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Abstract— Power amplifiers for wireless transmission provide
a limited radiated power, and their efficiency depends highly on
the operating point. We show that power control and routing
strategies in multi-hop wireless networks are strongly affected
by these non-ideal amplifier characteristics. For the analysis, we
prove that the distances in random networks are governed by a
generalized Rayleigh distribution, and we determine the power
efficiency of different routing schemes. The main result is that
nearest-neighbor routing is highly inefficient if the network has
to be connected with high probability.

I. INTRODUCTION

Energy consumption in multi-hop wireless networks is a
crucial issue that needs to be addressed at all the layers
of the communication system, from the hardware up to the
application. In this paper, we focus on the impact that the
characteristics of the power amplifier has on energy-efficient
routing strategies. The analysis is based on a Rayleigh fading
channel model, and the results demonstrate that the properties
of the hardware and the physical channel have a substantial
impact on optimum protocol design at the network layer.

Two assumptions are generally made when assessing energy
consumption in multi-hop networks: 1) the power consumption
is equal (or proportional) to the radiated power; 2) reliable
links exist if the receiver is within a certain distance of the
transmitter, and interference is taken into account using the
same geometric disk abstraction. Such a deterministic “disk
model” is used for the analysis of multi-hop packet networks
in [1]–[9], thereby ignoring the stochastic nature of the fading
channel. Using such models, it is easy to show that, for a
path loss exponent of α, there is an energy gain of nα−1 if
a hop over a distance d is split into n hops of distance d/n.
However, the volatility of the channel cannot be ignored in
wireless networks [10], [11]; the inaccuracy of “disk models”
has also been pointed out in [12] and is easily demonstrated
experimentally [13].

To overcome some of these limitations of the “disk model”,
we employ a simple Rayleigh fading link model that relates
transmit power, large-scale path loss, and the success of a
transmission.

While fading has been considered in the context of packet
networks [14], [15], its impact on the network (and higher)
layers is largely an open problem. Similarly, non-ideal char-
acteristics of power amplifiers are not usually considered at
higher layers. In this paper, we take both fading and amplifier
properties into account, and we show that this cross-layer
perspective sheds some new light on the routing problem.

II. THE RAYLEIGH NETWORK MODEL

A. The Rayleigh fading link model
We assume a narrowband Rayleigh block fading channel.

A transmission from node i to node j is successful if the
SINR γij is above a certain threshold Θ that is determined by
the communication hardware, and the modulation and coding
scheme [10]. The SINR γ is a discrete random process given
by γ = R

N0+I . R is the received power, which is exponentially
distributed with mean R̄. Over a transmission of distance d =
‖xi − xj‖2 with an attenuation dα, we have R̄ = P0d

−α,
where P0 is proportional to the transmit power1. N0 denotes
the noise power, and I is the interference power affecting the
transmission, i.e., the sum of the received power from all the
undesired transmitters.

Theorem 1 In a Rayleigh fading network, the reception prob-
ability P[γ > Θ] can be factorized into the reception proba-
bility of a zero-noise network and the reception probability of
a zero-interference network.

Proof: Let R0 denote the received power from the desired
source and Ri, i = 1, . . . , k, the received power from k inter-
ferers. All the received powers are exponentially distributed,
i.e., pRi

(ri) = 1/R̄i e
−ri/R̄i , where R̄i denotes the average

received power R̄i = Pid
−α
i . The probability of correct

reception is (a similar calculation has been carried out in the
Appendix of [14] for a network with spreading gain and equal
transmit powers for all nodes.)
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1This equation does not hold for very small distances. So, a more accurate
model would be R̄ = P ′

0
· (d/d0)−α, valid for d > d0, with P ′

0
as the

average value at the reference point d0, which should be in the far field of
the transmit antenna. At 916MHz, for example, the near field may extend up
to 3-4ft (several wavelengths).



pN
r is the probability that the SNR γN := R0/N0 is above

the threshold Θ, i.e., the reception probability in a zero-
interference network as it depends only on the noise. The
second factor pI

r is the reception probability in a zero-noise
network. �

This allows an independent analysis of noise and interfer-
ence. If the load is light (low interference probability), then
SIR�SNR, and the noise analysis alone provides accurate
results. For high load, a separate interference analysis has to
be carried out [16]. Note that power scaling, i.e., scaling the
transmit powers of all the nodes by the same factor, does
not change the SIR (pI

r only depends on power ratios), but
(slightly) increases the SINR. In any case, the noise analysis
is relevant, so the main focus of this paper is on the noise.

