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Abstract—We consider an ad hoc network which uses multihop ~ This problem is similar in flavor to the problem of First Pas-
and slotted ALOHA for its MAC contention. We then formulate  sage Percolation (FPP)[10], [8], [1]. This process of dyizam
the minimum time required for a packet to reach the destinaton connectivity also resembles a simple epidemic process[5],

from the origin. We define this delay as the minimum time . . . ) -
required for a causal path to form between the source and dest [13]: [14] on an Euclidean domain. In a spatial epidemic

nation. We derive the distributional properties of the conrection ~Process, a infected individual infects a certain (maybeloan)
time using ideas from first passage percolation and epidemic neighboring population and this process continues unél th

processes. We show that the delay scales linearly with thestance  complete population is infected. They analyze the time of

and also provide asymptotic results (w.r.t time) for the pogions spread of the epidemic process. We draw many ideas from

of the nodes which are able to connect to a transmitter locate . : . S

at the origin. We also provide simulation results to supportthe tHiS theory of epidemic process and FPP. The main difference

theoretical results. between an epidemic process and the process we consider is

that the spread (of packets) depends on the entire populatio

(due to interference) and is not independent from a node to

node. In [4], the authors analyze the latency for a message

to propagate in a sensor network using similar tools. Their

. INTRODUCTION model does not consider interference and their model allows

In a multihop ad hoc network, bits, frames or packethem to use Kingman'’s subadditive ergodic theorem [11] evhil

are transferred from a source to a destination in a multihoprs does not. They consider a Boolean connectivity model

fashion with the help of intermediate nodes. This introcducevith random weighed edges and derive the properties of first

a delay before a packet is delivered to the destination. Feaissage paths on the weighted graph.

example, a five-hop route does not guarantee a delay of onlyn Section II, we introduce the system model. In Section

five time slots. In a general setting, each node can connectlipwe derive the properties of the delay, the average numbe

multiple nodes. So a large number of paths may form betweehpaths between a source and destination. In Section IV we

the source and the destination. Each path may have takegive limit theorems for the delay and the broadcast region.

different time to form with the help of different intermetka We specifically show that the delay increases linearly with

nodes. Consider a network in which each node wants iticreasing transmit-receive distance or equivalentlyt the

transmit to its destination in a multihop fashion. In gemhergropagation speed is constant, i.e., the distance of noldietiw

in such a network, a relay node queues the packets fr@an connect to the origin scales linearly with time.

other nodes and its own packets and transmits them depending

on some scheduling algorithm. If one introduces the concept Il. SYSTEM MODEL

of queues, the analysis of the system becomes extremelyrhe system consists of nodes distributed as a Poisson point

complicated because of the intricate dependencies betw@encess (PPPA of intensity A on the plane. Each node can

various nodes. In this paper we take a different approach. &lther transmit or receive. This is decided by slotted ALOHA

are concerned only about the physical connections betwegith parameterp. So at each time slot, each node decides

nodes. That is, we do not care when a nadgansmits a to either transmit or receive with probabilifyandq = 1 —

particular packet to a nodg (depends on the scheduler), bup respectively. Let the transmitting set at time instantbe

we analyze when a (physical) connection (maybe over maltiplenoted bys(k) and the receiver set hy(k). So we have\ =

hops) is formed between the nodeand j. This delay gives ¢(k) U (k). One can alternatively think of the whole setup

a lower bound on the delay with any queueing scheduler & a marked point process, with each mark being an discrete

place. Bernoulli process (each time instant of the process defines
We assume that the nodes are distributed as a Poisson pwoihether a node is a transmitter or receiver). More forméaidy t

process (PPP) on the plane. Each node in a time slot decigeit process we consider is on the &t x S, whereS =

to transmit or receive using ALOHA. Any transmitting nod€g{(a1, az,as,...) : a; € {0,1}}, the set of all0, 1 sequences.

can connect to all receiving nodes whose SINR threshold is\WWe consider the following transmission models:

met. Since at each time instant, the transmit and receivesnod 1) Disk model (Protocol model): A transmitter located at

change, we have a dynamic connectivity graph. We analyze z, can successfully transmit to a receiver locateg t

the time required for a causal path to form between a source =z € B(y,a) and{¢(k) \ z} N B(y,b) =0, b > a.

and a destination node. The system model is made precise i2) Interference model (Physical model): In this model, the

Section II. power received by a receiver located atdue to a

Index Terms—Poisson point process, interference, first passage
percolation, subadditive processes, epidemic processes.



transmitter atr is modeled ag.. ||z —z||~®, whereh,, whereC(a) = 27?/(asin(27/a)). So the average in degree
denotes the square of the Rayleigh fading coefficierdf a typical node in an interference model is

