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Abstract — We characterize the interference and the

local throughput for large interference-limited net-

works where the node positions, the channel gains,

and the set of simultaneously transmitting nodes are

either deterministic or random, governed by a certain

probability distribution. In the latter case, we as-

sume a Poisson point process for the node positions,

a Rayleigh envelope for the channel gains, and the

set of transmitting nodes are drawn from a Bernoulli

distribution in each timeslot (slotted ALOHA).

I. Introduction

A. Background

For many applications of large wireless networks, the per-
formance is determined by the inter-node interference. While
the scaling behavior of the network throughput or transport
capacity is a well-studied area [1–6], relatively few quanti-
tative results on the distribution of the interference and the
signal-to-interference ratio (SIR) are available. We compare,
interpret, and extend the approaches that have been taken
in [7–10] to characterize the cumulated interference and out-
age probabilities. Each of these prior works focused on a par-
ticular, rather specific, type of network. We aim at inter- and
extrapolating these results for a broad class, specifically one-
and two-dimensional networks with random and determinis-
tic node placement (Poisson or deterministic/regular), channel
access (slotted ALOHA and TDMA), and channel character-
istics (deterministic and Rayleigh fading). So we capture up
to three sources of non-determinism: the node positions, the
channel gains, and the set of transmitting nodes. On the other
hand, since we are concerned with interference-limited net-
works, we do not consider noise. Consequently, the through-
put results are fundamental in the sense that they cannot
be exceeded (with a fixed transceiver hardware and modula-
tion/coding scheme) even if infinite power is available.

B. Models, notation, definitions, and initial remarks

Network model. We consider a single link, normally of dis-
tance 1, with a (desired) transmitter and receiver in a large
network with n other nodes as potential interferers. For infi-
nite networks, n → ∞.

Transmit power levels. It is assumed that all nodes transmit
at the same power, which is set to 1.2

Channel model. For the large-scale path loss, we assume the
usual power law where the received power Pr decays with dα

1This work was supported by NSF grants ECS03-29766 and CA-
REER CNS04-47869.

2Only relative powers matter.

for a path loss exponent α. We consider deterministic channels
where the received power Pr ∝ d−α and Rayleigh block fading
channels where Pr ∝ Sd−α with S exponentially distributed
with mean 1. If all channels are Rayleigh, this is sometimes
referred to as a “Rayleigh/Rayleigh” model. If either only the
desired transmitter or the interferers are subject to fading, we
speak of partial fading.

Random network. A network whose nodes are distributed
according to a homogeneous Poisson point process of intensity
(density) λ = 1.3 For random networks, the interference and
outage expressions consider all network realizations.

Normalized node distances ri. Since absolute distances do
not matter, we usually consider normalized distances ri, where
the distances from the interferers to the receiver are normal-
ized by the link distance. Thus the signal power (deterministic
channel) or average signal power (fading channel) at the re-
ceiver is 1 (irrespective of α).

Transmit probability p. For slotted ALOHA, every node
transmits independently with probability p in each timeslot.
Hence for random networks the set of transmitting nodes in
each timeslot form a Poisson point process of intensity p. Prac-
tical values of p are small, i.e., p / 1/3 due to interference
and throughput considerations. This permits certain approx-
imations that would not hold for p ≈ 1. The mean num-
ber of interferers is np, and the interference from node i is
Ii = BiSir

−α
i , where Bi is iid Bernoulli with parameter p and

Si is iid exponential with mean 1.
Success probability ps. A transmission is successful if the

(instantaneous) SIR γ = S0/I exceeds a certain threshold Θ,
i.e., ps = P[γ > Θ], where I =

∑n
i=1 Ii. This is the recep-

tion probability given that the desired transmit-receiver pair
transmits and listens, respectively. It is usually assumed that
Θ > 1. Note that in the non-fading case, γ = 1/I, and that the
threshold can be related to the rate of transmission R through
Shannon’s capacity formula: for a rate R, the threshold is (at
least) Θ = 22R − 1.

(Local) throughput g. The local throughput, denoted sim-
ply as throughput throughout the paper, is defined to be
the success probability multiplied by the probability that the
transmit-receiver pair actually transmits and listens (the un-
conditioned reception probability). For the ALOHA scheme
g := p(1−p)ps, whereas for a TDMA line network where nodes
transmit in every m-th timeslot, g := ps/m.

