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Abstract—We consider a Poisson network of sources, each with
a destination at a given distance and a buffer of infinite capacity.
Assuming independent Bernoulli arrivals, we characterizethe
stability region when one or two classes of users are presentin the
network. We then derive a fixed-point equation that determines
the success probability of the typical source-destinationlink and
evaluate the mean delay at each buffer.

Index Terms—ALOHA, Poisson point process, queueing, sta-
bility.

I. I NTRODUCTION

Stochastic geometry and, in particular, point-process theory,
has been widely employed in the study of wireless networks
[1], [2]. A commonly used model is the Poisson bipolar
network model [2], in which the sources are located according
to a Poisson point process (PPP) and each source has an
associated destination, which is not part of the PPP. This
model has been employed in a large number of papers (see [1]
for a comprehensive overview) to obtain an analytical handle
on the outage probability and the throughput in random-
access wireless networks, based on a signal-to-interference-
and-noise-ratio (SINR) model for successful reception. By
random access, it is understood that the sources follow the
ALOHA protocol, i.e., each source transmits with probability
p independently of the other sources in the network.

An implicit assumption in this line of work is that the
sources always have packets to transmit. This letter departs
from this framework and considers the practically important
scenario where packets arrive at each source independently
from slot to slot with a certain probability, and are accom-
modated in a buffer. The introduction of buffers to the bipolar
model creates the complication that the density of transmitting
sources, i.e., sources which are allowed to transmitand
have packets in their queues, depends on the packet success
probability and vice versa. This interaction makes the analysis
of the - inherently simple - ALOHA protocol non trivial. A key
problem is deriving the stability region, i.e., the set of arrival
rates such that the queues are stable, which has been addressed
in the past for systems consisting of a finite number of sources
and a single destination. E.g., [3] recursively characterized
the stability region using Loynes’ criterion [4] and stochastic
dominance1; [5] determined inner and outer bounds to the
stability region; and [6] considered ALOHA combined with
multi-packet reception.

1In the dominant ALOHA system, a subset of the users make “dummy”
transmissions when their queues are empty. The queue sizes in the dominant
system are never smaller than in the original system, if bothsystems start
from the same initial condition.

This is the first paper to combine queueing theory and
the PPP framework in order to study the performance of
ALOHA in distributed networks consisting of an infinite
population of source-destination pairs. We characterize the
stability region for one or two classes of users and derive
closed-form expressions for the packet success probability and
the mean delay at the source buffers.

II. SYSTEM MODEL

At the beginning of time, i.e.,t = 0, the positions of the
sources,{Xi(0)}, i ∈ N, are determined according to a homo-
geneous PPPΦ(0) ⊂ R

2 of densityλ, i.e., Φ(0) = {Xi(0)}.
Sourcei has a destination atYi(0), such that|Xi(0)−Yi(0)| =
R, and a buffer of infinite capacity to accommodate incoming
packets. Each source belongs to a traffic classn with prob-
ability πn, n = 1, . . . , N ,

∑N
n=1 πn = 1, characterized by a

packet arrival probabilityan, and a medium access probability
pn which determines the frequency of channel access for all
sources in that class. Note that packet arrival and channel
access events are independent across sources and slots. The
initial queue lengths{Qi(0)} are also chosen independently
according to some probability distribution.

Define the small parametersǫ ≪ 1, ǫ′′ < ǫ′ ≪ 1 andδ ≪ 1.
The network operation is depicted in Fig. 1 and described in
detail below. For each classn:
1. At t+ ǫ, a source accesses the channel with probabilitypn.
If it is granted access andQi(t) > 0 the packet at the head of
the queue is transmitted and leaves the queue if the SINR in
the slot(t, t + 1) is greater than a thresholdθ > 0. Otherwise
it remains at the head awaiting retransmission.
2. At t + 1 − ǫ′, a new packet arrives with probabilityan.
3. At t+1−ǫ′′, the position of each node is changed according
to a high mobility random walk model [2, Ch. 1.3], i.e., a
vector ∆Xi(t)/δ is added toXi(t) and Yi(t). ∆Xi(t) is a
random vector with some smooth probability distribution on
R

2, independent ofXi(t).
4. At t+1, the queue lengths{Qi(t)} and new node positions
{Xi(t + 1)} are measured. Note that the point processΦ(t +
1) = {Xi(t+1)} is also a PPP according to the displacement
theorem [2, Ch. 1.3].

