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Large-scale networks of integrated wireless sensors become increasingly tractable. Advances in hardware
technology and engineering design have led to dramatic reductions in size, power consumption, and cost
for digital circuitry, and wireless communications. Networking, self-organization, and distributed oper-
ation are crucial ingredients to harness the sensing, computing, and computational capabilities of the
nodes into a complete system. This article shows that those networks can be considered as cellular non-
linear networks (CNNs), and that their analysis and design may greatly benefit from the rich theoretical
results available for CNNs.

1. Introduction

Pervasive micro-sensing and -actuation may revolu-

tionize the way we understand and manage com-

plex physical systems. The capabilities for detailed

physical monitoring and manipulation offer enor-

mous opportunities for almost every scientific disci-

pline. Networks of such devices, so-called distributed

sensor networks (DSNs), provide an embedded pro-

cessing platform with exciting capabilities1,2,3. Ap-

plications include surveillance in inhospitable envi-

ronments such as remote geographic regions or toxic

locations, sensing and maintenance in large indus-

trical plants, planetary exploration, seismic activity

detection, medical sensing, micro-surgery, military

surveillance and combat, fingertip accelerometer vir-

tual keyboards, and smart office spaces.

In practically all such applications, key require-

ments include scalability, robustness with respect to

various disturbances and uncertainties, evolvability

through autonomous reconfiguration and optimal re-

distribution of resources4.

Wireless connectivity is crucial, since for most en-

visioned applications, the environment being moni-

tored does not have installed infrastructure for either

communications or energy supply. Therefore unteth-

ered nodes must rely on small local energy sources

and wireless communication channels. Due to en-

ergy and interference considerations, the transmis-

sion range of a node will only include some of its

nearest neighbors (see Fig. 1), and since computa-

tion is substantially cheaper than transmission, con-

trol and resource allocation algorithms run locally

on every node in a distributed fashion. With these

properties – a distributed system of locally connected

nodes – an DSN can be clearly viewed at as a cellular

nonlinear network (CNN); the formal definition will

be given in Section 3.

From a networking point of view, DSNs are cer-

tainly relatives of wireless ad hoc networks5,6,7, shar-

ing a number of challenges such as energy constraints

and routing. On the other hand, general ad hoc

networks most likely induce traffic patterns different
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from sensor networks, have other lifetime require-

ments, and are often considered to consist of mobile

nodes8,9. In DNSs, most nodes are static; however,

the network of basic sensor nodes may be overlaid

by more powerful mobile sensors (robots) that can,

guided by the basic sensors, move to interesting ar-

eas or even track intruders in the case of military

applications.

Fig. 1. A DSN with randomly distributed nodes and lo-
cal connectivity (the circles indicate transmission ranges
at a given transmit power level).

2. Challenges in Distributed Sensor Networks

In this Section, we will introduce some of the chal-

lenges that DSN designers face.

Network nodes are equipped with wireless trans-

mitters and receivers using antennas which may be

omnidirectional (isotropic radiation), highly direc-

tional (point-to-point), possibly steerable, or some

combination thereof. At a given point in time, de-

pending on the nodes’ positions and their transmitter

and receiver coverage patterns, transmission power

levels and co-channel interference levels, a wireless

connectivity in the form of a random, multi-hop

graph or “ad hoc” network exists between the nodes.

This ad hoc topology may change with time as the

nodes move or adjust their transmission and recep-

tion parameters.

DNSs have several salient characteristics:

• Dynamic topologies. Despite the static nature

of the nodes, the network topology may change

due to changes in transmit powers or due to

random fluctuations in the wireless links. A

connection between two nodes usually uses sev-

eral intermediate nodes as relays (multi-hop

connection).

• Bandwidth-constrained, variable capacity wire-

less links.

• Energy-constrained operation10. Since energy

is not renewable, every computation and every

transmitted bit is costly in terms of network

lifetime.