In a zero-interference network, the reception probability
over a link of distance d at a transmit power P0, is given

by pr := P[γN > Θ] = e
−

ΘN0

P0 d−α , therefore

P0 =
dαΘN0

− ln pr
. (4)

Note that for high probabilities, the packet loss probability
1− pr is tightly upperbounded by the normalized mean NSR
ΘN0/R̄0=Θ/γ̄N [17]. Since − ln pr ≈ 1 − pr, we can also
say that the packet loss probability is inversely proportional
to the transmit power for high pr.

B. Random networks with uniform distribution

If nodes are distributed uniformly with a density λ in a
large network, the probability of finding k nodes in an area A
is given by the Poisson distribution [12]

P[k nodes in A] = e−λA (λA)k

k!
. (5)

Hence, the positions of the nodes constitute a Poisson point
process in the plane2. Without loss of generality, we can
restrict ourselves to the case λ = 1 (unit density), since the
product λA can always be scaled such that λ = 1.

For the routing schemes we consider, we need to determine
the distance from one node to its neighboring nodes that lie
within a sector φ, i.e., within ±φ/2 of the source-destination
axis (Fig. 1).

Proposition 1 In a random network with uniform distribution
and unit density, the distance R between a node and its nearest
neighbor in a sector φ is Rayleigh distributed with mean√

π/(2φ).

Proof: Let R be the distance to the nearest neighbor in
a sector φ. The probability that there is no neighbor in a
sector φ up to a distance r is the complementary cumulative
distribution P[R > r] = e−r2φ/2, thus the probability density
is pR(r) = rφ e−r2φ/2, which is a Rayleigh distribution with
mean

√

π/(2φ) and variance 2/φ− π/(2φ) = (4 − π)/(2φ).
The distribution of the argument ψ is uniform between −φ/2
and φ/2. �

2This can be generalized to higher dimensions if A is the Lebesgue measure
of the subset considered.
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Fig. 1. Part of a Rayleigh network with the source at the origin and the
x-axis pointing towards the destination node. R denotes the distance to the
nearest neighbor within a sector φ around x, and ψ is its argument. Hence
(R,ψ) are the polar coordinates of the nearest neighbor within a sector φ.

Definition 1 (Rayleigh network.) A Rayleigh network is a
large random network with uniformly distributed nodes where
the physical channel is subject to Rayleigh fading.

Proposition 2 The probability density of the distance to the
n-th nearest neighbor in a sector φ is

pRn
(r) = r2n−1

(
φ

2

)n
2

(n− 1)!
e−r2φ/2 (6)

Proof: Let Sk be the k-th coefficient in the Poisson distribu-
tion: Sk := (r2φ/2)k/k!. The probability that there are less
than n nodes closer than r in the sector φ is

Pn := P[0 . . . n−1 nodes within r] =

n−1∑

k=0

Sk e
−r2φ/2 . (7)

From pRn
= d

dr (1 − Pn) we get

pRn
=

(

rφ
n−1∑

k=0

Sk −
n−1∑

k=1

k(r2φ/2)k−1

k!
︸ ︷︷ ︸

Sk−1

rφ

)

e−r2φ/2 . (8)

