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Abstract—Matérn hard core processes of types I and II are
the point processes of choice to model concurrent transmitters in
CSMA networks. We determine the mean interference observed
at a node of the process and compare it with the mean
interference in a Poisson point process of the same density.It
turns out that despite the similarity of the two models, they
behave rather differently. For type I, the excess interference
(relative to the Poisson case) increases exponentially in the hard-
core distance, while for type II, the gap never exceeds 1 dB.

I. I NTRODUCTION

A. Motivation

Most performance analyses large ad hoc-type wireless net-
works are based on the stationary Poisson point process (PPP)
[1]. However, the PPP is only an accurate model if the nodes
are Poisson distributedand ALOHA is used as the MAC
scheme. From a practical perspective, CSMA is much more
important than ALOHA, but it is significantly more difficult
to analyze since concurrent transmitters are spaced some
minimum distanceδ apart, which implies that the numbers of
nodes in disjoint areas are no longer independent. The point
processes used to model the transmitter set in CSMA are the
Matérn hard-core processes of type I and type II, introduced
in [2]. Both are based on a parent PPP of intensityλp. In the
type I process, all nodes with a neighbor within thehard-core
distanceδ are silenced, whereas in the type II process, each
node has a random associated mark, and a node is silenced
only if there is another node within distanceδ with a smaller
mark. Such hard-core processes are difficult to analyze, since
their probability generating functionals do not exist (in contrast
to clustered models, which are more tractable [3]). While it
has been argued in [4], [5] that the nodes further away than
δ can still be modeled as a PPP, such a claim needs to be
verified analytically. We shall see that only the type II process
causes a level of interference comparable to the one in a PPP.

Other works on interference in CSMA networks include [6],
where the mean interference is determined but at an arbitrary
location on the plane rather than at a node of the point process,
and [7], which uses simulations to find empirical distributions.

B. Preliminaries

We first derive a general expression for the mean interfer-
ence in networks whose nodes are distributed as a stationary
point processΦ = {x1, x2, . . .} ⊂ R

2 of intensityλ. For the
path loss functiong(x), it is assumed that

∫

R2 g(x)dx < ∞,
Otherwise the interference is infinite a.s. for any stationary Φ.
The interference at the origin is defined asI ,

∑

x∈Φ hxg(x),
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wherehx is the power fading coefficient associated with node
x. It is assumed thatE(hx) = 1 for all x ∈ Φ. Rather than
measuring interference at an arbitrary location inR

2, we focus
on the interference at the location of a nodex ∈ Φ, where
it actually matters1. Without loss of generality, due to the
stationarity of the point process, we may take the node to
be at the origino. So the quantity of interest isE!

o(I), which
is the mean interference measured ato, given thato ∈ Φ, but
not counting this node’s signal power as interference2. Using
the reduced second moment measureK of the point process,
we have [8]

E
!
o(I) =

∫

R2

g(x)K(dx) . (1)

For a radially symmetric path loss function, with a slight
abuse of notation denoted asg(‖x‖) ≡ g(x), and an isotropic
point process, a polar representation is more convenient:

E
!
o(I) = 2π

∫ ∞

0

g(r)K(rdr) = λ

∫ ∞

0

g(r)K ′(r)dr . (2)

The K-function is defined asK(r) , 1
λK(bo(r)) [9], where

bo(r) is the ball of radiusr centered at the origino, so
K ′(r)dr = 2π

λ K(rdr). A central quantity in our study is the
excess interference ratio(EIR), defined as follows:

Definition 1 The excess interference ratio (EIR) is the mean
interference measured at the typical point of a stationary
hard-core point process of intensityλ with minimum distance
δ relative to the mean interference in a Poisson process of
intensityλ(r) = λ1[δ,∞)(r).

EIR , E
!
o(I)/E

!
o(IPPP) . (3)

II. M EAN INTERFERENCE INHARD-CORE PROCESSES

Hard-core processes have a guaranteed minimum distance
δ between all pairs of points, which implies thatK(r) = 0
for r < δ. In this section, we give tight bounds on the mean
interference for Matérn processes of type I and II.

A. Mat́ern process of type I

a) Definition and K-function: In this point process,
points from a stationary parent PPP of intensityλp are retained
only if they are at distance at leastδ from all other points [2].
The intensity of the resulting process isλ = λp exp(−λpπδ2),
and theK-function is

K(r) = 2π exp(2λpπδ2)

∫ r

0

uk(u)du , (4)

1The results we obtain provide a tight lower bound for the interference
observed at a receiver close to the transmitter considered.

