical UE with n-layer SIC capability. As two special cases,

we have P SIC
c,1 = Pc and P SIC

c,∞ = P SIC
c .

IV. STATISTICAL PROPERTIES OF THE MARKED PLPF

A. Prior Results for the (Unmarked) PLPF

Lemma 1. The unmarked (ground) PLPF Ξi, corresponding

to the tier i network, is a one-dimensional PPP on R
+ with

intensity measure Λ([0, r]) = λiπr
δ
E[(h(i))δ](P (i))δ , where

δ , 2/α and h(i) is a random variable with distribution

f
(i)
h (·).

Lemma 1 is a straightforward application of the results in

[7, Lemma 1].

Furthermore, for an unmarked PLPF Ξ = {ξi} where ξi <
ξj , ∀i < j, we define

pk , P(ξ−1
i > θIi, ∀i ≤ k). (3)

Then, we have the following lemma which also follows from

[7, Proposition 1].

Lemma 2. For all C > 0, if Ξ is a PLPF with intensity

measures Λ([0, r]) = Crδ, ∀r ≥ 0, pk is only a function of θ
and δ.

4It is straightforward to show that this stronger-to-weaker decoding order
maximizes the coverage probability despite the fact that it is not necessarily
the only optimal decoding order.



B. Equivalent Access Probability and the Marked PLPF

An important quantity that will simplify our analysis in the

K-tier HCN is the equivalent access probability (EAP) defined

as below.

Definition 4. Let

Z ,

K
∑

i=1

λiE[(h
(i))δ](P (i))δ.

The equivalent access probability (EAP) is the following

weighted average of the individual access probabilities π(i):

η ,
1

Z

K
∑

i=1

π(i)λiE[(h
(i))δ](P (i))δ.

Then, we have the following lemma.

Lemma 3. The marked PLPF corresponding to the K-tier

heterogeneous cellular BSs is a marked inhomogeneous PPP

Ξ̂ = {(ξi, ti)} ⊂ R
+ × {0, 1}, where the intensity measure

of Ξ = {ξj} is Λ([0, r]) = Zπrδ and the marks ti are iid

Bernoulli with P(ti = 1) = η, ∀i ∈ N.

Based on Lemma 1, the independence between t
(i)
x and

the fact that the superposition of PPPs is still a PPP [9], the

proof of Lemma 3 is straightforward and thus omitted from

the paper. Despite the simplicity of the proof, the implication

of Lemma 3 is significant: the effect of the different transmit

powers, fading distributions and access probabilities of the K-

tiers of the HCN can all be subsumed by the two parameters

Z and η.

V. INFINITE SIC CAPABILITY

Proposition 1. In the K-tier heterogeneous cellular network,

the coverage probability of a typical UE with (infinite) SIC

capability is

P SIC
c =

∞
∑

k=1

(1− η)k−1ηpk,

where pk = pk(Ξ) is the probability of successively decoding

at least k users in a PLPF Ξ ⊂ R
+ with intensity measure

Λ([0, r]) = Zπrδ .

Proof: Without loss of generality, we consider the marked

PLPF corresponding to the K-tier heterogeneous cellular BSs

Ξ̂ = {(ξi, ti)}, where the index i is introduced such that {ξi}
are increasingly ordered. Let N be the sample space of Ξ,

i.e., the family of all countable subsets of R
+. Consider an

indicator function ϑk : N → {0, 1}, k ∈ N, such that

ϑk(Ξ) ,

{

1, if ∃l ∈ N s.t. χl(φ) = 1, ξ−1
k > θI !kl

0, otherwise,
(4)

where Ξ = {ξi} and

χk(Ξ) ,

{

1, if ξ−1
i > θIi, ∀i ≤ k

0, otherwise.
(5)

Furthermore, we define a random variable M = min{i : ti =
1}, where ti is the mark of the ith element in Ξ̂. Note that

since, according to Lemma 3, the ti are iid (also independent

from Ξ), M is geometrically distributed with parameter η and

is independent of Ξ. Then, it is easy to check with Definition 2

that the coverage probability can be written as

P SIC
c = P(ϑM (Ξ)) = EM [P(ϑM (Ξ) | M)] ,

where the conditional probability is the probability of decoding

the M th strongest BS (with the help of SIC) conditioned on

the fact that this BS is the strongest accessible BS.