• Limited physical security. Individual nodes

may easily be removed or destroyed.

These properties pose formidable challenges to DSN

implementations, which will be elaborated on in the

following Subsections.

• Energy-efficiency.

• Synchronization and localization. Synchroniza-

tion is a prerequisite for efficient operation

of the network, and without localization, the

sensed data is not useful.

• Routing. How can a path be found from one

node to a possibly distant destination node if

the topology is dynamic, individual nodes are

not reliable and only nearest neighbors can be

reached directly?

• Channel access. The nodes share the wireless

channel as a common communication medium.

How can collisions (occurring when two nearby

nodes transmit simultenously) be minimized?

• Propagation of information. How can it be

guaranteed that sensor data is delivered in a

timely manner? In networking terminology,

this is the so-called quality of service (QoS)

problem.

2.1. Power Supply

The most difficult constraints in the design of

DSNs are those regarding the minimum energy con-

sumption necessary to drive the circuits and possi-

ble micro-electro-mechanical devices (MEMS)11,7,10.

The energy problem is aggravated if actuators are

present that may be substantially more power-

hungry than the sensors. When miniaturizing the

node, the energy density of the power supply is the

primary issue. Current technology yields batteries

with approx. 1J/mm3 of energy, while capacitors can

achieve as much as 1mJ/mm3.
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If a node were designed to have a relatively short

lifespan, such as a device built to transmit data only

a few times, a battery would be a logical solution.

However, for nodes that can generate sensor readings

for long periods of time, a charging method for the

supply must be utilized. Currently, research groups

investigate the use of solar cells to charge capacitors

with photocurrents from the ambient light sources.

Solar flux can yield power densities of approximately

1mW/mm2. The energy efficiency of a solar cell

ranges from 10-30% in current technologies, giving

300µW in full sunlight in the best-case scenario for

a 1mm2 solar cell operating at 1V. Series-stacked so-

lar cells will need to be utilized in order to provide

appropriate voltages.

Sensor acquisition can be achieved at

1nJ/sample, and modern processors can perform

computations as low as 1nJ/instruction. For wire-

less communications, the primary candidate tech-

nologies are based on RF and optical transmission

techniques. Each technique has its advantages and

disadvantages. RF presents a problem because the

nodes may offer very limited space for for anten-

nas, thereby demanding very short-wavelength (i.e.,

high-frequency) transmission. Communication in

that regime is not currently compatible with low

power operation. Current RF transmission tech-

niques (e.g., Bluetooth12) consum about 100nJ/bit

for a distance of 10-100m, making communication

very expensive compared to acquisition and process-

ing. An attractive alternative is to employ free-space

optical transmission. If a line-of-sight path is avail-

able, a well-designed free-space optical link requires

significantly lower energy than its RF counterpart,

currently about 1nJ/bit. The reasons for this power

advantage are that optical transceivers require only

simple baseband analog and digital circuitry and no

modulators, active filters, and demodulators. The

extremely short wavelength of visible light makes

it possible for a millimeter-scale device to emit a

narrow beam, corresponding to an antenna gain

of roughly 7 orders of magnitude compared to an

isotropic radiator.

In DSNs, where sensor sampling, processing, data

transmission, and possibly actuation is involved, the

trade-off between these tasks plays an important role

in power usage. Given a finite amount of energy, bal-

ancing these parameters depending on the applica-

tion will be the focus of the design process of DSNs.

2.2. Routing and clustering

Numerous routing algorithms have been proposed

and studied for ad hoc networks13,5, but most of

them suffer from the drawbacks that they were not

specifically developed for DSNs, that they require

globally unique addresses, and that entire routes

from end-node to end-node have to be discovered and

continuously updated. The so-called directed diffu-

sion14 algorithm takes a different approach by letting

messages pass from node to node, without specifying

an exact destination node but rather a geographic

area or even just a request for certain information.

