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THE NEED FOR A NETWORK
INFORMATION THEORY

Information theory has provided a scientific
foundation for the development of some of soci-
ety’s most advanced and beloved technologies
including computers, cellular phones, and the

Internet. It seems natural that technologies such
as these will converge, allowing ubiquitous wire-
less connectivity. However, the performance lim-
its of the decentralized wireless networks of the
future are presently not known, and optimal
approaches to designing these networks are
known only for a few special cases. The most
challenging and general class of wireless net-
works to both quantify and design are ad hoc
networks, which are mobile peer-to-peer net-
works that operate without the assistance of pre-
existing infrastructure. Immediate applications
include emergency and battlefield networks,
metropolitan mesh networks for broadband
Internet access, and sensor networks. In addition
to these pending applications, this important
open problem is quite general, and a solution to
it will likely impact the science of networks in
other fields, including biology, economics, and
air and automobile transportation.

A central concept in information theory is
capacity, which is the boundary between the
physically possible and physically impossible in
terms of reliable data rate. For a given transmit-
ter and receiver, the link capacity for Gaussian
noise channels is well defined and given by the
well-known formula C = Blog2(1 + SNR), where
B is the bandwidth, and SNR is the signal-to-
noise ratio. This simple formula, often known as
the Shannon limit, and its implications have been
indispensable in the development of today’s vast
communications infrastructure. By providing a
target, it has encouraged large investment in
developing high-speed communications. Perhaps
more important, the insights provided by infor-
mation theory have often provided a roadmap to
communication engineers. Communication link
rates now approach the Shannon limit even in
challenging time-varying wireless channels.

This success has not yet translated to wireless
networks, which, for K mobile devices, comprise
K(K – 1) possible one-way connections — with-
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out including multicasting. In fact, the general
Shannon limit is not known even for K = 3 with
static channels due to difficulties in modeling the
interactions between the six possible one-way
links [1, 2]. In ad hoc networks K can be on the
order of 10, 100, or even 1000, and all the links
are time-varying. Classical link-based informa-
tion theory does not appear well suited to the
role of describing network performance limits,
any more than understanding the functionality of
a single neuron gives insight on how the brain at
large functions or a single transistor’s behavior
characterizes the behavior and capabilities of a
modern CPU.

THE THREE ROADBLOCKS
Despite the obvious difficulties in adapting a
fundamentally point-to-point theory to a net-
work, there have been numerous efforts at
extending information theory to networks, often
referred to as multiterminal or network informa-
tion theory. Such extensions have proven to be
extremely difficult for most cases of interest,
which has motivated considerable work on capac-
ity scaling laws that attempt to describe how the
end-to-end achievable rates in the network scale
as a function of the total number of nodes in it
[3]. This article will argue that even if straight-
forward extensions of classical information theo-
ry to K > 2 were successful, there are three
fundamental roadblocks to a functional network
information theory that are not addressed by the
Shannon framework. By functional, we mean a
network information theory that provides useful
upper bounds on end-to-end network through-
put. These upper bounds should be robust to
nonidealities in the capacity model, encompass a
notion of timescales and delay, and point to lim-
its that may be approached in the foreseeable
future with arbitrarily good engineering.

A network information theory that addresses
these three roadblocks and provides useful
capacity limits for mobile ad hoc networks
(MANETs) is likely to require significant inno-
vation relative to the contemporary Shannon
framework:
• Roadblock 1: Network capacity requires dif-

ferent foundational assumptions than link-
based information theory.
The link capacity expression C = Blog2(1 +

SNR) was revealed by considering memoryless
channels with arbitrarily long block lengths
(delay) and vanishingly small error probability.
Surprisingly, allowing unbounded delay, reliabili-
ty, and complexity did not wind up compromis-
ing the usefulness of this result in links —
indeed, very high reliability can be achieved at
rates near the Shannon limit, and due to design
and processing advances over the past several
decades, capacity-approaching strategies now
have a delay and complexity that is acceptable
for many applications. However, MANETs have
bursty traffic sources, end-to-end delay con-
straints that are much more difficult to meet,
and mobility that constantly changes the network
topology. In a link, delay is primarily related to
the codeword length, and delays on the order of
thousands of channel symbols are, from a capac-
ity point of view, close enough to infinity for the