Spatial efficiency σ. As will be derived, the success prob-
ability for slotted ALOHA can often be expressed as ps =
e−p/σ. The parameter σ determines the degree of spatial
reuse in a network. Note that in a random network, the suc-
cess probability equals the probability that a disk of radius

3Without loss of generality, since noise is not considered.



r = 1/
√

πσ around the receiver is free from interferers4.

Effective distances ξi. The effective distance ξi of a node
to the receiver is defined as ξi := rα

i /Θ.

Near and far nodes. A node with effective distance ξ 6 1
is called a near node. Otherwise, it is a far node. In a random
network, the mean number of near nodes can be determined
as follows: The boundary radius is r = Θ1/α, so the expected
number of near nodes is πΘ2/α. With slotted ALOHA, the ex-
pected number of transmitting near nodes is E[Nt] = pπΘ2/α.

(Excess) kurtosis κ. To characterize the “peakiness” of a
distribution, we use the excess kurtosis κ, henceforth simply
denoted as kurtosis, defined as the ratio of the fourth central
moment to the squared variance minus 3. Note that the kur-
tosis of the Gaussian distribution is 0, and that the larger κ,
the “peakier” a distribution. A distribution with κ > 0 is
called leptokurtic.

II. Related Work

A. Infinite non-fading random networks with α = 4 and slot-
ted ALOHA

This case is studied in [7]. The characteristic function of
the interference is determined to be5

E[ejωI ] = exp
(

jpπω

∫ ∞

0

t−2/αejωtdt
)

(1)

= exp
(

−πpΓ(1 − 2/α)e−jπ/αω2/α)

(2)

and, for α = 4,

= exp
(

−π
√

π/2(1 − j)p
√

ω
)

. (3)

The corresponding density (pdf) is

fI (y) =
π

2
py−3/2e−π3p2/4y , (4)

and the distribution function (cdf) is

FI (y) = 1 − erf

(

π3/2p

2
√

y

)

, (5)

where erf is the error function, i.e., erf(x) =
2/

√
π

∫ x

0
exp(−t2)dt. It is easily seen that in this case,

even though the path loss exponent is relatively large,
E[I] = ∞, which is due to the path loss model and the fact
that interferers may be arbitrarily close to the transmitter.
The kurtosis turns out to be infinite as well. The problem
of diverging mean can be avoided if a dead zone around the
receiver is assumed. This is the approach taken in [11, 12],
where only interferers outside a certain disk of radius ρ
around the receiver are considered. The resulting interference
distribution is approximated as a Gaussian, which is only
accurate if ρ � 1. In this case, however, the MAC scheme is
no longer slotted ALOHA but resembles CSMA.

4The probability of not having an interferer within radius r is

e−pπr2

.
5Note that their notation is adapted to ours. Also, a small mis-

take in [7, Eqn. (18)] is corrected here.

B. Regular fading networks with α = 2 and slotted ALOHA

In [9], the authors derive the distribution of the interference
power for one- and two-dimensional Rayleigh fading networks
with slotted ALOHA and α = 2. Both regular and random
networks were studied, but only for the regular line network
with ri = i, closed-form expressions are given. The interfer-
ence distribution is given by the convolution of n exponential
distributions with means r−α

i , under consideration of the slot-
ted ALOHA access scheme. The Laplace transform of the
interference [9, Eqn. (5)],

LI(s) =
n

∏

i=1

(

1 − p

1 + i2/s

)

(6)

=

∏n
i=1(1 + (1 − p)s/i2)
∏n

i=1(1 + s/i2)
, s > 0 , (7)

can, for n → ∞, be simplified using Euler’s product formula

sin(πz) ≡ πz
∞
∏

i=1

(1 − z2/i2) (8)

for z = j
√

s to [9, Eqn. (8)]

LI(s) =
sinh

(

π
√

s(1 − p)
)

√
1 − p sinh

(

π
√

s
) . (9)

For infinite line networks with p = 1 (everybody always
transmits), the pdf and cdf are given by6

fI (x) =

{

2
∑∞

i=1(−1)i+1i2e−i2x , for x > 0

0 for x 6 0
(10)

and

FI(x) =

{

1 + 2
∑∞

i=1(−1)ie−i2x , for x > 0

0 for x 6 0 ,
(11)

respectively. The mean interference is simply
∑∞

i=1 i−2 =
π2/6 in this case, and the variance is π4/90. Since the interfer-
ers are independent, the kurtosis is given by the exponential
distribution, κ = 6.

