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Abstract— This paper applies spectral efficiency as a perfor-
mance measure for routing schemes and considers how to obtain
a good route in a wireless network as the network signal-to-
noise ratio (SNR) varies. The motivation for this study is to
combine different wireless routing perspectives from networking
and information theory.

The problem of finding the optimum route with the maximum
spectral efficiency is difficult to solve in a distributed fashion.
Motivated by an information-theoretical analysis, this paper
proposes two suboptimal alternatives, namely, the approximately
ideal path routing (AIPR) scheme and the distributed spectrum-
efficient routing (DSER) scheme. AIPR finds a path to ap-
proximate an optimum regular path that might not exist in
the network and requires location information. DSER is more
amenable to distributed implementations based on Bellman-Ford
or Dijkstra’s algorithms. The spectral efficiency of AIPR and
DSER for random networks approaches that of nearest-neighbor
routing in the low SNR regime and that of direct communication
in the high SNR regime. Around the regime of 0 dB SNR, the
spectral efficiency of DSER is up to twice that of nearest-neighbor
routing or direct communication.

I. BACKGROUND AND MOTIVATION

As wireless communications are extended beyond the last
hop of networks, new paradigms for wireless relaying (in-
cluding routing as a special case), are needed to address
unique demands,e.g., spectral efficiency, of multi-hop wire-
less networks. Research from different perspectives, namely,
networking and information theory, often results in different,
sometimes even conflicting, routing paradigms for wireless
networks [1]–[7]. The goal of this paper is to study the wire-
less routing problem combining networking and information-
theoretic perspectives.

The study of wireless networks using information theory
[1]–[4] has led to many relaying protocols that are asymptot-
ically order-optimal as the number of nodes goes to infinity.
However, all practical networks have a finite number of
terminals. Furthermore, relaying protocols from information
theory can involve complicated multiuser coding techniques,
such as block-Markov coding and successive interference
cancellation, which are often not allowed in practical systems.
The gap between information theoretical analyses and practical
implementations has inspired us to study networks with a
finite number of nodes with an emphasis on the distributed
implementation aspects of our routing schemes.
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On the other hand, most previous work on routing from the
network community,e.g., [6], [7] mainly studies how to design
new routing metrics to improve the throughput, and how to
modify existing routing protocols to incorporate new metrics.
Their models are often built on link-level abstractions of the
network without fully considering the impact of the physical
layer. There is little if any discussion about the fundamental
performance limits, namely (Shannon) capacity or spectral
efficiency. In contrast to these works, this paper studies the
influences of different routing schemes on spectral efficiencies
and designs distributed routing schemes based on insights from
an information-theoretical analysis.

The work in [8]–[10] provides important guidelines for
designing spectrum-efficient networks. Assuming a one-
dimensional linear network, [8]–[10] show that there is an
optimum number of hops in terms of maximizing end-to-
end spectral efficiency. The results challenge the traditional
wireless routing paradigm of “the more hops the better”.
However, [8]–[10] assume the number of relay stations and
their locations are design parameters. In practice, the network
geometry changes as the network operates and grows; thus,
neither the number of available relay nodes nor their loca-
tion between a source and destination are design parameters.
Therefore, this paper considers choosing the optimum route
in a network comprised of an arbitrary number of randomly
located nodes.

The remainder of the paper is organized as follows. Sec-
tion II describes the system model and assumptions. Sec-
tion III formulates the problems of finding a route with the
maximum spectral efficiency assuming the optimal bandwidth
allocation and equal bandwidth sharing, respectively. Since
bandwidth allocation requires exchange of global information,
the rest of the paper focuses on providing solutions for the
case of equal bandwidth sharing. SectionIV proposes the
AIPR scheme, which requires location information. SectionV
proposes the DSER scheme as another suboptimal solution to
the problem in SectionIII . The spectral efficiency of DSER
closely follows the optimal spectral efficiency as the network
SNR changes. More importantly, relative to AIPR, DSER can
be implemented with standard distributed algorithms that are
guaranteed to converge and generate loop-free paths. Sec-
tion VI presents simulation results and SectionVII concludes
the paper.
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II. SYSTEM MODELS

