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We present closed-form expressions of the average link throughput for sensor networks with a slotted ALOHA MAC protocol in
Rayleigh fading channels. We compare networks with three regular topologies in terms of throughput, transmit efficiency, and
transport capacity. In particular, for square lattice networks, we present a sensitivity analysis of the maximum throughput and
the optimum transmit probability with respect to the signal-to-interference ratio threshold. For random networks with nodes
distributed according to a two-dimensional Poisson point process, the average throughput is analytically characterized and nu-
merically evaluated. It turns out that although regular networks have an only slightly higher average link throughput than random
networks for the same link distance, regular topologies have a significant benefit when the end-to-end throughput in multihop
connections is considered.
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1. INTRODUCTION

A sensor network [1] consists of a large number of sensor
nodes which are placed inside or near a phenomenon. Uni-
formly random or Poisson distributions are widely accepted
models for the location of the nodes in wireless sensor net-
works, if nodes are deployed in large quantities and there is
little control over where they are dropped. A typical scenario
is a deployment from an airplane for battlefield monitoring.
On the other hand, depending on the application, it may also
be possible to place sensors in a regular topology, for exam-
ple, in a square grid.

Throughput is a traditional measure of how much traf-
fic can be delivered by the network [2, 3]. There is a rich
literature on throughput capacity for wireless networks [2,
4, 5] with random or regular topologies. The seminal pa-
per [2] shows that, for peer-to-peer traffic, in a static two-
dimensional network with N nodes and N/2 randomly se-
lected source-destination pairs, the end-to-end throughput
of a connection is Θ(W/

√
N), where W is the maximum

transmission rate for each node. The reason for this poor

This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

scaling behavior is that the per-link1 throughput remains
constant while the number of hops grows with

√
N . Marco

et al. [6] show that with many-to-one traffic, the per-node
transport capacity is Θ(1/N). Such “order of” results do not
provide any guidelines for protocol design, since the scaling
behavior is very robust against changes in MAC and routing
protocols [7]. All the above research work assumes networks
with randomly located nodes. There are also research efforts
focusing on networks with regular topologies. Silvester and
Kleinrock [4] calculate the throughput of regular square net-
works with a slotted ALOHA channel access scheme. Xie and
Kumar [7] prove that the Θ(N) upper bound on transport
capacity is tight for regular networks where nodes are placed
on integer lattice points for path loss exponents greater than
3 and is achieved by multihop transmission. De et al. [8]
compare the performance of regular topologies with random
topology in wireless CDMA sensor networks. The authors in
[9, 10] evaluate the performance for regular grid and random
topologies. They assume a “torus” network to avoid bound-
ary effects and use the expected interference power to re-
place the exact interference power. In particular at high load,

1The link throughput is the total achievable throughput over a link, ag-
gregated over the flows or connections that are served by the link.
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replacing the actual interference by its mean yields overly
pessimistic results. Indeed, the expected interference may be
infinite [11].

Most of the work above is based on a “disk model,” where
it is assumed that the radius for a successful transmission of a
packet has a fixed and deterministic value, irrespective of the
condition and the realization of the wireless channel. Such
simplified link models ignore the stochastic nature of the
wireless channel. Our analysis is based on a Rayleigh fading
channel model, which includes both large-scale path loss and
stochastic small-scale variations in the channel characteris-
tics. Note that even with static nodes as assumed in this pa-
per, the channel quality varies because any movement in the
environment affects the multipath geometry of the RF sig-
nal, which is easily confirmed experimentally [12, page 45].
The significant variation of the link quality when nodes are
immobile is also pointed out in [13, 14, 15], and the short-
comings of the “disk model” are discussed in [11].

This paper addresses the throughput problem for large
sensor networks with Rayleigh fading channels. To provide
insight on the impact of the topology on the network per-
formance, we compare networks with a random topology
and three regular topologies. Placing nodes in regular lat-
tices has an obvious advantage in terms of coverage [16],
so we are not addressing coverage issues here. We define the
(per-link) throughput as the expected number of successful
packet transmissions of a given link per timeslot. The end-to-
end throughput over a multihop connection, defined as the
minimum of the throughput values of the links involved, is a
performance measure of a route and the MAC scheme.