C. Random fading networks with slotted ALOHA

In [10], the success probability of a transmission over unit
distance in a two-dimensional random network with Rayleigh
fading and slotted ALOHA and a noise process N is expressed
as

ps = P[S > Θ(N + I)] (12)

=

∫ ∞

0

e−sΘdP[N + I 6 s] (13)

= LI(Θ) · LN (Θ) . (14)

So, remarkably, the success probability for Rayleigh fading
can be expressed as the product of the Laplace transforms of
the noise N and interference I. This elegant equivalence of
the Laplace transform evaluated at the SIR threshold and the
success probability was also pointed out in [8]. Ignoring the
noise term, using the intermediate result

ps = exp

{

−2πp

∫ ∞

0

r

1 + rα/Θ
dr

}

, (15)

6Again, a small mistake in [9, Eqn. (12)] is corrected.



(14) evaluates to [10, Eqn. (6)]

ps = e−pΘ2/αC(α) (16)

with C(α) = (2πΓ(2/α)Γ(1 − 2/α))/α. For α = 3, 4, for
example, C(3) = 4π2/3

√
3 ≈ 7.6 and C(4) = π2/2 ≈ 4.9.

So, with the expected number of near interferers E[Nt] =
pπΘ2/α and for α = 4, the success probability can be ex-
pressed as ps = e−E[Nt]π/2. For p = 1/(π

√
Θ), corresponding

to E[Nt] = 1, we obtain ps = e−π/2 ≈ 20%. To achieve
ps = 1/2, the mean number of transmitting near nodes has to
be 2 log 2/π ≈ 0.44. So, for practical ps, Nt should be kept
much smaller than one.

III. Networks with Random Node Distribution

A. Non-fading random networks with α = 4 and slotted
ALOHA

From (5), assuming a transmitter-receiver distance of 1,
γ = 1/I has the cdf

Fγ(Θ) = P[1/I < Θ] = erf

(

π3/2p
√

Θ

2

)

, (17)

which is the outage probability for non-fading channels for a
transmitter-receiver distance 1. The pdf is

fγ(Θ) =
πpe−π3p2Θ/4

2
√

Θ
, (18)

and the expected SIR is E[γ] = 2/(π3p2) ≈ 0.064/p2. So, even
for α = 4, the transmit probability p must be rather small for
acceptable success probabilities. In fact, if p is chosen such
that E[γ] = Θ, i.e., p =

√

2/(Θπ3), the outage probability
is erf(

√
2/2) ≈ 68%. For Θ = 10, e.g., a transmit probabil-

ity of only 8% would still result in more than 2/3 outages.
For E[γ] = 2Θ, p = 1/(

√
Θπ3), the outage probability is still

erf(1/2) ' 1/2. So the expected SIR must exceed the thresh-
old Θ by more than a factor of two just to guarantee a success
probability of 50%.
The variance is equally simple: Var[γ] = 8/(π6p4) ≈
0.0083/p4 .

Note that since ps is given by the error function rather
than an exponential, the spatial efficiency is not defined
strictly speaking. However, with the fairly sharp approxima-
tion erf(x) ≈ 1 − e−3x/

√
π , we obtain σ ≈ 2/(3π

√
Θ) for the

spatial efficiency.

B. Fading random networks with slotted ALOHA

If only the desired link is subject to fading and α = 4, we
can exploit (3), replacing jω by −Θ to get

ps = LI(Θ) = e−p
√

Θπ3/2

. (19)

So, σ = 1/(
√

Θπ3/2) for this type of network.
If all the channels are subject to Rayleigh fading, we obtain

from (16),

σ =
α

2πΘ2/αΓ(2/α)Γ(1 − 2/α)
, (20)

which interestingly, for practical values of α increases approx-
imately in proportion to α − 2 for a fixed Θ, i.e., σ(α) ≈
c(Θ)(α − 2), where c(Θ) is, as expected, a decreasing func-
tion of Θ. As a result, if ps(·) is the success probabil-
ity as a function of the path loss exponent, we see that

ps(2(α − 2) + 2) ≈
√

ps(α), which quantifies the benefits of a
higher path loss exponent. For α = 4,

ps = e−p
√

Θπ2/2 (21)

and σ = 2/(
√

Θπ2). The pdf of the SIR is

fγ(Θ) =
π2pe−π2p

√
Θ/2

4
√

Θ
(22)

with E[γ] = 8/(π4p2) ≈ 0.082/p2 and Var[γ] = 320/(π8p4) ≈
0.034/p4 .

