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Abstract—This paper provides a unified framework to study
the performance gain of successive interference cancellation (SIC)
in d-dimensional interference-limited networks with arbitrary
fading distribution and power-law path loss. We derive bounds
on the mean number of users that can be successively decoded
and the probability of successively decoding k users. Our results
suggest that, without power control, the marginal benefit of
enabling the receiver to successively decode k users diminishes
very fast with k, especially in networks of high dimensions
and small path loss exponent. On the other hand, SIC is more
beneficial when the users are clustered around the receiver, or
very low-rate codes are used.

I. INTRODUCTION
Successive interference cancellation (SIC) is a promising

technique to improve the efficiency of the wireless networks
with relatively small additional complexity [1]. However, in
a network without centralized power control, e.g., ad hoc
networks, the use of SIC hinges on the ordering of the re-
ceived power from different users (active transmitters), which
depends on the spatial distribution of the users as well as
many other network parameters. Therefore, it is important
to quantify the gain of SIC with respect to different system
parameters.
This paper provides a unified framework to study the perfor-

mance of SIC in d-dimensional wireless networks. Modeling
the active transmitters in the network by a Poisson point pro-
cess (PPP) with power-law density function (which includes
uniform PPP as a special case), we show how the effectiveness
of SIC depends on the path loss exponent, fading, coding rate
and user distribution.

II. SYSTEM MODEL AND METRICS

A. The Power-law Poisson Network with Fading (PPNF)
Consider a receiver at the origin o and the active transmitters

are represented by a marked Poisson point process (PPP) Φ̂ =
{(xi, hxi

)} ⊂ Rd × R+, where x is the location of the users,
hx is the iid fading coefficient associated with the link from
x to o, and d is the number of dimensions of the space. When
the density function of the ground process Φ ⊂ Rd is λ(x) =
a‖x‖b, a > 0, b ∈ (−d,α − d), where ‖x‖ is the distance
from x ∈ Rd to the origin and α is the path-loss exponent, we
refer this network as a power-law Poisson network with fading
(PPNF). Here, the condition b ∈ (−d,α − d) is put in order
to maintain a finite received power at o and will be revisited
later.
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Fig. 1: Realizations of two non-uniform PPP with intensity function
λ(x) = 3‖x‖b with different b, where x denotes an active transmitter
and o denotes the receiver at the origin.

Fig. 1 shows realizations of two 2-d PPNFs with different
b, where Fig. 1a represents a network clustered around o and
the network in Fig. 1b is inversely clustered, i.e., the network
is clustered away from o. In general, the smaller b, the more
clustered the network is at the origin, and b = 0 refers to
uniform networks.

B. SIC Model and Metrics
Consider the case where all the nodes (users) transmit with

unit power. Then, with an SIR model, a particular user at
x ∈ Φ ⊂ Rd can be successfully decoded (without SIC) iff

SIRx =
hx‖x‖−α

∑

y∈Φ\{x} hy‖y‖−α
> θ,

where θ is the SIR decoding threshold.
Similarly, in the case of perfect interference cancellation,

i.e., once a user is successfully decoded, its signal component
can be completely subtracted from the received signal, a user
x can be decoded if all the users in Ic = {y ∈ Φ : hy‖y‖−α >
hx‖x‖−α} are successfully decoded and

hx‖x‖−α

∑

y∈Φ\{x}\Ic
hy‖y‖−α

> θ.

Consequently, consider the ordering of all nodes in Φ such
that hxi

‖xi‖−α > hxj
‖xj‖−α, ∀i < j. The number of

users that can be successively decoded is N iff hxi
‖xi‖−α >

θ
∑∞

j=i+1 hxj
‖xj‖−α, ∀j ≤ N and hxN+1‖xN+1‖−α ≤



θ
∑∞

j=N+2 hxj
‖xj‖−α. The goal of this paper is to evaluate

E[N ], i.e., the mean number of users that can be successively
decoded, with respect to different system parameters, and the
distribution of N in the form

pk ! P(N ≥ k),

i.e., the probability of successively decoding at least k users
at the origin.

