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Abstract—This paper studies the end-to-end (e2e) delay perfor-
mance of a multihop wireless network fed with a single constant
bit rate (CBR) source. Two MAC schemes are investigated, m-
phase TDMA and probabilistic slotted ALOHA. A delay model is
used to analyze the resulting tandem queueing system and derive
tight upper bounds on the delay mean. The e2e delay linearly
increases with the route length and its distribution converges to
a Gaussian distribution. For channels with reception probability
greater than 0.5, TDMA significantly outperforms ALOHA. For
unreliable channels, the situation is less clear.

I. INTRODUCTION

Nowadays many wireless applications demand delay guar-
anteed services, which is more challenging than in the wired
network because of the random delay incurred by the error-
prone wireless channel. In order to provide such QoS guar-
antees, it is important to know the system performance. The
subject of this paper is the analysis of the delay performance
of multihop wireless networks fed with a single CBR source.
Regarding the e2e delay, we take into account both the

transmission delay and queueing delay [1]. The multihop
topology makes the e2e delay jointly affected by several
factors, including the routing algorithm, the scheduling policy,
and the MAC scheme. We concentrate on the impact of MAC
schemes. The assumption of a single CBR flow makes a simple
FIFO discipline sufficient for packet scheduling. Moreover,
the multihop network contains only one active route such that
the topology is essentially reduced to one dimension (1-D).
The resulting performance provides an upper bound for 2-D
networks with multiple active routes. Two MAC schemes are
considered, i) deterministic m-phase TDMA, in which a node
is allocated to transmit once in m time slots and nodes m
hops apart can transmit simultaneously; and ii) probabilistic
slotted ALOHA, in which every node independently decides
to transmit with probability 1/m if it has packets buffered.
From a queueing perspective, the 1-D network, referred to

as line network, is a tandem system. So, this paper focuses on
the wireless MAC scheme and the tandem queueing system.
Many analyses of MAC schemes are based on a single-

hop topology and the “infinite population model” [2]–[6].
The infinite population model assigns a new node to a new

arriving packet, and the transmission attempts in the network
are Poisson distributed with the spatial density of nodes. This
model excludes the queueing delay and accounts only for the
transmission delay and access delay. In contrast, the analysis
of tandem queueing systems focuses on the queueing delay
[7]–[10]. The channel is generally set to be error-free so that
the access and transmission delay incurred by MAC-dependent
collision and interference can be ignored.
Our main contribution is to jointly analyze the tandem

system and the MAC scheme in the wireless environment.
Both the queueing delay and transmission/access delay are
taken into account. An upper bound on the e2e delay is
derived. With a single CBR source, the delays experienced
at a single node converge to a geometric distribution, and
the e2e delay converges to a Gaussian distribution. The delay
means and variances are linear in the route length, and we
also conclude that the delay is very sensitive to the channel
reception probability.

II. ANALYSIS OF THE M-PHASE TDMA SYSTEM

The line network is a chain of N + 1 single-server nodes
using the FIFO service discipline. Node 1 is the source node
that generates fixed-length packets at a constant rate 1/r,
r ∈ N, i.e., one packet in r time slots. Node N + 1 is the
destination. All remaining nodes are pure relays. The channel
is slotted to one packet duration. Transmission attempts are
made at the slot boundaries. As in [5], [6], the channel error
is characterized by the reception probability pr, which depends
on the received signal-to-noise-and-interference ratio (SNIR)
and the predetermined SNIR threshold for a successful recep-
tion. Failed packets will be retransmitted until successfully
received.
The m-phase TDMA scheduler lets nodes i,m + i, 2m +

i, . . . (1 ≤ i ≤ m) transmit simultaneously at times i,m +

i, 2m + i, . . . and so on. A transmission can be either a
transmission of new packet or retransmission of a failed
packet. The time is divided into frames of m time slots, where
m < r for stability. Considering a heavy traffic load, we
assume m < r < 2m. For a node, the beginning of a frame
is the beginning of the time slot allocated to this node. If we



observe the system at the frame level, the transmission time
is geometric with pr. For simplicity, we denote the geometric
distribution with parameter pr by Gpr . The traffic intensity is
defined by ρ =m/(prr) < 1.
We start the analysis with the source node.