Nodes only have to be aware of their nearest neigh-

bors; this guarantees that a node that has the desired

information can reply via the reverse path. Such a

diffusion mechanism is quite similar to the diffusion

process in CNNs15.

Nearest-neighbor awareness naturally leads to a

clustered network. The division of large networks

into clusters consisting of cooperating nodes has sev-

eral advantages such as increased robustness and se-

curity; simplified addressing, routing, and localiza-

tion; lower memory requirements16,17 and lower en-

ergy consumption by enabling cooperative commu-

nication strategies18,19.

2.3. Quality of service

Quality of service refers to the capability of a

network to deliver data reliably and timely. A high

quantity of service, i.e., throughput or transport ca-

pacity (a distance-weighted sum-capacity), is gener-

ally not sufficient to satisfy an application’s delay re-

quirements. Consequently, the speed of propagation

of information may be as crucial as the throughput.

The next Section will show how some of these

issues can be addressed from a CNN perspective.

3. The CNN Perspective

3.1. The traditional CNN and extensions

When the cellular neural (or nonlinear) network

was first introduced in 198820,21, the focus was on the

class of single-layer, spatially invariant cellular neu-

ral networks (CNNs) defined on regular lattices. The

dynamics of these networks is governed by a system
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of n = M N differential equations,

dxij(t)

dt
= − xij(t) +

∑

k,l∈Nij

ak−i,l−jf(xkl(t))

+
∑

k,l∈Nij

bk−i,l−jukl + I , (1)

where xij denotes the states of a cell (i, j) ∈
{1, . . . , M}×{1, . . . , N}, and Nij denotes the neigh-

borhood of the cell at position (i, j), akl the lin-

ear feedback template parameters (interconnection

weights), bkl the linear feedforward template param-

eters, ukl the (time-invariant) input, and I is a (spa-

tially invariant) bias term. f(·) is the piecewise linear

saturation function

f(x) =
1

2

(

|x + 1| − |x − 1|
)

. (2)

Spatial invariance of the connection weights is as-

sumed; therefore, for nearest neighbor communica-

tion (8 neighbors), the template set A = {akl} and

B = {bkl} are 3× 3 matrices. This type of CNN can

be viewed at as a generalization of a cellular automa-

ton; it constitutes a distributed nonlinear dynamical

system with powerful modeling capabilities.

For the implementation of CNNs as sampled-data

systems22, discrete-time CNNs (DT-CNNs) were

introduced23. Their basic dynamic equation is

xij [t + 1] =
∑

k,l∈Nij

(

ak−i,l−jf(xkl[t]) + bk−i,l−jukl[t]
)

+ I . (3)

Note that in the original definition, the DT-CNN was

restricted to the hardlimiting sgn(·) nonlinearity.

The definition of CNNs was later extended

to include all ensembles of cells that interact

locally24,25,26,27, and cells with enhanced functional-

ity were investigated28,29,30. The restriction to time-

invariant inputs and spatially invariant bias terms

were lifted as well, and nonlinear templates have

been investigated as early as 199231,24 and imple-

mented in hardware in 200032.

3.2. CNN models for DSNs

In view of the characteristics of CNNs, it is ap-

parent that DSNs are a subclass of CNNs, and it is

expected that the analysis and design of DSNs are

likely to benefit from the vast number of theoretical

results CNNs.

The nodes or neurons of the DSN can be mod-

eled as locally connected finite state machines, where

the state may be binary (denoting, e.g., whether a

node has a certain information or not), multi-valued,

continuous, or a combination thereof. The state of

a cell at time k+1 will depend on the states of the

neighboring cells and sensor inputs at time k, which

is precisely what (3) expresses. Since all the nodes

run the same program, the rules for the state transi-

tions will be identical, which means that the system

is spatially invariant.

Using this CNN framework, important DSN

problems (see Section 2) can be addressed.

Propagation speed15,33, stability issues34,35,36,

self-organization37, and dynamics of pattern

formation38,39 are well-studied areas in CNN theory,

in which the understanding, analysis, and design of

DSNs will certainly benefit.