III. THE PATH LOSS PROCESS WITH FADING (PLPF)
We use the unified framework introduced in [2] to address

the randomness from fading and random location of the nodes.
In particular, we define the path loss process with fading
(PLPF) as Ξ ! {ξi = ‖x‖α

hx
}, where the index i is introduced

in the way such that ξi < ξj for all i < j. Then, we have the
following lemma, which follows from the mapping theorem
[6].

Lemma 1. The PLPF Ξ, corresponding to a PPNF, is a one-
dimensional PPP on R+ with intensity measure Λ([0, r]) =
aδcdrβE[hβ ]/β, where δ ! d/α, β ! δ + b/α ∈ (0, 1) and h
is the iid fading coefficient.

In Lemma 1, the condition β ∈ (0, 1) corresponds to the
condition b ∈ (−d,α − d) in the definition of PPNF and is
necessary in the sense that otherwise the aggregate received
power at o is infinite almost surely.
Since for all ξi ∈ Ξ ⊂ R+, ξ−1

i can be considered as the ith
strongest received power component (at o) from the users in
Φ, when studying the effect of SIC, it suffices to just consider
the PLPF Ξ. For a PLPF Ξ mapped from Φ̂, if we let pk(Ξ)
be the probability of successively decoding at least k users
in the network Φ̂, we have the following proposition which
significantly simplifies the analysis in the rest of the paper.

Proposition 1 (Scale-invariance). If Ξ and Ξ̄ are two PLPFs
with intensity measures Λ([0, r]) = rβ and µ([0, r]) = Crβ

respectively, where C is any positive constant, then pk(Ξ) =
pk(Ξ̄), ∀k ∈ N.

Proof: Consider the mapping f(x) = C−1/βx. Then
f(Ξ) is a PPP on R+ with intensity measure Cxβ over the
set [0, x]. Let χk(φ), k ∈ N+ be a function with the domain
of any countable subset of R+ and

χk(φ) =

{

1, if ξ−1
i > θ

∑∞
j=i+1 ξ

−1
j , ∀i ≤ k

0, otherwise,

where φ = {ξi} and ξi < ξj , ∀i < j. Note that χk(·) is
scale-invariant, i.e., χk({ξi}) = χk({C ′ξi}), ∀C ′ > 0. Then,
we have

pk(Ξ) = E[χk(Ξ)]
(a)
= E[χk (f(Ξ))]

(b)
= E[χk

(

Ξ̄
)

] = pk(Ξ̄),

where (a) is due to the scale-invariance of χk(·) and (b) is
because both f(Ξ) and Ξ̄ are PPPs on R+ with intensity
measure µ([0, r]) = Crβ .
Proposition 1 shows that the absolute value of the density is

not relevant as long as we restrict our analysis to the power-law
density case. Combining it with Lemma 1, where it is shown

that, in terms of the PLPF, the only difference introduced by
different fading distributions is a constant factor in the density
function, we immediately achieves the following corollary.

Corollary 1 (Fading-invariance). In a PPNF, the probability of
successively decoding k users (at the origin) does not depend
on the fading distribution.

If we define the Standard PLPF (SPLPF) Ξβ as a one-
dimensional PPP with intensity measure Λ([0, r]) = rβ , where
β ∈ (0, 1), we have the following fact which directly follows
from Proposition 1 and Corollary 1 and significantly simplifies
the analysis in the rest of the paper.

Fact 1. The statistics of N in a PPNF can be fully captured
by the study of Ξβ which encompasses any fading distribution
and any values of a, b, d, α, with β = δ+ b/α = (d+ b)/α.

IV. BOUNDS ON THE PROBABILITY OF SUCCESSIVE
DECODING

Despite the unified framework to analyze the PPNF in
Section III, analytically evaluating pk requires the joint distri-
bution of the received powers from the k strongest users and
the aggregate interference from the rest of the network, which
is intimidating even for the simplest case (one-dimensional
homogeneous PPP without fading). In this section, we derive
bounds on pk. These bounds provide us insights on how pk
depends on different system parameters.

