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Abstract—Consider a d-dimensional network whose transmit-
ters form a non-uniform Poisson point process and whose links
are subject to arbitrary fading. Assuming interference from the
k − 1 strongest users is canceled, we derive the probability of
decoding the k-th strongest user in closed-form. As a special case,
when k = 1, this probability is the standard coverage probability.

This analytical result has immediate applications in networks
with successive interference cancellation (SIC) capability. We use
it to find closed-form upper and lower bounds on the probability
of decoding at least k users and the mean number of successively
decodable users. These bounds show that transmitter clustering
is beneficial in exploiting SIC.

I. INTRODUCTION

In random wireless networks, the standard coverage prob-

ability is the probability that a typical receiver in the network

successfully decodes the message from the strongest transmit-

ters in the presence of interference from the other transmitters.

It has been studied extensively in the literature [1], [2].

This paper considers a more general type of coverage

probability, i.e., the probability of decoding the kth strongest

user (transmitter) given that all the k − 1 stronger users are

canceled1. When k = 1, it reduces to the standard coverage

probability.

More specifically, we consider a d-dimensional interference-

limited wireless network, where the user distribution is gov-

erned by a non-uniform Poisson point process (PPP) with a

power-law density function. The links are subject to (spa-

tially) iid fading with arbitrary distribution. We show that the

coverage probability can be written in closed-form when the

decoding signal-to-interference ratio (SIR) threshold is at least

one.

Among the many possible applications of this general result,

this paper provides a straightforward yet non-trivial one in

wireless networks with successive interference cancellation

(SIC) capability. In particular, we consider a Poisson network

where all the users transmit at the same power and the same

rate and the receivers attempt to decode as many users as

possible. We demonstrate how the general coverage result can

lead to much sharper system performance estimate than the

ones in the prior works when the decoding SIR threshold is

above or close to one.

1The cancellation can be carried out by successive interference cancellation,
spatial interference cancellation, or simply local coordination.
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Fig. 1: Realizations of two non-uniform PPP with intensity function
λ(x) = 3‖x‖b with different b, where x denotes an active transmitter
and o denotes the receiver at the origin.

II. SYSTEM MODEL AND METRICS

A. The Power-law Poisson Network with Fading (PPNF)

Let the receiver be at the origin o and the active transmitters

be represented by a marked Poisson point process (PPP) Φ̂ =
{(xi, hxi

)} ⊂ R
d ×R

+, where x is the location of a user, hx

is the iid (power) fading coefficient associated with the link

from x to o, and d is the number of dimensions of the space.

When the density function of the ground process Φ ⊂ R
d

is λ(x) = a‖x‖b, a > 0, b ∈ (−d, α − d), where ‖x‖ is

the distance from x ∈ R
d to the origin and α is the path-

loss exponent, we refer this network as a power-law Poisson

network with fading (PPNF). The condition b ∈ (−d, α − d)
is needed in order to maintain a finite total received power at

o and will be revisited later.

Fig. 1 shows realizations of two 2-d PPNFs with different

b; Fig. 1a represents a network clustered around o whereas

the network in Fig. 1b is sparse around the receiver at o. In

general, the smaller b, the more clustered the network is at the

origin, and b = 0 refers to uniform networks.

B. Decoding the kth Strongest User

Without loss of generality, consider the case where all the

nodes (users) transmit with unit power. Then, with an SIR

model, a particular user at x ∈ Φ can be successfully decoded



(without interference cancellation) iff

SIRx =
hx‖x‖

−α

∑

y∈Φ\{x} hy‖y‖−α
> θ,

where hx‖x‖
−α is the received signal power from x,

∑

y∈Φ\{x} hy‖y‖
−α is the aggregate interference from the

other active transmitters, and θ is the SIR decoding threshold.

If we order the users in Φ by their received power at o,

i.e., hxi
‖xi‖

−α > hxj
‖xj‖

−α, ∀i < j, and consider the the

case where the strongest k−1 users can be canceled. The kth

strongest user can be decoded iff

SrIRk ,
hxk

‖xk‖
−α

∑∞
i=k+1 hyi

‖yi‖−α
> θ, (1)

where SrIRk denotes the signal to residual interference ratio

at the kth strongest user. The first order goal of this paper is to

quantify P(SrIRk > θ), a quantity useful in studying wireless

networks with interference cancellation capability [3].