Moreover, we have ϑk(·) ≡ χk(·), ∀k ∈ N. To see this, we

first notice that, by the definition of the two functions, χk(φ) =
1 ⇒ ϑk(φ) = 1. Conversely, assuming ϑk(φ) = 1, which

by definition means ∃l ∈ N s.t. χl(φ) = 1 and ξ−1
k > θI !kl ,

we immediately notice that χk(φ) = 1 if l ≥ k. If l < k, we

have ξ−1
l+1 ≥ ξ−1

k > θI !kl ≥ θIl+1, i.e., χl+1(φ) = 1, which,

by induction, leads to the fact that χk(φ) = 1. Since both

χk(·) and ϑk(·) are indicator functions on the domain of all

countable subsets of R+, we have established the equivalence

of the two functions.

As is shown in [7], pk = E[χk(Ξ)], which is only a

function of θ and δ (Lemma 2). Therefore, we have P SIC
c =

EM [P(χM (Ξ) | M)] = EM [pM ].
Thanks to Proposition 1 we can quantify the coverage

probability of the HCN downlink using the bounds on pk we

obtained in [7]. In particular, based on [7, Proposition 2], a

lower bound can be found as

P SIC
c ≥

K
∑

k=1

(1− η)k−1η(1 + θ)−
δk(k−1)

2 ∆1(k), ∀K ≥ 1 (6)

where

∆1(k) ,
1

Γ(k)

(

γ

(

k,
1− δ

θδ

)

− θδ

1− δ
γ

(

k + 1,
1− δ

θδ

))

,

γ(·, ·) is the lower incomplete gamma function and the choice

of K affects the tightness of the bound. Furthermore, upper

bounding the tail terms of the infinite sum and using [7,

Proposition 4], we have that for all K ≥ 1

P SIC
c ≤

K
∑

k=1

(1− η)k−1ηθ̄−
δ
2k(k−1)∆2(k) + (1− η)K+1, (7)

where θ̄ = max{θ, 1}, (1− η)K+1 bounds the residual terms

in the infinite sum,

∆2(k) , γ̄(k,
1

c
) +

e

(1 + c)k
Γ̄(k, 1 +

1

c
),

c = θδγ(1− δ, θ)− 1 + e−θ, γ̄(z, x) = γ(z,x)
Γ(z) and Γ̄(z, x) =

Γ(z,x)
Γ(z) are the normalized lower and upper incomplete gamma

function, respectively, and Γ(·, ·) is the upper incomplete

gamma function.

Besides these bounds, we can also use the approximation

established in [10] to obtain an approximation on the coverage

probability in closed-form. In particular, we showed in [10,

Section III-C] that

pk ≈ LξkIk(s)|s=θ =
1

(c(θ) + 1)
k
,
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Fig. 2: The coverage probability (with infinite SIC capability) as a
function of SIR threshold θ in HCN with η = 0.6 and α = 4. The
(Laplace-transform-based) approximation, lower bound and upper
bounds of P SIC

c is calculated according to (8), (6) and (7), respec-
tively. The coverage probability in the case without SIC (a problem
also studied in [3], [11]) is also plotted for comparison, where the
θ ≥ 0dB part is analytically obtained by (9) and the θ < 0dB part is
based on simulation.

where c(θ) = θδγ(1 − δ, θ) − 1 + e−θ. Combining this with

Proposition 2, we have

P SIC
c ≈ η

1− η

∞
∑

k=1

(

1− η

1 + c(θ)

)k

=
η

η + c(θ)
. (8)

In Fig. 2, we compare these bounds and the approximation

with simulation results. These bounds give reasonably good

estimates on the coverage probability throughout the full range

of the SIR threshold θ. In comparison with the coverage

probability when no SIC is available, we see that a significant

gain can be achieved by SIC when the SIR threshold θ is

between −10dB and −5dB. This conclusion is, of course,

affected by η. The effect of η will be further explored in

Section VI.

VI. FINITE SIC CAPABILTY

A. Coverage Probability with 1-layer SIC Capability

By Definition 3, the coverage probability with 1-layer SIC

capability is just the standard coverage probability (without

SIC), i.e., P SIC
c,1 = Pc, which does not yield a closed-form

expression in general [11]. However, for θ ≥ 1, we have

Pc = ηp1 =
ηsinc δ

θδ
, (9)

where the intuition behind Pc = ηp1 is that when θ ≥ 1,

without SIC, the receiver can only be covered by the strongest

BS [7, Lemma 6], and thus the coverage probability is just the

probability that it is covered by the strongest BS and that the

strongest BS is accessible, which, due to the independence of

ti, happens with probability η. Also, (9) utilizes the result that

p1 = P(ξ−1
1 > θI1) =

sinc δ
θδ [12, Corollary 2], which can be

also derived using the results in [3].