Regular lattice models. In applications where

the user has control over the node placement, nodes

will often be arranged in rectangular lattice networks

and communicate with four or eight nearest neigh-

bors. This is the standard CNN model and, for com-

munication networks, has been studied in numerous

papers40,41,42,43. The Manhattan network41,42 ad-

dresses the problem of boundary conditions, since

it assumes a toroidal topology. While for DSNs,

the impact of boundary conditions has been largely

ignored, it is a well-studied subject in the CNN

area44,38,45.

Probabilistic CNNs. Although deterministic

“disk models” for the transmission range of a wire-

less node (see Fig. 1) have been used extensively and

with some success for the analysis of sensor and ad

hoc networks40,46,47,48,49, the volatility of the chan-

nel cannot be ignored in wireless networks10,7; the in-

accuracy of “disk models” has also been pointed out

in50 and is easily demonstrated experimentally51.

The stochastic nature of the wireless

link52,53,54,55 can be modeled by a probabilistic CNN,

in which each link is associated with a probability

pkl, in addition to the connection weights akl and bkl.

The probability template P is of the same dimension

as A and B and has entries 0 6 pkl 6 1 that are

determined by the transmit power, path loss, noise,

interference, fading, and the modulation, coding and
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receiver techniques. The probabilistic CNN equation

can then be written as

xij [t + 1] =
∑

k,l∈Nij

(

ak−i,l−jf(xkl[t])

+ bk−i,l−jukl[t]
)

qk−i,l−j [t] ,

where Q[·] = {qkl[·]} is a matrix random process with

qkl[t] = 1 with probability pkl and qkl[t] = 0 with

probability 1 − pkl. With this framework, propaga-

tion and flooding can be studied, with special empha-

sis on networks with node failures, as faulty nodes are

relatively common in sensor networks. While spatial

invariance can be assumed for regular topologies, the

P template will become spatially variant for other

node distributions; however, it is still possible to re-

late reception probabilities to node distances.

3.3. Other opportunities for CNN models

It has been shown that CNNs can contribute to

the routing problem, see the work on CNN path

planning for a mobile robot in an environment with

obstacles56 and general path finding57,58.

CNN models have also been used to solve

problems arising in communication networks such

as packet switching59,60, and routing or path

finding57,58.

Another promising application in the realm of

DSNs is the use of CNNs for multisensor fusion61.

4. Sensor Network Technology

In this Section, we will introduce the technology

behind sensor networks and show that not only CNN

theory but also CNN hardware has potential appli-

cations in DSNs.

4.1. The Berkeley “Motes”

The Smart Dust project at the University of

California at Berkeley62,63,64 aims at exploring the

limits of system miniaturization by packing an au-

tonomous sensing, computing, and communication

node into a so-called “mote” with a volume of one cu-

bic millimeter. This ambitious project requires both

evolutionary and revolutionary advances in minia-

turization, integration, and energy management.

Such advances will be facilitated by the progress

in MEMS, which permits the fabrication of small

sensors, optical communication components, actua-

tors, and power supplies. Microelectronics provides

the necessary functionality and processing power in

ever smaller areas with decreasing power and energy

consumption. The Berkeley group follows two ap-

proaches, one is based on RF communication, the

other on optical links.

Fig. 2. The “Berkeley mote” RF wireless node (actual
size).

Fig. 3. A small regular network of motes.

RF motes. The current state of the RF mote

(Figs. 2 and 3) is a matchbox sized PCB with off-the-

shelf components: A 4MHz 8bit CPU (by Atmel),

a 50kbit/s transceiver in the 900MHz band (by RF

Monolithics), 4KB data memory, 128KB program

memory, and 6 A/D channels to convert the sensor

data. Various types of sensors such as accelerometers

and magnetic, temperature, light, humidity, acoustic

and pressure sensors can be connected via a generic

interface. An extremely compact operating system

called “TinyOS” has been tailor-made for this type

of mote65.

