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Abstract— The simple, yet powerful concept of an “erristor”
and its “erristance” has been recently introduced for ad hoc
networks and applied to scenarios such as retransmission (time
diversity), path diversity, or a combination thereof. We extend
this formalism to the case of spatial diversity, realized by employ-
ing multiple antennas at each node. Based on this framework, one
can efficiently analyze and design Rayleigh-faded MIMO ad hoc
networks that employ selection combining. The mathematically
tractable definition of the erristor term greatly simplifies the
study of a multiple-antenna network and helps solve problems
based on end-to-end reliability or resource allocation easily,
which we illustrate in an example. Moreover, this technique
demonstrates the superiority in performance of MIMO over
single-antenna routing schemes, particularly at high SNR.

I. INTRODUCTION

In an ad hoc network, nodes are free to move randomly and
organize themselves arbitrarily, and thus the network topology
might change rapidly and in an unpredictable manner. Energy
constraints often entail multihop routing between nodes far
apart, where relays assist in the delivery of packets to their
destinations [1]. While these decentralized systems are easily
deployable and reconfigurable, their performance is severely
susceptible to fading and interference [1], [2]. A well-known
procedure to gain from fading is to employ multiple antennas
at each node of the ad hoc network [3]-[6]. However, the
design of multiple-input multiple-output (MIMO) ad hoc net-
works is a challenging task that can easily become intractable
as the number of nodes in the network increases. The design
problem involves allocating transmit power to each active link,
to achieve at least the desired end-to-end reliability under the
specified system energy constraints.

In this paper, we extend the “erristor” formalism, originally
developed in [7] for single-antenna ad hoc links, to multihop
MIMO systems. The erristor framework is very useful in
characterizing transmissions in an ad hoc link. It can be used
to greatly simplify analysis and design problems for Rayleigh-
faded MIMO ad hoc networks. For systems that employ
selection combining, we show that there exists a logarithmic
mapping from link reliabilities to erristor values. This relation-
ship can be exploited to effortlessly solve problems of resource
(re)allocation given the network end-to-end packet delivery
probability. We illustrate this with an example. The concepts
developed also provide useful insights into the benefits of
spatial diversity at high signal-to-noise ratios (SNRs).

II. SYSTEM AND CHANNEL MODEL

We consider a general multihop MIMO relay network, with
a single transmitting node, a single receiving node and n −
1 relay nodes (Fig. 1). Thus, the signal from the transmitter
reaches the receiver after n hops. Each node has m antennas.
The channel between any two adjacent nodes is modeled as
a flat (narrow-band) Rayleigh block fading channel, with an
additive white Gaussian noise (AWGN) process Z of variance
N0. The input/output relationship at time instant t for the kth

link can be described as Y(k)
t = H(k)

t X(k)
t + Z(k) for k =

1 . . . n, where X(k)
t and Y(k)

t are the (m×1) input and output
vectors respectively and H(k)

t , the (m × m) channel matrix,
whose entries are the large-scale path loss multiplied by the
corresponding i.i.d. fading coefficients.
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Fig. 1. The general MIMO relay model, with n links and m antennas at
each node. dij is the physical separation between node i and j.

In the following discussion, we will only consider the
MIMO link between node i and node j (Fig. 1). Analytical
results derived for this link can be extended to other links
without loss of generality.

Let the transmitter at relay i have a transmit power budget
of P . Assuming that it has no knowledge of the channel state
information, each of the m antennas transmits with a power
level P/m in order to maximize the throughput1 [8]. The
MIMO transmission strategy aims at diversity maximization,
meaning that m copies of the same signal are sent through the
m antennas. Selection combining is employed at the receiver,
i.e., the received signal with the maximum SNR is picked
for decoding. We consider a large-scale path loss propagation

1With the complete knowledge of the channel (obtained usually via feed-
back), “waterfilling” would be employed to optimize the throughput.



model in which the transmitted power falls off with distance
as d−α [9], where α is the path loss exponent. Let the physical
separation between nodes i and j be dij . This is assumed to
be much greater than the antenna separation, so that the path
loss is the same for all signals emanating from a node. We
do not consider interference, i.e., we assume a perfect MAC
scheme or light traffic for deriving our results.

III. EXTENSION OF THE ERRISTOR FORMALISM

In this section, we define the erristor characterizing the
transmission in the MIMO link i → j. For our analysis, we
employ a Rayleigh-faded model which relates transmit power,
path loss and the reliability of the link2 [7]. We also study the
asymptotic behavior of the link reliability which leads us to a
critical value of SNR in selection combining.