2
E

!
o

is the expectation with respect to the reduced Palm distribution [1],
[3].
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where

k(u) =

{

0 u < δ

exp(−λpVδ(u)) u ≥ δ
(5)

is the probability that two points at distanceu are both
retained. It is easily verified thatK(r) ∼ πr2 as r → ∞,
as is the case for all stationary point processes.Vδ(u) is the
area of the union of two disks of radiusδ whose centers are
separated byu, given by

Vδ(u) = 2πδ2−2δ2 arccos
( u

2δ

)

+u

√

δ2 − u2

4
, 0≤u≤2δ .

For u > 2δ, the union area is simply the area of the two
disks, 2πδ2. First we derive a lower bound onK(2δ), the
mean number of extra nodes within distance2δ of the origin,
normalized by the intensity. We have from (4)

K(2δ) = 8πδ2

∫ 1

1/2

r exp
(

2λδ2(arccos r − r
√

1 − r2

︸ ︷︷ ︸

f(r)

)
)

dr .

To obtain a lower bound, we note thatf(r) ≥ c−
√

3r for c =
π/3+

√
3/4 for 1/2 ≤ r ≤ 1. The lower bound turns negative

for r = c/
√

3 ≈ 0.85, so we replace the upper integration
bound by c/

√
3. Finally, we also replace the firstr in the

integrand by1/2. This yields

K(2δ) > 8πδ2 exp(2cλpδ2)

∫ c/
√

3

1/2

1

2
exp(−2

√
3λpδ2r)dr

=
2π√
3λp

[

exp

(

λpδ2
(2π

3
−

√
3

2

))

− 1

]

. (6)

Hence the number of points within distance2δ of the typical
point, normalized by the intensity, grows exponentially inδ2

and almost exponentially inλp. For the PPP,K(2δ) ∝ δ2.
Similarly, for the derivative, we have from (4)

K ′(r) = 2π

(
λp

λ

)2

rk(r) = 2π exp(2λpπδ2)rk(r)

with k(r) defined as in (5). In particular,

K ′(δ) = 2πδ exp

(

λδ2
(2π

3
−

√
3

2

))

,

which shows that the node density in the annulus of inner
radiusδ and outer radiusδ + dr is higher than in the Poisson
case by the factorexp(λδ2(4π − 3

√
3)/6) ≈ exp(1.23 λδ2).

This suggests that the interference will be significantly larger
also.

b) Interference bounds:Inserting the derivative of (4),
K ′(r), in (2), we obtain the mean interference

E
!
o(I) = 2πλp exp(πλpδ2)

∫ ∞

δ

g(r)r exp(−λpVδ(r))dr .

We split the interference into two terms, comprising the
interference from the nodes closer than2δ and further than
2δ, respectively:I = I<2δ + I>2δ. We focus onI<2δ, i.e.,
the rangeδ ≤ r ≤ 2δ first. In this range,Vδ(r) is increasing

and concave, thus we obtain an upper bound from a first-order
Taylor expansion atr = 3δ/2: Letting

a , 2 arcsin

(
3

4

)

− 3
√

7

8
; b ,

√
7

2

we have

Vδ(r) < (π + a) δ2 + bδr , δ < r < 2δ . (7)

Sincea < 1/
√

2 (but close), we could substitutea with a′ =
1/

√
2 to obtain a simpler yet almost equally tight bound. A

lower bound onVδ(r) is obtained by connecting the two points
Vδ(δ) = δ2(4π/3 +

√
3/2) andVδ(2δ) = 2πδ2 by a straight

line. This yields

Vδ(r) > (π + a) δ2 + bδr , δ < r < 2δ , (8)

for

a ,
√

3 − π

3
; b ,

2π

3
−

√
3

2
.

To use these affine bounds onVδ(r) to bound the mean
interference, we define

h(a, b) , 2πλpe−λpaδ2

∫ 2δ

δ

g(r)re−λpbδrdr

= 2πλpe−λpaδ2

H(λpbδ, δ) , (9)

where H(v, x) ,
∫ 2x

x
g(r)r exp(−vr)dr. Upper and lower

bounds onE!
o(I<2δ) can now be expressed as:

h(a, b) < E
!
o(I<2δ) < h(a, b) (10)

Specializing to the class of power path loss laws3 g(r) =
(max{r0, r})−α, where0 ≤ r0 ≤ δ, there exists a concrete
expression forH :

H(v, x) = vα−2
(
Γ(2 − α, vx) − Γ(2 − α, 2vx)

)
.

Fig. 1 shows the bounds (10), normalized by the intensityλ,
for α = 3 andλp = 2, as a function ofδ (dashed curves).