Note that P(SrIR1 > θ) is the standard coverage probability,

i.e., the probability of connecting to at least one of transmitters

in the network, which has been extensively studied in the

context of uniform Poisson networks [1], [2].

III. THE PATH LOSS PROCESS WITH FADING (PLPF)

We use the unified framework introduced in [4] to jointly

address the randomness from fading and random location of

the nodes. In particular, we define the path loss process with

fading (PLPF) as Ξ , {ξi =
‖xi‖

α

hxi

}, where xi ∈ Φ are nodes

in the PPNF, the indices i are introduced in the way such that

ξi < ξj for all i < j. Then, we have the following lemma,

which directly follows from the mapping theorem [5].

Lemma 1. The PLPF Ξ, corresponding to a PPNF, is a one-

dimensional PPP on R
+ with intensity measure Λ([0, r]) =

aδcdr
β
E[hβ ]/β, where δ , d/α, β , δ + b/α ∈ (0, 1) and h

is the iid fading coefficient.

In Lemma 1, the condition β ∈ (0, 1) corresponds to the

condition b ∈ (−d, α − d) in the definition of PPNF and is

necessary in the sense that otherwise the aggregate received

power at o is infinite almost surely2.

Since for all ξi ∈ Ξ ⊂ R
+, ξ−1

i is the ith strongest received

power component (at o) from the users in Φ, by definition, we

can rewrite the decoding probability by

P(SrIRk > θ) = P(ξ−1
k > θIk),

where Ik =
∑∞

i=k+1 ξ
−1
i , and in the following we will use

P(SrIRk > θ) and P(ξ−1
k > θIk) interchangeably. Further-

more, we have the following proposition which significantly

simplifies the analysis in the rest of the paper.

Proposition 1 (Scale-invariance). If Ξ = {ξi} and Ξ̄ = {ξ̄i}
are two PLPFs with intensity measures Λ([0, r]) = rβ and

Λ̄([0, r]) = Crβ respectively, where C is any positive constant,

2If b < −d, the PPP is not locally finite, which leads to infinite received
power.

then P(ξ−1
k > θIk) = P(ξ̄−1

k > θĪk), ∀k ∈ N, where Īk =
∑∞

i=k+1 ξ̄
−1
i .

Proof: Consider the mapping f(x) = C−1/βx. Then

f(Ξ) is a PPP on R
+ with intensity measure Cxβ over the

set [0, x]. Therefore, we have

P(ξ−1
k > θIk) = P(C−1/βξ−1

k > θ

∞
∑

i=k+1

C−1/βξ−1
i )

(a)
= P(ξ̄k > θĪk)

where (a) is because both f(Ξ) and Ξ̄ are PPPs on R
+ with

intensity measure µ([0, r]) = Crβ .

Proposition 1 shows that a constant prefactor in the density

of the PLPF does not affect P(ξ−1
k > θIk) in the PPNF.

Combining it with Lemma 1, where it is shown that, in terms

of the PLPF, the only difference introduced by different fading

distributions is a constant factor in the density function, we

immediately obtain the following corollary.

Corollary 1 (Fading-invariance). In a PPNF, P(SrIRk > θ)
does not depend on the fading distribution.

If we define the Standard PLPF (SPLPF) Ξβ as a one-

dimensional PPP with intensity measure Λ([0, r]) = rβ , where

β ∈ (0, 1), we have the following fact which directly follows

from Proposition 1 and Corollary 1.

Fact 1. P(SrIRk > θ) in a PPNF can be determined by (only)

studying of Ξβ which encompasses any fading distribution and

any values of a, b, d, α, with β = δ + b/α = (d+ b)/α.

Thanks to Fact 1, in the rest of the paper, we will focus on

the SPLPF, but the results hold for all PPNFs.

IV. MAIN RESULTS

A. The Main Theorem

The main contribution of this paper is a closed-form char-

acterization of P(SrIRk > θ). To derive the main theorem, we

need the following lemma.

Lemma 2. For an arbitrary k-element index set K ⊂ N and

an increasingly ordered PLPF Ξ = {ξi}, we have

ξ−1
i > θ

∑

j 6∈K

ξ−1
j , ∀i ∈ K =⇒ ξ−1

i > θ
∑

j>k

ξ−1
j , ∀i ∈ [k].