A. Network model

We represent the nodes in a network and the possible
transmissions between nodes by a directed graphG = (V, E),
where V represents the set of nodes in the network andE
represents the set of directed edges (links). For each link
e ∈ E , we uset(e) to represent the transmit end of the link
and r(e) to be the receive end. A pathL from node s to
node d, s 6= d, consists of an ordered sequence of unique
links l1, l2, l3, ..., ln ∈ E that satisfies the following: for each
1 ≤ k ≤ n − 1, r(lk) = t(lk+1); t(l1) = s; and r(ln) = d.
We also denote the source and destination of a given pathL
as t(L) = t(l1) andr(L) = r(ln), respectively. The length of
the path|L| is the number of links in the path. One typical
assumption in networks is that there is no link between two
terminals if the signal quality is below certain thresholds [1],
[6], [7]. However, from an information theoretical perspective,
two terminals can always communicate with a sufficiently low
rate. Therefore, in this paper we assume any two terminals in
the network can directly communicate.

B. Channel Model

The wireless signal is attenuated with a power decay law
that is inversely proportional to theα-th power of the distance
between the transmitter and the receiver. Thus, the path-loss
factor from nodei to nodej is given by

Gi,j = cD−α
i,j , (1)

whereDi,j is the Euclidean distance between nodei and j,
α is the path loss exponent (typically taking values between
2 and 4), andc is a constant. We can also expressGi,j asGl

wherel ∈ E , t(l) = i, r(l) = j. This model holds only when
cD−α

i,j ¿ 1. In this paper, after appropriately normalizing the
transmission power, we will assume thatc = 1. The received
signal is also corrupted with additive white Gaussian noise
(AWGN) with a normalized one-sided power spectral density
N0, which is assumed to be the same for all receivers.

We consider the setting in which all transmit devices are
constrained by the same symbol-wise average transmit power
P and assume all devices transmit with the maximum available
powerP . This assumption is justified by the fact that for the
low-power transceivers, the local oscillators and bias circuitry
dominate the energy consumption [11]. Another observation in
support of this assumption is that terminals in wireless mesh
networks are mostly immobile and connected with abundant
power supplies. We further assume that the network is supplied
with a finite bandwidthB (Hz) and define the normalized
network SNR as

ρ =
P

N0B
, (2)

For any link l ∈ E that connects nodei and j, we define the
link SNR on link l as

ρl = ρGl, (3)

where Gl is the path-loss factor along the link. We define
the spectral efficiencyRL for a path L as the bandwidth-
normalized end-to-end rate,i.e., RL = CL/B bits per channel

use, whereCL is the end-to-end achievable rate in bits per
second given a bandwidth constraintB along the pathL. The
average spectral efficiency of a routing scheme is the spectral
efficiency of its selected routing path averaged over random
networks.

C. Scheduling

Because wireless devices generally cannot transmit and re-
ceive at the same time on the same frequency, it is important to
schedule the transmission of terminals to avoid such conflicts.
In general, scheduling transmission in networks is NP-hard
[12]. To avoid the difficulty of jointly optimizing routing
and scheduling, we assume the network operates with time
division multiple access (TDMA) without spatial reuse,i.e.,
each node transmits in its own unique time slot. Thus, there
is no interference at any receiver.

For simplicity, we only consider routing for one source-
destination pair and limit our study to single-path routing
as most existing routing protocols do not exploit multi-path
routing. Also we do not allow the links to exploit cooperative
diversity, e.g., [13], [14].

III. PROBLEM FORMULATIONS

This section discusses how to select routing paths that
maximize the spectral efficiency. If bandwidth optimization is
allowed, SectionIII-A provides the optimal routing scheme.
For the case of equal bandwidth sharing, SectionIV shows
that the optimal routing path is difficult to find and inspires
SectionIV and SectionV for suboptimal solutions.

A. Bandwidth Optimization

Along a pathL, we denote the fraction of channel uses
allocated to each linkl asλl. Due to the global constraint on
bandwidth, we have ∑

l∈L

λl = 1.