The only term that is not cancelled in the two sums is the one
at n− 1, leading to

pRn
= rφ · Sn−1 e

−r2φ/2

︸ ︷︷ ︸

Erlang distribution

, (9)

which is identical to (6). �

Since pRn
is a Rayleigh distribution for n = 1, it can be

considered a generalized Rayleigh distribution. Similarly, for
a one-dimensional Poisson process, the Erlang distribution is
a generalized exponential distribution. So, the transition from
one dimension to two dimensions entails a multiplication by
rφ (that comes from the inner derivative of the exponential
part) in the distributions of the node distances. The distribu-
tions for n = 1, . . . , 8 are shown in Fig. 2.
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Fig. 2. The probability density function of the distances to the n-th nearest
neighbor for n = 1 (leftmost curve) to n = 8 (rightmost curve) and φ = π/2.
For n = 1, this is a Rayleigh distribution. The mean values are indicated by
the dashed lines. For n = 1 and n = 2, the mean values are 1 and 3/2,
respectively.

The mean of Rn is given by

E[Rn] =

√
2√
φ

Γ(n+ 1/2)

Γ(n)
=

√
2√
φ

(2n)!
√
π

n!(n− 1)!4n

≈
√

4(n− 1) + π

2φ
, (10)

where we have made use of some properties of the Γ(·) func-
tion [18] and then derived a highly accurate approximation that
shows that the mean distance to the n-th neighbor increases
with the square root of n. The second moment is 2n/φ, hence
the variance is

Var[Rn] =
2n

φ
−E[Rn]2 =

4 − π

2φ
, (11)

which is, interestingly, independent of n.

III. POWER AMPLIFIER CHARACTERISTICS

The most energy efficient operation of an RF power am-
plifier (PA) is near saturation as this is when the power
added efficiency3 (PAE) is largest. Linear amplification is
possible mainly by operating the power amplifier with a small
input signal (large backoff) where the energy efficiency of the
amplifier is smaller. This characteristic of nonlinear amplifiers
makes large power efficiency and bandwidth efficiency hard
to achieve.

Depending on the modulation scheme and the specific appli-
cation, there are situations in which linearity, especially ampli-
tude linearity, can be traded for efficiency and RF power output
[19]. Such applications include constant-envelope schemes
such as FSK and GMSK, which can tolerate high levels of
amplitude distortion, and intermediate cases such as OQPSK
and DQPSK systems, which can tolerate significant amounts
of amplitude distortion. On the other hand, for modulations
with non-constant envelope, amplifier linearity is important.
In order to obtain higher PAE, a higher class of amplifiers

3There exist different definitions of PAE. We are considering the one that
takes the drive power into account, which results in PAE=PTX/Pdc.

such as class AB, class B or even class C or switched mode
class E or F is often used. However, due to the I/V curves
of devices operated in these classes, the amplifier becomes
nonlinear. Therefore, high efficiency and high linearity are
often contradictory objectives [20], [21].

To avoid discussions of amplifier classes, modulations
schemes, different “overdrive” conditions, matching networks
and other implementation details, we employ a simple piece-
wise linear model for the radiated power vs. bias power
characteristics of a PA:

Pdc = βPTX + P ∗ 0 6 PTX 6 Pmax , (12)

where Pmax is the maximum power that the modulation
schemes tolerates (this can be close to saturation or well
within the linear region of the PA), and P ∗ is the total static
power consumption. The slope β normally ranges from 0 to
2. The maximum power efficiency κ = PTX/Pdc is reached
at PTX = Pmax, where κ = 1

β+P∗/Pmax
. The ratio P ∗/Pmax

ranges from 1/5 to 1.
While such a model can be justified from a hardware

point of view, it can also be derived from data sheets of
existing PAs and single-chip transceivers manufactured by Na-
tional Semiconductor, Maxim, RF Micro Devices, Motorola,
TriQuist Semiconductor, Agilent, and Mitsubishi designed for
3G, WLAN, and Bluetooth applications [22].

To further simplify the discussion, we define the generic
amplifier:

Definition 2 (Generic amplifier.) A generic amplifier is an
amplifier with β = 1 and Pmax = P ∗ in (12). Its maximum
efficiency of κ = 50% is reached at PTX = Pmax.