Compared with the non-fading case, the mean SIR is in-
creased by a factor 4/π and the variance by 40/π2 ≈ 4.0.
So, fading mainly affects the variance. The kurtosis is κ =
2118/25 ≈ 85, which demonstrates how peaky this distribu-
tion is.

IV. Networks with Deterministic Node

Placement

In this section, we assume that n interferers are placed at
known relative distances ri from the intended receiver.

A. Single-interferer success probability

For a single interferer at effective distance ξ = rα/Θ, the
success probability is

ps = P[γ > Θ] = 1 − p

1 + ξ
(23)

For small p, this is tightly upperbounded by e−p/(1+ξ) since
log(1 + x) ≈ x for small x. For a non-fading interferer but a
fading desired link, I = Br−α with B Bernoulli with param-
eter p and thus

ps = P[S > ΘBr−α] = pe−1/ξ + (1 − p) (24)

= 1 − p(1 − e−1/ξ) . (25)

Note that fading helps the link.
Given that this interferer is actually transmitting, we find

Fγ(Θ) = 1/(1 + ξ) as the cdf of the SIR in the first case (full
fading), and Fγ(Θ) = 1 − e−1/ξ for partial fading. Note that
in the full fading case, E[γ] = ∞, since the SIR is the ratio of
two exponential RVs7; in the partial fading case, E[γ] = rα as
for fully deterministic channels.

B. Networks with slotted ALOHA and fading

In this case, ps = P[S > ΘI] for I =
∑n

i=1 Sir
−α
i and Si iid

exponential with mean 1. As mentioned earlier, since S is ex-
ponential, the success probability is simply the Laplace trans-
form of the total interference evaluated at Θ: ps = E[e−ΘI ] =
LI(Θ). This Laplace transform was determined in (7) for the
special case ri = i (but not interpreted as ps). For general ri

and α, we obtain (see also [13]):

ps =

n
∏

i=1

(

1 − p

1 + rα
i /Θ

)

=

n
∏

i=1

(

1 − p

1 + ξi

)

(26)

where ξi = rα
i /Θ is the effective distance.

Since we are mostly interested in the behavior for small p
(and ξi � 1 for most i, i.e., most interferers are far for non-
negligible success probabilities), we approximate log ps as a

7The pdf of Z := X1/X2 with Xi exponential with mean µi is
fZ(z) = ρ/(ρz + 1)2 with ρ = µ2/µ1.



sum of terms log(1 − p/(1 + ξ)) ≈ −p/(1 + ξ), such that ps

can be expressed as ps / e−p/σ for

σ =
1

∑n
i=1

1
1+ξi

. (27)

So, the approximation shows that ps has the same exponential
form as for random networks, and the spatial efficiency is given
by the “parallel connection” (or 1/n times the harmonic mean)
of 1 + ξi.

C. Regular networks with fading and slotted ALOHA

In regular networks, it is assumed that a relationship of the
type rα

i = iβ holds. For equidistant line networks, e.g., β = α.
Special case: β = 2. For β = 2 and n → ∞8,

σ =
2

π
√

Θcoth(π
√

Θ) − 1
≈ 2

π
√

Θ − 1
, (28)

resulting in

ps ≈ e−p(π
√

Θ−1)/2 . (29)

If the network extends to both sides of the link, σ is cut in
half. We expect to obtain the same approximation starting
from (9). Indeed, with exp(−π

√
Θ) � 1, which is valid for

Θ > 1, we have

ps ≈ exp(π
√

Θ
√

1 − p)√
1 − p exp(π

√
Θ)

, (30)

and employing the linear approximations
√

1 − p ≈ 1 − p/2
and log

√
1 − p ≈ −p/2 yields

log ps ≈ −pπ
√

Θ/2 + p/2 = −p
(π

√
Θ

2
− 1

2

)

, (31)

which is the same as (29).
Note that the case β = 2 (rα

i = i2) does not only include
regular line networks with α = 2, but also two-dimensional
networks with α = 4 where ri =

√
i, which is an important

case since the (ordered) distances in a regular lattice or ran-
dom network increase approximately with

√
i.

The approximation is compared with the precise expression
(9) in Fig. 1. Note that for practical values of p, i.e., p / 1/3,
the match is very good over a large range of Θ.

