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Abstract— The multihop spatial reuse Aloha (MSR-Aloha) Our motivation for introducing these two protocols is both
protocol was recently introduced by Baccelliet al., where each practical and mathematical. Practically, the performaate
transmitter selects the receiver among its feasible next Ips MSR-Aloha, which restricts attention to the head of linekggc

that maximizes the forward progress of the head of line packe ilb truction be inferior to th f £l
towards its final destination. They identify the optimal medum will by construction be interior to the performance of losge

access probability (MAP) that maximizes the spatial densit €dge routing, which exploits “buffer diversity” to allow eh
of progress, defined as the product of the spatial intensity fo MAC protocol to move the packets the furthest distance.

attempted transmissions times the average per-hop progresof Mathematically, it is perhaps intuitive to see that analysi
each packet towards its destination. We propose a variant éd  540m edge and longest edge routing is simpler than asalysi
longest edge routing where each transmitter selects its |gest .
feasible edge, and then identifies a packet in its backlog wke of MSR-AIoha, on account of the fact that. progress in the
next hop is the associated receiver. The main contributionfathis ~ former is measured by the average and maximum edge length,
work (and of Baccelli et al.) is the use of stochastic geometry to while progress in the latter involves a projection of thaigth
identify the optimal MAP and the corresponding optimal spatial  onto the line connecting each packet with its final destimati
density of progress. There are many practical challenges that can be raised
against both MSR-Aloha and our proposed edge routing
protocols. Mobility, for example, must be slow enough sd tha
the network topology is sufficiently static to allow a roufin

A recent paper by Baccelli, Btaszczyszyn, and Muhlethalgfotocol to inform all packets of the locations of their final
[1] introduced the multihop spatial reuse Aloha (MSR-Alphagestinations, and by extension their next hop. Our randain an
protocol in the context of an ad hoc network. The maipngest edge protocols assume a packet backlog covering all
idea is to combine an Aloha medium access control (MAGlssible next hops, but this assumption raises questicns ab
protocol with a routing protocol that moves packets alonge stability of the queues in the network, and the effect of
hops that maximize the progress of each packet towardsl{g protocol on delay. Timing and synchronization are also
final destination. Baccellet al. derive the Optlmal medium ignored_ While these are valid Criticismsy the focus of this
access probability (MAP) that maximizes the spatial dgnsipaper is on obtaining closed form expressions for the optima
of progress, defined as the number of transmissions peresqudpnp for random edge and longest edge routing, as well as ex-
meter times the average progress towards the destinationpgfssions for the spatial intensity of progress under thienap
each transmitted packet. A key contribution of their pager MAP. The tractability of the model is necessarily reduced if
the use of stochastic geometry to explicitly incorporate tht js extended to incorporate the drawbacks mentioned above
effect of node locations on network performance. The rest of this paper is organized as folloi$.introduces

In this paper we analyze two related but distinct protocolfe mathematical modejlll presents analytical results on the
termed random edge routing and longest edge routing. A kejjtimal MAP and corresponding optimal spatial density of
assumption in [1] is that each transmitter (Tx) selects thfogress under random edge and longest edge rouiNg.
next hop receiver (Rx) as the node that carries tkad of presents simulation results and shows a good match with the

line packetat the Tx furthest towards its eventual destinatiomnalytical results. A brief conclusion is given§i. The proofs
selected over all Rx such that the received signal to interfeyre placed in the Appendix.

ence plus noise ratio (SINR) is sufficiently high to ensure a
successful reception. In contrast, we consider a regimeevhe [l. MATHEMATICAL MODEL

each Tx has a sufficient backlog of packets to ensure it hasconsider an infinitely large ad hoc network where the node
at least one packet in queue for each potential next hop R¥cations at some snapshot in time form a stationary Poisson
Under random edge routing, each Tx selects one of its feasipbint process (PPP)L = {z;} on the plane of intensity.
next hop Rx at random, and selects a packet from its queggring each time slot each node elects to transmit (Tx) with
appropriate for that Rx. Under longest edge routing, each probability p or receive (Rx) with probability. — p; it follows
selects the Rx furthest away. Both protocols are measuigdt the set of TX's ) and Rx’s (Irx) are themselves
under the same spatial density of progress employed in [1ktationary PPPs of intensitiég and(1—p) respectively, with
) ) I, UTIgx = II. The success of an attempted communication
This work is supported by the DARPA IT-MANET program, Grant

W911NF-07-1-0028 (Jindal, Haenggi, Weber). Correspandiathor: Steven from a _TX to a Rx depends upon the signal to interference
Weber,sweber @ce. dr exel . edu. plus noise ratio (SINR), measured at the Rx.