asymptotic limits to be accurate while still pro-
viding a link that can be close to “real time” in
terms of human perception. In networks delays
are measured on much larger timescales corre-
sponding to buffer times, traffic patterns, chan-
nel access times, multihop routing,
retransmissions, and user mobility. The delays
required for asymptotic limits to be meaningful
in the context of maximizing network throughput
might be on the order of tens of seconds, min-
utes, or even longer, which is orders of magni-
tude larger than permissible delay bounds. As a
consequence, the stochastic variations in the
channels, queues, and routes due to fading,
mobility, and traffic patterns cannot be averaged
out and have to be explicitly considered. Table 1
summarizes the approximate timescales required
for different algorithms in MANETs. In nearly
all cases, slower timescale dynamics allow more
sophisticated techniques to be used at all layers
of the network stack.

In summary, the capacity of a MANET is
closely related to the timescales occurring in the
network, which are driven by external dynamics.
What is needed is a non-equilibrium information
theory that, rather than averaging over all the
dynamics, is capable of describing capacity in the
context of local equilibria.
• Roadblock 2: Wireless networks defy famil-

iar link-based decompositions. New decom-
positions need to account for nodal
interactions over time and space.
Information theory has been tremendously

successful in analyzing centralized wireless sys-
tems because such networks can generally be
decomposed into constituent links. Traditional
Shannon theory applies to these links, and the
system as a whole can be characterized as the
aggregation of these links. For example, cellular
systems can be first decomposed into individual
cells, which comprise a point-to-multipoint
(broadcast/downlink) and a multipoint-to-point
(multi-access/uplink) channel. These multiuser
channels can be further decomposed via orthog-
onalization (in time, frequency, space, or code)
into point-to-point links. In most cases, although
less often recently, interference from other links
can be simply treated as additional noise. The
modeling of cellular systems is relatively robust
to this idealization due to the careful layout of
cell sites and the single-hop communication
paradigm. A further functional decomposition
can be performed that allows network “layers”
to be treated separately: the physical layer is
thought of as a bit pipe, while the higher layers
exist to provide the physical layer with bits to
transmit. In practice, these layers have been
designed and optimized separately, with a few
recent exceptions such as opportunistic schedul-
ing and network coding.

MANETs evade such decompositions due to
their decentralized structure, the need for multi-
hop routing, the dynamic traffic and network
topologies, and the inherent coupling between
channels with multiple transmitters and receivers
interleaved in space. Therefore, the familiar lay-
ered network stack — which is a decomposition
of system functionality — also needs to change,
possibly adaptively. Ideally, each layer should be
defined by the timescale over which it operates,
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so “higher” layers (whose state changes slowly)
can reasonably interact with equilibrium states
of the layers below it, whose states change more
quickly.

Although this decomposition roadblock is
fairly well recognized, MANET research and
design has still generally followed the traditional
separation of network and physical layer func-
tionalities. A majority of MANET research from
the network community is performed on the
basis of overly simplified physical layer models;
nodes can communicate at a prescribed rate if
they are within “range,” and cannot otherwise.
In contrast, information theory has essentially
ignored networking concerns like bursty traffic,
finite flows and sessions, queuing delay, and
routing. Although convenient and familiar, nei-
ther of these approaches sufficiently captures the
level of interaction between these functionalities
that occur in MANETs. Indeed, network coding,
one of the field’s more revolutionary recent
ideas, came about precisely by departing from
the traditional “packet as atomic unit” perspec-
tive.
• Roadblock 3: Overhead is a much greater

burden in MANETs and must be accounted
for in the capacity theory itself.
A considerable amount of overhead is left

unaccounted for by information-theoretic chan-
nel and network models [4]. Even general point-
to-point communication models start off by

making many implicit assumptions: a connection
has been established (often using a separate con-
trol channel), synchronization has been achieved,
packet headers relating to addressing and other
overhead information have been sent. In a link
such simplifications may be viable, because these
costs are either relatively minor, easily account-
ed for in a lump sum manner (e.g., “network
overhead” of 20 percent), or non-recurring and
hence amortized over the lifetime of the link.
However, in a network accomplishing these tasks
may consume extensive system resources and
defy a simple characterization. This is not simply
an academic problem; current military prototype
MANETs routinely experience overhead on the
order of even 99 percent of the end-to-end pack-
et transmissions.