A. Basic Bounds

The following lemma introduces basic upper and lower
bounds on pk in terms of the probability of decoding the
kth strongest user if the k − 1 strongest users did not exist.
Although not being bounds in closed form, the bounds form
the basis for the high-rate lower bound and the combined upper
bound which will be introduced later.

Lemma 2. In a PPNF, the probability of successively decoding
k users is bounded as follows:

• pk ≥ (1 + θ)−
βk(k−1)

2 P(ξ−1
k > θIk)

• pk ≤ θ−
βk(k−1)

2 P(ξ−1
k > θIk)

where Ξβ = {ξi} is the corresponding SPLPF and Ik !
∑∞

j=k+1 ξ
−1
j .

Proof: By Fact 1, pk can be evaluated by considering Ξβ .
Define the following two events: Ai = {ξ−1

i > θIi} and Bi =
{ξ−1

i > (1 + θ)ξ−1
i }. Then, the probability of successively

decoding at least k users can be written as pk = P(
⋂k

i=1 Ai).

Consider an arbitrary sample (realization) ω ∈
⋂k−1

i=1 Bi ∩
Ak. Again, assuming the increasing ordering of all ξi(ω) ∈
Ξ(ω), i ∈ [k − 1], we have

ξ−1
i (ω)

(a)
> ξ−1

i+1(ω)+θξ−1
i+1(ω)

(b)
> θIi+1(ω)+θξ−1

i+1(ω) = θIi(ω),

where (a) is due to ω ∈ Bi, and (b) is due to ω ∈ Bi+1 (if
i < k) and ω ∈ Ak (if i = k). Therefore, ω ∈

⋂k
i=1 Ai. Since



ω is arbitrarily chosen, we have
(

⋂k−1
i=1 Bi ∩Ak

)

⊂
⋂k

i=1 Ai,
and thus

pk ≥ P

(

k−1
⋂

i=1

Bi ∩Ak

)

= Eξk

[

P

(

k−1
⋂

i=1

Bi ∩Ak | ξk

)]

= Eξk

[

P

(

k−1
⋂

i=1

Bi

)

P (Ak) | ξk

]

, (1)

where the last equality is because of the conditional indepen-
dence between Bi, ∀i ∈ [k − 1] and Ak given ξk. Here, by
definition, P

(

⋂k−1
i=1 Bi

)

= P

(

ξi
ξi+1

< (1 + θ)−1, ∀i < k
)

.

Conditioned on ξk, k ≥ 2, ξi
ξk

d
= Xi:k−1, ∀1 ≤ i ≤ k − 1,

where d
=means equality in distribution,X is a random variable

with cdf F (x) = xβ1[0,1](x), and Xi:k−1 is the ith order
statistics of k−1 iid random variables with the distribution of
X , i.e., the ith smallest one among k−1 iid random variables
with the distribution of X .
Since Xβ ∼ Uniform(0, 1), we can apply the results

from order statistics regarding uniform random variables [3].
In particular, if U ∼ Uniform(0, 1), then

(

Ui:k−1

Ui+1:k−1

)i
∼

Uniform(0, 1) and
(

Ui:k−1

Ui+1:k−1

)i
is iid for all 1 ≤ i ≤ k − 2.

Therefore,

P

(

ξi
ξi+1

< (1 + θ)−1, ∀i < k | ξk
)

=
k−1
∏

i=1

P(Xiβ < (1 + θ)−iβ) = (1 + θ)−
β
2 k(k−1), (2)

where the last inequality is due to Xiβ d
= U . The lower bound

is thus proved by combining (1) and (2).
Defining B̂i = {ξ−1

i > θξ−1
i+1} in the place of Bi, we can

derive the upper bound in a very similar way.