We consider a variant of the slotted ALOHA channel ac-
cess scheme, originally devised in [17], that takes advantage
of spatial reuse. It is assumed, as in [4, 18, 19, 20], that in ev-
ery timeslot, each node transmits independently with a cer-
tain fixed probability p. While often a “heavy traffic” model
is used [4, 20], where nodes always have packets to trans-
mit and p only reflects the channel access probability, we do
not restrict ourselves to this “MAC-centric” case. Rather, we
consider p to be composed of two factors, that is, p = pq pt,
where pq is the probability that there is a packet in a node’s
queue awaiting transmission, and pt is the probability of
transmission conditioned on having a packet in the queue
(the channel access probability). So, pq is given by the traffic
model, pt is the actual slotted ALOHA channel access prob-
ability, and p is the unconditioned probability of transmis-
sion. The heavy traffic case mentioned above corresponds to
pq = 1, pt = p, and the other extreme case is pq = p, pt = 1,
where Bernoulli traffic is generated with probability pq and
each node with a packet to transmit has immediate access
to the channel. Since there is no need for a MAC scheme in
this case, we may denote it as “traffic-centric.” Hence, the de-
composition of p shows that the throughput analysis and op-
timization with respect to p in fact includes a range of traf-
fic intensities and channel access probabilities. The Bernoulli
traffic model is well justified by the following three observa-
tions: (1) in [18], it was shown that the traffic from a slot-
ted ALOHA population of nodes can indeed be modeled as
Bernoulli; (2) in [21, page 278], it is pointed out that the

retransmission traffic is usually Bernoulli (since an unsuc-
cessfully transmitted packet reenters the queue); and (3) the
Bernoulli traffic model is memoryless and thus the discrete-
time counterpart of the ubiquitous Poisson model.

The traffic distribution in a sensor networks is usually
spatially and temporally bursty, that is, busy periods alter-
nate temporally and busy areas alternate spatially with pe-
riods and areas with little or no traffic. It may therefore be
impractical to employ reservation-based MAC schemes such
as TDMA and FDMA that require a substantial amount of
coordination traffic and cannot be implemented efficiently
and in a fully distributed fashion.2 In any case, the slotted
ALOHA scheme is the simplest meaningful MAC scheme and
therefore provides a lower bound on the performance for
more elaborate schemes. Since areas of the network or pe-
riods with little or no traffic pose no problems, our analysis
focuses on and applies to busy areas and busy periods of the
network where collisions are unavoidable and the through-
put is interference-limited. During such a burst of traffic, we
assume that the parameters p, pq, and pt remain constant.
An important example of a busy area is certainly the critical
area around the base station or fusion center, where traffic
accumulation due to the many-to-one transmission scheme
often results in heavy traffic [22].

In Section 2, the Rayleigh fading link model is intro-
duced. For a slotted ALOHA MAC scheme, the conditional
success probability of a transmission for a node given the
transmitter-receiver and interference-receiver distances is de-
rived. Section 3 evaluates the throughput for regular net-
works with three topologies and compares their perfor-
mance. Section 4 investigates the average throughput for ran-
dom networks for fixed and random transmitter-receiver dis-
tances d0. This section also analyzes the transport capacity
and end-to-end throughput. Section 5 concludes the paper.

2. THE RAYLEIGH FADING LINK MODEL

We assume a narrowband Rayleigh block fading channel.
A transmission from node i to node j is successful if the
signal-to-noise-and-interference ratio (SINR) γi j is above a
certain threshold Θ that is determined by the communica-
tion hardware and the modulation and coding scheme [14].
The SINR γ is given by γ = Q/(N0 + I), where Q is the re-
ceived power, which is exponentially distributed with mean
Q̄. Over a transmission of distance d with an attenuation dα,
we have Q̄ = P0d−α, where P0 denotes the transmit power, α
is the path loss exponent. N0 denotes the noise power, and I is
the interference power, that is, the sum of the received power
from all the undesired transmitters. Our analysis is based on
the following theorem.

Theorem 1. In a Rayleigh fading network with slotted
ALOHA, where nodes transmit at equal power levels with prob-
ability p, the success probability of a transmission given a de-
sired transmitter-receiver distance d0 and n other nodes at

2In general, this problem is NP-hard.
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distances di (i = 1, . . . ,n) is

Ps|d0,...,dn = exp

(
− ΘN0

P0d
−α
0

)
·

n∏
i=1

(
1− Θp(

di/d0
)α

+ Θ

)
, (1)

where P0 is the transmit power, N0 the noise power, and Θ the
SINR threshold.