Based on these modeling assumptions, each queue length is
a Markov chain which obeys [3]

Qi(t + 1) = (Qi(t) − Di(t))+ + Ai(t), t = 1, 2, . . .

where(.)+ = max(., 0), Ai(t) = 1 with probability an (and
0 otherwise) and

Di(t) = ei(t)1 (SINRi(t) > 0 | ei(t) = 1) . (1)
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Fig. 1. Network operation. The queue length is measured att ∈ Z
+. Medium

access follows with probabilitypn and, if the queue is not empty, transmission.
Right before the end of the slot, a new packet arrives with probability an and
the positions of the nodes are shuffled.

ei(t) = 1 with probabilitypn (and zero otherwise) and

SINRi(t) =
hii(t)R

−b

∑

j 6=i hij(t)ej(t)1(Qj(t) > 0)dij(t)−b + γ−1

wherehij(t), dij(t) = |Xj(t)−Yi(t)| are the fading coefficient
(constant in(t, t + 1)) and distance between sourcej and the
destination, respectively, andγ is the signal-to-noise ratio. We
assume that{hij(t)} are exponential with unit mean and i.i.d.
across space and time, and that the propagation exponentb > 2
(otherwise the interference is infinite a.s. [1]).

III. S INGLE-CLASS NETWORKS

Let us consider the case where there is only one class of
users, i.e.,an = a and pn = p. The following proposition
provides a necessary and sufficient condition for the stability
of the buffers in the sense defined in [3], i.e.,{Qi(t)} having
a limiting distribution fort → ∞.

Proposition 1 The queues of the PPP network of Section II,
with a single user class, are stable if and only if

a < pe−λpcR2−θRbγ−1

(2)

where c = Γ(1 + 2/b)Γ(1 − 2/b)πθ2/b. The closure of stable
arrival rates is thus

a ≤ p∗e−λp∗cR2−θRbγ−1

, (3)

where p∗ = min
{

1
λcR2 , 1

}

.

Proof: We first show sufficiency by proving that (2)
guarantees stability in a dominant network, where all sources
that have empty queues make dummy transmissions. Select a
source in the dominant network, e.g.,i. The arrival process
Ai(t) is by definition stationary and ergodic. The departure
processDi(t), defined in (1), is also stationary as the point
process of transmitting sources,Φ′(t) = {Xj(t) : ej(t) = 1},
is a homogeneous PPP of densityλp. Definingp̄s = E[Di(t)],
from [1, Eq. (9)] we obtain that̄ps = pe−λpcR2−θRbγ−1

. We
now establish the ergodicity ofDi(t). Due to the mobility
model of Section II, the form of the path-loss functionl(r) =
r−b, and the independence of{hii(t)} acrosst, {SINRi(t)}
are i.i.d. acrosst (see [2, p. 26]). By the law of large numbers,
Di(t) is ergodic. Since(Ai(t), Di(t)) are jointly stationary
and ergodic, by Loynes’ theorem, ifa < p̄s, then Qi(t) is
stable.

The necessity of (2) is shown as follows: Ifa > p̄s, then,
by Loynes’ theorem, it follows thatlimt→+∞ Qi(t) = +∞
(a.s.) for all sources in the dominant network. Using the same

arguments as in [3, p. 511], if the queues in the actual network
initially have a large enough number of packets, both networks
are identical. This implies thatQi(t) → +∞ ∀i is also true
for the original network. Finally, (3) follows by maximizing
the right-hand side of (2) overp.

Note that (2) is a generalization ofa < p(1 − p)M , i.e.,
the stability region of theM -user symmetric ALOHA system
with collisions [3], for a network with Poisson distributed
sources and an SINR physical-layer model. Having established
a condition for stability, we now evaluate the probability of
successful transmision.

Proposition 2 Let t → +∞. Provided that the network is
stable, the packet success probability is

ps = exp

(

−λ
a

ps
cR2 − θRbγ−1

)

. (4)

Proof: Employing a similar argument as in Proposition 1,
{SINRi(t)} and, by definition,{Di(t)} are i.i.d. acrosst.
By symmetry, the stationary packet success probability is the
same across all sources and equal tops = E[Di(t)]. Since
the queue of sourcei is subject to i.i.d. packet arrivals with
probabilitya and i.i.d. packet departures with probabilitypps,
the probability that the queue is non-empty isρ = a/(pps).
It follows that the point process of transmitting sources
Φ′(t) = {Xj(t) : Qj(t) > 0, ej(t) = 1} is a PPP with density
λρp. By [1, Eq. (9)], we establish (4).

