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Abstract—We consider an ad hoc network which uses multihop
and slotted ALOHA for its MAC contention. We then formulate
the minimum time required for a packet to reach the destination
from the origin. We define this delay as the minimum time
required for a causal path to form between the source and desti-
nation. We derive the distributional properties of the connection
time using ideas from first passage percolation and epidemic
processes. We show that the delay scales linearly with the distance
and also provide asymptotic results (w.r.t time) for the positions
of the nodes which are able to connect to a transmitter located
at the origin. We also provide simulation results to supportthe
theoretical results.

Index Terms—Poisson point process, interference, first passage
percolation, subadditive processes, epidemic processes.

I. I NTRODUCTION

In a multihop ad hoc network, bits, frames or packets
are transferred from a source to a destination in a multihop
fashion with the help of intermediate nodes. This introduces
a delay before a packet is delivered to the destination. For
example, a five-hop route does not guarantee a delay of only
five time slots. In a general setting, each node can connect to
multiple nodes. So a large number of paths may form between
the source and the destination. Each path may have taken a
different time to form with the help of different intermediate
nodes. Consider a network in which each node wants to
transmit to its destination in a multihop fashion. In general
in such a network, a relay node queues the packets from
other nodes and its own packets and transmits them depending
on some scheduling algorithm. If one introduces the concept
of queues, the analysis of the system becomes extremely
complicated because of the intricate dependencies between
various nodes. In this paper we take a different approach. W
are concerned only about the physical connections between
nodes. That is, we do not care when a nodei transmits a
particular packet to a nodej (depends on the scheduler), but
we analyze when a (physical) connection (maybe over multiple
hops) is formed between the nodesi and j. This delay gives
a lower bound on the delay with any queueing scheduler in
place.

We assume that the nodes are distributed as a Poisson point
process (PPP) on the plane. Each node in a time slot decides
to transmit or receive using ALOHA. Any transmitting node
can connect to all receiving nodes whose SINR threshold is
met. Since at each time instant, the transmit and receive nodes
change, we have a dynamic connectivity graph. We analyze
the time required for a causal path to form between a source
and a destination node. The system model is made precise in
Section II.

This problem is similar in flavor to the problem of First Pas-
sage Percolation (FPP)[10], [8], [1]. This process of dynamic
connectivity also resembles a simple epidemic process[5],
[13], [14] on an Euclidean domain. In a spatial epidemic
process, a infected individual infects a certain (maybe random)
neighboring population and this process continues until the
complete population is infected. They analyze the time of
spread of the epidemic process. We draw many ideas from
this theory of epidemic process and FPP. The main difference
between an epidemic process and the process we consider is
that the spread (of packets) depends on the entire population
(due to interference) and is not independent from a node to
node. In [4], the authors analyze the latency for a message
to propagate in a sensor network using similar tools. Their
model does not consider interference and their model allows
them to use Kingman’s subadditive ergodic theorem [11] while
ours does not. They consider a Boolean connectivity model
with random weighed edges and derive the properties of first
passage paths on the weighted graph.

In Section II, we introduce the system model. In Section
III, we derive the properties of the delay, the average number
of paths between a source and destination. In Section IV we
give limit theorems for the delay and the broadcast region.
We specifically show that the delay increases linearly with
increasing transmit-receive distance or equivalently that the
propagation speed is constant, i.e., the distance of nodes which
can connect to the origin scales linearly with time.

II. SYSTEM MODEL

The system consists of nodes distributed as a Poisson point
process (PPP)∆ of intensityλ on the plane. Each node can
either transmit or receive. This is decided by slotted ALOHA
with parameterp. So at each time slotk, each node decides
to either transmit or receive with probabilityp and q = 1 −
p respectively. Let the transmitting set at time instantk, be
denoted byφ(k) and the receiver set byψ(k). So we have∆ =
φ(k) ∪ ψ(k). One can alternatively think of the whole setup
as a marked point process, with each mark being an discrete
Bernoulli process (each time instant of the process defines
whether a node is a transmitter or receiver). More formally the
point process we consider is on the setR

2 × S, whereS =
{(a1, a2, a3, . . .) : ai ∈ {0, 1}}, the set of all0, 1 sequences.

We consider the following transmission models:
1) Disk model (Protocol model): A transmitter located at

x, can successfully transmit to a receiver located aty if
x ∈ B(y, a) and{φ(k) \ x} ∩B(y, b) = ∅, b > a.