In a dynamic network the cost of maintaining
optimal communication routes may be severe at
every layer of the network stack. In addition to
the synchronization, channel estimation, route
selection, handshaking, and standard acknowl-
edgment messaging required in an MANET,
many promising schemes — relaying, coopera-
tive diversity, beamforming, opportunistic
scheduling, and backpressure routing — require
substantial real-time overhead. It is important to
understand when state information acquisition
improves the observed capacity; that is, when is
overhead messaging justified by a net capacity
increase? This requires a careful accounting of

!!

         

Table 1. Main system parameters of the prototype wireless system of WAUN.

Timescale coherence Communication and network algorithms Effects

10–6 se (unlikely)
Non-coherent communication
Mobility increases short-term capacity MANET communication close to impossible

10–3 s (very high
mobility)

Coherent communication C ≈ E[log(1 + SNR)] with coding and interleaving

ALOHA or round-robin scheduling Although fast fading helps multiuser capacity, it is
difficult for the transmitters to learn the channels

Flooding Inefficiency due to very short shelf-life of routes

10–2 – 10–1 s
(moderate mobility)

Adaptive modulation and coding
Spatial diversity
Local power control and scheduling

Increase link capacities, exploit channel variations

Handoff algorithms Can maintain routing, continuity of service

ARQ Improved link robustness

1 s (low mobility)

Limited channel-state feedback, aueue-state
feedback

Richer transmitter optimization becomes possible,
such as beamforming

Backpressure routing based on differential queue
lengths

Approaches throughput and delay optimality by
avoiding congestion

Network coding Mix packets for robustness and throughput

10–100 s (no mobility)

Rich channel state feedback: near-optimal MIMO
transmission, waterfilling, interference channels
known

Capacity on links can be approached (e.g., multiuser
MIMO precoding, interference cancellation)

Rich network feedback: network-level scheduling and
routing

Cost of network-level feedback can be amortized;
sophisticated coordination viable

ANDREWS LAYOUT  11/20/08  10:18 AM  Page 96

         

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on December 8, 2008 at 11:22 from IEEE Xplore.  Restrictions apply.



IEEE Communications Magazine • December 2008 97

the overhead implied by design decisions. Devel-
oping a unifying analytical framework to account
for overhead messaging is critical for a relevant
network information theory.

FUNCTIONAL CAPACITY: CAPACITY
WITH CONSTRAINTS

Capacity is primarily a mathematical concept.
The reason capacity has had operational rele-
vance in the design of communication systems is
because the delay and complexity needed to
approach it have turned out to be reasonable in
current technology. Similarly, although Shannon
promises “perfect” reliability, error probabilities
of one in a million or less are typical of current
systems, which pass for “perfect” when coupled
with quality assurance measures such as cyclic
redundancy check (CRC) and automatic repeat
request (ARQ) retransmissions. 

Information theory, in full generality, is cer-
tainly capable of handling non-asymptotic
regimes for delay, reliability, and for that matter
any constraints. What has allowed information
theory to produce tractable and revealing capaci-
ty expressions is ergodicity, which allows distur-
bances to be averaged out over time and the
equilibrium behavior of the channel (or net-
work) to be determined. Because of the consid-
erable dynamics in networks, using ergodicity as
the foundation for a MANET information theo-
ry is dubious, and key tools of information theo-
ry such as the law of large numbers, the
asymptotic equipartition property, and Stein’s
Lemma may not be suitable in many scenarios of
interest.

One problem with developing a suitable infor-
mation theory for MANETs has been the diffi-
culty in balancing required constraints with the
well justified view that excessive restrictions
might preclude a true upper bound on perfor-
mance.1 Consider the left half of Fig. 1: Shannon
capacity (unconstrained) is the upper bound, the
ultimate boundary between the physically possi-
ble and physically impossible. The functional
capacity corresponds to what might be achiev-

able with great engineering under a tenable set
of assumptions, for example large but not
unbounded delay, low but not vanishingly small
probability of error, very high but not unlimited
signal processing complexity, sufficient but not
unlimited feedback. The functional capacity of
course lies below the Shannon limit. In links —
even in wireless links — these curves wind up
being very close to each other. The achievability
curve, which might be achieved by a state-of-the-
art system, is below both of them, but again by a
small amount. This allows the functional capaci-
ty to be ignored in links, and so capacity can be
thought about simply in terms of just optimality
(the Shannon limit) and achievability (a system
design that approaches the Shannon limit). 