Proof. Let Q0 denote the received power from the desired
transmitter and Qi, i = 1, . . . ,n, the received power from n
potential interferers. All the received powers are exponen-
tially distributed, that is, pQi(qi) = 1/Q̄ie·−qi/Q̄i , where Q̄i de-
notes the average received power Q̄i = Pid

−α
i . The cumulated

interference power at the receiver is

I =
n∑
i=1

SiQi, (2)

where Si is a sequence of i.i.d. Bernoulli random variables
with P(Si = 1) = p and P(Si = 0) = 1 − p. The success
probability of a transmission is3

Ps|d0,d1,...,dn = EI
[
P
[
Q0 � Θ(I + N0) | I]]

= EQ,S

[
exp

(
− Θ

(∑n
i=1 SiQi + N0

)
Q̄0

)]

= exp

(
− ΘN0

Q̄0

)
EQ,S

[ n∏
i=1

exp

(
− Θ

(
SiQi

)
Q̄0

)]

= exp

(
− ΘN0

P0d
−α
0

)

×
n∏
i=1

{
P
(
Si = 1

) ·
∫∞

0
exp

(
− Θqi

Q̄0

)

× pQi

(
qi
)
dqi + P

(
Si = 0

)}

= exp

(
− ΘN0

P0d
−α
0

) n∏
i=1

(
p

1 + Θ
(
d0/di

)α + 1− p

)

= exp

(
− ΘN0

P0d
−α
0

) n∏
i=1

(
1− Θp(

di/d0
)α

+ Θ

)
.

(3)

Since the throughput in large sensor networks is limited
by the interference, in the following, we focus on the inter-
ference part (the second factor of (3), assuming N0 = 0)
to determine bounds that are fundamental in the sense that
they cannot be exceeded even if the transmit power is not
constrained. The first exponential term is easily evaluated if
N0 �= 0.

3A similar calculation has been carried out in [23] for the case where in
every timeslot it is known exactly which node is transmitting. In contrast,
Theorem 1 incorporates the uncertainty at the MAC level: we only assume
we know the probability of a transmission, but not exactly which node is
transmitting in every timeslot.

Corollary 1. Under the same assumptions as in Theorem 1 but
with N0 = 0 and unit transmit power Pi = 1, the success prob-
ability given a desired link of normalized distance r0 = d0/d0 =
1 and n other nodes at normalized distances ri = di/d0 is

Ps|r0,r1,...,rn =
n∏
i=1

(
1− p

1 + riα/Θ

)
= LI(Θ), (4)

which is the Laplace transform of the interference power I eval-
uated at the SIR threshold Θ.

Proof. With unit transmit power, the mean power from the
ith interferer at distance ri is 1/rαi . The Laplace transform of
the exponential distribution with mean 1/µ is µ/(µ + s), thus
the Laplace transform of I is [24]

LI(s) =
n∏
i=1

(
prαi
rαi + s

+ 1− p

)
=

n∏
i=1

(
1− p

1 + rαi /s

)
. (5)

From (3) and with ri = di/d0 (normalized distances), if N0 =
0,

Ps|r0,r1,...,rn =
n∏
i=1

(
1− p

1 + riα/Θ

)
, (6)

we get (4).

3. REGULAR NETWORKS

In this section, we investigate networks with three regular
topologies (square, triangle, hexagon) in which every node
has the same number of nearest neighbors and the same dis-
tance to all nearest neighbors.

3.1. Square networks

We first analyze square networks with N nodes placed in the
vertices of a square grid with distance 1 between all pairs
of nearest nodes (density 1). The next-hop receiver of each
packet is one of the four nearest-neighbor nodes of the trans-
mitter, so the transmitter-receiver distance d0 = 1. If the re-
ceiver node O is located in the center of the network as shown
in Figure 1 and node A is the desired transmitter, the success
probability for node O based on (6) can be written as

Ps(p) =
(

1− Θp

1α + Θ

)3

·
(

1− Θp(√
2
)α

+ Θ

)4

×
√
N/2∏
i=2

{(
1− Θp

iα + Θ

)4

·
(

1− Θp(√
2i2
)α

+ Θ

)4

·
i−1∏
j=1

(
1− Θp(√

i2 + j2
)α

+ Θ

)8}
.