A. Erristor Modeling for the MIMO Link

We begin by noting that the power Q at each receive antenna
at node j is a sum of m i.i.d. exponentials. Consequently, the
pdf of Q follows the central chi-square distribution with 2m
degrees of freedom, and has a mean Q̄ = m· P0

m d−α
ij = P0d

−α
ij ,

where P0 is proportional to the transmit power. We can write
the cdf of the chi-square r.v. Q [10] as follows:

FQ(q) = 1− e−(qm/Q̄)
m−1∑

k=0

1
k!

(
qm

Q̄

)k

, q ≥ 0. (1)

With Qi being the signal power at the ith receive antenna,
the selection combining strategy picks the signal with power
S = max (Q1, Q2, . . . , Qm) for decoding. The cdf of S is
given by FS(s) = FQ(s)m.
The transmission from node i to node j is successful if the
maximum SNR at node j, γmax

j , is greater than a certain
threshold, Θ, which depends on the detector structure and the
modulation and coding scheme [2]. Therefore, the reception
probability is given by pr = Pr[γmax

j ≥ Θ] = Pr[S ≥ ΘN0].
Thus, we get

pr = 1−
(

1− e−ΘN0m/Q̄
m−1∑

k=0

1
k!

(
ΘN0m

Q̄

)k)m

. (2)

Let R denote the normalized average NSR at the receiver, i.e.,
R := ΘN0/Q̄. Then, for m ≥ 1, we have

pr = 1−
(

1− e−Rm
m−1∑

k=0

1
k!

(Rm)k

)m

= 1−
(

e−Rm
∞∑

k=m

1
k!

(Rm)k

)m

. (3)

Fig. 2 is a plot of the reception probability (3) as a function
of the number of antennas m. We remark that under good
channel conditions, i.e., low values of R, the MIMO system
has a higher reception probability compared to the single-
antenna system, while at very low SNR values, using fewer

2This model is preferred not only for its simplicity, but also because it
overcomes some of the limitations in the “disk model” [11], [12] often used
in the literature on ad hoc networks.
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Fig. 2. Reception probabilities as a function of the number of antennas
employed, for various values of the NSR R. Notice the contrast in asymptotic
behavior as one set of curves approach 1, while the others tend to 0.

antennas makes the link more reliable. Similar results on the
sub-optimality of MIMO at low SNR have also been observed
in terms of the behavior of capacity versus SNR in [13],
[14] where even the receiver does not have any channel state
information, and in an interference-limited environment [15].

B. Asymptotic Behavior of the Reception Probability

We now discuss the asymptotic behavior of the reception
probability as the number of antennas increases. To investigate
this, first note that a Poisson distribution with parameter λ can
be approximated by a Gaussian distribution with mean and
variance λ, for large λ, with equality in the limiting case when
λ → ∞ [16]. Also note that the term inside the parentheses
in (3) is an infinite sum over the pmf of a Poisson-distributed
variable with λ = Rm. Using the Gaussian approximation for
large m and nonzero R, we can approximate (3) as

pr ≈ 1−
(

1√
(2πRm)

∫ ∞

m

e−
(k−Rm)2

2Rm dk

)m

(4)

where we have replaced the discrete sum by a continuous
integral. Writing in terms of the Q-function (area under the
tail of the standard Gaussian probability density function) [9],
we have

pr ≈ 1−
(

Q

(
m(1−R)√

Rm

))m

. (5)

A well known tight upper bound for the Q-function [9] is

Q(x) ≤ 1
x
√

2π
e−x2/2, x > 0.

Using this, for R < 1, we can bound (5) as

pr ' 1−
( √

R

(1−R)
√

2mπ

)m

e−m2(1−R)2/2R. (6)



As m →∞, the approximation becomes an equality, and thus
pr → 1 as the number of antennas increases.
For R > 1, (1 − R) < 0. Using the property that Q(−x) =
1−Q(x) for x > 0, we can bound (5) as

pr / 1−
(

1−
√

R

(R− 1)
√

2mπ
e−m(R−1)2/2R

)m

, (7)

which yields pr → 0 as m →∞.
Therefore, we conclude that there exists a phase transition,

i.e., a critical value of R, Rc = 1 (corresponding to an average
SNR of Θ), above which the reception probability is 0, and
below which, success is always guaranteed, assuming infinite
antennas are employed. This is, to the best of our knowledge,
the first analytical derivation of this critical SNR level in
selection combining.

C. Markov Approximation

To simplify the expression for pr (3), we apply Markov’s
inequality [17]. The Markov bound is rather a (frequently)
loose bound, but nevertheless provides valuable insights on
tail probabilities. Applying it to the tail probability term gives

e−Rm
∞∑

k=m

1
k!

(Rm)k ≤ Rm

m
= R.

Using this in (3), we have pr ≥ 1−Rm.
The deviation of the Markov bound 1 − Rm from the

actual value (3) is plotted in Fig. 3 for different values of
the parameters R and m. The threshold value of R for which
the difference is less than 0.01 is calculated to be 0.103 for
m = 2, 0.215 for m = 3 and 0.317 for m = 4. For R > 1,
Rm > 1, and the approximation does not make sense.
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Fig. 3. The Markov approximation for pr is tight at low values of R.
However, it becomes increasingly inaccurate as R increases.