Of course this mote is far from fitting in a cubic

millimeter, but merely by combining its components

into a single chip, its volume could be decreased by

two orders of magnitude.
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Optical motes. As discussed in the Section on

power supply, a promising alternative to RF commu-

nication are laser-based optical links. The main dis-

advantage is that a line-of-sight path has to be avail-

able, and the main challenge is to aim the laser beam

precisely at the receiving mote. Additionally, the

laser diodes are relatively power-hungry. The Berke-

ley group managed to come up with an elegant so-

lutions to these problems by implementing a passive

transmission technique62, i.e., to modulate incoming

optical signals and reflect them. This idea is based

on a corner-cube retroreflector (CCR) that comprises

three mutually perpendicular mirrors of gold-coated

polysilicon. The CCR has the property that any in-

cident ray of light is reflected back to its source. The

MEMS-based CCR includes an electrostatic actua-

tor that can deflect one of the mirrors at kilohertz

rates. It has been demonstrated that a CCR illumi-

nated by an external light source can transmit back a

modulated signal at kilobits per second. For the ac-

tive laser transmitter, MEMS technology can be used

to assemble a beam-steering micro-mirror to enable

communication between nodes. For passive trans-

mission, it is assumed that the operator of the DSN

is using a relatively high power laser beam to “in-

terrogate” the motes. Such an interrogating beam

could be built in binoculars, for example. For the

receiver, a CCD camera is suggested, that will have

to detect numerous incoming signals simultaneously.

For an envisioned size of up to 256×256 pixels,

this CCD array will generate a data flow of sev-

eral tens of Mbits/s, which cannot be handled in a

hand-held device. Clearly, the incoming data carried

by the modulated reflected laser beams has to pre-

processed and/or compressed early, most beneficially

directly at the CCD sensor. Such a task is certainly

tailored to CNNs with optical inputs66,67,68,69, since

the CNN processing capability permits an efficient

detection of relevant patterns in the motes’ response.

4.2. Combining sensors and actuators

The Berkeley platform includes mirrors as actu-

ators in the optical mote, but that does not enable

it to react to the environment. Numerous applica-

tions only become attractive if the nodes are mobile

and are able to react to what they see or what the

network as a whole sees. Mobile platforms could in-

clude small mobile robots or flying insect-like nodes.

Such an extension necessarily entails closed sensor-

actuator control loops. Since sensor and actuator

are generally not colocated on one node, the control

problem is distributed, and it suffers from unknown

delays induced by the underlying network. Closed-

loop control aspects of large networks are the subject

of a research effort sponsored by DARPA/IXO∗. This

work is currently in progress; the goal is the formal

verification of the correctness of the distributed con-

trol algorithm, and to derive tight upper bounds on

the delay of the feedback loops. As with CNNs, such

feedback leads to much richer dynamics but necessi-

tates measures to guarantee stability.

5. An example of DSN-CNN modeling: Syn-

chronization

Preliminary studies have demonstrated the po-

tential of the DSN-CNN to model clustering phenom-

ena, in particular for synchronization algorithms. In

recent hardware experiments at Notre Dame on a

testbed with 50 motes (see Fig. 4) using a model-

based algorithm70, different clusters of tightly syn-

chronized nodes could be identified, with a rela-

tively high inter-cluster synchronization error. These

observations can be modeled and explained using

CNNs.

Fig. 4. Testbed with 50 motes in a regular grid network.
The robots are present to generate events that the sensor
can detect.

It turned out that clusters emerged with tight

intra-cluster synchronization but loose inter-cluster

synchronization. Such a phenomenon can easily be

∗Office of Information Exploitation at the Defense Advanced Research Project Agency, USA
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explained with the DSN-CNN model: The topology

of the network is a regular lattice, and we assume

communication (i.e., exchange of clock information)

to the eight nearest neighbors. The state of a CNN

node represents the (relative) state of the clock of

the corresponding DSN node. Clearly, for a binary

CNN, at most two (stable) states are possible. This

has been sufficient to model the dynamics that we

observed in experiments with comparatively small

networks.