The interference from nodes outsider > 2δ is the same as
in the (equi-dense) PPP:

E
!
o(I>2δ) = 2πλp

exp(−λpπδ2)

(2δ)α−2(α − 2)

The total interference in the PPP is obtained by replacing the
2δ in the denominator byδ, henceE!

o(IPPP) = 2α−2
E

!
o(I>2δ).

For the excess interference ratio, we find

EIR =
1

2α−2

(
E

!
o(I<2δ)

E!
o(I>2δ)

+ 1

)

. (11)

Theorem 1 For power path loss lawsg(r) with exponentα,
the excess interference in the Matérn process of type I grows
exponentially, i.e.,

EIR = Ω(eλpδ2

) , λpδ → ∞ . (12)

Proof: Using the lower bound in (10),

EIR > eλpδ2(π−a)H(λpbδ, δ)(2δ)α−2(α − 2) .

3An exponential factor in the path loss law can easily be accommodated:
The only change is in the constantb.
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Fig. 1. Normalized mean interferenceE
!
o
(I)/λ for the Poisson point process

(bottom solid curve), the upper bound from (15) for the Matérn process of
type II (dotted solid curve), and upper and lower mean interference bound for
the Matérn process of type I, forλp = 2 andα = 3. The EIR (gap) between
the Poisson and type II curves is0.5 dB, while the gap between the Poisson
and type I curves increases exponentially withλp and δ. At δ = 2, the EIR
is about 30dB.

SinceH(v, x) ∼ (vxα−1evx)−1 asλpδ → ∞,

EIR = Ω

(

eλpδ2(π−a−b)

λpδ2

)

, λpδ → ∞ .

The result follows fromπ − a − b > 1.
Keeping track of the pre-constants, we obtain an approxi-

mation, quite accurate forλpδ2 > 4:

EIR ≈ (α − 2)2α−2eλpδ2(π−a−b)

λpbδ2
(13)

For the parameters in Fig. 1, atδ = 2, this yields 31.5dB.

B. Mat́ern process of type II

Here, a random mark is associated with each point, and a
point of the parent Poisson process is deleted if there exists
another point within the hard-core distanceδ with a smaller
mark. The intensity of the resulting process is [2]

λ =
1 − exp(−λpπδ2)

πδ2

and the probability that two points at distancer are retained
is, for r ≥ δ, also from [2],

k(r) =
2Vδ(r)(1 − e−λpπδ2

) − 2πδ2(1 − e−λpVδ(r))

λ2
pπδ2Vδ(r)(Vδ(r) − πδ2)

.

Theorem 2 Irrespective of the path loss functiong(r) and
all other parameters, the excess interference ratio for Matérn
processes of type II never exceeds

ν ,
12π

8π + 3
√

3
<

5

4
< 1dB . (14)

For power path loss laws with exponentα, the bound can be
sharpened to

ν − ν − 1

2α−2
. (15)

Proof: First we note that(λp

λ )2k(r) is monotonically
increasing inλp and δ for all δ ≤ r < 2δ. For r ≥ 2δ, we
have(

λp

λ )2k(r) ≡ 1, since outside distance2δ the hard-core
process behaves like a PPP. This implies that the EIR can only
increase withλp and δ (which is intuitive, since forλp → 0
or δ → 0, the process is Poisson). Hence lettingλpδ → ∞
yields an upper bound on the EIR. We have

k(δ) ∼ 2

λ2
pπδ4c

, c , 4π/3 +
√

3/2 ,

which upper boundsk(r) for all r ≥ δ and all finiteλp and
δ. Consequently,

E
!
o(I<2δ)

λ
<

∫ 2δ

δ

2πg(r)
λ2

p

λ2

2

λ2
pπδ4c

rdr =

∫ 2δ

δ

g(r)
4π2

c
rdr ,

where the RHS isν = 2π/c times the mean interference in the
Poisson case. Inserting this bound into (11) yields the result
for the power path loss law.
For α = 3, this is quite exactly 0.5 dB, as reflected in Fig. 1.

III. C ONCLUSION

The behavior of two popular point process models for
CSMA networks differs greatly. For the Matérn hard-core
process of type I, the excess interference relative to the Poisson
point process increases exponentially in the parent process
density λp and the hard-core distanceδ (for power path
loss laws), while for Matérn processes of type II, the excess
interference never exceeds 1dB, irrespective of the path loss
law. This vastly different behavior is due to the fact that inthe
type I process, the density of interferers right outside thehard-
core radius is exponentially increasing (as calculated at the end
of Section II.B), while no such behavior occurs for the type II
process. This implies that for interference-based performance
analyses, the type II process can be safely approximated by
the corresponding non-homogeneous PPP, whereas the type I
process cannot.
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