It is seen that the Markov bound is very tight only for good
SNR values (R ¿ 1) and/or when employing many antennas
(m À 1). Under these conditions, first-order approximations
hold, and we have

pr = 1−Rm ⇔ pr = e−Rm

. (8)

Following the erristor definition from [7, Eqn. (6)], the erristor
of the MIMO link i → j is denoted by R′ = Rm, and its value
is known as its “erristance”. Henceforth, we shall operate in
the high SNR regime (R ¿ 1), so that this approximated
representation is accurate. Thus, we can characterize transmis-
sions in any MIMO link by a network element, the erristor,
whose value depends on the average normalized NSR at the
receiving node and the number of antennas employed.

IV. DESIGN OF MIMO AD HOC NETWORKS

A powerful application of the erristor representation is
the efficient design of MIMO ad hoc networks. The design
problem is to set the transmit power levels at each node
(or, equivalently, choose erristances) such that the end-to-end
reliability, denoted by pEE , is at least at the desired level pD.
In order to be able to do so, we need to find a relationship
between the erristances involved with each transmission link
and the equivalent erristance of the network as a whole.
We discuss the two most fundamental link topologies in this
regard: the multihop (series connection) and links employing
time/path diversity (parallel connection).

A. Multihop Connection

Over an n-hop MIMO serial link, the end-to-end reliability
is given by the product of the reception probabilities for each
link. Equivalently, with R′i denoting the erristance of the ith

link, we get
pEE = e−

Pn
i=1 R′i . (9)

The equivalent erristance Rtot is given by

Rtot = − ln pEE =
n∑

i=1

R′i =
n∑

i=1

Rm
i . (10)

B. Parallel Connection

For a more complicated network with retransmission, the
transmission is successful if any one copy of the signal is
successfully decoded by the receiver. Extending the result
from [7, Th. 2] to a MIMO system, we conclude that erristors
connected in parallel have to be multiplied, i.e.,

Rtot =
n∏

i=1

R′i =
n∏

i=1

Rm
i . (11)

With the knowledge of the series and parallel erristor equiv-
alents, we can simplify most networks, since they can be put
down as a combination of these two fundamental connections.

The following example describes how the erristor frame-
work is able to reduce complex design problems to simple
polynomial equations, that are analytically tractable.

Example: Consider the three-hop MIMO network in Fig. 4,
where each node has m antennas and the spacing between any
two adjacent nodes is equal to d. Node 1 transmits its packet
twice, once to node 2 and again over the link 1 → 3. However,
node 2 also listens when the packet is being sent to node 3.
This implicit transmission is modeled by adding an erristor in
parallel to link 1 → 2, whose value is denoted by Rm

12,i. Since
d13 = 2d12, it is easy to see that R12,i = 2−αR13. The design
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Fig. 4. An example: (a) A three-hop network, with node 1 having to transmit
twice. (b) The corresponding erristor model, which is much easier to analyze.
The dashed box Rm

12,i denotes the implicit erristor.

problem is to choose the erristances to guarantee atleast the
desired end-to-end reliability pD, which is specified as 90%
(say). pEE ≥ pD implies Rtot ≤ − ln pEE ≈ 0.105.

Let us assume the power required per transmission to be
the same. Since the distances between adjacent nodes are the
same, we require R01 = R12 = R23 = R. Also, since d13 =
2d12, we need to set R13 = R·2α. Thus, Rtot = Rm+(R2m+
Rm)(R ·2α)m. Notice that node 2 needs to transmit twice and
thereby uses up twice the power compared to the other two
nodes. At Rtot = 0.105, a solution for m = 1 and α = 3.5 is
R = 0.061. For m = 2, R = 0.157 satisfies the equation. Just
by increasing the number of antennas at each node by one, a
(massive) 61% reduction in transmit power is observed.

Consider now a more realistic scenario where each node
expends the same net transmission power. Clearly, R01 =
R23 = R, while node 1 having to transmit with the same
net transmit power requires

dα

R
=

dα

R12
+

(2d)α

R13
.

One possible setting to achieve this is by letting R13 = 2αR12,
which results in R12,i = R12 and R12 = 2R. To meet the de-
sired reliability, we require Rm +((2R)2m +Rm)(2α2R)m ≤
0.105. For a single-antenna system and assuming α = 3.5,
the above equation is satisfied with equality at R = 0.048.
Likewise, for m = 2, R = 0.115, which conforms to less than
1/2 the original power. With m = 3, the solution is given
by R = 0.143, resulting in a further 20% reduction in power
consumption.

