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Abstract—Matérn hard core processes of types | and Il are whereh, is the power fading coefficient associated with node
the point processes of choice to model concurrent transmigts in - 4. |t is assumed thak(h,) = 1 for all z € ®. Rather than
CSMA networks. We determine the mean interference observed measuring interference at an arbitrary locatioiR we focus

at a node of the process and compare it with the mean the interf t the | i f odec . wh
interference in a Poisson point process of the same densiti. on the nterierence at the location or a nadec @, where

turns out that despite the similarity of the two models, they it actually matters Without loss of generality, due to the
behave rather differently. For type |, the excess interferace stationarity of the point process, we may take the node to

(relative to the Poisson case) increases exponentially ihé hard-  pe at the origiro. So the quantity of interest nglo(]), which
core distance, while for type Il, the gap never exceeds 1 dB. is the mean interference measuredagiven thato € @, but
not counting this node’s signal power as interferéntésing
the reduced second moment measkiref the point process,
|. INTRODUCTION we have [8]
A. Motivation E!(I) = / g(x)K(dx). (1)
Most performance analyses large ad hoc-type wireless net- ) _R2 _ _ )
works are based on the stationary Poisson point procesg (PPpOr & radially symmetric path loss function, with a slight
[1]. However, the PPP is only an accurate model if the nod@guse of notation denoted a§z||) = g(x), and an isotropic
are Poisson distributednd ALOHA is used as the MAC Point process, a polar representation is more convenient:
scheme. From a practical perspective, CSMA is much more _, o0 o0 ,
important than ALOHA, but it is significantly more difficult E,(I) = 27T/0 g(r)K(rdr) = )‘/0 g(r)K'(r)dr. (2)
to analyze since concurrent transmitters are spaced some o . A1
minimum distance apart, which implies that the numbers ofl "€ K -function is defined adt'(r) = $K(bo(r)) [9], where
nodes in disjoint areas are no longer independent. The pdint) iS the ball of radiusr centered at the origim, so
processes used to model the transmitter set in CSMA are fe7)dr = K (rdr). A central quantity in our study is the
Matérn hard-core processes of type | and type II, introduc€XCess interference rati(eIR), defined as follows:
in [2]. Both are based on a parent PPP of intenaity In the o ) ) )
type | process, all nodes with a neighbor within therd-core Deflmtlon 1 The excess mterferen(_:e ratlo_ (EIR) is the_mean
distances are silenced, whereas in the type Il process, eafifferference measured at the typical point of a stationary
node has a random associated mark, and a node is silen@@ffl-core point process of intensitywith minimum distance
only if there is another node within distanéevith a smaller ¢ relative to the mean interference in a Poisson process of
mark. Such hard-core processes are difficult to analyzeesifMeNSIYA(r) = ALjs o) ().
their probability generating functionals do not exist (('mtras_t _ EIR 2 EL(I)/E!O(IPPP)- 3)
to clustered models, which are more tractable [3]). While it
has been argued in [4], [5] that the nodes further away thanII
§ can still be modeled as a PPP, such a claim needs to be o )
verified analytically. We shall see that only the type Il psg _ Hard-core processes have a guaranteed minimum distance
causes a level of interference comparable to the one in a PPPetween all pairs of points, which implies that(r) = 0
Other works on interference in CSMA networks include [60" 7 < 9. In this section, we give tight bounds on the mean
where the mean interference is determined but at an anpitrdpterference for Matern processes of type | and II.
location on the plane rather than at a node of the point psoces
and [7], which uses simulations to find empirical distribus. A. Matrn process of type |

M EAN INTERFERENCE INHARD-CORE PROCESSES

a) Definition and K-function: In this point process,
B. Preliminaries points from a stationary parent PPP of intensityare retained
We first derive a general expression for the mean interf@nly if they are at distance at leasfrom all other points [2].
ence in networks whose nodes are distributed as a station&fg intensity of the resulting processis= \;, exp(—A,m6?),
point processb = {z,zs,...} C R? of intensity . For the and theK-function is
path loss functiory(z), it is assumed thaf,, g(z)dz < oo, B o [
Otherwise the interference is infinite a.s. for any statigriz K (r) = 2m exp(2Apm6 )/0 uk(u)du, )