The sum-power at point on the plane is given by EDy(n)] = nr(1 — p)ﬁ‘z/”C(a)‘l

—
Lo (2) = Z haz||z — 2| @ Following similar lines, the average in degree of the disk
z€¢(k) model is given bynmAp(1 — p)a? exp(—Apmb?). In the disk
We say that the communication from a transmitter anodel, observe that a transmitter can conect to multiple
location z € ¢(k) to a receiver situated ap(k) is receivers, while a receiver can listen to only one trangmitt

successful [2] if and only if We observe that the average in degree increases lineafty wit
has |z — 2|~ time n. Also we observe that the in degree of the interference
szl A1 > 08 (2) model is independent of (this is partly because we choose
Lo\ {23 (2) the path-loss model to bez||~*), while the average in degree
whereh,, is the fading coefficient between nogeand ©f the disk model tends to zero as— co. Also we can expect
receiverz. a Gaussian distribution asbecomes large, since the in degree
At each time instank > 0, we form a directed graph(k) = is the sum of iid random variables. Using similar arguments,

(A, Ey), whose vertex set id and edge set i&),. A directed one can show that the average out degree for the interference
edge is placed between a node in the transmitgk} and a Model is given by

node i (k) if (2) (or the condition for model one) is satisfied. E[Dy(n)] = nr(1 —p)8~*C(a)"".

Also each edge has a time stamp as its weight.det, n) ) o

denote the weighted directed multigraph (multiple edgeth wiFor a disk model the average out-degree is givenbyp(1 —
different time stamps allowed between two vertices) formeta® exp(—Apmb?). So the average in and out-degrees match

between timesn andn > m, i.e., which is intuitive.
m 2) Average number of paths betweemnd = by timen:
G(m,n) = (A, UL, Ex) Add two points, one at the origin and another at location

A sequence of directed edges, is said to beaasal pathif 10 A. Let A(k), 1 <k < n denote the adjacency matrix of the
the weights form arstrictly increasingsequenceFrom now, 9raphg(k), with the nodes ordered with respect to the distance
by a path we mean a causal path. this paper we study the from origin. ThenA;; (k) = {1g, (i, ;)}. We observe that
properties (averaged over the realizationg\yfof G(0,n) and  Ai;(k), 1 < k < n, is iid distributed for alli, ;.

the time required for a path to form between two points and Lemma 1:With the assumption (3), the average number of
their dependence on the system parameters, 4, 3, «, p). paths betweem and x in an interference model is given by
The edge set for the interference model is given by E[Ny(z)] =

— IZM - AR I = n\ pg Tq kilx—g)\:cQQ/o‘Ca
B = {(anan 22T s s, o >}(3) S ()% (Grem)  ewt-persecE)

where(z, z) represents a directed edge frano z. We assume Proof: Let A" =[], (I + A(:)). So the total number
that the interference at different time instants is indefmnt  of edgesN,,(x) will be the entry in the row corresponding to
This is a reasonable assumptions since at each time instéme, origin and the column af in A™. N, (z) = >_)_, N¥(z)
the transmitter set is changing due to ALOHA and there i/shereN,’j(x) denote the number df length paths between

fading. More precisely we assume the followingn # n, andz by timen. We first evaluateZ[N* (z)]. From the matrix
n i N3 —
E[lg, (a,b)1p, (c,d)] = E[lg, (a,b)|E[1E, (c,d)] A™ and the iid property ofd(k), we have,E[N;(z)] =
where the expectation is with respect to fading, ALOHA and n a Al
the point procesa. (k)E > I 5. @m 2mir)

Notation B(z,r) denotes an open ball of radissaround z1...xk-1€A\{o,x} m=0
the pointz. Lete; = (1,0) andez = (0,1) denote the unit
vectors in the directions of the coordinate axes. We will u

2 to denote equality in distribution.

herexqg = o andz;, = z and Z"& denotes summation over
isjoint points. So we are not counting loops. Using (3) and
the Campbell-Mecke theorem we haleN* (z)]
[1l. PROPERTIES OF THE AVERAGHEZ(0,n).

k—1
1) Average in and out degred=or the interference model, — (n) plamts / H P((Zm, Tmy1) € Er)dzy ... deg_y
the node degree for an arbitarly chosen receiving node échos k m—0

at origin) for a single time instarit given that the node at the n\ oy .
origin is listening is = (k))\ “(pa)” -
dr(k) = Z 1(z able to connect to origin k
zea(k) /exp —/\pﬁQ/o‘C(oz) Z llzi — zip1])? | day ... dap_q
So by the Campbell-Mecke theorem [15], we have =0 =
Eld;(k)] = /\p/ exp(—)\p|\x||262/°‘0(a))dx We have the following observations regarding the average
R2 number of paths betweenandz in n time instants.