B. The Lower Bounds
1) High-rate lower bound: Lemma 2 provides bounds on

pk as a function of P(ξ−1
k > θIk). In the following, we give

the high-rate lower bounds by lower bounding P(ξ−1
k > θIk).

Lemma 3. The kth smallest element in Ξβ , ξk, has pdf

fξk(x) =
βxkβ−1

Γ(k)
exp(−xβ).

The proof of Lemma 3 is analogous to [4, Theorem 1].

Lemma 4. For Ξβ = {ξi}, P(ξ−1
k > θIk) is lower bounded

by

∆1(k) !
1

Γ(k)

(

γ

(

k,
1− β

θβ

)

−
θβ

1− β
γ

(

k + 1,
1− β

θβ

))

,

where γ(·, ·) is the lower incomplete gamma function.

Proof: In order to prove the lower bound, we first calcu-
late the mean of the interference Ik conditioned on ξk = ρ,
and then derive the bound based on the Markov inequality.

Denoting Ik | ξk = ρ as Iρ, we can calculate the conditional
mean interference by Campbell’s Theorem [5]

E[Iρ] = E

[

∑

x∈Ξ∩[ρ,∞)

x−1

]

=

∫ ∞

ρ
x−1Λ(dx) =

aβ

1− β
ρβ−1.

Thus, by the Markov inequality,

P(ξ−1
k > θIk | ξk = ρ) = P(ρ−1 > θIρ) ≥ 1− θρE[Iρ].

The lower bound can be refined as [1− θρE[Iρ]]
+, where

[·]+ = max{0, ·}. Deconditioning over the distribution of ξk
(given by Lemma 3) yields the stated lower bound.
Combining Lemmas 2 and 4, we immediately obtain the

following proposition.

Proposition 2 (High-rate lower bound). In the PPNF, pk ≥
(1 + θ)−

βk(k−1)
2 ∆1(k).

Since ∆1(k) is monotonically decreasing with k, the lower
bound in Proposition 2 decays super-exponentially with k2.
2) Low-rate lower bound: The lower bound in Proposi-

tion 2 is tight for large θ. However, it becomes loose when
θ → 0. This is because Proposition 2 estimates pk by
approximate the relation between ξi and Ii with the relation
between ξi and ξi+1. This approximation is accurate when
ξ−1
i+1 ≈ θIi+1. Yet, when θ → 0, ξ−1

i+1 - θIi+1 happens
frequently, making the bound loose. The following proposition
provides an alternative lower bound particularly designed for
the small θ regime.

Proposition 3 (Low-rate lower bound). In the PPNF, for k <
1/θ + 1, pk is lower bounded by

pLR
k

!
1

Γ(k)

(

γ

(

k,
1− β

θ̃β

)

−
θ̃β

1− β
γ

(

k + 1,
1− β

θ̃β

)

)

,

where LR means low-rate and θ̃ ! θ
1−(k−1)θ .

Proof: Using Fact 1, we work with Ξβ = {ξi}. For an
arbitrary integer n ∈ [k − 1], we have

P

({

ξ−1
n >

θIn
1− (n− 1)θ

}

∩ {ξi > θIi, n < i ≤ k}
)

(a)
≥ P

({

ξ−1
n+1 >

θIn
1− (n− 1)θ

}

∩ {ξi > θIi, n < i ≤ k}
)

(b)
= P

({

ξ−1
n+1 >

θIn+1

1− nθ

}

∩ {ξi > θIi, n ≤ i ≤ k}
)

(c)
= P

({

ξ−1
n+1 >

θIn+1

1− nθ

}

∩ {ξi > θIi, n+ 2 ≤ i ≤ k}
)

,

where (a) is because of the ordering of Ξ, (b) is due to In =
ξ−1
n+1 + In+1, and (c) is due to θ > 0 and thus

{

ξ−1
n+1 >

θIn+1

1− nθ

}

⊂
{

ξ−1
n+1 > θIn+1

}

.