A. Delay distribution of the first node
At the frame level, the service time is Gpr . For m < r <

2m, the interarrival time r/m is not an integer in terms of
frame. The number of arrivals in one frame jumps between 0
and 1 and depends on the arrivals of all previous r−1 frames,
which makes it difficult to use the conventional approach of
establishing a Markov chain to keep track of the buffer size.
To take advantage of the constant interarrival time, we resort
to a delay model that was first used in [11]. The system state
is denoted by the current delay of the Head-of-Line (HOL)
packet in terms of time slots although the state transitions
occur at the frame boundaries. The transition probability from
state i to state j is:

Pij =


pr i ≥ 0, j = i−∆, ∆ := r −m

1− pr i ≥ 0, j = i+m,

1 i < 0, j = i+m.

(1)

The absolute value of the negative state indicates the remaining
time prior to the arrival of the next packet. Surely, the server
is idle when the system state is negative. Given r < 2m, the
server idle time does not exceed one frame.
At frame t, let the HOL packet be packet k and its delay

be dk(t). Packet k is transmitted at the beginning of frame t.
If the transmission is successful, packet k departs and packet
k + 1 becomes the HOL packet at frame t+ 1. The delay of
packet k + 1 at frame t is dk+1(t) = dk(t) − r. It increases
by m up to dk+1(t + 1) = dk(t) − r +m = dk(t) − ∆ at
frame t + 1. That is, the system state transits from i = dk(t)

to j = dk(t) − ∆ with probability pr. If j < 0, packet k
is the last queued packet and the buffer becomes empty after
packet k’s departure. Since the server idle time is bounded by
one frame, a new packet will arrive in the middle of frame
t+1. This new packet will wait m− |j| > 0 slots before it is
able to access the channel at the next frame. Then the negative
state j transits to a positive state m− |j| with probability 1. If
the transmission is failed (with probability 1− pr), the HOL
packet remains at the buffer and is retransmitted at frame t+1,
with its delay increased by m to dk(t+ 1) = dk(t) +m.
Denote the steady-state probabilities by {πi|i ≥ −∆}. From

(1), we derive the generating function (z-transform) G(z)

G(z) =

P−1
h=−∆ πhz

h

1− z∆

p

1− zm

1− zm+∆

. (2)

Based on G(1) = 1, we can calculate the average server idle
time PI =

P−1
i=−∆ πi as follows:

PI = G(z)|z=1 lim
z→1

¡
1− z∆

p

1− zm

1− zm+∆
¢
= 1− ρ. (3)

The average server busy time is PB = ρ. Besides, the average
departure rate PBpr = m/r is consistent with the expected
arrival rate in terms of frames.
If the transmission is successful, the HOL packet departs

the node with a delay as the sum of the system state and one
slot for transmission. The delay distribution {d(1)i |i ≥ 1} is

d
(1)
i =

πi−1prP∞
j=0 πjpr

=
πi−1P∞
j=0 πj

. (4)

Specifically, for ∆ = 1, (1) leads to

πi =


prπi+1 0 ≤ i < m− 1
prπi+1 + prπ0 i = m− 1
prπi+1 + (1− pr)πi−m i ≥ m.

(5)

These equations also hold if πi is replaced by d
(1)
i+1. Then the

delay distribution can be recursively derived with respect to
d
(1)
1 . The generating function of {d(1)i } is

GD(z) =
(zm − 1)

z − pr − (1− p)zm+1
· 1− ρ

ρ
, (6)

resulting in a delay mean

D1 =
1

2(1− ρ)
. (7)

Fig. 1 compares the simulation result with the analytical
delay distribution given by (1) and (4) for a system with
m = 3, r = 4, pr = 0.8. Our queueing analysis accurately
characterizes the delay performance of the source node.
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Fig. 1. Delay probabilities of the source node in the TDMA system

B. Delay distribution of the relay nodes
The output of node 1 is the input to node 2. We characterize

this output process by the interdeparture time T (1). Due to the
frame structure, the packet departs only at the frame boundary,
which allows us to observe and measure the interdeparture
time at the frame level.
The packet transmission time is S(1) ∼ Gpr in terms of

frames. Observing at the packet departing instant, if the queue
is non-empty (probability ePB), the interdeparture time is S(1);
otherwise, the interdeparture time is S(1) plus the server idle



time of one frame. Note that PB and ePB are the server
busy probability observed at any frame and at the packet
departing frame, respectively. Since the arrival process is not
memoryless, ePB 6= PB. Using the generating function of T (1),
we derive the interdeparture time distribution {t(1)i }:

t
(1)
i =

( ePBpr i = 1

pr(1− pr)
i−2(1− ePBpr) i > 1

(8)

Since the average interdeparture time is equal to the interar-
rival time r/m, we have

ePBpr = 1 + pr − 1
ρ
= 1− pr

m
. (9)