In MANETs however, the situation is very
different. Although both the Shannon limit and
functional capacity of MANETs are unknown,
we conjecture that the functional capacity will
not even be close to the Shannon limit in most
cases. In contrast to links, the Shannon limit
does not necessarily provide a meaningful upper
bound for MANETs, nor predict the ultimate
performance potential of MANETs. We suspect
that current state-of-the-art MANET designs are
also far below the functional capacity, although
by how much we are not sure. The reasons for
these large gaps, in contrast to the link case,
center around the network dynamics, the com-
plicated geography of the interference, the
intense overhead demands that mobility places
on all levels of the network stack, and the lack of
viable centralized control for scheduling and
routing. The key observation is that ultimate
Shannon limits on the performance will likely be
extremely optimistic in networks as opposed to
links, even with arbitrarily good engineering
many years into the future. Therefore, if placing
(reasonable) constraints on the Shannon limit
makes it easier to compute, this might actually
be a good thing.

In short, functional capacity can be thought
of as an important special case of information
theory, where judiciously applied constraints
provide a theory that is robust to nonidealities,
provides useful insights, and, with luck, is more

! Figure 1. A conceptual example of what throughput vs. delay or SNR might be for a link (left) and for a MANET (right).
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1 For example, the cutoff
rate was widely believed
to be the achievable limit
in additive white Gaus-
sian noise (AWGN)
channels; a belief dis-
proven by turbo codes and
their descendants, which
very closely approach the
Shannon limit.
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tractable. There are numerous precedents for
exploring capacity with additional constraints,
for example, constraints on peak and average
power, amount of channel state feedback, and
delay. For illustrative purposes we now give two
examples — one from signal processing and one
from networking — that show why such a step is
particularly critical for MANETs. 

EXAMPLE 1: INTERFERENCE CANCELLATION AND
DYNAMIC RANGE

A widely adopted constraint is that a radio can-
not simultaneously transmit and receive in a sin-
gle frequency band because the ratio of the
transmit to receive powers (Pt/Pr) is enormous,
in the range of 50–100 dB. Mathematically,
though, a known transmit signal can be subtract-
ed from the received signal, permitting simulta-
neous transmission and reception. Several classes
of multiuser channels have been shown to
achieve capacity with some form of interference
cancellation. Although alternative achievability
strategies may exist, a MANET capacity result
that depends heavily on interference cancellation
should be viewed with some level of skepticism,
since the dynamic ranges of different received
signals are much larger than in centralized net-
works due to the irregular geometry of the users.
Can a receiver perfectly cancel out an interferer
that is 50 dB stronger than its desired transmit-
ter? Information theory says yes. Reality — due
to finite bandwidth analog-to-digital (A/D) con-
verters, imperfect channel estimation, and the
lack of infinite precision computing — says no.
To what extent should information theory bend
to accommodate implementation realities? Are
some implementation realities fundamental
while others may change with time?

EXAMPLE 2: MOBILITY AND INFINITE DELAY
Consider an ad hoc network with K nodes, where
each node has some mobility pattern which
ensures that over an infinite time horizon it will
travel arbitrarily close to every location in the
network. It can therefore be ensured that every
node will at some point be close enough to every
other node for reliable transmission to take
place, regardless of the interference from simul-
taneous transmissions elsewhere. With buffers at
each node, this random connectivity can be
exploited by routing data to available nearby
nodes, and then having each intermediate node
act as a “postman” by delivering the data when
the desired destination is encountered. This
allows the end-to-end throughput to be limited
only by the rate at which each node encounters
other nodes [5]. However, the postman model of
routing incurs a very large delay, and hence is
impractical in applications with even modest
delay constraints. This example — which has
great capacity but only if users can wait a few
hours or days for their data — illustrates the
danger of neglecting delay when discussing the
capacity of networks.

The above two examples show how the Shan-
non framework — without appropriate addition-
al constraints — can result in upper bounds that
are extremely sensitive to nonidealities. In con-
trast, the Shannon framework is extremely robust

in links, and nonidealities such as non-Gaussian
noise and codebooks do not typically change the
main insights gained from the theory. The cen-
tral argument for functional capacity is that in its
current form, Shannon’s framework does not
provide a robust platform for MANET capacity.
Like the Shannon limit for links, a functional
MANET information theory will provide a tar-
get for what can actually be achieved with great
engineering, and should avoid degenerate cases
like the above two examples where the capacity
may appear large, but is in fact very fragile.