In Proposition 2, we take advantage of the shuffling of
the node positions in each slot, which results in independent
channel conditions for each source-destination link across
time. The interaction between the success probability and the
queue sizes is captured by (4). Note that (4) has two solutions
iff a ≤ e−θRbγ−1−1/(λcR2), which is satisfied when (2)
holds. The larger of the two solutions is rejected on the basis
that it is decreasing ina, i.e., it results in a system with a
success probability which increases with increasing incoming
traffic. The valid solution is found in closed form

ps(a) = exp
(

−θRbγ−1 + W
(

−λacR2eθRbγ−1
))

, (5)

where W is the principal branch of the Lambert W func-
tion [7]. As seen,ps does not directly depend onp. However,
the range of allowable values ofa depends onp due to (2).

Eq. (5) may be employed in order to evaluate the mean total
time that a packet spends in the typical queue.

Proposition 3 Let ρ(a) = a/(pps(a)). The mean packet delay
in a stable network with a single class of users is

D =
ρ(a)

a

1 − a

1 − ρ(a)
. (6)

Proof: The steady-state distribution ofQi(t) is

P(Qi(t) = k) =
ρ − ρ2

1 − a

(

ρ − a

1 − a

)k−1

, k ≥ 1.

The result follows by Little’s formula,D = E[Qi]/a.
We plot D vs. a in Fig. 2 for λcR2 = 0.5, 1, 2, p = p∗ and
SNR → ∞. We also plotD with p̄s = p∗e−λp∗cR2

in place of
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Fig. 2. Delay vs.a for λcR2 = {0.5, 1, 2}, p = p∗, andSNR → ∞. The
delay in the dominant network is also shown (dash-dot) for comparison.

ps, i.e., the delay at the typical queue in the dominant system.
The discrepancy between the pairs of curves decreases with
decreasingλcR2.

IV. T WO-CLASS NETWORKS

We now consider a network withN = 2, i.e., two classes of
users. For ease of exposition, let the SNRγ → ∞ and define
a = (a1, a2), p = (p1, p2).

Proposition 4 The set of stable arrival rates for the PPP
network of Section II, with two classes of users, is Sp =
⋃

(n,m)∈I Sn,m,p, where I = {(1, 2), (2, 1)} and

Sn,m,p =
{

a : am < pme−λc(π1p1+π2p2)R
2

,

an < pn exp
(

−λcπnpnR2 + W (−λcπmamR2eλcπnpnR2

)
)}

Moreover, if S =
⋃

p
Sp, then C(S) = T , where

T ,

{

a : a1 = p1e
−λcR2(π1p1+π2p2),

a2 = p2e
−λcR2(π1p1+π2p2), p ∈ [0, 1] × [0, 1]

}

. (7)

and C(S) denotes the closure of S.

Proof: Sp follows from [3, Th. 1], Proposition 1 and 5.
We create two dominant systems. In each one, one of the two
classes of users makes dummy transmissions. The stability
region is found by the union of stable arrival rates over the two
systems.C(S) = T is proved by showing that the Jacobian
determinantJ = |∂a/∂p| is the same at the boundaries ofS
andT .

In Fig. 3, we plotS for different values ofλcR2. The
following may be verified:

• λcR2 ≤ 1: S = S(1,1), which is the generalization of (3)
for two user classes. Moreover, ifλcR2 max{π1, π2} ≤
0.5, thenmaxT = 2e−λcR2

at p = (1, 1).
• λcR2 min{π1, π2} ≥ 1: the boundary ofT is linear, i.e.,

time sharing between the two classes achieves all rate
pairs.

Note that the success probability and the delay for each class
may be evaluated similarly to Propositions 2 and 3.
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Fig. 3. The boundary ofS plotted for λcR2 = 0.5, 0.75, 1, 1.25, 2 and
π1 = π2 = 0.5. The shape ofS is determined by the physical-layer parameter
λcR2 and the probabilitiesπ1, π2.

V. CONCLUSIONS

This paper studied the stability and delay performance of
slotted ALOHA in a Poisson network. Based on the fact that
the transmitters in each slot form a PPP, we determined the
set of stable arrival rates for one or two classes of users
and provided a closed-form expression for the mean delay.
These results bridge the gap between work on PPPs that
has exclusively considered backlogged nodes and work on
ALOHA that has relied on crude physical-layer models and
not considered the effect of the node spatial distribution.
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