I. INTRODUCTION



Definition 1: The SINR from each Tixto each Rxj is A “fair” comparison of random/longest edge routing with

o d— MSR-Aloha requires selecting a destination for each packet
SINR,; = Y i€l j€llry, (1) in the buffer, then selecting the packet and Rx pair with
ZkGHTx\{i} hijdi;™ +n the longest progress towards destination, and then usiag th

wherea > 2 is the pathloss exponent,; = d(z;, ;) is the prqjected Iength. in evaluating the sp_gtial dgnsity _of pesgr
distance fromi to j, {h;} ~ Exp(1) are the iid Rayleigh This would spoil the model tractability while gaining lgtl

fading channel gains, ang is the noise power. in insight, and so we simply focus on computing the aver-
age/maximum edge length. That is, we don't consider the

A. MAC: the spatial Aloha graph effect of finite buffers, nor do we project the edge lengths
' i onto the line towards each packet's destination. Altetyate

We assume a Tx-Rx pair are successful iff the SINR bye the unprojected edge length is an increasingly aceurat
the receiver exceeds the SINR threshgidThe spatial Aloha aasure of progress as the buffer length grows large.
graph was introduced by Ganti and Haenggi in [2].

Definition 2: The spatial Aloha graph is an infinite random m
geometric directed bipartite grapfl = (Il 1y, gy, E), where '
edges indicate a sufficiently high SINR:

OPTIMAL MAP AND SPATIAL DENSITY OF PROGRESS

Assumption 2: Throughoutll we assume that there is no
noise,n = 0, and indicate this by writing SIR instead of SINR.
(i,j) € E < SINRy; > 3, i € Iy, j € llrx.  (2) This assumption is realistic in the interference-limitese.
A new realization of this graph is created in each time slof the present case of Rayleigh fading, a noise term conéibu
when each node independently decides to Tx or Rx. an independent exponential term to the probability of trans
Assumption 1: The SINR thresholt],required for success- mission success [1]. The no-noise assumption is unreafisti

ful reception, is assumed to equal or exceed uriity: 1. This  very smallp, since edges of unbounded length are possible.
ensures each Rx has an in-degree of either zero or one.

The in-degree bound follows from the assumption becau&e
reception for3 > 1 requires one node have a signal con- . . .
tribution exceeding the sum interference contribution tf a We first summarize key results from [1], [2], [3]. First,
other Tx’s, and there can necessarily be at most one sig@ccelli et al. [1] established the probability of an edge
node. A realization of this graph is shown in Fig. 1 foP€tween a Tx and a Rx separated by distadice

p € {0.05,0.20,0.50}. Qualitative properties of include: Proposition 1: (from [1]). The probability that a Tx-Rx pair

« Small p: There are few Tx’s and many Rx’s. There is IomLi"j) separated by distancé;; has sufficiently high SIR, and
' ’ ence has an edge iR is

interference, and hence longer edges. The Tx's each have

high out-degree, many Rx’s have an in-degree of one. P((i,§) € E) =P(SIRy; > ) = exp {—md;;\ps}, (3)
o Large p: More Tx's and fewer Rx’s. There is higher

interference, and hence only shorter edges are possikde. -Wpere

_ 55
Tx’s each have low out-degree, many Tx in fact have zero k= (md) ese(md)B°, 6 = 2/a. 4)
out-degree and many Rx have zero in-degree. It is worth noting that the proof of the above result relies

The key tradeoff is that although there are many long edgcgtlgally_on the ass_umed Ray_lelgh fading; for a generairfgd
istribution (including no fading) one must resort to bosnd
for low p, each Tx can make use of only one of them, hence

we wish to have more Tx’s (highe), but the additional Tx’s on the above probability, see.g, [4]. We next define the
. ) neighbors and degrees for each node.
cause more interference, which reduces the number of edges .. . )
efinition 3: The random set of Rx for each Tx, and the

and the average length per edge. random set (of maximum cardinality one) of Tx for each Rx:

Preliminary results

B. Routing: selecting an outgoing edge from each Tx MM = {jelgy: (i,j) € B}, i €Il
Coordination is assumed so that in each time slot each Tx M = {i€lr:(i,j) € B}, j€llrk.  (5)
knows those Rx’s for which the SINR is sufficiently large, anc}he random Tx out-degree and random Rx in-degree:
hence knows the set of potential Rx’s for that time slot. Give ' ‘
that a Tx may have multiple Rx's, we specify below some MP" = [M™|, i € Iy, M" = |[M}|, j € IIrx. (6)
possible rules for each Tx to select among the various Rx’srhe mean out-degree and in-degree
« MSR-Aloha [1]: each Tx selects the Rx maximizing the i )
progress of the head of line packet towards its destination. m" = E[M°"], m™ =E[M™] (7)
The spatial density of progress is the intensity of sucmssgre the expected out (in) degree obtained by selecting a Tx
Tx times the average packet progress towards its desninatiaax) uniformly at random over the SBry, (ITry)
« Random / longest edge routingeach Tx selects a Rx at Y Tx SR

random (random edge routing), or selects the Rx that is ftél%irogfcae% Sglg(;)rve\z/es are given by Ganti and Haenggi [],

thest away (longest edge routing), and then selects a pack " ) )
whose assigned next hop is that Rx. The spatial density o roposition 2: (from [2]). The mean degrees are:

progress is the product of the intensity of successful Tx moeut — 1;1’17 mit = l (8)

times the average (or average maximum) edge length. p kK K



It is noteworthy that the mean in-degree is independent of IV. NUMERICAL AND SIMULATION RESULTS

andp. The number of edge heads and tails must match; this isrigyres 2, 3, and 4 present numerical and simulation results
seen by weighing the average out (in) degree with the Spai@im Theorems 1 and 2. Simulation results were obtained by
intensity of Tx (Rx): Apm®" = A(1 — p)m™. Further, since taking a Monte-Carlo average oveiindependent realizations
M;" is Bernoulli, we in fact know the distribution is of a network arenad of size 400 x 400 square meters, with
P(]\/[;n —1)=1- P(]\/[;n —0)=m®, jellr. (9) @an intensityA = 0.02. The average number of nodes_was
' ' thereforeE[N] = A|.A| = 3200. Figures 2 and 3 were obtained
A lower bound (via Jensen’s inequality) on the probabilitmsinga =3, B=1, n=10", yielding x ~ 2.4184 (4).
of no outgoing edges is given by Ganti and Haenggi [3], Fig. 2 shows simulation and numerical results for spatial
reproducgt_:i below. Note the bound is m_d_ependem.of ~ density of progressh(),p), for RER (12) and LER (16),
Proposition 3: (from [3]). The probability of no outgoingyersus the MAR. The approximaté(), p) is seen to be quite
edges is lower bounded by: accurate over alp. The optimal LER achieveg85% higher
P(Myye = 0) > e~ ™one. (10) Progress than optimal RER, wits8% fewer attempted Tx.

These three propositions are used in the proofs of our mainFig. 3 shows simulation and numerical results for expected

results: Theorem 1 (2) on random (longest) edge routing. €dge length,E[L], E[L™*], for RER (11) and LER (15),
versus the MAR. The approximations are quite accurate over

B. Random edge routing (RER) all p aside fromp near0. The numerical edge lengths are
unbounded agp — 0 due to the no noise assumption.

Fig. 4 shows numerical results for the optimal medium
access probabilityy*, for RER (13) and LER, versus (4).
The p* for LER is found by numerically maximizing (16):

1 [min o 2
E[L] = 5,/ o (11) PUERS — are max /\p/ (1 — exp {_moute AL }) .
0

p€[0,1]
The spatial density of progress is upper bounded by a7)

1 . The inset shows a plot of versus the SINR requiremept
h(X,p) = ApP(Mous > 0)E[L] < 5V APMin (1—e™™).  for pathloss exponents = {2.5, 3,4, 5}. The inset shows is
(12) increasing in3 and decreasing in, and thats > 1. They-axis

Define the rvL = d;; as the length of an eddé, j) selected
uniformly at random from the sef in G.
Theorem 1: The average edge length under RER is

The bound—-optimum MAP is for the inset,[1, 20], is used as the-axis for the main figure.
1 . -1 Fora =3 andB =1 (xk ~ 2.4184), we havepFR* ~ 0.14
p* = 2myi, (—1 —2W_,4 (——e‘(i““m‘“))) . (13) andpRPR* ~ (.21, a50% increase in the optimal MAP.

where Wy, (z) is the k" branch of the Lambert function, V. CONCLUSION
defined as the solution oW (z)e"V(®) = . Theorems 1 and 2 give approximate (yet very accurate)
The proof is found in the Appendix. Note that the optimaéxplicit expressions for the average edge length, the alpati
MAP depends only o and not on). density of progress, and the optimal MAP for RER and LER.