2) Interference model (Physical model): In this model, the
power received by a receiver located atz due to a
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transmitter atx is modeled ashxz‖x−z‖−α, wherehxz

denotes the square of the Rayleigh fading coefficient.
The sum-power at pointz on the plane is given by

Iφ(k)(z) =
∑

x∈φ(k)

hxz‖x− z‖−α (1)

We say that the communication from a transmitter at
location x ∈ φ(k) to a receiver situated atψ(k) is
successful [2] if and only if

hxz‖x− z‖−α

Iφ(k)\{x}(z)
≥ β (2)

wherehxz is the fading coefficient between nodex and
receiverz.

At each time instantk > 0, we form a directed graphg(k) =
(∆, Ek), whose vertex set is∆ and edge set isEk. A directed
edge is placed between a node in the transmit setφ(k) and a
node inψ(k) if (2) (or the condition for model one) is satisfied.
Also each edge has a time stamp as its weight. LetG(m,n)
denote the weighted directed multigraph (multiple edges with
different time stamps allowed between two vertices) formed
between timesm andn > m, i.e.,

G(m,n) = (∆,∪m
k=nEk)

A sequence of directed edges, is said to be acausal pathif
the weights form anstrictly increasingsequence.From now,
by a path we mean a causal path.In this paper we study the
properties (averaged over the realizations of∆) of G(0, n) and
the time required for a path to form between two points and
their dependence on the system parameters (a, b, λ, β, α, p).
The edge set for the interference model is given by

Ek =

{

(x, z);
hxz ‖x− z‖−α

Iφ(k)\{x}(z)
≥ β, x ∈ φ(k), z ∈ ψ(k)

}

(3)
where(x, z) represents a directed edge fromx to z. We assume
that the interference at different time instants is independent.
This is a reasonable assumptions since at each time instant,
the transmitter set is changing due to ALOHA and there is
fading. More precisely we assume the following,∀m 6= n,

E[1Em(a, b)1En(c, d)] = E[1Em(a, b)]E[1En(c, d)]

where the expectation is with respect to fading, ALOHA and
the point process∆.

Notation: B(x, r) denotes an open ball of radiusr around
the pointx. Let e1 = (1, 0) and e2 = (0, 1) denote the unit
vectors in the directions of the coordinate axes. We will use
d
= to denote equality in distribution.

III. PROPERTIES OF THE AVERAGEG(0, n).
1) Average in and out degree:For the interference model,

the node degree for an arbitarly chosen receiving node (chosen
at origin) for a single time instantk given that the node at the
origin is listening is

dI(k) =
∑

x∈φ(k)

1(x able to connect to origin).

So by the Campbell-Mecke theorem [15], we have

E[dI(k)] = λp

ˆ

R2

exp(−λp‖x‖2β2/αC(α))dx

= πβ−2/αC(α)−1

whereC(α) = 2π2/(α sin(2π/α)). So the average in degree
of a typical node in an interference model is

E[DI(n)] = nπ(1 − p)β−2/αC(α)−1

Following similar lines, the average in degree of the disk
model is given bynπλp(1 − p)a2 exp(−λpπb2). In the disk
model, observe that a transmitter can conect to multiple
receivers, while a receiver can listen to only one transmitter.
We observe that the average in degree increases linearly with
time n. Also we observe that the in degree of the interference
model is independent ofλ (this is partly because we choose
the path-loss model to be‖x‖−α), while the average in degree
of the disk model tends to zero asλ→ ∞. Also we can expect
a Gaussian distribution asn becomes large, since the in degree
is the sum of iid random variables. Using similar arguments,
one can show that the average out degree for the interference
model is given by

E[Do(n)] = nπ(1 − p)β−2/αC(α)−1.

For a disk model the average out-degree is given bynπλp(1−
p)a2 exp(−λpπb2). So the average in and out-degrees match
which is intuitive.

2) Average number of paths betweeno and x by timen:
Add two points, one at the origino and another at locationx
to ∆. LetA(k), 1 ≤ k ≤ n denote the adjacency matrix of the
graphg(k), with the nodes ordered with respect to the distance
from origin. ThenAij(k) = {1Ek

(xi, xj)}. We observe that
Aij(k), 1 ≤ k ≤ n, is iid distributed for alli, j.

