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Abstract—As a fundamental source of delay in wireless net- (@)

works, the local delay is defined as the mean time, in number of

time slots, until a packet is successfully received (decodgover 1 0 3

a link. This paper shows that with mean power and peak power X~

constraints at each node, power control can significantly réuce 2 e} O

the local delay. We show that, for links with Rayleigh fading T4

and random length, there exists a simple power control stragy,

which turns out to be optimal in reducing the local delay. This X X X

strategy acts as an ALOHA-type random on-off power control

policy whose parameters depend on the link distance. The ojphal

power control policy as well as its variations are compared \ith @)

constant power transmission and other simple random power

control policies. Fig. 1: A collection of links with random distances. Tran#etis are
denoted by and receivers are denoted byThe distances;, k € [5]

I. INTRODUCTION are iid drawn from some distributiofiz (x).

Ts5

In wireless networks, the local delay is defined as the
mean time, in number of time slots, for a packet to b
successfully received (decoded) over a link. Although s
important source of delay in wireless networks, the locéyle
is hardly mentioned before [1]-[3]. In [1], the author show:
that different fading distributions can result in signifitig P.=PHR™“,

different local delays, which suggests power control iphel whereP is the transmit powett is the (power) fading factor,

in reducing the local delay. R is the link distance, and is the path loss coefficient. We

In this paper, focusing on the Rayleigh fading case, Wfse an SNR condition to define whether a transmission is
show that an ALOHA-type random on-off power ControEuccessful. A transmission is regarded successfi.it> 6,

policy minimizes the local delay in an interferencelesseleiss where 0 incorporates both the SNR threshold and noise

network, where the link distances are random but fixed and tBSwer Then, we can write the success probability of a single
transmit power at each node is subject to a mean power as VYrea{hsmission’ conditioned oR as

as a peak power constraint.
Power control is well known to be a technique that can psir = P(PHR™™ >0 | R).

potentially benefit both the point-to-point wireless commAu  ajthough for each link the distanc is considered constant
cation and wireless networks [4]-[7]. Among all the litem@® ,er time and can be learned by the transmitter as well as

discussing power control, much takes into account the del (eceiver. the fading coefficierfi is assumed iid over
[5], [8]-{11]. However, the delay always enters the piCturme and is unknown to both the transmitter and the receiver.
as a constraint when maximizing the throughput. Moreovgp, ihis paper, we focus on Rayleigh fading, and thids
none of the existing literature, except for [1], [3], tries tis ayponentially distributed with unit mean. Since the link

characterize the relation between power control and thel 10gjistancer; can be learned by the node pairs, the transmit power
delay. The optimal power control policy proved in this papep cgn pe a (stochastic) function &,
establishes this relation. We also present several subabti g4, 5 particular link of distance, the conditional local

power control policies which are inspired by the optimgle|ay defined as the mean number of time slots that the

policy. The local delay performance of different power €oht ¢ cejver needs to successfully decode the message coeditio
policies as well as constant power transmission are cordpagg, the link distance? = r is

and discussed at the end of the paper. 1
Dr = (1)
Il. THE LOCAL DELAY ps(r)
The basic model we use in this paper is the one providéthereps(r) = pyr—, = P(PHr=* > 0). The mean Cl’f the
in [1]. We consider a collection of links, whose distances agonditional local delay is just the local deldy = Er[——].

Ps|R

ifd randomly distributed and fixed over time (Fig. 1). These
links do not interfere with each other. For any of the links,
;she received power is



For the same power control policy and the same meanFor the sake of simplicity, we define the following function
distance,e.g, ER = 1, different link distance distributions A = 1
result in different local delays. Generally, for a partaul G(z) = Fp(a™"), Vo >0, ©
power control policy, there exists some distributionfoivhich  \yhich is the cumulative distribution function (cdf) d—.

minimizes the local delay. For example, in the case of conistarhe constraints o are then transferred into the constraint

power transmission, it can be shown by Jensen’s inequal{%tg(x) is monotonically increasing7(z) = 0 Vo < P, L,
that the local delay is minimized when the link distance is Bm, . G(z) < 1 and

constant. Finding the optimal distribution that minimizeg -
local delay for a specific power control policy is an inteiragt EP = / 7 2G(z)dz = 1.
problem, but is beyond the content of this paper. 0

In this paper, we assume the link distance distribufig(r) The problem is to find the>*(x), defined as the optimal
is given. Since the link distanc& = r can be learned by G(x) satisfying all the requirements above and maximizing
the transmitters, if there exists a power control poIicytth%oo G(z)e " *dz. Note thaflim, _... G(z) stands fofP(P <
minimizes the conditional local dela#.. for all r, the local () which is non-zero whenever there is a positive probability
delay D is automatically minimized. The goal of the paper igf the event{P = 0}. Since the distribution ofP is not
to derive and analyze such a policy. necessarily continuous, in generéim, .., G(z) does not

have to bel.
Ill. THE OPTIMAL POWER CONTROL PoLICY
Lemma 1. The desired functioid* (=) satisfies