B. Coverage Probability with n-layer SIC Capability

Unfortunately, even just for θ ≥ 1, finding a closed-form

expression for P SIC
c,n with general n seems hopeless. However,

following a similar procedure as in the proof of Proposition 1,

we can find a lower bound on P SIC
c,n (in terms of pk) which is

exact when θ ≥ 1.

Proposition 2. In the K-tier heterogeneous cellular network,

the coverage probability of a typical UE with n-layer SIC

capability is

P SIC
c,n ≥

n
∑

k=1

(1− η)k−1ηpk, (10)

where the equality holds when θ ≥ 1.

Different from Proposition 1, Proposition 2 only provides

a lower bound on the coverage probability for general θ.

Nevertheless, the proof is analogous (although a bit more

tedious) and thus is omitted from the paper.

Comparing Propositions 1 and 2, it is obvious that the

inequality in Proposition 2 is asymptotically tight as n → ∞.

More precisely, since P SIC
c ≥ P SIC

c,n , we have

n
∑

k=1

(1− η)k−1ηpk ≤ P SIC
c,n ≤

∞
∑

k=1

(1− η)k−1ηpk,

and the difference between the upper and lower bound decays

(at least) exponentially with n. Thus, the lower bound in

Proposition 2 converges to the true value (at least) exponen-

tially fast with n.

Combining Propositions 1 and 2, we can estimate the

performance gain of n-layer SIC capability in HCN downlink.

First, let’s consider the case with θ ≥ 1 and α = 4. In this case,

P(ξ−1
k > θIk) can be written in a very simple closed-form

expression [12, Corollary 3], which renders a tight bound on

pk. In particular, we have pk ≤ (πθ)−
k
2 /Γ(k/2+1). Applying

Proposition 2, we obtain a set of upper bounds on the coverage

probability with finite SIC capability5

P SIC
c,n ≤

n
∑

k=1

(1− η)k−1η
(πθ)−

k
2

Γ(k/2 + 1)
. (11)

For infinite SIC capability, a closed-form upper bound on the

coverage probability can also be obtained as

P SIC
c ≤ η

1− η

(

exp
( (1− η)2

πθ

)

(

1 + erf
(1− η√

πθ

)

)

− 1

)

.

(12)

Fig. 3 plots the coverage probability with different levels

of SIC capability as a function of η for θ = 0dB and 2dB.

Here, we plot the upper bounds on P SIC
c,n according to (11)

for n = 1, 2, the upper bound on P SIC
c according to (12),

and simulated value of P SIC
c,n for n = 1, 2, 10. The problem of

n = 1 is already studied in [3].

Taking n = 1 in (11) and comparing it with (9) show that

the upper bound in (11) is tight for n = 1. This explains why

5When θ > 1, this bound can be further sharpened by introducing another

term θ̄
−

1
4
k(k−1) [7]. However, this simpler bound is already tight enough to

give an accurate estimate on the usefulness of SIC.
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Fig. 3: Comparison between the upper bound and the simulated
value of coverage probability in femto-cell networks with different
layers of SIC capability when α = 4. The upper bounds on P SIC

c,n

is calculated according to (11) for n = 1, 2 (coverage probability
is higher for larger n). The upper bound on P SIC

c is calculated by
(12). The simulated value of P SIC

c,n is plotted for n = 1, 2, 10. When
θ = 2dB, the curves for n = 2 and n = 10 almost overlap.

the lowest solid lines (upper bound on P SIC
c,1 ) and the lowest

dashed lines (simulated P SIC
c,1 ) in Fig. 3 overlap.

Fig. 3 shows that P SIC
c,n − P SIC

c,1 , the absolute coverage

probability gain of SIC, is much larger when η is close to
1
2 than when η is close to 0 or 1. This phenomenon can be

observed within a much wider range of system parameters.

Moreover, it is worth noting that with θ ≥ 1 and δ = 1
2 ,

most of the gain of SIC is achieved by the ability of canceling

only one non-accessible BS. This is consistent with obser-

vations reported in [13] where a different model for SIC is

used and the transmission capacity is used as the metric. The

fundamental reason of this observation can be explained by

Proposition 2. The difference in coverage probability between

infinite SIC capability and the capability of canceling n − 1
BSs is

∑∞
k=n+1(1− η)k−1ηpk, which, due to the exponential

decay of pk [7, Proposition 4], decays (at least) exponentially

fast with n. Thus, most of the additional coverage probability

comes from canceling a small number of non-accessible BSs.