Note that the Pdc(PTX ) characteristics of a large number
of commercial amplifiers are upperbounded by this generic
amplifier curve, i.e., most PAs have a smaller efficiency.
With this model, we can state the following result on multi-hop
vs. single-hop communication:

Proposition 3 For the generic amplifier, there is no energy
benefit in using multiple hops, if the destination can be reached
at PTX = Pmax directly with the desired reliability.

Proof: The power consumption for the one-hop case is4

E1 = 2Pmax. For the n-hop case, we have En = n(Pmax +
n−αPmax), thus the ratio is

En

E1
=
n

2
(1 + n−α) , (13)

which is bigger than 1 for any α for n > 2. �

IV. ROUTING SCHEMES

As shown in Fig. 1, we want to ensure that the source
node is connected to a neighbor within a sector φ with (high)
probability pc.

4It is assumed that E expresses the energy required to send one packet at
a power level P .
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Fig. 3. Contour plot of Pmax as a function of pr and pc for α = 2
(light) and α = 4 (dark). The spacing between contour lines is 1dB, with
increasing Pmax for higher pr and/or pc. The contours for the different path
loss exponents have different absolute values.

Proposition 4 Let pc denote the probability that there is a
neighbor with a certain distance d in the sector φ. The
necessary power to reach this nearest neighbor within a sector
φ with probability pr is

Pmax =
ΘN0

− ln pr

(−2 ln(1 − pc)

φ

)α/2

. (14)

Proof: From (4) follows Pmax = −N0Θd
α
max/ ln pr, and we

get d2
max = −2 ln(1 − pc)/φ from pc = P[R < dmax] =

1 − e−d2

max
φ/2. �

Figure 3 shows a contour plot of Pmax(pr, pc).
If the maximum transmit power is given, the sector φ has

to satisfy

φ > −2 ln(1 − pc)

(
ΘN0

Pmax(− ln pr)

)2/α

. (15)

The average distance to the nearest neighbor is d̄ =
√

π/(2φ).
So, dmax/d̄ = 2

√

− ln(1 − pc)/π, independent of φ or pr.

A. Nearest-neighbor routing

Under optimum power control, the mean backoff of the
generic PA from the optimum operating point is (dmax/d̄)

α.
For α = 2, this is about 4 at pc = 95% and 10 at pc = 99.9%.

We define the average efficiency κ̄ to be the efficiency at a
transmit power of P = (d̄/dmax)

αPmax. We find

κ̄ =
1

1 +
(

2
√

− ln(1−pc)
π

)α . (16)

This relationship is shown in Fig. 4 for α = 2, 3, 4.
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Fig. 4. Average efficiency of the power amplifier as a function of pc for
α = 2, 3, 4.

B. Routing to the n-th nearest neighbor

We have already determined the distance to the nth nearest
neighbor in (6). The corresponding cumulative density cannot
be analytically solved for the distance, but we notice that all
the curves have similar shapes (which is also corroborated
by the fact that all distributions have the same variance), and
the mean is increasing with

√
n. Is it therefore reasonable to

assume that, with pc = P[Rn < dn], for any given pc, q :=
dn − d̄n does not depend on n. Hence, the backoff dn/d̄n ≈
1+ q/d̄n is getting smaller with increasing n. So, it is a good
strategy to design the PA such that it can reach over longer
distances and transmit to n-th nearest neighbors instead of just
nearest neighbors. Due to the additional terms in (7), it is clear
that q is slightly decreasing with increasing n. So, if we insert
the value for n = 1, we get a lower bound for the efficiency
for larger n.

dn

d̄n
< 1 +

2
√

− ln(1 − pc) −
√
π

√

4(n− 1) + π
≈ 1 +

√

− ln(1 − pc)√
n

.

(17)
The resulting average efficiency is

κ̄n >
1

1 +
(

1 +
√

− ln(1−pc)
n

)α . (18)

This bound gets tight with increasing n, and it shows that the
efficiency (slowly) approaches 1/2 as n increases.