(7)
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O A

Figure 1: The topology of a square network. Node O is the receiver
and node A is the desired transmitter such that the link distance
d0 = |OA| = 1.
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Figure 2: The analytic throughput g(p) based on (7) for a square
network with 40× 40 nodes, with Θ = 10.

The first term in (7) accounts for the other three nearest-
neighbor nodes of the receiver; the second term for the 4
diagonal nodes at distance

√
2; all the other terms from

the nodes located on the dashed squares with edge ≥ 2 in
Figure 1. The throughput4 is given by

g(p) = p(1− p)Ps(p), (8)

where p is the probability that A transmits and 1 − p is the
probability that O does not transmit in the same timeslot.
Note that g is the throughput achievable with a simple
ARQ scheme (with error-free feedback) [25]. The analytic
throughput g(p) based on (7) and (8) for a regular square

4The throughput is calculated as the throughput of the center link of
the busy area under consideration. This is the worst case since most other
nodes experience a lower interference. In the case of infinite networks, the
interference distribution is the same at every node.

network with 40 × 40 nodes with node density λ = 1 is dis-
played in Figure 2. For α = 4, the maximum throughput
gmax = 0.0247 is achieved at an optimal transmit probabil-
ity popt = 0.066. The transmit efficiency, defined as Teff =
gmax/popt, is 37.4%.

For the sensitivity analysis of the throughput with respect
to Θ, we need to determine popt(Θ) and gmax(Θ). We use
three analytic approximations for popt(Θ) and gmax(Θ). From
(6), g can be written as

g = p(1− p)
n∏
i=1

(
1− p

1 + rαi /Θ

)
, (9)

where ri = di/d0.
Since popt = arg maxp g(p) = arg maxp log(g(p)), we

maximize

log(g) = log(p) + log(1− p)

+
n∑
i=1

log

(
1− p

1 + rαi /Θ

)
,

(10)

using log(1 + x) ≈ x for small x,5 yielding

p2
opt − popt(1 + 2s) + s = 0, (11)

with

s = 1∑n
i=1(1/(1 + rαi /Θ))

. (12)

Note ri = di for d0 = 1. So, popt is given by

popt = s +
1
2

(
1−

√
1 + 4s2

)
. (13)

gmax can be obtained by gmax = popt(1− popt)Ps(popt), where
Ps(popt) is obtained by plugging popt into (7). This method is
called Analytic 1.

For α = 4, we use i2 to approximate d4
i for the nodes

located in one quadrant. As shown in Figure 3, the distance
of node i (i = 1, . . . , 8) in the first quadrant to the receiver
node O is di. Table 1 compares d4

i and i2 for i = 1, . . . , 8. By
Euler’s summation formula, d4

i ≈ i2 allows a simplification
(the node at distance 1 is the desired transmitter):

k+1∑
i=2

1
1 + i2/Θ

≈
√
Θ

(
arctan

k + 3/2√
Θ

− arctan
3

2
√
Θ

)
. (14)

For k →∞,

s ≈ 1
4
√
Θ
(
π/2− arctan(3/2

√
Θ)
) , (15)

5The approximation is accurate for p in the range of interest, that is,
0 < p < 0.3.
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Figure 3: Node numbering scheme pertaining to Table 1 for nodes
in the first quadrant of a square network. O is the receiver.

Table 1: Comparison of d4
i and i2.

i 1 2 3 4 5 6 7 8

d4
i 1 1 4 16 16 25 25 64

i2 1 4 9 16 25 36 49 64

where the factor 4 in (15) comes from the fact that nodes are
located in 4 quadrants. Plugging (15) into (13) is our method
Analytic 2.