* . *
As stated earlier, in fixed network, it is reasonable to agsum G*(z) = G"(am), Vo >z,
a known link distanceR = r. Thus, the optimal power wherez,; £ 1/ min{ Ppax, 0r%}.

control policy takesr as a parameter and is independent of i i i i
the distribution ofR. Proof: First, consider the case whef& (x) is a simple

function. SinceG*(x) is monotonically increasing, we can

A. Problem Formulation

We start from the general case where the transmit pdwer

can be random. Without loss of generality, we consider a uifite itas N
mean power consFraint and a peak power const_da}m(-, with G*(z) = Z @il b (@), ©)
Prax > 1 (otherwise, the mean power constraint will always =0

be loose). Since except fdP the only randomness in (1) is
the fading factorH, which is iid in different time slots, there by < -+ < by 41 — oo, SUppOSe there exists:g > 7, such
is no benefit in assigning different statistics foin different hatG* (z0) # G*(zar), i€, G*(w0) > G*(2ar), and assume
time slots. Therefore, the unit mean power constraint aed t 0 M = 0 M

) 20 € [bj,bj41), xm € [br, biy1), for somel, j € N such that
peak power constraint above can be expressétifas- 1 and 0 <1< i Then. let
P < P..x respectively, and® is iid as well. J: ’

wherel =apg < a1 <azs <---<ay <land0=by < by <

Let P be the class of probability density functions (pdf’s) . a J
with support at mosf0, P,.x] and meanl. Then, the general G(r) =G (x) - Z (an — an—1)1p, 00) (@)
problem is to find the pdff% . of the transmit power(r), n=i+l (4)
where I a4y — an_
] + 2\ Z TII[IM,OO)(I).

n=I[+1

f5,. 2 argminEg
Pir e er " P(P(R)HR >0 | R)

It can be easily verified that [ *272G(z)dz =
= argmaxP(P(r)Hr=“ > 0).

Jy 72G* ()dz, and thatG(z) satisfies all the requirements

+EP :
b for a valid G(x) over [0, c0). Moreover,
B. ALOHA is the Optimal Policy o0 o0
—O0r®z —O0r%z v
Conditioned on the distande = r, the local delay is simply /0 ¢ G(z)dz — /0 ¢ G"(z)dz
the inverse of the success probabilkyH Pr—< > 6). Then, . j
—Or°y Up — An—1
o ppo :/ e T Z Tl[zM,oo)(f)diU
P(HPr~—® >0) = / FP(T)e_hdh 0 n=l+1 "
0 IS j
= 91"0‘/ Fp(a:_l)e_er%dx, _/ e e Z (an = an-1)1p, 00)(z)dz
0 0 n=I+1
where Fp(z) is the complementary cumulative distribution B zj: (p — Gp—1 ( —ortan _p, —Grabn)
function (ccdf) of the randomly controlled powét. Thus it = bore \"ME€ n€

must be monotonically decreasingp(z) = 0 Y& > Pax, n=ltl

and by the mean power constraifif” Fip(z)dx = 1. >0,



where the last inequality is due to the monotonicityef ">  Lemma 3. If #7® < 1 and G*(z) is the desired function, we
in [71, 00) and the fact thak,, > zy; > 4= Vn > [+1. This  have

contradicts the assumption th&t (z) is the function which G*(z) =0, Vo < 1.

maximizes|[.” G(z)e~""*dr and satisfies all the constraints. .
0 . : ; Although special care must be taken to make sure that
For generalG*(x), consider a sequence of simple func-

. < .
tions (G)3° such thatG: < G < G*, Yi < j and G(z) < 1, the_ proof of Lemma 3 directly follows that of

li Gy = G*. B Zthe mojnotone convergence thel_emma 2 and is therefore omitted.

ko0 M = s g Combining Lemmas 1, 2, 3 and the requirements we have

orem, limy .o [, 2 2Gj(x)dz = [ 2 2G*(2)dz and : . N
i % e 070G ()de = [0 ¢ 92 G (2)de. Using for a valid G(z), we directly deduce the form @¥*(x). That

the construction in the proof for the simple functions, we ar

able to produce another sequence of simple functiéhgs°, . 1[11-,00)(5”)7 N ore <1
such that [~ e Gy (2)dz > [ e G (x)dx, VE. G'(@) = 7= ligheoo)(@) 1< S P
Meanwhile, limy, .., G # G*, since Gi(zo) = Gi(gm)- Praxl(pai00) (%); 0r® > Pax.
Thus, the limiting function ofGi(x) is a strictly better ag stated earlier, there is a one-to-one mapping betwden
candidate for;(z) than G* (). . B and Fp(x) (and thusFp(x)). Then, the result above directly
Analogously, we have the following lemma. leads to the following theorem.