The MSR-Aloha protocol proposed in [1] is equivalent to our
C. Longest edge routing (LER) proposed RER protocol if we ignore projections of link edges

Define the rvL™#* as the maximum edge length emanatingnto the final destination ling,e., if the whole edge length
from a Tx selected uniformly at random from those Tx witlis counted as progress. Our results quantify the improvemen
one or more Rx i, i.e., over the se{i € IIy, : M2 > 0}. of LER over RER both in terms of increased spatial density

Theorem 2: The complementary cumulative distributiopf progress and in terms of reduced optimal medium access
function (CCDF) of the maximum edge length under LER Rfobability. This improvement can be thought of as the Aloha

approximately MAC benefit of exploiting buffer diversity instead of only
P considering the head of line packet.
1 —exp {—moute_ Min }
P(L™ > ) ~ — (14) REFERENCES
L — e mon [1] F. Baccelli, B. Btaszczyszyn, and P. Mihlethaler, “AifoAa protocol for
The average maximum edge length is approximately multihop mobile wireless networks/EEE Transactions on Information

, Theory vol. 52, no. 2, pp. 421-436, Feb. 2006.
. _mlZp 2] R. K. Ganti and M. Haenggi, “Dynamic connectivity and Rat propa-
IS (1 Cexp {_mome 22 }) dl [2] 9gi, “Dy ty and et prop
(15)

gation delay in ALOHA wireless networks,” iRroceedings of the 2007

E[Lmax] ~ . Asilomar Conference on Signals, Systems and CompuRasfic Grove,
1 — e=Mout CA, Nov. 2007.
; ; ; ; [3] ——, “Single-hop connectivity in interference-limitetiybrid wireless
The spat|al denSIty of Progress 1s apprOX|mater networks,” in Proceedings of the 2007 IEEE International Symposium
o0 _x2xp on Information Theory (ISIT)Nice, France, June 2007.

h()\,p) R Ap gl — eXp {_moute Min } dl. (16) [4] S. Weber, J. G. Andrews, and N. Jindal, “The effect of figglichannel
. J0 . . . . . inversion, and threshold scheduling on ad hoc netwollEEE Transac-

The proof is found in the Appendix. The approximation in  jions on Information Theorwol. 53, no. 11, pp. 4127—4149, Nov. 2007.

(14) is not necessarily a lower or upper bound since both t{# D. J. Daley and D. Vere-Jone&n Introduction to the Theory of Point
numerator and denominator in (26) are upper bounded. Processes2nd ed.  Springer, 2003.
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Fig. 1. A realization of the spatial Aloha graph foer= 0.05 (top), p = 0.20
(middle), andp = 0.50 (bottom). Transmitters are denoted Wy receivers
by o, and an edge indicates an SINR abg¥e= 1. The square arena has a

0.025 T
LER, sim —+—
LER, num
RER, sim -
RER, num -
0.02 |- N
173
I
j=2)
o
& 0015
k]
=
‘D
=4 ’
[} ¥
° 001 | ¢
8
T
jo %
@ H
0.005 |
0 Il Il Il Il ~
0 0.2 0.4 0.6 0.8 1

Medium acceess probability (p)

Fig. 2. Simulation and numerical results for spatial dgnsit progress,

h(X, p), for random edge routing (RER (12)) and lon
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E[L], E[L™&*], for random edge routing (RER (11)) and longest edge routing
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lengths are unbounded as— 0 on account of the no

noise assumption.
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pathloss exponent is = 3 and the noise power is = 10~%. Zooming in

on the bottom plot reveals many very short edges.

{2.5,3,4,5}.