If the network permits bandwidth optimization overλl, [9]
shows the max-min spectral efficiency along a routeL is

1∑
l∈L

1
log(1+ρl)

,

for
λl =

1
log(1 + ρl)

∑
i∈L

1
log(1+ρi)

. (4)

Therefore, we can use Bellman-Ford or Dijkstra’s algorithms
with a link metric of1/ log(1+ρl) to find the route that max-
imizes the spectral efficiency by minimizing

∑
l(1/ log(1 +

ρl)). We refer to such a routing scheme as optimal routing with
bandwidth optimization (ORBO). Although the ORBO path
can be computed in a distributed way, the optimal bandwidth
share of linkl requires each node to know the link SNRs of
the whole route to compute. As we will see, ORBO is most
beneficial in the low SNR regime, where the power spent in
distributing global knowledge of routes may not be neglected.
Another concern about bandwidth optimization is the issue
of fairness, as one node with a larger share of the bandwidth
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might spend more energy than other nodes with a smaller share
of the bandwidth. Therefore, the rest of the paper focuses on
the case of equal bandwidth sharing.

B. Equal Bandwidth Sharing

Under the constraint of equal bandwidth sharing, the end-
to-end spectral efficiency of a given pathL is

RL = min
l∈L

1
|L| log(1 + ρl), (5)

where the factor1/|L| comes from the sharing of bandwidth
among relay links. For a pathL, the signal quality is reflected
by the worst link signal SNRρ∗L = minl∈L ρl, and the
efficiency of bandwidth use is characterized by|L|. The spec-
tral efficiency (5) increases asρ∗L increases or|L| decreases.
However, for routes connecting a given source and destination,
if the number of links|L| increases (or decreases), there are
more (or less) relay nodes andρ∗L is more likely to increase
(or decrease) due to shorter (longer) inter-relay distances. This
can be seen by comparing the nearest-neighbor route and the
direct communication (the source directly transmits to the
destination) in a linear network. For all routes connecting a
given source and destination, the nearest-neighbor route has
the maximalρ∗L but also the largest|L|. On the other hand,
direct communication has the minimalρ∗L, but also has the
smallest|L|. Therefore, there is a trade-off between physical
layer parameters,i.e., signal quality and the efficiency of band-
width use, in selection of routes. The optimal routing scheme
takes this trade-off into account by providing a solution to the
following optimization problem:

max
L:r(L)=s,t(L)=d

min
l∈L

1
|L| log(1 + ρl), (6)

where nodess andd form the desired source-destination pair.
Unfortunately, the routing metric given in (5) is neither

isotonic nor monotone [15], [16]. Therefore, generalized
Bellman-Ford and Dijkstra’s algorithms cannot be used to
solve (6). In general, the computation of the spectral efficiency
by (5) requires global information about a path. Therefore,
the problem (6) does not exhibit the optimal substructure that
is necessary for the use of dynamic programming methods
[17]. The solution to (6) can in principle be obtained by
an exhaustive search method. However, for a network with
n relays, there are2n different possible paths connecting
the source and destination. This exponential growth makes
the exhaustive search method unrealistic in practice if the
network has a moderate to large number of relay nodes. More
importantly, an exhaustive search method is not amenable
to distributed implementation. Therefore, in the following,
SectionIV and SectionV provides two alternative suboptimal
solutions to (6).

IV. A PPROXIMATELY IDEAL PATH ROUTING (AIPR)

The idea of AIPR is to find a route that approximates
the optimal regular linear path. For a regular linear path, [8]
suggests that there is an optimum number of hopsnopt. More

specifically, in [8], it is shown that the number of links along
an optimal path satisfies

noptR ≈ α +W(−αe−α)
ln 2

, (7)

where R is the path spectral efficiency, andW(·) is the
principal branch of the LambertW function [18]. Furthermore,
from (1) and (5), we have the following condition for an
optimal regular linear path given the network SNRρ,

nopt ≈
(

2noptR − 1
ρ

)1/α

. (8)

Plugging (7) into (8), we obtain the number of hops in an
optimal regular linear path.