Moreover, if θ ≥ 1,

ξ−1
i > θ

∑

j 6∈K

ξ−1
j , ∀i ∈ K =⇒ K = [k].

Proof: The first part of the lemma is obviously true

when K = [k]. If not, for any l ∈ K\[k], we have ξ−1
i >

ξ−1
l , ∀i ∈ [k] by the ordering of Ξ. For the same reason, we

have
∑

j 6∈K ξ−1
j >

∑

j 6∈[k] ξ
−1
j . As ξ−1

l > θ
∑

j 6∈K ξ−1
j , we

have ξ−1
i >

∑

j 6∈[k] ξ
−1
j , ∀i ∈ [k].

To show the second part, consider an arbitrary l ∈ K. Since

all elements in Ξ are positive and θ ≥ 1, ξ−1
l > θ

∑

j 6∈K ξ−1
j

implies ξl < ξj , ∀j 6∈ K, and consequently K = [k].



Next, we state the main theorem of this paper, which gives

a closed-form expression for P(ξ−1
k > θIk) when θ ≥ 1.

Theorem 1. For θ ≥ 1,

P(ξ−1
k > θIk) =

1

θkβΓ(1 + kβ)
(

Γ(1− β)
)k

, (2)

where Γ(·) is the gamma function. Moreover, the RHS of (2)

is an upper bound on P(ξ−1
k > θIk) when θ < 1.

Proof: Consider a 1-d Poisson (nonfading) network Φ ⊂
R

+ with intensity measure Λ([0, r]) = rβ and its correspond-

ing SPLPF Ξβ = {ξi}
3. For each element x ∈ Φ we introduce

a mark hx with iid exponential distribution with unit mean. In

the following, we will refer this network as a Poisson networks

with induced fading (PNIF) Φ̂ ⊂ R
+×R

+. Similar as before,

based on Φ̂, we can construct a PLPF Ξ̂ , Ξ(Φ̂) = {ξ̂i} by

collecting and ordering all the elements of {hxx
−1, ∀x ∈ Φ}.

By Proposition 1 and Corollary 1, we know

P(ξk > θIk) = P(ξ̂k > θÎk), ∀k ∈ N, (3)

where Îk =
∑∞

i=k+1 ξ̂
−1
i . Therefore, in the following, we

focus on the PNIF Φ̂ and the corresponding PLPF Ξ̂.

First, considering a k-tuple of positive numbers y =
(yi)

k
i=1 ∈ (R+)k, with slight abuse of notation, we say

(yi)
k
i=1 ⊂ Φ if and only if yi ∈ Φ, ∀i ∈ [k]. Conditioned

on y ⊂ Φ, we denote the interference from the rest of

the network
∑

x∈Φ\y hxx
−1 as I !y. Since {yi} is a set of

Lebesgue measure zero, by Slivnyak’s theorem, we have

I !y
d
= I =

∑

x∈Φ hxx
−1. Thus,

L!y
I (s) , E[exp(−sI !y)] = LI(s)

= exp

(

−Eh

(
∫ ∞

0

(

1− exp(−shr−1)drβ
)

))

= exp

(

−
sβ

sincβ

)

, (4)

where sincx = sin(πx)
πx .

Second, let N̂ be the sample space of Φ̂ and consider the

indicator function χ̄k : (R+ ×R
+)k × N̂ → {0, 1} defined as

χ̄k

(

(xi, hxi
)ki=1, φ̂

)

,
{

1, if hxi
x−1
i > θ

∑

y∈φ\{xi}
hyy

−1, ∀i ∈ [k]

0, otherwise,

where the k-element set {xi} ⊂ φ and φ is the ground pattern

of the marked point pattern φ̂. In words, χ̄k

(

(xi, hxi
)ki=1, φ̂

)

is

one iff k of the users in the network (xi)
k
i=1 all have received

power larger than θ times the interference from the rest of the

network. Then, for any φ̂ and k ∈ N,

1{ξ̂k>θÎk}
(φ̂) = 1{ξ̂i>θÎk, ∀i∈[k]}(φ̂)

(a)

≤
1

k!