Lemma 1:With the assumption (3), the average number of
paths betweeno andx in an interference model is given by
E[Nn(x)] =

n
∑

k=1

(

n

k

)

pq

k

(

πq

β2/αC(α)

)k−1

exp(−
p

k
λ‖x‖2β2/αC(α))

Proof: Let An =
∏n

i=1(I + A(i)). So the total number
of edgesNn(x) will be the entry in the row corresponding to
the origin and the column ofx in An. Nn(x) =

∑n
k=1 Ñ

k
n(x)

whereÑk
n(x) denote the number ofk length paths betweeno

andx by timen. We first evaluateE[Ñk
n(x)]. From the matrix

An and the iid property ofA(k), we have,E[Ñk
n(x)] =

(

n

k

)

E





6=
∑

x1...xk−1∈∆\{o,x}

k−1
∏

m=0

1Em(xm, xm+1)





wherex0 = o andxk = x and
∑6= denotes summation over

disjoint points. So we are not counting loops. Using (3) and
the Campbell-Mecke theorem we haveE[Ñk

n(x)]

=

(

n

k

)

λk−1

ˆ k−1
∏

m=0

P((xm, xm+1) ∈ E1)dx1 . . . dxk−1

=

(

n

k

)

λk−1(pq)k ·

ˆ

exp

(

−λpβ2/αC(α)
k
∑

i=0

‖xi − xi+1‖
2

)

dx1 . . . dxk−1

We have the following observations regarding the average
number of paths betweeno andx in n time instants.

1) Observe that for large‖x‖ the main contributors are



3

E[Ñk
n(x)], k large, i.e., multihop routing becomes im-

portant as‖x‖ increases.
2) For a large‖x‖, to have a good average number of paths,

n should scale approximately like‖x‖2.
3) One can think ofE[Nn(x)] as the average path diversity

that is offered to a packet.
Corollary 1: Let ‖x‖2 scale asnδ. Consider the average

number of paths asn→ ∞. We then have

lim
n→∞

E[Nn(nδ)] =











∞, δ < 1

∞ δ ∈ [1, 2), πq
β2/αC(α)

> 1
2

0 δ > 2

IV. SCALING LAWS FOR DELAY AND PROPAGATION SPEED

In this section we show that the propagation delay increases
linearly with the transmit-receive distance. One can inferfrom
the result, that one does not require full connectivity in a
single instant. One can therefore relax the condition of a giant
connected component in an interference network [3], since
the time required for connection only scales linearly with
time. Also most of the results in this section do not heavily
rely on the particular connectivity models we considered. For
x, y ∈ ∆, we denote the time for a connection to form between
x andy as

T (x, y) = min {k : G(0, k) has a path fromx andy} .

For generalx, y ∈ R
2, T (x, y) = T (x∗, y∗) wherex∗ (resp.

y∗) is the point in∆ closest tox (resp.y), with some fixed
deterministic rule for breaking ties (no ties almost surely). We
similarly define

Tn(x, y) = min {k − n : G(n, k) has a path fromx andy} .

Let
B̃t = {x : T (o, x) ≤ t}

denote the set of points which can be reached from the origin
by time t. We denote the farthest distance reached by timet
as

Dt = sup {‖x‖ : T (o, x) ≤ t}

The evolution of the graphG(0, n) is similar to the growth
of epidemic on the plane and one can relate this problem to
the theory of Markovian contact process [14] which was used
to analyze the growth of epidemics. From the definition of
T (o,m), we observe that

T (o,m) ≤ T (o, n) + TT (o,n)(n,m). (4)

We also have thatTT (o,n)(n,m)
d
= T (n,m) from the way the

graph progress is defined. Also if we just use a scalar liken
for one of the arguments ofT (x, y), it should be interpreted
asne1.

Lemma 2:The time constant defined by

µ = lim
n→∞

ET (o, n)

n

exists andµ ∈ [0,∞).
Proof: From (4), we have

T (o,m+ n) ≤ T (o,m) + TT (o,m)(m,m+ n). (5)

From the definition of the graph,Ek does not depend on
Ei, i < k. Hence we have thatTT (o,m)(m,m + n) has the
same distribution asT (m,m+n). Also from the invariance of

the point process∆, we haveT (m,m+n)
d
= T (o, n). Taking

expectation of (5), we have

ET (o,m+ n) < ET (o,m) + ET (o, n)

Hence the result follows from the basic properties of the
subadditive sequences. Alsoµ = infn≥1ET (o, ne1)/n.
Consistent with the terminology of first passage percola-
tion (FPP) we will call µ the time constant of the pro-
cess. Observe that (5) resembles the triangle inequality (spe-
cially if TT (o,m)(m,m + n) was T (m,n)). This resembles
a pseudo-metric and is the reason that the shortest paths in
FPP are called geodesics. Since we do not haveT (o, n +
m) ≤ T (o, n) + T (o,m), Kingman’s subadditive ergodic
theorem [11] cannot be directly applied to (4). But since
TT (0,n)(n,m)

d
= T (n,m), we may hope that such a result

would hold true. In the next lemma, we prove that this is
indeed the case.