Since pk decays faster for larger θ [7], we can expect that the

ability of successively decoding more than one non-accessible

BS becomes even less useful for larger θ, which is also

demonstrated in Fig. 3.

Of course, with the same logic, we would expect that the

ability to successively decode a large number of BSs does help

if δ → 0 and/or θ → 0. δ → 0 could happen if the path loss

exponent α is very large. θ → 0 happens when low-rate codes

are used.

VII. IMPACT ON REALISTIC SYSTEMS

Since the different values of θ and δ can result in different

usefulness of the SIC capability at HCN downlink, it is

worthwhile to discuss more realistic parameter choices in

contemporary systems.
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Fig. 4: Comparison between the upper bound and the simulated value
of coverage probability in femto-cell networks with different path
loss exponent α when θ = 0dB. The upper bounds on P SIC

c,n is
calculated according to (13) for n = 1, 2 (coverage probability is
higher for larger n). The upper bound on P SIC

c is calculated by (14).
The simulated value of P SIC

c,n is plotted for n = 1, 2, 10. For α ≤ 3.5,
the curves for n = 2 and n = 10 almost completely overlap.

The exact values of θ and δ depends on many facts includ-

ing modulation and coding schemes, receiver sensitivity, BS

densities and propagation environment. However, in practical

OFDM-type systems (e.g., LTE and 802.11 networks), the SIR

threshold θ is typically larger than −3dB and often more than

0dB [11]6. For indoor propagation, α is typically between 3

and 4. Therefore, the system parameters used in the tractable

case (Fig. 3) are reasonably realistic.

To have a closer look at the case with α < 4, we fix θ = 1
and invoke general expression provided in [12, Theorem 1].

Combining with Proposition 2, this gives us

P SIC
c,n ≤ η

1− η

n
∑

k=1

1

Γ(1 + kβ)

(

1− η

Γ(1− β)

)k

. (13)

and in the limit (infinite SIC capability), we have

P SIC
c ≤ η

1− η

(

Eβ,1

(

1− η

Γ(1− β)

)

− 1

)

, (14)

where Ea,b(z) =
∑∞

k=0
zk

Γ(ak+b) is the Mittag-Leffler function.

Fig. 4 compares the coverage probabilities with different

levels of SIC capability for different path loss exponents α
when θ = 1. As expected, as α decreases, both the coverage

probability and the gain of additional SIC capability decrease.

The former is due to the fact that with a smaller α the far users

contribute more to the interference. The latter can be explained

by the fact that when α is smaller, the received power from

different users are more comparable, leaving less structure in

the received signal that can be exploited by SIC.

Similarly, we can apply the bounds in (13) and (14) to

even smaller α which may apply to outdoor environments, and

6The small θ regime is more applicable to wide-band systems, e.g., CDMA
or UWB systems.
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Fig. 5: Coverage probability of femto-cell networks with SIR thresh-
old θ ≥ −5dB with α = 4. The solid lines are calculated for n = 1, 2
according to (13) (the lines are higher for larger n), which are an
upper bounds on P SIC

c,n when θ ≥ 0dB. For θ ≤ 0dB, these lines

should be considered as approximations. The upper bound on P SIC
c

is calculated by (14). The simulated value of P SIC
c,n is plotted for

n = 1, 2, 10. For η ≤ 0.9, the curves for n = 2 and n = 10 almost
completely overlap throughout the simulated SIR range.

conceivably the gain of SIC will becomes even more marginal.

Therefore, SIC is more useful in an indoor environment.

In general, accurately estimating P SIC
c,n is more difficult when

θ < 1. One of the reasons is that the upper bounds (on

pk) in finding (13) and (14) become increasingly loose as θ
decreases. However, within the range of realistic parameters,

i.e., θ > −3dB, the values calculated by (13)7 and (14) are

still informative as is shown in Fig. 5. This figure shows

the coverage probability as a function of θ ≥ −5dB for

η = 0.3, 0.6, 0.9. We found that most of the the conclusions we

made for θ ≥ 1 still hold when θ ≥ −5dB. For example, we

can still see that most of the gain of SIC comes from canceling

a single non-accessible BS and that the gain is larger when η
is close to 0.5.

Quantitatively, we found that when η is relatively small (η =
0.3, 0.6) the analytical results still track the results obtained

by simulation closely for θ > −3dB. The analytical results are

less precise when η is large. However, large η characterizes

a regime where most of the BSs are accessible. In this case,

it is conceivable that SIC is often unnecessary, which can be

verified by either the simulation results or the analytical results

in Fig. 5. Therefore, the analytical results generate enough

quantitative insights for the most interesting set of parameters.