The interference at the origin is definedaé Y-, _4 hag(2),
1The results we obtain provide a tight lower bound for the rietence
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NSF (grants CCF 728763 and CNS 1016742) and the DARPA IT-MANE 2E! is the expectation with respect to the reduced Palm digioibi[1],
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where and concave, thus we obtain an upper bound from a first-order

K 0 u<d 5) Taylor expansion at = 346/2: Letting
u) =
exp(=ApVs(u)) u>6 R , (3) 37 o VT
a=2arcsin|{- ) ———; b= —
is the probability that two points at distanee are both 4 8 2
retained. It is easily verified thak' (r) ~ 7r? asr — oo, we have
as is the case for all stationary point proces3gsu) is the 5
area of the union of two disks of radidswhose centers are Vs(r) <(m+a)é" +bor, &<r<24. 7

separated by, given by Sincea < 1/v/2 (but close), we could substitutewith o’ =
3 1/+/2 to obtain a simpler yet almost equally tight bound. A
Vs (u) = 2162 —26% arccos (i) +ut/o2 — ur , 0<u<?2§. lowerbound or¥;(r) is obtained by connecting the two points
26 4 Vs5(0) = 62(47/3 + /3/2) and V5(20) = 2762 by a straight

For v > 24, the union area is simply the area of the twdine. This yields
disks, 2762, First we derive a lower bound ok (24), the

— 2 7
mean number of extra nodes within distar2deof the origin, Vs(r) > (r +a@) o +bor, §<r<20, (8)
normalized by the intensity. We have from (4) for
] a3 T palr V3
K(26) = 871'52/ 7 exp (2)\52(arccosr —rV1— r2))dr. 3 3 2
1/2

To use these affine bounds dr(r) to bound the mean

) interference, we define

To obtain a lower bound, we note thatr) > c¢—+/3r for c = , (20

7/34+/3/4 for 1/2 < r < 1. The lower bound turns negative h(a,b) £ 2m A e~ / g(r)re P dr

for r = ¢/v/3 ~ 0.85, so we replace the upper integration , 70

bound byc/+/3. Finally, we also replace the first in the = 2mApe 0 H (b5, 6) 9)

integrand byl/2. This yields where H(v,z) £ ffmg(r)r exp(—vr)dr. Upper and lower
¢/V3 bounds onE! (I.25) can now be expressed as:

K (26) > 8m6* exp(ZC)\p52)/ =~ exp(—2V3\,0%r)dr \ -
12 2 h(a,b) < E,(I<25) < h(@,b) (10)
_ 2 lexp </\p52(2_77 B ﬁ)) B 1] ' (6)  Specializing to the class of power path loss Bwsér) =
V3, 3 2 (max{rog,r})~*, where0 < ry < g, there exists a concrete
expression forH ;
Hence the number of points within distan2& of the typical
point, normalized by the intensity, grows exponentiallysth H(v,z) =v* (L2 — a,vz) — (2 — a, 2vx)) .

and almost exponentially in,. For the PPPK (26) o 62

= 7 Fig. 1 shows the bounds (10), normalized by the intensijty
Similarly, for the derivative, we have from (4)

for o = 3 and A\, = 2, as a function o6 (dashed curves).

A\ 2 The interference from nodes outside> 26 is the same as
K'(r)=2n (f) rk(r) = 2w exp(2A,m6*)rk(r) in the (equi-dense) PPP:
— A, 62
with k(r) defined as in (5). In particular, E}(Is26) = 27 SD(—Ap7d")

(20)*~*(a - 2)
2r V3 The total interference in the PPP is obtained by replacieg th
/ _ 2022 V<Y
K'(0) = 2md exp (M ( )) ’ 26 in the denominator by, hencek, (Ippp) = 2°72E! (I-25).