General β. For general β, the spatial efficiency σ can be
tightly upperbounded by interpreting (27) as a Riemann sum
(or, equivalently, employing Euler’s summation formula):

n
∑

i=1

1

1 + iβ/Θ
≈

∫ n+1/2

1/2

1

1 + xβ/Θ
dx (32)

For general β and n, this integral can be expressed by the
Lerch transcendent Φ-function. For certain values, it has a
closed-form solution. For β = 1,

σ ≈ 1

Θ ln
(

1 + n
Θ+1/2

) (33)

which goes to zero as n → ∞. Other values for which closed-
form expressions of the integral (32) exist are 2β ∈ N 6 10.
For β = 4, the following approximation can be found:

ps ≈ e
−p

(√

2

4
πΘ1/4−1/2

)

. (34)

8For finite n, the sum can be expressed by the Digamma func-
tion.
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Fig. 1: Success probability ps for slotted ALOHA for an infinite

line network and α = 2. Solid lines: exact expression (9). Dashed

lines: approximation (29).

The integral approximation also permits the analysis of net-
works with a finite number of nodes and networks whose clos-
est interferer has an arbitrary distance from the transmitter.

The main difference to the expressions for random networks
is that σ is not linear in Θ−2/α but affine in Θ−1/β. This
difference stems from the fact that the nearest interferer is
not closer than the desired transmitter, which benefits ps.

Density functions. When interpreting 1 − ps as the cdf of
the SIR γ, we face the problem that for very small values of Θ,
it may be negative. For β = 2, this is the case for Θ < 1/π2.
So the support of the cdf has to be restricted to Θ ∈ [1/π2,∞).
The pdf is

fγ(Θ) =
pπ

4
√

Θ
e−p

(

π
√

Θ

2
− 1

2

)

, Θ ∈ [1/π2,∞) (35)

and the expected interference is the rational expression

E[γ] =
p2 + 4p + 8

p2π2
. (36)

The expected SIR is 10dB at p ≈ 0.3. The variance is

Var[γ] = 16
p2 + 8p + 20

p4π4
. (37)

Mean and variance are displayed in Fig. 2. Note the good
match between this approximation and the numerical evalu-
ation based on (9)9 for p / 1/3. The variance is at least an
order of magnitude larger than the mean for practical p, which
is due to the long tail of the density.

Note that for rα
i = i2 and networks where the desired link

is not subject to fading but the interferers are (e.g., if power
control is used to compensate for the fading), we can obtain
Fγ(Θ) = P[1/I < Θ] from (11):

Fγ(Θ) = 2

∞
∑

i=1

(−1)i+1e−i2/Θ , Θ > 0. (38)

9
E[γ] =

∫ ∞
0 s d(1−LI (s)). Analogously, Var[γ] =

∫ ∞
0 s2 d(1−

LI(s)) − E
2[γ].
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D. Partially fading regular networks

If only the desired link is subject to fading, the success
probability is given by

ps = e−pΘ
∑n

i=1
r−α

i , (39)

thus σ = (
∑n

i=1 1/ξi)
−1. Compared with (27), 1+ξ is replaced

by ξ. So, σ is the “parallel connection” of all the ξi, and it is
trivially upperbounded by mini{ξi}.

V. Throughput

A. Networks with slotted ALOHA

For networks with slotted ALOHA, the goal is to maximize
the throughput g(p) = p(1 − p)ps. For fading networks,

g = p(1 − p)
n

∏

i=1

(

1 − p

1 + rα
i /Θ

)

. (40)

This is a polynomial of order n + 2. The roots are 0, 1, and
1 + rα

i /Θ, so the polynomial is positive for 0 < p < 1 as
expected.

With the approximation g = p(1 − p)e−p/σ, maximizing
log(g) yields the quadratic equation p2

opt−popt(1+2σ)+σ = 0.
Hence popt is given by

popt = σ +
1

2

(

1 −
√

1 + 4σ2
)

. (41)

Note that 0 < popt < 1/2, and that there is a simple upper

bound popt /
√

σ/2 for σ < 4/5. In this case, ps ≈ e−1/(2
√

σ),
or, with 1/σ ∝ Θ2/α, we obtain

ps ≈ e−cΘ1/α

, (42)

where c depends on the network topology.
The transmit efficiency η is defined as η := g/p = (1 −

p)e−p/σ which is monotonically increasing from limσ→0 η =
e−1 ≈ 37% to limσ→∞ η = 1/2. The upper bound is achieved
if the interference goes to zero, in which case p = 1/2 and
g = 1/4. The lower bound is more interesting. It shows that
even for large interference (α/Θ � 1), a transmit efficiency of

e−1 can be achieved. Of course, for σ → 0, we have p → 0
and g → 0, but the ratio η converges to e−1.