VIII. CONCLUSIONS

This paper analyzes the coverage probability in heteroge-

neous cellular networks (HCNs) with SIC capability at the UE

side. We show that the code rate can significantly impacts the

usefulness of successively canceling a large number of non-

accessible BSs. In particular, SIC in combination with low

7(13) can only be considered as an approximation on P SIC
c,n when θ < 1

since Proposition 2 only gives a lower bound in this regime.

rate codes can boost the coverage probability of the HCN to a

large extent. We also observe that, for contemporary OFDM-

based cellular systems, most of the gain of SIC comes from

canceling a single non-accessible BS.

An important contribution of this paper is the demonstration

of a general approach to analyze HCNs based on constructing

the (marked) PLPF and calculating the equivalent access

probability (EAP). We show that the complexity introduced by

the network heterogeneity can be elegantly addressed through

this approach and the coverage probability with SIC can be

evaluated based on the knowledge about the same problem in

the homogeneous networks. In addition to SIC, this approach

can be used to analyze many other techniques in HCNs

and has the potential to generalize many known results from

homogeneous networks to heterogeneous networks.

ACKNOWLEDGMENT

The partial support of the U.S. NSF (grants CNS 1016742

and CCF 1216407) is gratefully acknowledged.

REFERENCES

[1] A. Ghosh, J. G. Andrews, N. Mangalvedhe, R. Ratasuk, B. Mondal,
M. Cudak, E. Visotsky, T. A. Thomas, P. Xia, H. S. Jo, H. S. Dhillon,
and T. D. Novlan, “Heterogeneous cellular networks: From theory to
practice,” IEEE Communications Magazine, Jun. 2012.

[2] R. Madan, J. Borran, A. Sampath, N. Bhushan, A. Khandekar, and T. Ji,
“Cell association and interference coordination in heterogeneous LTE-A
cellular networks,” IEEE Journal on Selected Areas in Communications,
vol. 28, no. 9, pp. 1479–1489, Dec. 2010.

[3] H. S. Dhillon, R. K. Ganti, F. Baccelli, and J. G. Andrews, “Modeling
and analysis of K-tier downlink heterogeneous cellular networks,” IEEE

Journal on Selected Areas in Communications, vol. 30, no. 3, pp. 550–
560, Apr. 2012.

[4] F. Baccelli, A. El Gamal, and D. Tse, “Interference networks with point-
to-point codes,” IEEE Transactions on Information Theory, vol. 57,
no. 5, pp. 2582–2596, May 2011.

[5] B. Kaufman, E. Erkip, J. Lilleberg, and B. Aazhang, “Femtocells in
cellular radio networks with successive interference cancellation,” in
IEEE International Conference on Communications Workshops (ICC),
Jun. 2011, pp. 1–5.

[6] O. Sahin, J. Li, Y. Li, and P. Pietraski, “Interference mitigation via
successive cancellation in heterogeneous networks,” in International

Symposium on Wireless Communication Systems (ISWCS), Nov. 2011,
pp. 720–724.

[7] X. Zhang and M. Haenggi, “The performance of successive interference
cancellation in random wireless networks,” in IEEE Global Telecommu-

nications Conference (GLOBECOM’12), Dec. 2012.
[8] M. Haenggi, “A geometric interpretation of fading in wireless networks:

Theory and applications,” IEEE Transactions on Information Theory,
vol. 54, no. 12, pp. 5500–5510, Dec. 2008.

[9] ——, Stochastic Geometry for Wireless Networks. Cambridge Univer-
sity Press, 2012.

[10] X. Zhang and M. Haenggi, “The aggregate throughput in random
wireless networks with successive interference cancellation,” in IEEE

International Symposium on Information Theory (ISIT’13), Jul. 2013.
[11] H. Dhillon, R. Ganti, F. Baccelli, and J. Andrews, “Coverage and

ergodic rate in K-tier downlink heterogeneous cellular networks,” in
2011 49th Annual Allerton Conference on Communication, Control, and

Computing (Allerton), Sep. 2011, pp. 1627–1632.
[12] X. Zhang and M. Haenggi, “On decoding the kth strongest user in

Poisson networks with arbitrary fading distribution,” in 47th Asilomar

Conference of Signals, Systems and Computers (Asilomar’13), Nov.
2013.

[13] S. Weber, J. Andrews, X. Yang, and G. D. Veciana, “Transmission
capacity of wireless ad hoc networks with successive interference
cancellation,” IEEE Transactions on Information Theory, vol. 53, no. 8,
pp. 2799–2814, Aug. 2007.