Lemma 2. If 1 < 6r® < Ppax and G*(z) is the desired Theorem 1. Given a link distancer, the optimal distribution
function, we have of the transmit power” that minimizes the local delay is

1 _

r 1[1700)(1'), Or <1

Proof: The proof is essentially the same of that of thel (1 — 71)1(0,0e)(2) + 1jgra,00)(2), 1 < 0r* < Phax

previous lemma. We start with the case whéfg ) is simple (1= Pl pow (@) 4 1ips00) (@), Or® > Prax.

and then generalize to the case of any valid cdf.
Consider the case whei@*(x) is a simple function and
write it as (3). Assuming;'- € [b;, bi41), We can construct ¢ £ max{1, min{ Prax, 0} }.

More concisely, we can define

! ! Then, Theorem 1 says: the optimal random power control
G(z) = G*(z) — Z an g, o) () + Z %1[9%,%)(@, strategy_is ALOHA-type rgndom on-off policy with transmit
n=1 e 0T probability ¢ =1 and transmit powe¢.

Suppose thati*(z9) > 0 for somez, < 9% we know Definition 1. A link of distancer is said to be in the power-
G(z) # G*(x), sinceG(x) = 0, Yo < 7. Meanwhile, it limited regime iffr® > Prax.

can be verified thaf, fIQG(ff)dx :lfo x7?G*(z)dz. BY Definition 2. A link of distancer is said to be in the short-
Lemma 1,G*(z) = G*(5=), V& > 5= and thusG(z) <1 distance regime ifr™ < 1.

(Because/,” 2~?dz = 1). All other constraints ove€(z) to

be a valid candidate aff(x) are automatically satisfied. Also, Interestingly, although, in both regimes defined above,

the optimal power control strategy can be interpreted as
g A o rm an ALOHA-type random on-off policy, the optimal strategy
/0 ¢ G(a)dr — /0 ¢ G (z)dz maximizes the variance of transmit power in the power-kahit
l oo regime, while minimizing this variance in the short-digtan
= Z/ <—b agn o Lpeo0) — anl[bmoo>> e de regime.
n=170 noT " Theorem 1 also indicates that in order to apply the optimal
L. 1 o . power control policy, we need to know eitherand o or r?,
:Z # (—eer T — bye b"d:r> where givenEH = 1, r® can be easily obtained by simply
nOre \ Ore . .
n=1 taking the average of the received power.

>0, Corollary 1. Without peak power constraint, but with the
where the last inequality is due to the fact that< 51, vn < mean power limited t&€P = 1, the optimal random power
I by assumption, and the monotonicityef " in [0, 71]. control policy is
Therefo_re_, we found(x) as a bette_r gandidate _thzﬁ‘f*(:z:), e e (2), Oro <1
contradicting the assumption that it is the desired fumctio p(z) = { (1= 72) 110,600 (@) + Ljgro ooy (x),  Or® > 1.

The generalization from simple function to general funasio -
g b 9 The exact value of the local delay depends on the distribu-

'S g}?n;:?]n?e?ﬁotgstc:ntgz Z{gg;ﬁ h:(;nga r];).ve the foIIowintion of the link distanceR. A Rayleigh distribution is often
PP P sed for the distribution OR, since it is the distribution of the

lemma. ) . . . .
nearest-neighbor distance in a 2-dimensional network &hos



nodes are distributed as a Poisson point process (PPP) [THfinition 6. The hybrid uniform power control (HUPC)
It is shown in [1] that with such distribution of the local policy transmits with probabilityﬁ. If transmitting, the
delay is unbounded if Rayleigh fading is considered and mi@nsmit power is uniformly distributed betweeérand P, ..

power control_ IS app“ed (except for the casecof= 2). The Pefinition 7. The 1-bit power control (1BPC) policy transmits
natural question is whether random power control can ma £

a log Pmax «
the local delay finite in the same scenario. In the case wh areconstant powerft = 1) whendr® < 1§Pr;£x - Whengre >
only a mean power constraint is imposed, applying the rescﬂf%, the policy transmits at poweF,,,,c with probability
in Corollary 1, we have Pl and does not transmit with probability — P, .
D_E [ 1 ] While the peak power control (PPC) .policy, uniform power
Ps|R control (UPC) policy, and hybrid uniform power control
-1 - (HUPC) policy are all suboptimal, their complexity is lower
_ 27T/\/ et AT g | 27T)\96/ rotl —xmr?q.  than OPC’s. In particular, they do not require the link disi
0 0w information R. Their constructions are inspired by Theorem
<e(l- e—,\w*%) i 9e(,\7r)—%r(9 T 1,)\7r9_%) 1 in different ways. For example, in the power-limited regim
- PPC is as good as OPC. The intuition behind HUPC is that
< o9, Theorem 1 implies that for all realizations @ it is non-