Using this inequality sequentially for n = 1, 2, · · · , k−1 yields

pk ≥ P

(

ξ−1
k >

θIk
1− (k − 1)θ

)

,



where a lower bound for the RHS is given by Lemma 4
(substituting θ with θ̃).
The bound in Proposition 3 is nontrival only for k < 1/θ+1.

However, as will be shown in Section V, when θ → 0, this
bound behaves much better than the one in Proposition 2.

C. The Upper Bound

Similar to the high-rate lower bound, we derive the upper
bound by upper bounding P(ξ−1

k > θIk).

Lemma 5. For Ξβ = {ξi}, P(ξ−1
k > θIk) is upper bounded

by

∆2(k) !
γ(k, 1/c)

Γ(k)
+

e

(1 + c)k
Γ(k, 1 + 1/c)

Γ(k)
,

where c = θβγ(1 − β, θ) − 1 + e−θ, and Γ(·, ·) is the upper
incomplete gamma function.

Proof: For a non-fading 1-d network, the Laplace trans-
form of the aggregate interference from [ρ,∞) can be calcu-
lated by the probability generating functional (PGFL) of the
PPP [6]. Similarly, the Laplace transform of Iρ ! Ik | ξk = ρ
is

LIρ(s) = exp

(

−
∫ ∞

ρ
(1− e−sr−1

)Λ(dr)
)

= exp

(

−
(

sβ
∫ sρ−1

0
r−βerdr − ρβ(1− e−sρ−1

)
)

)

.

(3)

Considering an artificial fading coefficient H , where H is
exponentially distributed with mean 1, we can relate P(ξ−1

k >
θIk) with LIk(s) as P(ξ

−1
k > θIk)

= eP(H > 1)P(ξ−1
k > θIk)

(a)
= eP(ξ−1

k > θIk, H > 1)

≤ eP(Hξ−1
k > θIk)

(b)
= eEξk [LIk|ξk(s)|s=θξk ]

(c)
= Eξk

[

exp
(

−[cξβk − 1]+
)]

,

where (a) is due to the independence between H and Ξ, (b) is
due to the well-known relation between the Laplace transform
of the interference and the success probability over a link
subject to Rayleigh fading [6], (c) makes use of the PGFL
in (3), taking into account the fact that P(ξ−1

k > θIk) ≤ 1.
With the distribution of ξk given by Lemma 3, the proposition
is then proved by straightforward but tedious manipulation.
Combining Lemmas 5 and 2 yields the following proposi-

tion.

Proposition 4 (Combined upper bound). In the PPNF, we
have pk ≤ θ̄−

β
2 k(k−1)∆2(k), where θ̄ = max{θ, 1}.

For θ > 1, similar to the high-rate lower bound in
Proposition 2, the upper bound in Proposition 4 decays super-
exponentially with k2, which suggests that, in this regime, the
marginal gain of adding SIC capability (i.e., ability succes-
sively cancelling more users) diminishes very fast.
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Fig. 2: Combined upper bound and high-rate lower bound for pk
(k = 1, 2, 3) in a 2-d uniform network with path loss exponent α = 3.

D. Numerical Results
Focusing on k = 1, 2, 3, Fig. 2 plots the combined upper

and high-rate lower bounds as a function of θ. We see that pk
decays very rapidly with θ, especially when k is large, which
suggests that the benefit of decoding many users can be very
small under high-rate codes.
Note that the combined upper bound behaves slightly dif-

ferently for θ > 1 and θ < 1 when k > 1. This is because the
combined upper bound in Proposition 4 becomes ∆2(k) when
θ < 1. More precisely, the combined upper bound ignores
the ordering among the k strongest users and only considers
P(ξ−1

k > θIk) when θ < 1. Therefore, the combined upper
bound is, in most cases, strictly tighter when θ > 1, with only
one exception: for k = 1, pk = P(ξk > θIk), which is upper
bounded by ∆2(1) irrespective to θ.
The bounds derived above also provide a good method to

study the impact of clustering on the effectiveness of SIC.
Fig. 3 compares the probability of successively decoding 1,
2 and 3 users under different network clustering parameter
b, which shows the more clustered the network is, the more
useful SIC will be.