6=
∑

x1,...,xk∈φ

χ̄k

(

(xi, hxi
)ki=1, φ̂

)

, (5)

3Clearly, Φ and Ξ are statistically equivalent. However, there is a subtle
difference: Ξβ is increasingly ordered while Φ is unordered.

where 6= means xi 6= xj , ∀i 6= j and (a) is due to the first

part of Lemma 2. Also, the second part of Lemma 2 shows

that when θ ≥ 1 the equality in (a) holds.

Therefore, we have

P(ξ̂k
−1

> θÎk) = E[1{ξ̂k>θÎk}
(Φ̂)]

(b)

≤
1

k!
E





6=
∑

x1,...,xk∈Φ

χ̄k

(

(xi, hxi
)ki=1, Φ̂

)





=
1

k!
EΦ





6=
∑

x1,...,xk∈Φ

E

[

χ̄k

(

(xi, hxi
)ki=1, Φ̂

)

]





(c)
=

1

k!
EΦ





6=
∑

x: x1,...,xk∈Φ

L!x
I (θ

k
∑

i=1

xi)





(d)
=

1

k!

∫

(R+)k
L!x
I (θ

k
∑

i=1

xi)Λ
(k)(dx),

where (b) is due to (5) and the equality holds when θ ≥ 1,

(c) holds since hy are iid exponentially distributed with unit

mean for all y ∈ Φ, and (d) is due to the definition of Λ(k)(·),
the kth factorial moment measure of Φ. Since Φ is a PPP

with intensity measure Λ([0, r]) = rβ , we have Λ(k)(dx) =
∏

i∈[k] dxβ
i . Applying (3) and (4), we have

P(ξ−1
k > θIk) ≤

1

k!

∫

(R+)k
exp

(

−
θβ

sincβ
‖x‖ 1

β

)

dx.

where ‖·‖p denotes the Lp norm, and the equality holds when

θ ≥ 1. The integral on the RHS can be further simplified into

closed-form by using the general formulas in [6, eqn. 4.635],

which completes the proof.

B. The Standard Coverage Probability

Taking k = 1, we obtain the following corollary of Theo-

rem 1, which gives the exact standard coverage probability in

a PPNF for θ ≥ 1 and a upper bound for general θ.

Corollary 2. For θ ≥ 1, we have

p1 = P(ξ−1
1 > θI1) =

sincβ

θβ
, (6)

and the RHS is an upper bound on P(ξ−1
1 > θI1) when θ < 1.

It is worth noting that the closed-form expression in

Corollary 2 has been discovered in several special cases.

For example, [1] derived the equality part of (6) for the

Rayleigh fading case in 2-d uniform Poisson networks, and

[2] further showed that the equality is true for arbitrary fading

distribution. However, none of the existing works derives the

results in Corollary 2 in as much generality as here. Using the

PLPF-based framework, we proved that (6) holds for arbitrary

fading (including the no-fading case) in d-dimensional PPNFs

(which includes non-uniform user distribution).
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C. Numerical Evaluation

Corollary 3. When β = 1/2,

P(ξ−1
k > θIk) =

1

(πθ)
k
2 Γ(k2 + 1)

, (7)

and the RHS is an upper bound on P(ξ−1
k > θIk) when θ < 1.

Fig. 2 compares (7) with simulation results for −10dB <
θ < 10dB and k = 1, 2, 3, 4, 5. We found that (7) is not

only exact for θ ≥ 1 but also quite accurate for θ > −4dB,

which is consistent with the observation in [1]. Moreover, we

can see that with larger k, the regime where (2) is accurate

extends to smaller θ, which gives us further confidence in

applying Theorem 1 in the context of successive interference

cancellation in Section V.

Fig. 3 plots P(ξ−1
k > θIk) for the case θ = 1 and for

k = 1, 2, 3, 4, 5. This figure demonstrates how the decoding

probability changes as a function of β.