3 2
. o . __For the excess interference ratio, we find
which shows that the node density in the annulus of inner

radiusd and outer radiug + dr is higher than in the Poisson EIR — (E!o(kza) n 1) (11)

case by the factoexp(\d2 (47 — 31/3)/6) ~ exp(1.23 A6?). 20=2 \ B} (I49) ‘

This suggests that the interference will be significanttgéda

also. Theorem 1 For power path loss lawg(r) with exponenty,
b) Interference boundsinserting the derivative of (4), the excess interference in the Mat process of type | grows

K'(r), in (2), we obtain the mean interference exponentially, i.e.,

EIR = Q(e™%), Apd — 00. (12)

IEL(I) =27 exp(w)\p§2)/ g(r)rexp(=A,Vs(r))dr.
6 Proof: Using the lower bound in (10),

We split the interference into two terms, comprising the Apd2(r—a) a2

interference from the nodes closer tha#h and further than EIR > e H(Apbd, 0)(20)" (e = 2).

20, respectively:l = I.<25 + I>.25' We focus _On.I<25* "?-' 3An exponential factor in the path loss law can easily be aceodated:

the ranged < r < 24 first. In this rangeV;(r) is increasing The only change is in the constabt
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Proof: First we note that(ATp)Qk(r) is monotonically
increasing in\, andé for all 6 < r < 24. Forr > 24, we
have(A—/\P)Qk(r) = 1, since outside distanc® the hard-core
process behaves like a PPP. This implies that the EIR can only
increase with\, andd (which is intuitive, since forA, — 0
or 6 — 0, the process is Poisson). Hence lettihgy — oo
yields an upper bound on the EIR. We have

2
)\]2)71'546

- = -Lower and upper bound for type | process
—— Upper bound for type Il process
— Poisson process S

35p

k(5) c24r/34+3/2,

norm. mean interference E(I)/A [dB]

which upper bound&(r) for all » > ¢ and all finite A, and
0. Consequently,

E! (T-s5) 26 A2 9 26 A2
Zoli<2) 2mg(r) R —Z _pdr = T ra
</5 wg(r) 32 /\12)71_5407“ r /5 g(r) rdr,

A c
Fig. 1. Normalized mean interferen&® 1)/ for the Poisson point process e : : ;
(bottom solid curve), the upper bound from (15) for the Matprocess of where the RHS iy = 27T/C times the mean interference in the

type Il (dotted solid curve), and upper and lower mean ieterice bound for P0isson case. Inserting this bound into (11) yields theltresu
the Matérn process of type |, for, = 2 anda = 3. The EIR (gap) between for the power path loss law. u

the Poisson and type Il curves (s5 dB, while the gap between the Poisson _ o ; ; ;
and type | curves increases exponentially with andd. At § = 2, the EIR Fora = 3, this is quite exaCtly 0.5 dB, as reflected in Fig. 1.

is about 30dB.

1
hard core radius &

IIl. CONCLUSION

The behavior of two popular point process models for
CSMA networks differs greatly. For the Matérn hard-core
process of type |, the excess interference relative to tiesBio
) , Apd — 0. point process increases exponentially in the parent psoces
density A\, and the hard-core distancg (for power path
The result follows fromr —a — b > 1. B |oss laws), while for Matérn processes of type Il, the esces
Keeping track of the pre-constants, we obtain an approxiterference never exceeds 1dB, irrespective of the pah lo
mation, quite accurate fox,d% > 4: law. This vastly different behavior is due to the fact thattia
type | process, the density of interferers right outsidehthe-
core radius is exponentially increasing (as calculatedeaehd
of Section I11.B), while no such behavior occurs for the type |
process. This implies that for interference-based perémoe
analyses, the type Il process can be safely approximated by
the corresponding non-homogeneous PPP, whereas the type |
(fg)cess cannot.

Since H (v, z) ~ (vz®~te*®)1 as A, — oo,

oApd? (m—a—b)
ER=Q| ———
Ap02

(CY _ 2)2&—26)\p62(7r—g—g)
Apbd?
For the parameters in Fig. 1, &t= 2, this yields 31.5dB.

EIR ~ (13)

B. Matrn process of type Il

Here, a random mark is associated with each point, an
point of the parent Poisson process is deleted if thereexist
another point within the hard-core distangavith a smaller
mark. The intensity of the resulting process is [2]

1 —exp(—A,7m6?)

B w62

and the probability that two points at distancere retained
is, for r > ¢, also from [2],

V(1)1 — e M) — 2762 (1 — e M Vs ()

N N2m2Vs(r) (Vs (r) — mo?)
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