Lemma 3:Let µ be the time constant of the process,

T (o, n)

n
−→ µ (6)

where the convergence is inL2 and hence in probability.

Proof: From (4), andTT (o,m)(m,m+ n)
d
= T (o, n) and

the fact thatTT (o,m)(m,m + n) is independent ofT (o,m)
(because of assumption (3)), we have

Fn+m(x) ≥ (Fn ∗ Fm)(x)

whereFn is the CDF ofT (o, n). E(T (o, n)2) < ∞ follows
from Lemma 6. So we have a superconvolutive sequence and
hence by Kesten’s lemma [16], [7], (6),[12, P. 120] holds1.
This result shows that with high probability, the delay required
for a packet propagation scales linearly with distance. Thenext
result concerns the maximum distance a packet travels by time
t.

Lemma 4:The velocity of information propagation con-
verges, i.e.

Dn

n
→ µ1 (7)

n ∈ N, with probability one. Alsoµ1 = 1
µ ∈ (0,∞).

Proof: We have

Dm+n ≥ Dm + D̃mn (8)

where D̃mn is the farthest distance inn time steps starting
from the point which achievedDm. We observe that̃Dmn

d
=

Dn. Hence from (8), we have thatDn forms a subconvolutive
sequence and hence−Dn forms a superconvolutive sequence.
So if we showE[D2

1 ] < ∞, by Kesten’s lemmaL2 conver-
gence follows. We have

P(D1 < x)

= P(The origin is not able to connect (9)

to any node at distance greater thanx)
(a)

≥ exp

[

−λ(1 − p)

ˆ

B(0,x)c

exp(−λpβ2/αC(α)‖y‖2)dy

]

= exp
[

−(1 − p)p−1β−2/αC(α)−1e−λpβ2/αC(α)x2
]

(10)

1To prove the a.e convergence using Kesten’s lemma, we require that
T (0, n) be a monotone sequence, which is not true in our case.
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Figure 1. Illustration of the a.e. convergence ofDt/t

For (a) see [6, Sec 2.A]. From (10), we observe that the tail
probability ofD1 decays exponentially fast and hence has a
finite second moment. For the disk model we haveD1 < b
and hence has a finite second moment. Since the sequence
Dn is also monotonic, we have convergence with probability
one. We also haveE[Dn]/n > E[D1] > 0. Using Lemma 7,
one can also deduceµ1 = 1/µ and from Lemma 5, we have
µ1 <∞ for the interference and the disk model.

Lemma 5:For the interference and disk models2 µ > 0.
Proof: The basic idea is to use the conflict that large

hops implies fewer hops but also imply a smaller probability
of connection and hence more time to connect. Smaller hops
means smaller time of connection (better probability) but a
larger number of hops. We first show thatµ > 0 for the disk
model we have considered. We have that

P(T (o, n) <
n

a
) = 0

since the maximum distance covered in a single time slot is
a. Hence we have thatE[T (o, n)/n] > 1/a. This implies
µ > 1/a > 0.

We will show that

P(T (o, n) < cn) → 0

asn→ ∞ for some positivec. This impliesE[T (o, n)/n] >
c for some c > 0. For the sake of convenience letcn be
identified with⌈cn⌉. So to evaluate the event{T (o, n) ≤ cn},
we consider only those paths which have a maximum ofcn
hops. By the union bound we have

P(T (o, n) < cn) ≤
cn
∑

i=1

pi (11)

wherepi = P(T (o, n) < cn|we reachedn from o in i hops).
The time to any single direct hop between two nodeso and
x is a geometric random variable with parameterν(x) =
p(1 − p) exp(−c1‖x‖2), where c1 = λpβ2/αC(α). So the
times to form the individual hops in ak hop path between
o, x1,x2 . . . , xk−1, n are a series of geometric random vari-
ablesti with parametersv(xi−1 − xi) (they are independent
because they occur in different time slots. See (3)). Letη > 0.