Thus, given the network SNRρ, we can compute the
optimum inter-relay distanceDhop, which is equal to the total
source-destination distance divided bynhop. However, such a
regular linear path with an optimum inter-relay distance might
not exist in the network. A suboptimal solution to (6) can be
obtained by finding a path approximating this ideal path. We
propose the following procedure to obtain an approximately
ideal path:

1) Calculate the optimum inter-relay distanceDhop;
2) Find the next-hop node which is at mostDhop away

from the source and lies within the angleφ/2, 0 ≤ φ ≤
π of the axis from the source to the destination;

a) If there is no such node, increaseDhop until there
is a such node;

b) If there is more than one such node, choose one
with the maximum distance from the source;

3) Continue 2) using the chosen relay as the new source and
the possibly newDhop until the destination is reached.

Note that the parameterφ/2 is chosen to prevent the path
from going in the wrong direction in the two-dimensional
plane. Since the motivation for this scheme is to approximate
the ideal path, we refer to this routing scheme as the ap-
proximately ideal path routing (AIPR). The implementation of
AIPR requires location information. Therefore, this approach
is not easy to integrate into existing network routing proto-
cols based on Bellman-Ford or Dijkstra’s algorithms. In the
following, we will propose another suboptimal solution to (6)
that is more amenable to distributed implementation.

V. D ISTRIBUTED SPECTRUM-EFFICIENT ROUTING (DSER)

The discussion in SectionIII suggests that there is both
a penalty and a reward, in terms of spectral efficiency, with
addition of intermediate relay links. This motivates us to solve
the following problem for a spectrum-efficient route:

min
L:r(L)=s,t(L)=d

∑

l∈L

1 +
β

ρl
, (9)

where, as before, nodess and d form the desired source-
destination pair, andβ ≥ 0, referred to as therouting
coefficient, is a parameter that can be designed. Intuitively, the
additive constant1 represents the penalty for additional hops
on corresponding efficiency of bandwidth use; the factor1/ρl

characterizes SNR gains by using links with short distances;
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and the parameterβ weights the impact of power and band-
width. A routing scheme can use1 + β/ρl as the link metric
and use distributed Bellman-Ford or Dijkstra’s algorithms to
solve (9). As we will see, this routing scheme can offer
significant gains in spectral efficiency compared to nearest-
neighbor routing or direct communication. For this reason,
we refer to this routing scheme as thedistributed spectrum-
efficient routing(DSER) scheme. The DSER scheme does not
depend on the particular path-loss model in (1). In practice, the
link SNR can be directly measured by received signal strength
indicators (RSSI) available on most devices and fed back to the
transmitters. As a last remark, DSER is backward compatible,
i.e., by choosingβ = 0, DSER degrades to the traditional
routing scheme using the additive hop count metric.

A. Values of the Routing Coefficient

To determine the routing coefficientβ, we note that (8)
provides the optimum number of hopsnopt for the design
of a regular linear network. Now, if we assume that DSER is
used to design a regular linear network connecting a particular
source-destination pair with SNRρ, the minimization objective
function becomes

f(|L|) = |L|
[
1 +

β|L|−α

ρ

]
. (10)

We temporarily treat|L| as a real number, differentiate (10)
with respect to|L| and setdf(|L|)/d|L| = 0 to obtain an
expression for the optimum number of links|L|opt. By letting
|L|opt = nopt, we have

β =
eα+W(−αe−α) − 1

α− 1
. (11)

The routing coefficient determined by (11) is independent
of the network SNR and can be determined by the channel
model. Furthermore, in the range1 ≤ α ≤ 5, (11) can be
very accurately approximated asβ ≈ 2α. In SectionVI we
present simulation results to show that DSER performs quite
well using this approximation.

We note that (11) is developed assuming there are an
infinite number of nodes and locations from which to choose.
Therefore, for an arbitrary network with a finite number of
nodes, the value ofβ can be further tuned,e.g., for a specific
route geometry and network SNR, to improve the spectral
efficiency of the DSER scheme.

B. Properties

From (9), it is straightforward to see that for a given
network, the route generated by DSER depends on the link
SNRs. In the high SNR regime, the termβ/ρl in (9) can
be much smaller than the penalty term1, i.e., the cost of
sharing bandwidth among many links outweighs the SNR
gains of shorter inter-relay distances. Thus, the DSER route
will approach direct communication between the source and
destination in this regime. In the low SNR regime, the term
β/ρl becomes the dominant term in the link metric,i.e.,
the SNR gains of shorter links outweigh the cost of sharing
bandwidth. In such scenarios, the performance of DSER will

approach that of nearest-neighbor routing. The discussion here
agrees with simulation results we will present in SectionVI .