V. BOUNDS ON THE EXPECTED NUMBER OF
SUCCESSIVELY DECODED USERS

With the bounds on pk, we are able to derive bounds on
E[N ], the expected number of users that can be successively
decoded in the system, since E[N ] =

∑∞
k=1 pk.

Proposition 5. In the PPNF, we have E[N ] ≥
∑K

k=1(1 +

θ)−
β
2 k(k−1)∆1(k) for all K ∈ Z+.

On the one hand, Proposition 5 follows directly from
Proposition 2 when K → ∞. On the other hand, since for
large θ, pk decays very fast with k, a tight approximation
can be obtained for small integer K. In fact, the error term
∑∞

k=K+1(1 + θ)−
β
2 k(k−1)∆1(k) can be upper bounded by

(1 + θ)
β
8 ∆1(K)

√

2β log(1 + θ)
Γ

(

1

2
,
β

2

(

K −
1

2

)2

log(1 + θ)

)

. (4)
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Fig. 3: Upper and (high-rate) lower bounds for pk (k = 1, 2, 3) in a
2-d network with with path loss exponent α = 3, θ = 1 and density
function λ(x) = a‖x‖b. b = 0 is the uniform case.

We do not provide a proof due to space constraints. By
inverting (4), one can control the numerical error introduced
by choosing an finite K. As the upper incomplete gamma
function has an exponential tail and ∆1(k) is monotonically
decreasing, the error term decays super-exponentially with K2

when K - 1 and thus a finite K is a good approximation for
K → ∞ case.
On the other hand, (4) also implies that when θ → 0, for

any finite K, the error blows up quickly. Therefore, in the
small θ regime, we need another, tighter, bound, and this is
where the low-rate lower bound in Proposition 3 helps.

Proposition 6. In the PPNF, we have E[N ] ≥
∑'1/θ(

k=1 pLR
k
.

A rigorous upper bound needs to be derived with more
caution as we cannot discard a number of terms in the sum.

Proposition 7. In the PPNF, E[N ] is upper bounded by

e1+K

√
2π

(cK)1−K

cK − 1
+

e

c
(1 + c)1−K +

K−1
∑

k=1

∆2(k),

for all K ∈ Z+ ∩ [e/c,∞).

Proof: By Proposition 4, we have E[N ] ≤
∑∞

k=1 ∆2(k).
The proposition then follows by upper bounding
∑∞

k=K ∆2(k). (Due to the space constraints, the full
proof is omitted from the paper.)
Fig. 4 compares the bounds provided in Proposi-

tions 5, 6 and 7 with simulation results in a uniform 2-
d network with α = 4. We only plot the low-rate lower
bound for θ < −10dB because this is the regime where
the high-rate lower bound fails to capture the rate at which
E[N ] grows with the decreasing of θ. As is shown in the
figure, E[N ] increases unbounded with decreasing of θ, which
further confirms that SIC is particularly beneficial for low-
rate applications in wireless networks, such as node discovery,
channel control, etc.
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Fig. 4: The mean number of users that can be successively decoded
in a 2-d uniform network with path loss exponent α = 4.

VI. CONCLUSIONS
Using a unified PLPF-based framework, this paper analyzes

the performance of SIC in d-dimensional fading networks
with power law density functions. We show that the proba-
bility of successively decoding at least k users decays super-
exponentially with k2 if high-rate codes are used, and it
decays especially fast under small path loss exponent in high
dimensional networks, which suggests the marginal gain of
adding more SIC capability diminishes very fast. On the other
hand, SIC is shown to be especially beneficial if very low-rate
codes are used or the active transmitters are clustered around
the receiver.
Since the clustering of the active transmitters can be the

result of location-dependent independent thinning of the trans-
mitter process [5], our results also suggest a simple, distributed
MAC scheme can improve the performance of SIC by granting
users closer to the receiver with larger access probabilities.
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