V. SUCCESSIVE INTERFERENCE CANCELLATION

An immediate application of Theorem 1 is to provide

estimates on the performance of successive interference can-

cellation (SIC). Under the PLPF-based framework, [3] shows

that the usefulness of SIC in random wireless networks is

fundamentally limited by the network geometry, i.e., number

of dimensions, path loss exponent, density function. This

fundamental limit can be characterized by

pk , P(ξ−1
i > θIi, ∀i ≤ k),

= P(ξ−1
i > θIi, ∀i < k | ξk > θIk)P(ξ

−1
k > θIk) (8)

the probability of successively decoding at least k users in the

network. Furthermore, the conditional probability in (8) can

be estimated using properties of the 1-d PPP and the order

statistics of uniform random variables, and thus pk can be

bounded in terms of P(ξ−1
k > θIk) [3, Lemma 2]. Therefore,

we have the following proposition, which follows immediately

from Theorem 1.
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Proposition 2. For θ ≥ 1 and Ξβ = {ξi}, we have

pk ≥
1

(1 + θ)
β
2
k(k−1)θkβΓ(1 + kβ)

(

Γ(1− β)
)k

and

pk ≤
1

θ
β
2
k(k+1)Γ(1 + kβ)

(

Γ(1− β)
)k

.

More generally, for all θ > 0, we have

pk ≤
1

θ̄
β
2
k(k−1)θkβΓ(1 + kβ)

(

Γ(1− β)
)k

, (9)

where θ̄ = max{θ, 1}.

Fig. 4 plots the upper and lower bounds in Proposition 2

as a function of b for k = 1, 2, 3. Here, the upper and lower

bounds for the case k = 1 are both tight and overlapping. A



similar plot is given in [3], which was produced based on

a set of bounds constructed by completely different ideas.

Nevertheless, the bounds in Fig. 4 are significantly sharper

than the bounds there4. Since b determines the density scaling

of the active transmitters, Fig. 4 shows networks clustering

(small b) is desirable if SIC is allowed.

Since one of the critical issues in implementing successively

decoding is the latency, Proposition 2 provides quantitative

insights on the value of building stronger SIC at the receiver.

For example, if the decoding SIR threshold is 0dB, Fig. 4

shows that in a uniform 2-d network (b = 0), the ability of

successive canceling 2 or more users is only useful in at most

about 10% of the cases (see p3). This suggests building such

SIC hardware in such networks may not be cost-effective.

Another important metric on the performance of SIC is the

aggregate throughput [7]. In interference-limited networks, it

is defined as the sum rate at the receiver,

R , log(1 + θ)EN, (10)

where N is the number of users that can be successively

decoded, i.e., EN =
∑∞

k=1 pk. Naturally, Proposition 2 gives

rise to an upper bound on the aggregate throughput.

Proposition 3. The mean number of decodable users is upper

bounded by

EN ≤
K−1
∑

k=1

(

C(k)

Γ(1− β)

)k
1

Γ(1 + kβ)

+
1

Γ(1 +Kβ)

(

C(K)

Γ(1− β)

)K
Γ(1− β)

Γ(1− β)− C(K)
,

where C(k) , θ−β θ̄−
β
2
(k−1).

Proof: Since EN =
∑∞

k=1 pk, an upper bound on EN
can be obtained by summing the bound in (9). The proposition

follows by summing the bound for k < K and then upper

bounding the terms for k ≥ K.

Due to the definition of aggregate throughput in (10), Propo-

sition 3 leads to an upper bound on the aggregate throughput.

Fig. 5 compares this bound with the simulation. This figure

shows that the bounds based on Proposition 3 are generally

tight for θ > 1. For larger β, the bound is also tight even if θ is

slightly less than 1. As smaller β correspond to more clustered

networks, Fig. 5 shows (again) that network clustering is

desirable in terms of the aggregate throughput. Moreover,

we observe that the aggregate throughput is a monotonically

decreasing function of θ, suggesting that lower per user rate

leads to higher sum rate.

VI. CONCLUSIONS

This paper derives a closed-form expression for the proba-

bility of decoding the k-th strongest user in wireless networks

for SIR threshold no less than 1. Derived under the PLPF-

based framework, this expression encompasses all possible

4This does not mean that the bounds in Proposition 2 are better in general.
The bounds in [3] are tighter when θ ≪ 1.
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α = 6, 4, 3. The bound is calculated choosing K = 20.

cases in d-dimensional power law Poisson networks with

arbitrary fading distribution and path loss exponent.

The derived decoding probability is a generalized version

of the conventional coverage probability and is useful in

analyzing wireless networks with interference cancellation

capabilities. In the case of SIC, we demonstrate how to use

the result to obtain accurate system performance estimates.

An important insight obtained is that transmitter clustering is

desirable in networks with SIC capability. This points to a

quite different MAC design paradigm compared with the one

without SIC.
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