In method Analytic 3, we use the approximation s ≈
1/(4

√
Θ), which is within ∓20% for the practical range

9/(2 cot(0.8))2 ≈ 2.4 < Θ < 9/(2 cot(1.2))2 ≈ 14.9, and sub-
stitute it into (13), which yields

popt = 1
4
√
Θ

+
1
2

(
1−

√
1 +

1
4Θ

)
. (16)

Based on (10) and (12), gmax is given by

gmax = popt
(
1− popt

)
e−popt/s. (17)

The numerical result obtained by direct maximization of (7)
for different Θ is compared with the results from the three
analytical approximations in Figure 4. In Analytic 2, approx-
imating interfering nodes at distance di by the larger distance
i1/2 (shown in Table 1) results in lower interference. The in-
terference has a more significant impact on the throughput
(and popt) for small Θ (see (14)). Thus for small Θ, this lower
interference leads to a higher popt than for Analytic 1. The
transmit efficiency is Teff = gmax/popt = (1 − popt)e−popt/s,
which is monotonically increasing from lims→0 Teff = e−1 ≈
0.37 to lims→∞ Teff = 1/2. The upper bound is achieved if
the interference goes to zero, in which case popt = 1/2 and
gmax = 1/4. For the lower bound, as s → 0, we have popt → 0
and gmax → 0, and Teff converges to e−1. Hence, s is a measure
for spatial reuse. Indeed for s→ 0, which happens for α→ 06

or Θ → ∞, the network does not permit any spatial reuse. In

6In fact, α→ 2 is sufficient for infinite networks.
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Figure 4: For a square network with 40 × 40 nodes and α = 4, the
numerical results and analytic results from Analytic 1, Analytic 2,
and Analytic 3 for (a) the relationship between popt and Θ; (b) the
relationship between gmax and Θ.

this case, the transmit efficiency reduces to the efficiency of
conventional slotted ALOHA [17], where for a network with
N nodes, popt = 1/N and Teff = limN→∞(1 − 1/N)N−1 = e−1

[4]. The fact that our limit coincides with the limit for con-
ventional slotted ALOHA further validates our approxima-
tions.

3.2. Triangle networks and hexagon networks

Other regular topologies of interest are the triangle topol-
ogy and its dual, the hexagon topology (Figure 5). For each
triangle, there are three vertices and six nearest neighbors
for each vertex, while for the hexagon, there are six ver-
tices for each hexagon and three nearest neighbors for each
vertex. Again, the next-hop receiver of each packet is one
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(a) (b)

Figure 5: The topology of (a) triangle network and (b) hexagon network.
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Figure 6: The analytic throughput g(p) versus p for two-dimensional networks with (a) triangle topology and (b) hexagon topology, where
Θ = 10 and N = 1600 nodes.

of the nearest-neighbor nodes of the transmitter, so the
transmitter-receiver distance d0 is equal to the side length
of the regular polygon. In the triangle network, each node
is located in a hexagon with area (

√
3d2

0)/2. For node den-
sity equal to 1, d2

0 = 2/
√

3. Similarly, for hexagon networks,
d2

0 = 4/(3
√

3).
Similar to the calculation of square lattice networks as

in (7), we obtain the relationship between the throughput
g and the transmit probability p and compare the perfor-
mance of triangle and hexagon networks in Figure 6. For a
fair comparison, we introduce the transport capacity which
can be defined as Z := gmaxd0. The results for square,
triangle, and hexagon networks for α = 4 are shown in
Table 2. The performance difference among the three topolo-
gies can be explained by the distance and number of the
potential interfering nodes. Note that the transmit efficiency
Teff is very close to the one of conventional slotted ALOHA
and does not depend on the topology.

4. RANDOM NETWORKS

Here, we assume that the positions of the nodes constitute a
Poisson point process.7 In the following, we will investigate
the throughput averaged over network realizations when the
transmitter-receiver distance d0 is fixed (Section 4.1) and not
fixed (Section 4.2).

4.1. Average throughput for fixed d0

In this case, we assume the distance between the desired
transmitter and receiver is fixed and there are N other nodes
constituting a two-dimensional Poisson point process. Al-
though (6) gives the success probability conditioned on
node distances, we still need to find the joint density of

7For large networks, this is equivalent to a uniformly random distribu-
tion for all practical purposes.
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Table 2: Comparison of square, triangle, and hexagon networks
for α = 4 and Θ = 10, where popt, gmax, and Teff denote the op-
timum transmit probability, maximum throughput, and transmit
efficiency.