wherel'(-, -) is the upper incomplete gamma function. In othe?p_trlhmalltob_transmlt with pcl)wirB'Sg’ 1). licy | d
words, power control can keep the local delay finite whiIF d ? ff- blt tpower g(l)argro (d th) pl(:' '%y IS fpropose ast al
keeping the mean transmit power at each node limited even froc-off between -~ and other kinds of power contro
the link distance is Rayleigh distributed. pohqes that do not ut|[|ze t_he link distance informatidn.

practice, although the link distance can always be measured
Corollary 2. With unit mean power constraint and peak poweits precise value might be difficult to acquire,g, it may
constraint, power control cannot reduce the local delay to take too long to accurately measure. In such occasions, the
finite value, when the link distance is Rayleigh distributed performance of OPC becomes difficult to realize. Meanwhile,
1BPC turns out to be more suitable, since it only requires 1 bi
of information regarding the link distance, and its perfarroe

is identical to OPC’s in two important regimes: the large

Proof: Applying the power control policy described in
Theorem 1, we have

D—F { 1 ] regime (where poor choice of power control policy can result
Ds|R in many orders of differences in the local delay) and the kmal
g% P r regime (which typically happens with high probability).
— 27T)\/ refT AT g 4 27r)\96/ rotlo=Amr?q. |t is not difficult to find that if the link distance is known
0 - o and OPC is applied, the conditional local delay is
e 2
2 AP [y et T Praxe T, 07 > Py
X D, =< 6ree, 1< 0r® < Ppax
> 27 APrax /(rl re dr o gro < 1.
= 00, In comparison, we can see that with constant power transmis-

a sion the conditional local delay is always equaletgp(0r®).
for all a > 2, wheregd = 6/ Prax. The corollary then follows When Py« > 2, the transmit power of UPC is uniformly dis-

from the optimality stated in Theorem 1. " tributed in [0?2]. Its conditional local delay can be calculated

IV. COMPARISON OFRANDOM POWER CONTROL as
SCHEMES

—1
. . 1 o0 1, 7 exp(—z)
In this section, we compare the local delay performance of eXP(—§97‘ ) — 597“ . de .
several power control policies. First, we define a few power 20

control policies: Straightforward (but tedious) manipulation reveals thadio

Definition 3. The optimal power control (OPC) policy is thetlonal local delay for HUPC to be

power control policy defined in Theorem 1. 2 L —— -1
P -1 _ e oo e
—EE | Phax€ Fmax —e 77— Or® dx .

max

Definition 4. The peak power control (PPC) policy transmits 2
at power P,,., with probability P 1 and does not transmit
with probability 1 — P}

ore X
Pmax

regardless of the value of The calculation of the conditional local delay for 1BPC is
_— o ) similar to that of OPC.
Definition 5. The uniform power control (UPC) policy trans-  Fig. 2 and 3 compare all the power control policies defined

mits at powerP each time withP Uniformly distributed in above a|ong with constant power transmissidh 5(5 1) in
[1—A,1+A]. Here, A £ min{1, Ppax — 1}. different scales.
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10

+ constant power transmission
- - —uniform power control (UPC)

* hybrid uniform power control (HUPC)
““““ peak power control (PPC)
‘‘‘‘‘ 1-bit power control (1BPC)

(Theorem 1). This policy requires the knowledge of the link
distancer, which is typically easy to obtain in a random but
fixed wireless network. Inspired by this optimal policy, an
even simpler and more practical 1-bit power control (1BPC)

10 — optimal power control (OPC) + i

policy is constructed, which has the same performance as
OPC in the short-distance and power-limited regime. Both
power control strategies are compared with constant power
transmission and a few basic power control policies, and a
considerable reduction in local delay is observed.

The proof of Theorem 1 relies heavily on the monotonicity
of the exponential distribution of Rayleigh fading. Thisepr
vents the theorem being easily extended to more generalfadi
statistics, e.g, Nakagami fading. Also, it is unknown how
much loss there will be if the fading coefficient in different

time slots are correlated. All these topics remain for fetur
Fig. 2: Comparison of the conditional local delay for diéfat power \york.
control schemes. Herén.x = 4,0 =1, a = 2.
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V. CONCLUSIONS ANDFUTURE WORK

This paper shows that an ALOHA-type random on-off
power control policy is optimal in reducing the local delay