APPENDIX with the convention thaL{*** = 0 if the setMg" is empty.
PROOF OFTHEOREM 1 Let L™#* > ( be the maximum edge length of those edges

emanating from a Tx selected at random over the set of Tx
Proof of (11). Let Lo be the length of an edge found by,,ih one or more edgesi € Ity : MO > 0}. We relate

selecting a Rx at random. Precisely; is the length of the o ccprs ofLmax and L™ax by conditioning on the random

edge associated with the Rx, if any is present, or is zero elB%t_degreeMout > 0 of the Tx selected uniformly oveir:
Let L be the length of an edge found by selecting an edge at o = *

random. We relat&[L,] andE[L] by conditioning:E[Lo] =  P(Lg™ > 1) = P(Lg™ > I|Mg"" > 0)P(Mg"* > 0), (25)

E[LOlMin _ O]P(]\/[m _ 0) + E[LOU\/[m _ 1]]P)(Mm _ 1)’ Since]P’(L{)nax > l|M6)ut = O) =0 forall [ > 0. Then:
(18) P(LE* > 1)
© 7 (20
E[Lo] = KE[Lo]. ~ (19) Define themarked PPPII;, = {(x;,SIRo;), j € Igx},
where the marks are the SIRs from Txto each Rxj. The

P(L™ > 1) = P(L§™ > I[|[M§™ > 0) =

so that

E[L] = E[Lo|Min = 1] =

Min
Consider a typical Rx located at the origin. Definemark marks determine whether each péi j) is an edge in:
on each TxM,; = SR

_ ¢ Ve ERN let {Mi}_ be the depen(_jent bUt(O,j) € E < SIRg; > 3. Note the event equivalence:
identically distributed marks for eache Ilr,, and definef,

as the marginal CDF for a typical mafd. Write Lo in terms  {Lg™ <1} = {z € B(o,1), Yz € M§"'} (27)
of the marked point proced$., = {(z;, M;), i € I« }: = {15(0,§)1peon(z;) =0, Vj € Iy, }
i;ﬁ( i;ﬁ( = H (1 - 1E(07¢7)1Bc(o,l)(‘rj)) =1
JeMy

where 15(4,0) is the indicator that edg¢i,0) € E. Now

_ 2. i
apply Campbell's Theorem [5]: for B(o,1) = {x € R* : d, , <} the ball of radiud centered

at the origin, andB¢(o, 1) its complement. In words, the event

> that the maximum edge length for the Tx at the origin is less
E[Ly] = 1 je-a>pdFh d . .
[Lo] AP /Rz/o [l Lmjo) -o>pd Fag (m)de than! is the same as the event that there are no edgés in

o P(Mlzl-e d from o to receivers outsidé3(o, 1), which is the same as the
- L, o [P(M]z|™* > F)dz event that for each receivgreither the pair0, j) is not in E,
or the receiver is inB(o,1). The CDF, Fy(l) = P(L§** <)
= Ap /}R2 ||P(SIRo,» > fB)da can be expressed as an expectation:
= )\p/ |x|e_”‘w‘2’\p”dx = % (21) )
R2 2/ \pK 2 Fo(l) = P J] (1 =18(0,5)1pon(x;) =1
JEMy

Proof of (12). The upper bound on the spatial density of
progress is obtained by multiplying the intensity of attéeup
transmissions)\p, times the upper bound on the probability = E
that each transmitter has at least one ed@/,,: > 0) <

H (1- ]'E(Ovj)lBC(o,l)(zj)):| . (28)

JER,

1—exp{—mou }, times the average length of an edB&L] = This latter expression matches the form required to apply
1/(2v/ApK). the probability generating function (pgfl) for a (bounded)

Proof of (13). Maximization of (12) wrtp is equivalent to functional of a PPP ([5]):
maximization of

h(p) = 2\/§h()\,p) =D (1 _ e,lr:_;) . 22) Fo(l) =E {exp {—/\(1 -p) /Rz lE(O,x)lBC(OJ)(I)dx}(lé)

where the expectation is wrt the markSIRy;, j € Ilgy}.
Jensen’s inequality yields a lower bound on the CDF:

VRS B S S U G e
VPH'(p) = 5 = (5 + ;p) o @) B > exp {_m ~p) /R P(SIRo; > ﬁ)ch(o,l)(ff)dxj :
0)

Solving 7/ (p) = 0 for p yields (13). (
Applying (3) and simplifying yields

EFy(l) > exp {—mouteﬂm—i?ﬂp} . (31)
Let Lg** > 0 be the maximum edge length of those edges
(if any) emanating from a Tx selected at random oveilalk. Substituting (31) and (10) into (26) yields (14). One finds th
Let this Tx be labeled), and wlog, located at the origim, approximation for the average maximum edge length (15) by
Letting M3"* be the set of Rx for this Tx, we have: integrating the CCDF (14). Finally, the approximation fhet
o spatial density of progress (16) is obtained by multiplyihg
L™ = ig{f}é& il (24)  same three guantities as in (12); see the Proof of Theorem 1.

This function has derivative:

PROOF OFTHEOREM 2