popt gmax Teff d0 gmaxd0

Square 0.0660 0.0247 0.37 1.0 0.0247

Triangle 0.0570 0.0213 0.37 1.0746 0.0229

Hexagon 0.0870 0.0326 0.37 0.8774 0.0286

d1, d2, . . . , dN (ordered distances). It is well known that for
one-dimensional Poisson point processes with density λ, the
ordered distance from nodes to the desired receiver form the
arrival times of a Poisson process [24]. The interarrival inter-
vals are i.i.d. exponential with parameter λ:

fdi−di−1

(
xi − xi−1

) = λe−λ(xi−xi−1). (18)

So, for the ordered distance 0 ≤ d1 ≤ · · · ≤ dN , the joint
density function of the interarrival intervals is

fd1,d2,...,dN

(
x1, x2, . . . , xN

)
= fd1,...,dN−dN−1

(
x1, x2 − x1, . . . , xN − xN−1

)
= (λe−λx1

)(
λe−λ(x2−x1)) · · · (λe−λ(xN−xN−1))

= λNe−λxN , 0 ≤ x1 ≤ x2 ≤ · · · ≤ xN .

(19)

When nodes are distributed according to a two-dimensional
Poisson point process with density λ, the squared ordered
distances from the desired receiver have the same distribu-
tion as the arrival times of a Poisson process with density λπ
[24]. The squared ordered distances have a joint distribution
with density

fd2
1 ,...,d2

N

(
x1, . . . , xN

) = (λπ)Ne−λπxN ,

0 ≤ x1 ≤ x2 ≤ · · · ≤ xN ,
(20)

because from [26], we have

fd2
i −d2

i−1

(
xi − xi−1

) = λπe−λπ(xi−xi−1). (21)

The conditional success probability can be written as (see
(6))

Ps|d0,d1,...,dN =
N∏
i=1

(d2
i )α/2 + (1− p)Θdα0

(d2
i )α/2 + Θdα0

. (22)

Integrating (22) with respect to the joint density (20), and in
particular, evaluating it for α = 4, we obtain

Ps|d0

=
∫∞

0
(λπ)Ne−λπxN

×
{∫ xN

0
· · ·

∫ x2

0

N∏
i=1

x2
i + (1−p)Θd4

0

x2
i + Θd4

0
dx1· · ·dxN−1

}
dxN .

(23)
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Figure 7: For α = 4 and Θ = 10, the analytical average throughput
E[g|d0 = 1] based on (25) for networks with node number N =
100, 121, and 144.

By applying a similar inductive technique as in [24], it can be
shown that

∫ xN

0
· · ·

∫ x2

0

N−1∏
i=1

x2
i + (1− p)Θd4

0

x2
i + Θd4

0
dx1 · · ·dxN−1

= 1
(N − 1)!

(
xN − p

√
Θd4

0 arctan

(
xN√
Θd4

0

))N−1

.

(24)

Combining (23) and (24), we have

Ps|d0 =
∫∞

0

(λπ)N

(N − 1)!
e−λπx

x2 + (1− p)Θd4
0

x2 + Θd4
0

×
(
x − p

√
Θd4

0 arctan

(
x√
Θd4

0

))N−1

dx.

(25)

Based on (25), we numerically evaluate the average through-
put E[g|d0] = p(1 − p)Ps|d0 (averaged over all network re-
alizations) and plot it as a function of p in Figure 7 for a
network with node numbers N = 100, 121, and 144, where
d0 = 1. It is shown that they are very close, indicating that
only a portion of the nodes interfere at the receiver and nodes
further away have little impact on the transmission.

4.2. Average throughput for variable d0

In the previous analysis, we assumed that the transmitter-
receiver distance d0 is fixed and there are N potential interfer-
ing nodes uniformly distributed. Now we assume that the re-
ceiver located at the center selects its nearest-neighbor node
as its desired transmitter. Then there are N − 1 nodes further
away than the desired transmitter. The distance to the near-
est neighbor has the Rayleigh density function (as shown in
[23])

fd0 (x) = 2πxe−πx
2
. (26)
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Figure 8: For α = 4 and Θ = 10, E[g] versus p for random network
with N = 144. The analytic result from (27) and (30) is displayed
by solid line; the simulation result over 10 000 runs by + mark.