Since the four diagonal neighbors are further

away than the four other ones, the connection is

weaker. DSNs normally use simple isotropic (in the

plane) radiators as antennas, thus template param-

eters reflecting the wireless channel are symmetric.

The path loss can be modeled as follows: aij , bij ∝
(i2 + j2)−α/2, where α is the path loss exponent, sig-

nifying that the received signal power over a distance

d from the transmitter is proportional to d−α. There

is no self-feedback in the synchronization algorithm,

and the exchange of packets is usually symmetric.

These properties are subsumed in the following sym-

metric template:

A =





0.125 0.25 0125
0.25 0 0.25
0.125 0.25 0.125



 ; B = [ 0 ]; I = 0.

In this case, since the distance to the diagonal

neighbors is
√

2 times the distance to the nearest

neighbors, the template parameters correspond to a

path loss exponent of 2 (line-of-sight propagation).

When initialized with small random variations

around zero, corresponding to initial deviations of

the clocks, the network forms clusters relatively

quickly (Fig. 5). Eventually, after a long phase of

boundary negotiation, one of the states dominates,

and the networks ends up tightly synchronized.

Since the feedback template is symmetric, the

DSN-CNN is stable, which suggests that the syn-

chronization algorithm will eventually converge to

an equilibrium state. If the symmetry is broken, the

clusters move across the network, which can be ex-

plained by the fact that in this case, some nodes im-

pose more clock information on their neighbors than

vice versa. In this case, an equilibrium may never be

achieved.

All these dynamics can be verified on the CNN

simulator available at http://www.isi.ee.ethz.

ch/~haenggi/CNNsim_adv.html71.

Unfortunately, due to practical limits, we are un-

able to run experiments with more than 50 nodes.

It would be interesting to see whether for larger net-

works, more clusters with different synchronization

states emerge. Such a behavior could be modeled by

a multi-state CNN.

Fig. 5. Snapshot of the synchronization dynamics in a
30×30 DSN-CNN model. Clusters have formed, and the
boundary negotiation is in progress.

6. Concluding Remarks

The main goal of this article was the introduc-

tion of DSNs to the neural systems community as

an emerging technological platform that may greatly

benefit from the rich theory that is available for

CNNs and other neural systems.

DSNs are very promising systems for pervasive

sensing, surveillance, and computing which may rev-

olutionize information gathering and processing. As

miniaturization proceeds further, goals such as cubic

millimeter “smart dust” become feasible.

Networking with such tiny nodes is closely related

to the concept of nanonetworking that we recently

introduced72, which denotes networking with nodes

that are based on nanoelectronic devices. CNNs

based on resonant tunneling diodes73 or quantum

dots74,75,76 are the first examples of such nanonets.

The wireless nanonets we envision have the poten-

tial to surpass the barrier of 1mm3 per node, thus

coming even closer to real smart dust.

In summary, we note that there is an unconsum-

mated union between nonlinear dynamical systems

such as the CNN and distributed sensor networks.

Clearly, DSNs are related to CNNs in multiple ways.
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Not only the topology with its nearest-neighbor con-

nectivity is similar, but also the process how informa-

tion is diffused or propagated through the network.

The two main strengths of the CNN paradigm are ex-

pected to have an impact on DSN technology: CNN

theory, applied to a probabilistic CNN, is expected to

enable the exploration of the dynamics and behavior

of DSNs; CNN hardware may become significant for

processing data gathered in the interrogating device

of a passive optically connected network.

Since this is a new and interdisciplinary perspec-

tive of DSNs, we compiled an extensive list of refer-

ences in both the CNN and the DSN areas for the

interested reader.
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