This is precisely the transmit efficiency of conventional slot-
ted ALOHA. Indeed, for α/Θ → 0, the interference prohibits
that some positive fraction of the nodes transmits simultane-
ously. For such a network with n nodes, p = 1/n maximizes
the throughput, and η = limn→∞(1 − 1/n)n−1 = e−1. So,
even if no spatial reuse is possible, an efficiency of 37% is
achievable.

B. Regular line networks with TDMA and α = 2

If in a TDMA scheme, only every m-th node transmits,
the relative distances of the interferers are increased by a fac-
tor of m. So, the effective distances change from rα/Θ to
(mr)α/Θ = rα/(Θm−α), so having every m-th node transmit
is equivalent to reducing the threshold Θ by a factor mα and
setting p = 1.

Using L’Hôpital’s rule for p = 1 in (9) and replacing Θ
by Θm−α gives the success probability if every m-th node
transmits:

ps =
y

sinh y
, where y :=

π
√

Θ

m
. (43)

The throughput g = ps/m can be expressed as

g =
y2

π
√

Θsinh y
=

1

m2
· π

√
Θ

sinh
(

π
√

Θ
m

) . (44)

For large m, the sinh in the denominator is π
√

Θ/m, so the
throughput is g / 1/m as m grows large, as expected, since
the interference becomes negligible. Tighter bounds can be
derived from x + x3/6 < sinh(x) < ex/2:

1

m2
· 2π

√
Θ

exp
(

π
√

Θ
m

) < g <
6m

6m2 + π2Θ
. (45)

The upper bound is tighter for m > 2
√

Θ. Unfortunately,
maximizing these bounds does not necessarily maximize the
throughput. So, to find mopt = arg maxm∈N

g(m), we need to
determine the optimum value of y, which is the solution of

c y∗ = tanh y∗ , where c :=
1

2
. (46)

The optimum real value of m, denoted as m̃opt, is then given
by m̃opt = π

√
Θ/y∗. There is no closed-form expression for

y∗, but solving (46) numerically and choosing mopt = bm̃opte
yields the optimum integer m for virtually all10 α and Θ.

To find a closed-form approximation for mopt, we note that
y∗ is the value where y/2 intersects tanh y. Since tanh is
upperbounded by 1, yu = 2 is an upper bound for y∗ = 1.9150.
So, mopt > 1/2π

√
Θ. A “natural” choice is to round this lower

bound up to the next integer, i.e.,

mopt = d1

2
π
√

Θe . (47)

Note that the same approximation can be derived if the sinh
in (44) is approximated by ex/2. The resulting approximation
on the achievable throughput

gmax ≈ 8

πe2
√

Θ
≈ 0.34√

Θ
(48)

10There are very small intervals where the resulting throughput
is up to about 1% smaller than the theoretical optimum.
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is sharp. In a line network with slotted ALOHA, for compari-
son, the approximation g ≈ 0.2/

√
Θ can be derived from (29)

and (41). So, TDMA has an about 70% higher throughput.
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Fig. 4: Throughput g as a function of Θ [dB] for α = 2. The dashed

lines show the (real) theoretical optimum m̃opt(Θ), the solid lines

the achievable throughput for m given by (47).

If there are interferers on the left and right side of the
receiver, ps in (43) needs to be squared, resulting only in a
change of the coefficient c in (46) to c := 2/3.

VI. Conclusion

We have characterized the interference and SIR for large wire-
less networks with different degrees of non-determinism, and
we analytically derived throughput expressions for random
and deterministic networks as a function of the node posi-
tions, the transmit probability, the path loss exponent, and
the SIR threshold. For slotted ALOHA, the throughput can
be expressed as g = p(1 − p)e−p/σ, where the spatial effi-
ciency σ is approximately proportional to 1/Θ2/α for two-
dimensional networks. The maximum achievable throughput
is determined for slotted ALOHA and deterministic m-phase
TDMA. Not surprisingly, the TDMA scheme has a substan-
tially better throughput performance at comparable energy
consumption.

The success probability ps = e−p/σ as a function of Θ can
be interpreted as the complementary cumulative distribution
of the SIR, which permits a complete characterization of the
SIR and/or interference. This is important since the mean
interference or SIR is not a meaningful measure. Indeed, it
they are often infinite; the SIR even in the simple case of
Rayleigh fading with only one single interferer.

Many extensions are possible, such as the inclusion of power
control, opportunistic access schemes, and relating Θ to the
rate of transmissions.
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