Since d0 is the nearest distance, d2
i in (22) can be varying

from d2
0 to d2

i+1. So we integrate xi from d2
0 to xi+1:

Ps|d0

=
∫∞
d2

0

fd2
1 ,...,d2

N−1|d2
0

(
x1, . . . , xN−1|d2

0

)

×
{∫ xN−1

d2
0

· · ·
∫ x2

d2
0

N−1∏
i=1

x2
i +(1−p)Θd4

0

x2
i + Θd4

0
dx1· · ·dxN−2

}
dxN−1,

(27)

fd2
1 ,...,d2

N−1|d2
0

(
x1, . . . , xN−1|d2

0

) = (λπ)N−1e−λπ(xN−1−d2
0 ), (28)

where 0 ≤ d2
0 ≤ x1 ≤ · · · ≤ xN−1.

By induction, it can be shown that

∫ xN−1

d2
0

· · ·
∫ x2

d2
0

N−2∏
i=1

x2
i + (1− p)Θd4

0

x2
i + Θd4

0
dx1 · · ·dxN−2

= 1
(N − 2)!

{
xN−1 − d2

0 − p
√
Θd4

0 ·
[

arctan

(
xN−1√
Θd4

0

)

− arctan

(
d2

0√
Θd4

0

)]}N−2

.

(29)

The success probability is Ps|d0 averaged over d0:

Ps =
∫∞

0
fd0 (x)Ps|d0dx. (30)

Substitute (28) and (29) into (27) and evaluate (30) with
(26), we obtain the relationship between E[g] = p(1 − p)Ps
and p, which is plotted in Figure 8. It is shown that the ana-
lytic (solid line) and simulation result (marked by +) match
perfectly.
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Figure 9: For α = 4 and Θ = 10, average throughput (a) E[g|d0]
versus p for d0 from 0.5 to 1.5; (b) E[g|d0] versus p for d0 = 0.1,
0.5, 1.0, and 1.5.

Figure 8 implies random networks have better average
throughput for local data exchange than regular networks.
This can be explained by d0, the transmitter-receiver dis-
tance. In random networks, a variable d0 leads to a vari-
able throughput. Figure 9a displays E[g|d0] versus p for d0

from 0.5 to 1.5. Figure 9b shows the relationship for d0 =
0.1, 0.5, 1.0, and 1.5. Not surprisingly, smaller d0 results in
higher throughput. For the variable d0 case, it is assumed that
the desired transmitter is the nearest neighbor of the receiver.
With the pdf of (26), the probability that d0 is greater than
1 (the transmitter-receiver distance in the square lattice net-
work) is P[d0 > 1] = e−π = 0.043. So for most nodes, the
received signal power from the desired transmitter is greater
than that in regular networks. In Figure 9b, for d0 = 0.1, it is
shown that the strong signal power resulting from very small
d0 offsets the impact of interference even for high transmit
probabilities p.
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Figure 10: Comparison of the average throughput of regular square
network and random network. For both networks, N = 1600, d0 =
1, α = 4, and Θ = 10.

Now consider the generic routing strategy from [23]:
each node in the path sends packets to its nearest neigh-
bor that lies within a sector φ, that is, within ±φ/2 of the
source-destination direction. The previous scheme where d0

is obtained as the distance to the nearest neighbor makes no
progress in the source-destination direction. Such a choice
of d0 would correspond to routing within φ = 2π, clearly an
inefficient choice of φ. More sensible is φ ≤ π. Let d0 be the
distance to the nearest neighbor within sector φ. The proba-
bility density of d0 is given by [23]

fd0 (x) = xφe−x
2φ/2. (31)

If the routing sector φ = π/2, then E[d0] = 1. For d0 = 1,
Figure 10 displays the throughput for square network and
random network with N = 1600. It turns out that for the
same transmitter-receiver distance, square networks have a
slightly higher average throughput than random networks.

We compare the transport capacity gmaxd0 of regular and
random networks. Figure 11a shows gmax versus d0 and popt

versus d0 for a random network. Figure 11b compares the
transport capacity of random and regular networks. It is
shown that at a specific transmitter-receiver distance d0, reg-
ular networks slightly outperform random networks in terms
of transport capacity.