C. Optimum routing

Since the efficiency of the PA is optimum at Pmax, the
routing scheme should try to identify nodes that are as far
away as possible within the radius that allows a reception with
probability pr. This might be the first, second, third,. . . or n-th
neighbor within the sector. In other words, if there are exactly
n neighbors within the sector, then the routing algorithm
should use the n-th nearest one. Hence the probability that
the n-th nearest neighbor is chosen is given by the Poisson
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term (d2φ/2)k/k! e−d2φ/2. We need the density function of
the distance to this neighbor:

Proposition 5 The probability density of the distance to the
furthest neighbor within distance dmax in a sector φ, given
that there is a least one neighbor in the sector, is

pR(r) =
rφer2φ/2

ed2
max

φ/2 − 1
, r ∈ [0, dmax] . (19)

Proof: The complementary cumulative distribution P[R > r],
conditioned on having at least one node in the sector within
distance dmax, is given by the probability that there is (at least)
one node with distance r < R 6 dmax:

P[R > r] =
1 − e−(d2

max
−r2)φ/2

1 − e−d2
max

φ/2
. (20)

�

For the mean distance, we get

d̄ = E[R] =
dmaxe

d2

max
φ/2 − c

ed2
max

φ/2 − 1
(21)

with c :=
√

π
2φ erfi(dmax

2

√
2φ), where erfi(·) is the imaginary

error function, i.e., erfi(x) = 2/
√
π ·

∫ x

t=0 e
t2dt. d̄ tends to

dmax with increasing dmax, hence the efficiency increases with
increasing pc, in contrast to the other schemes. This is shown
in Fig. 5.

V. CONCLUDING REMARKS

Using a Rayleigh fading channel model and a simple power
amplifier model that takes into account that the power added
efficiency strongly depends on the transmit power, we have
shown that the benefits of multi-hop routing vanish completely
if the maximum radiated power allows to reach a destination
in a single hop. In the case of random networks with uniform
distribution, routing schemes that transmit as far as possible
clearly outperform nearest-neighbor routing. The optimum
strategy is to choose the furthest neighbor (within a certain
sector of the axis to the destination) that can be reached with
sufficient reliability.

ACKNOWLEDGMENTS

The author would like to thank Stefan Haenggi (Advanced
Wireless Technology Group, National Semiconductor) for
helpful information on RF power amplifiers. The partial sup-
port of the DARPA/IXO-NEST Program (AF-F30602-01-2-
0526), and NSF (ECS02-25265) is gratefully acknowledged.

REFERENCES

[1] J. A. Silvester and L. Kleinrock, “On the Capacity of Multihop Slotted
ALOHA Networks with Regular Structure,” IEEE Transactions on
Communications, vol. COM-31, pp. 974–982, Aug. 1983.

[2] H. Takagi and L. Kleinrock, “Optimal Transmission Ranges for Ran-
domly Distributed Packet Radio Terminals,” IEEE Transactions on
Communications, vol. COM-32, pp. 246–257, Mar. 1984.

[3] L. Hu, “Topology Control for Multihop Packet Networks,” IEEE Trans-
actions on Communications, vol. 41, no. 10, pp. 1474–1481, 1993.

[4] J. L. Wang and J. A. Silvester, “Maximum Number of Independent
Paths and Radio Connectivity,” IEEE Transactions on Communications,
vol. 41, pp. 1482–1493, Oct. 1993.

[5] M. Sanchez, P. Manzoni, and Z. Haas, “Determination of Critical
Transmission Range in Ad-Hoc Networks,” in Multiaccess, Mobility and
Teletraffic for Wireless Communications (MMT’99), (Venice, Italy), Oct.
1999.

[6] P. Gupta and P. R. Kumar, “The Capacity of Wireless Networks,” IEEE
Transactions on Information Theory, vol. 46, pp. 388–404, Mar. 2000.

[7] M. Grossglauser and D. Tse, “Mobility Increases the Capacity of Ad-hoc
Wireless Networks,” in IEEE INFOCOM, (Anchorage, AL), 2001.
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