For the DSER scheme, the weight of a pathL is W (L) =∑
l∈L 1 + β/ρl. For any pathsL1, L2, L3, if W (L1) <

W (L2), we have bothW (L1 ⊕ L3) < W (L2 ⊕ L3) and
W (L3 ⊕ L1) < W (L3 ⊕ L2), whereL1 ⊕ L2 denotes the
concatenation of two pathsL1 and L2. Thus, the DSER
metric is strictly isotonic [15]. Moreover, for any pathsL1, L2,
we haveW (L1) ≤ W (L1 ⊕ L2), i.e., the DSER metric is
monotone [16]. It has been shown [15] that for link-state
routing protocols, isotonicity of the path weight function is a
necessary and sufficient condition for a generalized Dijkstra’s
algorithm to yield optimal paths. If the path weight function
satisfies strict isotonicity, forwarding decisions can be based
only on independent local computation, and the resulting path
is loop free. For path vector routing protocols, monotonicity of
the path weight function implies protocol convergence in every
network, and isotonicity assures convergence of algorithms
into optimal paths [16]. Therefore, the DSER scheme can be
implemented in existing networks with link-state or path vector
routing protocols. Also, the path metric of the DSER scheme
is additive, meeting a standard assumption of most existing
implementations of Bellman-Ford or Dijkstra’s algorithms
[17].

VI. SIMULATION RESULTS

This section presents simulation results to compare spectral
efficiencies of different routing schemes. As spectral effi-
ciencies grow with SNR in general, the absolute difference
between the spectral efficiencies of two routing schemes may
not reflect their relative performance difference. Therefore, we
compare different routing schemes using direct communication
as the reference. More specifically, we define the normalized
spectral efficiency ratioγ of a routing scheme as the ratio of its
average spectral efficiencyR to the average spectral efficiency
of direct communication,i.e., γ = R/ log(1 + ρ). For two
routing schemesA andB with ratiosγA, γB , respectively, the
difference between two ratios,i.e., γA − γB , reflects the ratio
of spectral efficiency difference of two routing schemes to the
spectral efficiency of direct communication.

Our simulations focus on uniformly random linear networks.
We assume the source and destination are located at coordi-
nates(0, 0) and (1, 0), respectively, and the horizontal coor-
dinates of intermediate relay nodes are independent random
variables uniformly distributed between 0 and 1. We assume
a path-loss model described in SectionII-B, taking the path
loss exponentα as 4. According to the approximationβ ≈ 2α

in SectionV, the routing coefficient is taken to be 16. We
average over105 network realizations. In our simulations, the
boundaries of the 90% confidence interval are within±1%
of the average value assuming the spectral efficiency of a
routing scheme is Gaussian distributed. Thus, the confidence
interval is sufficiently-small, allowing us to compare routing
schemes using the average spectral efficiency, or equivalently,
the normalized spectral efficiency ratio.

As two examples, Fig.1 and Fig.2 show the average nor-
malized spectral efficiency ratios of different routing schemes
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including nearest-neighbor routing, direct communication,
AIPR, and DSER for uniformly random linear networks with
5 and 10 nodes, respectively. In Fig.1 and Fig.2, the optimal
spectral efficiency is obtained by an exhaustive search method
and is provided as a reference. It is clear that the performance
of direct communication only approaches the optimum perfor-
mance in the high SNR regime and suffers from a significant
loss in spectral efficiency at low SNR. The performance of
nearest-neighbor routing approaches the optimal performance
in the low SNR regime, but degrades in the high SNR regime
due to its inefficient use of bandwidth. In contrast, one can
observe that the curves of the DSER scheme track the optimal
curves throughout the whole SNR regime. One can also note
that the AIPR scheme is also capable of adapting to the
change of network SNRs. In the low SNR regime, AIPR might
outperform nearest-neighbor routing and DSER. However, in
the moderate SNR regime, DSER offers significant gains in
spectral efficiency relative to AIPR, nearest-neighbor routing,
and direct communication. In particular, when the network
SNR is around 0 dB, the spectral efficiency of the DSER
scheme is twice as large as those of nearest-neighbor routing
and direct communication. Therefore, networks can benefit
significantly in spectral efficiency from the use of DSER. Also,
comparing Fig.1 to Fig.2, it is observed that, as the number of
nodes increases, the performance of DSER and AIPR generally
improves regardless of SNR regimes. However, as the number
of users grows, the performance of nearest-neighbor routing
improves in the low SNR regime and degrades in the high
SNR regimes.