THE WAY FORWARD
It may appear that developing new foundations
for a non-equilibrium information theory is well
beyond reach. However, we find hope in several
directions. First, we note that there have already
been limited applications of such non-equilibri-
um ideas in information theory. For example,
the notion of outage capacity can be viewed as a
non-equilibrium theory for a fading channel,
where reliability corresponds to the outage prob-
ability. The key idea is to essentially assume a
separation of timescales so that certain random-
ness (i.e., additive noise) is averaged over while
other randomness (i.e., fading) is not. Such an
approach will likely be even more useful in
developing a non-equilibrium theory for
MANETs, where the performance at a given
timescale can be treated as the expected perfor-
mance conditioned on the realization of all
dynamics at slower timescales. Understandably,
the difference between some of the timescales
may not be enough to warrant the use of laws of
large numbers, in which case innovative tech-
niques need to be developed to provide a suc-
cinct interface for interactions between
timescales.

We now briefly overview some recent
research directions we think hold potential for
better understanding the capacity of wireless
networks.

LESSONS FROM PHYSICS
Wireless networks are fundamentally physical
systems, governed by the laws of physics. Rather
than assuming a particular mathematical channel
model, [6] recently combined information theory
with electromagnetic propagation laws and
found that efforts to beat Gupta and Kumar’s
scaling law are fruitless since Maxwell’s equation
fundamentally limit the degrees of freedom
available in the network. If a communication sys-
tem with many degrees of freedom (in time,
space, and/or frequency) is modeled as a ther-
modynamic system, the Shannon capacity is a
statistical phase transition point, beyond which
arbitrarily low error probability is impossible.
Statistical physics methodologies, such as the
replica method, have been successfully applied
to obtain the capacity of multiuser and multiple-
input multiple-output (MIMO) systems. Further-
more, statistical physics offers a number of
modeling tools for dealing with non-equilibrium
systems and large quantities of random variables.
Additionally, non-equilibrium statistical mechan-
ics, which studies macroscopic systems in which
the dominance of statistics disappears, provides
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a rich collection of relevant theory and experi-
ence. Moreover, the theories that physicists have
developed for dynamic interacting many-particle
systems [7] (including vehicular systems) may
enable the study of the dynamics of more gener-
al non-equilibrium systems — such as MANETs. 

THROUGHPUT, DELAY, AND
RELIABILITY REGIONS

In classical (equilibrium) information theory, the
capacity of a multiterminal system is character-
ized by the maximum reliable throughput
between terminals, called the capacity region. A
useful non-equilibrium information theory would
likely characterize a network by other metrics in
addition to throughput. As made clear by Road-
block 1, two other fundamental quantities are
delay and reliability. We refer therefore to a
MANET’s throughput-delay-reliability (TDR)-
triplet, since these quantities are interrelated.
For example, a session will typically be able to
achieve higher reliability by reducing its through-
put or increasing its delay. There have been a
number of efforts at calculating or bounding
such quantities in wireline networks, which may
be useful in developing such a theory for
MANETs. Examples include (stochastic) net-
work calculus and large deviations.

In a non-equilibrium setting, the achievable
TDR values will be time-varying due to slower
timescale dynamics. Since uncertainties cannot
be averaged out over the duration of a typical
session or the lifetime of a route, MANETs are
almost permanently in a transient state, pursuing
evasive equilibria. Since the transient phases are
dominant, classical information theory is less rel-
evant, and new analysis tools are needed that
explicitly account for the dynamics. In other
words, infostatics (i.e., classical information theo-
ry) is not sufficient for the characterization of
dynamic systems such as MANETs — they
require infodynamics. Analogously, the emer-
gence of thermodynamic and electrodynamic sys-
tems necessitated the development of
thermodynamic and electrodynamic theories
based on their static counterparts. In summary,
TDR is a useful method for characterizing the
capacity of a wireless network in non-asymptotic
regimes.