The distribution (8) corresponds to a correlated on-off pro-
cess, which is characterized by a transition matrix (see [11,
Eqn.(1)]). In our case, the transition probabilities are a01 = pr
and a10 = pr/m. Correlation and burstiness are induced in the
output process even though the channel errors are independent
and the input process is smooth.
Node 2 (the first relay node) is characterized as a queueing

system with a correlated on-off source and a geometric server.
A similar system is analyzed in [11], in which the maximum
delay is bounded. We extend the result to the case of infinite
delay and conclude that the delay of node 2 is geometrically
distributed in terms of frames. In terms of time slots, the delay
distribution is

d
(2)
i =

½
(1− x)xj if i = jm+ 1, j ≥ 0
0 otherwise (10)

where
x =

m(1− pr)

m(1− pr)2 + p2r
< 1,

and the delay mean is

D2 = 1 +m
ρ

1− ρ

1− pr
pr

. (11)

C. End-to-end delay

Simulation results (Fig. 3(a)) confirm that the relay-node
delay converges to a geometric distribution and the e2e delay
converges to a Gaussian distribution. This observation allows
us to approximate the delay of the individual relay nodes by
the geometric distribution given in (10).
The end-to-end delay is the sum of the individual node

delays, i.e., D =
PN

i=1Di. Approximately, Di (i > 2) can
be upper bounded by D2, the local delay at the first relay
node. Therefore, the delay mean is uppoer bounded by

D ≤ D1 + (N − 1)D2

=
1

2(1− ρ)
+ (N − 1)(1 +m

ρ

1− ρ

1− pr
pr

). (12)

Fig. 4(a) is a comparison of this upper bound (12) with the
simulation result.

III. ANALYSIS OF THE PROBABILISTIC SLOTTED ALOHA
MAC SCHEME

m-phase TDMA incurs a substantial amount of overhead
to establish the frame structure. Therefore, we consider the
probabilistic slotted ALOHA, in which every node indepen-
dently and probabilistically determines whether to transmit.
To compare with the TDMA scheme, we set the transmit
probability to be 1/m. The traffic and channel model remain
unchanged. Again, we start with the source node.

A. Delay distribution of the first node

Unlike the TDMA system, the ALOHA system is observed
at the slot level. With the channel reception probability pr, a
packet is correctly received if and only if the node attempts to
transmit and the transmission is successful, with probability
s = pr/m (given the assumption that the arrival and transmis-
sion are independent). Otherwise, the transmission fails. The
transmission time is Gs. We employ the delay model again
and denote the system state by the current delay of the HOL
packet. The state transition probabilities are

Pij =


1− s i ≥ 0, j = i+ 1

s i ≥ 0, j = i− (r − 1)
1 i < 0, j = i+ 1.

(13)

Since the maximum interval between a packet departure and
the next packet arrival is (r− 1) slots, the minimum negative
state is −(r− 1). Rewriting the balance equations, we obtain

πi = s
r−1+iX
j=k

πj , i ≥ −(r − 1), k = max{0, i}, (14)

From (14), we deduce the system busy probability PB =P∞
i=0 πi = 1/(sr) = ρ, which is identical to the busy

probability of the TDMA system. A possible solution to (14)
is the geometric distribution πi = αiπ0 for all i ≥ 0. SinceP

i πi = 1 and PB = 1/sr, α is a positive real root of the
polynomial

yr − y

s
+
1

s
− 1 = 0. (15)

Based on Descartes’ Sign Rule and 1/s > 1, there are exactly
two positive real roots irrespective of r. The desired root α lies
between 0 and 1. The delay distribution {d(1)i } is expressed
in terms of {πi|i ≥ 0} using (4), which leads to d(1)i = (1−
α)αi−1 (i ≥ 1). Fig. 2 shows the simulated delay distribution
for a system with m = 3, r = 4, pr = 0.8, in which the
parameter α = 0.9569 is very close to the solution α = 0.9571
of (15). We also derive that the delay mean D1 = 1/(1− α)

can be approximated as

D1 ≈ mρ

2(1− ρ)
. (16)
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Fig. 2. Delay probabilities of the source node in the ALOHA system

B. Delay distribution of the relay nodes

The analysis of the output process of the source node is
more complicated for ALOHA since the server idle time
ranges between 0 and (r − 1) slots. We establish a new
queueing model to characterize the interdeparture time.
Instead of observing the system at every time slot, we

observe the moment when the HOL packet departs. The system
state is denoted by the delay of the next HOL packet. The state
transition probabilities are:

P out
ij = s(1− s)r−k+j−1, k = max{0, i}. (17)