Another important observation for Fig.1 and Fig.2 is that
the normalized ratio of each routing scheme approaches two
different constants at low and high SNRs. This observation
suggests different scaling behavior at different SNR regimes.
Recall that at low SNR, the spectral efficiency of direct
communication is approximated byρ. Thus, the observation
that the normalized ratio of a routing scheme approaches a
constant at low SNR suggests the average spectral efficiency of
this routing scheme scales linearly with SNR at low SNR. We
characterize this scaling behavior by the coding gain, defined
asτ := limρ→0 γ. The coding gainτ is the slope of the curve
of the spectral efficiency as a function of SNR at low SNR.
From Fig. 1 and Fig. 2, the coding gain of DSER is close
to that of nearest-neighbor routing and inferior to AIPR and
optimal routing, indicating AIPR is better than DSER at low
SNR. At high SNR, the spectral efficiency of direct com-
munication is approximated bylog ρ. Thus, the observation
that the normalized ratio of a routing scheme approaches a
constant at high SNR suggests the average spectral efficiency
of this routing scheme scales linearly with the logarithm of
SNR at high SNR. Following [19], we can define the network
multiplexing gain asη := limρ→∞ γ. The multiplexing gainη
reflects the degrees of freedom that are utilized by a routing
scheme, and is the slope of the curve of the spectral efficiency
as a function of the logarithm of SNR at high SNR. Fig.1
and Fig. 2 show that direct communication, DSER, AIPR
and optimal routing all approach the multiplexing gain1. In
contrast, nearest-neighbor routing suffers from a significant
loss in channel degrees of freedom due to a small multiplexing
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Fig. 1. Normalized spectral efficiency ratio of different routing schemes for
uniformly random linear networks with 5 nodes.
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Fig. 2. Normalized spectral efficiency ratio of different routing schemes for
uniformly random linear networks with 10 nodes.

gain.
Fig. 3 compares the performance of DSER with that of

optimal routing with bandwidth optimization (ORBO). The
spectral efficiency improves for ORBO mainly in the low
SNR regime. However, as the network SNR increases, the
benefit of bandwidth optimization decreases and eventually
vanishes. This is because at high SNR, the ORBO route is
direct communication, which is also the case for the DSER
path.

VII. C ONCLUSION

This paper studies end-to-end spectral efficiencies of differ-
ent wireless routing schemes. This paper’s main contribution is
to introduce two suboptimal solutions, namely, approximately
ideal path routing (AIPR) and distributed spectrum-efficient
routing (DSER), to the problem of finding routes with high
spectral efficiency. AIPR is a location-assisted routing scheme.
DSER can be based upon local link quality estimates, can
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Fig. 3. Normalized spectral efficiency ratio of the optimal routing with
bandwidth optimization (ORBO) and DSER for uniformly random linear
networks with 5 nodes.

be implemented using standard Bellman-Ford or Dijkstra’s
algorithms, and can be integrated into existing network proto-
cols. Our results indicate that the spectral efficiency of DSER
scales linearly with SNR at low SNR and scales linearly
with the logarithm of SNR at high SNR. Furthermore, the
performance of DSER is close to that of popular nearest-
neighbor routing and that of minimum hop-count routing in the
low and high SNR regimes, respectively. In the moderate SNR
regime, DSER provides significant gains in spectral efficiency
compared with both nearest-neighbor routing and minimum
hop-count routing. Therefore, wireless mesh networks and
wireless sensor networks can benefit significantly from using
DSER.
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