This simplified procedure also lets us solve problems based
on resource reallocation effortlessly. To see this, just imagine
the scenario when node 2 exhausts all its energy. This would
effectively make the link 1 → 2 useless. Our erristor network
would then consist of just Rm

01 in series with Rm
13. Depending

on the system constraints, we can suitably design these two
erristors to meet the desired requirements.

V. COMPARISON OF MIMO WITH SINGLE-ANTENNA
ROUTING SCHEMES

In this section, we apply the erristor formalism to com-
pare the performance of the multihop MIMO scheme with
two conventional single-antenna routing schemes (multihop

routing and connections with time diversity (retransmissions)),
to study the relative benefits of spatial diversity. Primarily,
we focus on two important aspects: total network energy
consumption (per packet) and transmission delay.

To make the comparison fair, we take the same number of
total transmissions and the same end-to-end link distance d
for each of the three schemes. With n transmissions and m
outgoing paths from each node, the total normalized energy
consumption (per packet) is easily seen to be

Etot =
n∑

i=1

m∑

j=1

dα
ij

Rij
. (12)

Consider a MIMO network, with m antennas at each node
and n hops, each of length d/n. Then, the total number of
transmissions is mn. With R denoting the NSR at each receive
antenna, Rtot = nRm, and the total energy consumed

Etot = mn

(
d

n

)α(
n

Rtot

) 1
m

. (13)

For the single-antenna multihop scheme with mn hops, each
of length d/(mn), Rtot = mnR′, where R′ is the NSR at
each receiving node. Thus, the total energy consumption is

E′
tot = mn

(
d

mn

)α
mn

Rtot
. (14)

For the system with mn retransmissions, Rtot = (R′′)mn,
where R′′ denotes the NSR at the receiver, and

E′′
tot = mndα

(
1

Rtot

) 1
mn

. (15)

Rx(a)

(b)

(c) Tx Rx

RxTx

Tx

d

Fig. 5. The three schemes considered, with each having to transmit four
times. (a) The MIMO network, employing two antennas at each node. (b) The
single-antenna multihop scheme (c) Connections with retransmission involved.
The end-to-end distance is d in each case.

We now compare the three routing schemes for the partic-
ular case of n = 2 and m = 2 (Fig. 5).

The ratio between the total consumed energies of MIMO
and the single-antenna multihop schemes can be simplified to

Etot

E′
tot

= 2α− 3
2 R

1
2
tot. (16)

From this, we can deduce that the spatial diversity scheme is
more energy-efficient if

Rtot < 23−2α ⇔ pD > e−2(3−2α)
. (17)



The area in the (α, pD) plane over which MIMO networks
consume less energy than multihop networks and the energy
gain for various path loss exponents are plotted in Fig. 6.
For practical scenarios such as high pD and moderate α, the
MIMO scheme clearly outperforms the serial link. Substantial
energy gains are observed as pD moves closer to unity.
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The ratio between the energies of the MIMO and the time
diversity schemes is given by

Etot

E′′
tot

= 2−α+ 1
2 R

− 1
4

tot . (18)

From this, we can deduce that MIMO consumes less energy
than the network with retransmission if

Rtot > 22−4α ⇔ pD < e−2(2−4α)
. (19)

This curve is plotted in Fig. 7. For the retransmission scheme
to outperform MIMO, 1 − pD must be extremely small (/
10−3). This is very hard to realize, and for all practical pur-
poses, MIMO is more energy-efficient. The plots in Figs. 6, 7
establish that huge energy gains are possible by using MIMO
transmission strategies.
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energy than the retransmission scheme. (Right) The corresponding energy gain
as a function of pD for different path loss exponents.

Another advantage of MIMO over the single-antenna sys-
tems is in the smaller end-to-end transmission delay. Consid-
ering the schemes in Fig. 5, we see that the MIMO system can
transmit in half the time required for the other two. On using
m antennas, the transmission delay reduces by a factor of 1/m.
Equivalently, the MIMO system would see more independent

realizations of the channel than the single-antenna systems in
a given time interval, resulting in huge diversity benefits.

VI. CONCLUSIONS

The erristor formalism is developed for MIMO ad hoc
networks employing selection combining, which greatly sim-
plifies problems related to their analysis and design. With the
knowledge of series and parallel erristor equivalents, complex
resource (re)allocation problems reduce to simple polynomial
equations, which are easier to handle, as we have demonstrated
in an example. Based on the erristor framework, the MIMO
multihop network is shown to be more energy-efficient and to
have lower transmission delays compared to the single-antenna
schemes (with or without retransmission), establishing the fact
that spatial diversity can greatly benefit at high SNR values.
Further, the asymptotic behavior of the MIMO link reliability
as the number of antennas goes to infinity is studied, and as a
useful side result, the critical value of the SNR, above which
the reception probability is always one and below which it is
always zero, is calculated.
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