2In general we conjecture if the probability of connectivitydecreases
exponentially,µ > 0

So we have

pk ≤ P(

k
∑

i=1

ti < cn)

(a)

≤ exp(ηcn)
1

(exp(η) − 1)k

k
∏

i=1

v(xi−1 − xi)

= exp(ηcn)

(

p(1 − p)

exp(η) − 1

)k

exp(−c1(‖x‖
2
1

+‖x2 − x1‖
2 + . . .+ ‖xk−1 − n‖2))

(b)

≤ exp(ηcn)

(

p(1 − p)

exp(η) − 1

)k

exp

(

−c1
n2

k

)

(a) follows from the observation3 and (b) follows from the
fact that the minimum value of‖x‖2

1 + ‖x2 − x1‖2 + . . . +
‖xk−1−n‖2 is n2/k. So from (11), we haveP(T (o, n) < cn)

≤
cn
∑

k=1

exp(ηcn+ ηk)pk(1 − p)k exp

(

−c1
n2

k

)

(a)

≤ cn exp(ηcn) exp
(

−
c1
c
n
)

where(a) follows by choosingη′ such thatp(1−p)/(exp(η′)−
1) < 1 and usingk = cn for all the terms. The right hand side
goes to0 if c <

√

c1/η′. Hence we haveE[T (0, n)/n] > c
which impliesµ > c.
We now analyze the properties of the time required for a direct
connection to form betweeno andx. For both the models, the
time required is a geometric distribution, i.e.,

P(Time taken for the first direct connection

betweeno, x = n) = (1 − η)n−1η

1) Interference model:
η = p(1 − p) exp(−λp‖x‖2β2/αC(α)).

2) Disk model: This can happen iff‖x‖ < a and
η = p(1 − p) exp(−λpπb2).

So we have the following trivial bound,E[T (0, n)] < nη−1.
From this bound, a good value ofp to decrease the average
delay isp ≈ (β−2/αC(α)−1)/2.

Lemma 6:The tail probability ofT (0, n) whenλ is large
(so that there is a node with high probability near each integer
point) can be bounded as

P(T (0, n) > k) ≤ I1−η(k + 1, n)

whereIη(n, k + 1) is the regularized beta function.
Proof: We have

T (0, n) ≤
n
∑

i=1

TT (0,n−1)(n− 1, n)

whereTT (0,n−1)(i− 1, i) are iid. We also haveTT (0,i−1)(i−
1, i) < ti where

ti = Time taken for the first direct connection betweeni−1, i

3If t1...ti iid geometric random variables with parameterspi, then

P(
k

X

i=1

ti < a) ≤ exp(ηa)

„

e−η

1 − e−η

«k k
Y

i=1

pi

for any η > 0.
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Figure 2. Illustration of the shape theorem

ti are iid and geometric distributed with parameterη. Hence
we have

P(T (0, n) > k) ≤ P(
n
∑

i=1

ti > k) (12)

(a)
= 1 − Iη(n, k + 1)

= I1−η(k + 1, n)

(a) follows from the fact that the sum of geometric random
variables follows a negative binomial distribution.
Instead of using the properties of the binomial random vari-
ables in (12), we can use the central limit theorem to derive:
there exists three constantsc1, c2andc3 such that

P(T (0, n) > c1n) ≤ c2 exp(−c3n)

and the constants do not depend onn. By translation invariance
and isotropy of the PPP, we have

P(T (x, y) > c1‖x− y‖) ≤ c2 exp(−c3‖x− y‖) (13)

Let B̃t = {x : T (o, x) ≤ t}, i.e., the set of points reachable
by time t. We prove the convergence of̃Bt/t to a fixed set
B(o, µ−1) (shape theorem). In (6), we considered the time
alongo andn along the x-axis. By the isotropy of the point
process, and the process, we have that for anyeθ ∈ S1,
T (0, neθ)/n→ µ in L2. The next two theorems follow closely
the technique used in [9] to prove the shape theorem for
Euclidean first passage percolation. For a random variableX
let |X |2 denote theL2 norm

√

E(X2). We present the next
lemma without a proof because of space constraints.

Lemma 7:We havelim‖x‖→∞ T (o, x)/‖x‖ → µ in L2.
Note that we have replaced the integer index with a contin-

uous variable over all directions.

Theorem 1:(Shape theorem) Whenµ > 0, B̃t/t converges
in probability toB(o, µ−1). More precisely∀ δ > 0, ǫ > 0,

∃t0 such that

P(B(o, (µ−1−ǫ)) ⊂
B̃t

t
⊂ B(o, (µ−1+ǫ))) > 1−δ, ∀t > t0

Proof: Follows from Lemma 7. The proof is similar to
[9, Pg 10] replacing the statements of a.e. to “in probability”.

V. CONCLUSIONS

In this paper we have introduced the concept of the time
taken for a physical path to form between a transmitter and a
receiver in a multihop ALOHA network. We have showed that
this time scales linearly with the transmit receive pair distance.
This in some sense implies that every node can be accessed in
a time that is linear with the distance. So in a route discovery
flooding algorithm, the time to find the route scales linearly
with the diameter of the network. We also showed that the
nodes which are able to connect to a node at the origin by a
certain time are located in a circle of radius that scales linearly
with time.
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