RANDOM GRAPHS AND STOCHASTIC GEOMETRY
Another promising underutilized toolset is the
rich theory of random graphs, stochastic geome-
try, and percolation theory. An inherent feature
of ad hoc wireless networks is that users are ran-
domly located, as are source-destination pairs
and possible relay nodes. Since the path loss is
the dominant effect of both desired and interfer-
ence power in a wireless network, the positions
of the nodes are inseparable from the capacity
of the network. If the nodes are located in an
i.i.d. manner either through a random scattering
or because of mobility, their spatial distribution
is well modeled by a Poisson point process. Rich
toolsets on these subjects have been developed
and are under development by mathematicians
[8], including for non-Poisson point processes.
These tools allow interference distributions and
outage probabilities to be explicitly derived in

closed-form, which allows connectivity and spa-
tial throughput to be quantified precisely. An
exact analysis of these quantities is possible in
the special case when the node locations are
Poisson, channels fading is Rayleigh, and medi-
um access control is uncoordinated [9]. Achiev-
ing good approximations when one or more of
these assumptions are relaxed is the subject of
ongoing work [10, 11].

CAPACITY APPROXIMATION TECHNIQUES
Since exact capacity characterizations may be
impossible for MANETs, capacity approxima-
tions may be the key to understanding the per-
formance limits of wireless networks. Promising
recent ventures in this direction include the
degrees of freedom approach and the determin-
istic channel approach. The degrees of freedom
of a network provide a capacity approximation
that is accurate within o(log(SNR)) and in some
cases within O(1) [12]. Deterministic channel
models have led to capacity approximations
accurate to within a few bits in several interest-
ing cases [13]. These approximations share a
common philosophy: since interference rather
than thermal noise will be the principal bottle-
neck to wireless network performance, it is use-
ful to de-emphasize noise and focus on the
interactions of the desired signals and interfer-
ence terms.

The idea of interference alignment — which
achieves the available degrees of freedom — has
made plain the fallacy of the “cake-cutting”
interpretation of orthogonal spectrum allocation.
An interesting example of interference align-
ment shows that it is possible for everyone to
use half of the channel resources with no inter-
ference to one another. The key to this counter-
intuitive result is the realization that the
alignment of dimensions is relative to the observ-
er (the receiver), and since each receiver has a
different perspective it is possible to simultane-
ously satisfy seemingly contradictory spectrum
requirements. Interference alignment schemes
constructed on the deterministic channel illumi-
nate the close relationship between it and the
degrees of freedom perspective approach. Inter-
ference alignment also reaffirms the observation
that structured codes are needed for network
capacity theorems [14]. While it is known that
both structured (lattice) and random codes can
achieve capacity on the point to point channel,
information theorists have mostly relied on ran-
dom codes to come up with achievability
schemes for capacity theorems. For networks it
seems this may not be the right approach. Intu-
itively, in a network, a code designed for one
user designs the interference to another user.
Since random codes will not automatically align
themselves, structured codes may be necessary
for wireless networks.

CONTROL THEORY
While robustness is often not treated in informa-
tion theory, control theory has a rich tradition in
doing so. Because optimal control algorithms are
often intolerant to changes in the environment
or plant, control theorists have developed robust
control theory. This important branch of control
theory deals with changing system parameters
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and the design of algorithms that exhibit grace-
ful degradation in the presence of changes. In
doing so, robust control systems optimize the
design space for approaches that can maintain
their stability and performance in the face of
unpredictable dynamics. In short, “robust con-
trol refers to the control of unknown plants with
unknown dynamics subject to unknown distur-
bances” [15]. Similarly, we contend that MANET
analysis techniques should not be overly sensitive
to changes in the system assumptions. In other
words, the functional capacity of a MANET
should change gracefully with changes in the
(distributions of the) relevant modeling parame-
ters. As control theorists have realized, this is a
necessary condition for a theory with practical
relevance, since real networks can never be mod-
eled exactly. There has been some work in this
direction in information theory, perhaps best
characterized by considering the capacity of
channels when the channel distributions are
uncertain [16]. In general, however, the consid-
eration of robustness to assumptions and model-
ing is not a prominent aspect of contemporary
information theory.

CONCLUSIONS
The development of an accurate and robust
capacity theory for wireless ad hoc networks is
one of the most difficult and important chal-
lenges remaining in information theory, and has
major ramifications on the fields of wireless net-
working and communications. Meeting this chal-
lenge will require new ideas, new tools, and a
willingness to think outside the confines of con-
ventional information theory. In this article we
have not presented solutions. We have attempt-
ed, however, to get closer to asking the right
questions. We have overviewed promising recent
developments in information theory, and sug-
gested possible connections with historically
unrelated fields. The development of a non-
equilibrium information theory that character-
izes — rather than averages over — the effects
of dynamics would be one of the most important
breakthroughs in communications since Shan-
non’s theory.
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