The balance equations for all i ≥ −(r − 1) are

πouti = s
i+r−1X
j=i

πoutj . (18)

Similar to (14), a solution to (18) is the geometric distribution
πouti = (1 − β)βr+i−1. After some manipulations, it can be
established that β = α. Then, the interdeparture time T (1) is

T (1) =

½
i+ S with probability πout−i
S with probability P out

B ,
(19)

where S ∼ Gs, and P out
B =

P
i≥0 π

out
i = αr−1 is the server

busy rate. The distribution {t(1)i } is

t
(1)
i =

s
³
sαr(1− s)i−1 + (1− α)αr−k(1− s)i−k

´
1− α(1− s)

, (20)

where k = min{r, i}. In order to compare with the TDMA
system, we approximate (20) by a correlated on-off process.
Given t(1)1 = (s + α− 1)/α and the condition that the mean
T 1 = r, we obtain a transition matrix, where a10 = (1−s)/α
and a01 = (1 − s)/((r − 1)α). Then, the delay distribution
of node 2 is approximated by a geometric distribution with
x = (1− s)/(sa10 + (1− s)a00). The delay mean is

D2 = 1 +m
ρ

1− ρ
α. (21)

C. End-to-end delay
As shown in Fig. 3(b), the e2e delay converges to a Gaussian

distribution. We approximate the delay of a relay node by the
geometric distribution of node 2. Again, the e2e delay is upper
bounded by the sum of all node delays. With an approximation
of (16), the delay mean is upper bounded by

D ≤ 1

1− α
+ (N − 1)(1 +m

ρ

1− ρ
α)

≈ m

2

ρ

1− ρ
+ (N − 1)(m ρ

1− ρ
− 1). (22)

If N is large, D is mainly affected by the delay mean of the
relay nodes. Recalling (11) and (21), we are able to compare
the delay mean between two MAC schemes,

D
TDMA

D
ALOHA ≈

1− pr
pr

1

α
≈ 1− pr

pr
, (23)

where the second approximation holds when the traffic load
is high and thus α ≈ 1.

IV. SIMULATION RESULTS
This section presents a set of simulation results to confirm

the analyses in Section II and III. We first consider the e2e
delay distribution (from the source node to different relay
nodes) of a line network with m = 3, r = 4, pr = 0.8, N = 8

(shown in Fig. 3). For both MAC schemes, the delay distribu-
tion converges to a Gaussian distribution.
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Fig. 3. Probability distributions of the e2e delay

Fig. 4 compares the analytical upper bounds (12) and (22)
with the simulation result, showing that the bounds are com-
paratively tight. The e2e delay mean increases linearly with the
number of nodes. The deviation from strict linearity is caused
by the non-geometric output process of the first node. Further,
the delay mean (D = 292) of the ALOHA system is about
4 times that of the TDMA system (D = 85) in agreement
with our analysis (23): pr/(1− pr) = 4 for pr = 0.8. In the
ALOHA network, the drastic increase in the delay is caused
by the lack of central control and the resulting reduction of
spatial reuse.
To discuss the impact of pr, Figs. 5 and 6 exhibit the delay

mean and variance for different pr in a network with m =
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Fig. 4. Comparison of the e2e delay mean

4, r = 7, N = 12. When pr is closer to the traffic load 0.6,
both the mean and variance increase substantially.
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Fig. 5. Comparison of delay performance of TDMA
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Fig. 6. Comparison of delay performance of ALOHA

V. CONCLUSION
For both MAC schemes, the delay performance is sensitive

to the reception probability pr, particularly when pr is close
to the normalized traffic load. Besides, the e2e delay mean
and variance linearly increase with the number of nodes. Such
linearity allows us to regard these nodes as almost independent
and analyze them individually. The relay-node delay distribu-
tion converges to a geometric distribution. Thus, if the path
is long, the e2e delay distribution is well approximated by a
Gaussian distribution.

We derived an upper bound on the e2e delay mean for both
MAC schemes. When the traffic load is heavy, the delay mean
of the ALOHA network is approximately pr/(1 − pr) times
than that of the TDMA network. Therefore, for a channel
sufficiently good, say pr > 0.5, TDMA outperforms ALOHA
in both throughput and delay. However, if the channel is not as
good as expected, saying pr < 0.5, ALOHA is more efficient
to take advantage of the random channel errors and achieves
a smaller delay than TDMA. Note that in practice, due to
interference, pr of the TDMA system is higher than that of
the ALOHA system if both systems are optimized [12], which
enhances the benefits of using TDMA. Our future work is to
analyze the delay performance of MAC schemes in association
with the fading channel characteristics.
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