4.3. End-to-end throughput gEE in a random network

In wireless sensor networks with multihop communication,
the end-to-end throughput (the minimum of the throughput
values of the links involved) of a route with an average num-
ber of hops is a better performance indicator than the average
throughput. For two-dimensional random sensor networks
(busy area m × m, density 1, routing within sector φ) with
uniformly randomly selected source and fixed destination

located at the corner,8 we can approximate the average path
length in hops

h̄ ≈ r̄

D̄η
, (32)

where r̄ denotes the expected distance between the source
and the destination, D̄ the expected hop length, and η the
expected path efficiency, where the path efficiency is the ratio
between the Euclidean distance and the travelled distance of
a path. D̄η can be viewed as the effective hop length—the av-
erage hop length projected onto the source-destination axis.
The expected distance from a random point in a square to a
corner can be derived from [27, Exercise 2.4.5]:

r̄ =
[√

2
3

+
1
3

arctanh

(
1√
2

)]
m ≈ 0.769m. (33)

From [23], we know that

D̄ =
√

π

2φ
, η = 2

φ
sin

(
φ

2

)
. (34)

So the average path length in hops can be approximated by
plugging (33) into (32). To evaluate the end-to-end through-
put of a route with h̄ hops, we use a semianalytic approach
by generating an h̄-hop path with each hop length obtained
as a realization of D according to the pdf in (31), and evalu-
ate the throughput of each hop based on Figure 9a. The av-
erage end-to-end throughput is then obtained by taking the
minimum of each path and averaging the minimum over the
number of realizations of the simulated routes. It is shown
in Figure 12 that the maximum end-to-end throughput gEE

is 0.0086, 0.0053, and 0.0039 for φ = π, π/2, and π/3.
What is the end-to-end throughput for regular networks?

It can be directly obtained from Figures 2 and 6, which is
0.0247, 0.0213, and 0.0326 for square, triangle, and hexa-
gon networks. For regular networks, every hop has the same
length, and the throughput is calculated for a link in the cen-
ter of the network, which is the worst case, so the end-to-end
throughput is the throughput of the center link of the busy
area. In terms of the end-to-end throughput for multihop
communication, regular networks significantly outperform
random networks. For larger networks, the benefit is larger
since larger m results in longer paths.

5. CONCLUSIONS

We have shown that for a noiseless Rayleigh fading network
with slotted ALOHA, the success probability of a transmis-
sion is the Laplace transform of the interference evaluated at
the SIR threshold Θ. We assume that in every timeslot, each

8For the many-to-one traffic typical in sensor networks, we assume the
data sink for all connections to be in one of the corners of the (square) net-
work.
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Figure 11: With N = 1600, α = 4, and Θ = 10, (a) gmax versus d0 and popt versus d0 for a random network; (b) transport capacity gmaxd0 for
random and regular networks with the same size and node density. For random networks, E[d0] = 1 for φ = π/2.
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Figure 12: The average end-to-end throughput of random net-
works for different routing sectors φ, where α = 4 and Θ = 10.

node transmits independently with a certain fixed probabil-
ity p = pq pt, where pq is the intensity of the Bernoulli traffic
and pt is the channel access probability. This decomposition
of p shows that the throughput analysis and optimization
with respect to p includes a range of traffic intensities and
channel access probabilities.

Among the three regular networks (square, triangle, hex-
agon), the hexagon network provides the highest throughput
since every node has only three nearest neighbors which is
the smallest among the three networks. The sensitivity analy-
sis of the maximum throughput gmax and optimum transmit
probability popt with respect to Θ for square networks ex-
plains why the transmit efficiency Teff = gmax/popt is approx-
imately 37%. These results hold quantitatively for the other
two regular networks—triangle and hexagon networks.

For random networks, two scenarios are considered—
fixed and variable transmitter-receiver distances d0. If d0 is
the same for regular and random networks, regular networks
slightly outperform random networks in terms of through-
put and transport capacity. In the case of variable d0 where
the receiver selects the nearest-neighbor node as its desired
transmitter, the average throughput of random networks is
better than that of regular ones. This is because strong sig-
nal powers resulting from very small d0 offset the impact of
interference even for high transmit probabilities. This result,
however, only pertains to local data exchange. When multi-
hop communication and routing is taken into account, reg-
ular topologies have a significant advantage in terms of end-
to-end throughput. The reason for the inferior end-to-end
performance of random networks is the large variance in the
node distances.
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