= 77 Y*0(a)7? 1) Observe that for largdz|| the main contributors are



E[NF(z)], k large, i.e., multihop routing becomes im-+the point procesg\, we havel'(m, m +n) 4 T(o,n). Taking
portant asl|x|| increases. expectation of (5), we have

2) For alargé|z||, to have a good average number of paths,
n should scale approximately likgr||?. ET(o,m+n) < ET(o,m) + ET(o,n)

3) One can think ofJ[N,, ()] as the average path diversityHence the result follows from the basic properties of the

that is offered to a packet. subadditive sequences. Algo= inf,,>1 ET(o,ne1)/n. N
Corollary 1: Let |[z|?> scale asn’. Consider the averageConsistent with the terminology of first passage percola-
number of paths as — oo. We then have tion (FPP) we will call x the time constant of the pro-

cess. Observe that (5) resembles the triangle inequalil- (s

o0, d<1 cially if T, m)(m, m + n) was T'(m,n)). This resembles
lim E[N,(n%)] = {oo §€[1,2), 7o~ >1 “metri i i
v n 14 B2leaC(a) © 2 a pseudo-metric and is the reason that the shortest paths in
0 6>2 FPP are called geodesics. Since we do not HB(e n +

m) < T(o,n) + T(o,m), Kingman’s subadditive ergodic
V. SCALING LAWS FOR DELAY AND PROPAGATION SPEED theorem [11] cannot be directly applied to (4). But since
In this section we show that the propagation delay increaseg ,,)(n, m) 4 T(n,m), we may hope that such a result
linearly with the transmit-receive distance. One can ififem would hold true. In the next lemma, we prove that this is
the result, that one does not require full connectivity in mdeed the case.

single instant. One can therefore relax the condition ofeatgi  Lemma 3:Let i be the time constant of the process,
connected component in an interference network [3], since T(0,n)
it AN (6)

the time required for connection only scales linearly with

time. Also most of the results in this section do not heavily n

rely on the particular connectivity models we considereat. Fwhere the convergence is ii? and hence in probability.
z,y € A, we denote the time for a connection to form between Proof: From (4), andly o ) (m, m + n) d T(0,n) and

 andy as the fact thatTr(, ) (m,m + n) is independent ofl'(o, m)
T(z,y) =min{k : G(0,k) has a path fromx andy}.  (because of assumption (3)), we have
For generalr,y € R2, T'(z,y) = T(z*,y*) wherez* (resp. Frpm(z) = (Fp * Fr)(2)

y*) is the point inA closest tox (resp.y), with some fixed where F,, is the CDF ofT'(o,n). E(T(0,n)?) < oo follows

dgtglrrr:inijti? rule for breaking ties (no ties aimost sureWe from Lemma 6. So we have a superconvolutive sequence and
simifarly define hence by Kesten's lemma [16], [7], (6),[12, P. 120] héldm
T (z,y) =min{k —n : G(n,k) has a path fromx andy}. This result shows that with high probability, the delay regd
L for a packet propagation scales linearly with distance. ide

et ~ result concerns the maximum distance a packet travels gy tim

By ={x:T(o,z) <t} ‘
denote the set of points which can be reached from the originLemma 4:The velocity of information propagation con-
by time t. We denote the farthest distance reached by timeverges, i.e.
as D,
— —m (7)
Dy = sup{||z|| : T(o,x) < t} n

The evolution of the grapl@(0,n) is similar to the growth 7 € N, with probability one. Alsou; = € (0,0).

of epidemic on the plane and one can relate this problem to Proof: We have
the theory of Markovian contact process [14] which was used

to analyze the growth of epidemics. From the definition of 5 Dmin 2 Dm + D 8)
T (o, m), we observe that where D,,,,, is the farthest distance in time steps starting
T(0,m) < T(0,1) + Tp(om)(n,m). ) from the point which achieved,,. We observe thab,,,, 4

D,,. Hence from (8), we have thd?, forms a subconvolutive
We also have thaf’r(, ,,)(n,m) 4 T(n,m) from the way the Sequence and heneeD,, forms a superconvolutive sequence.
graph progress is defined. Also if we just use a scalarike SO if we showE[D?] < oo, by Kesten’s lemma.> conver-
for one of the arguments df (z, ), it should be interpreted gence follows. We have

asnej.

Lemma 2:The time constant defined by P(Ds < x.) o

= [P(The origin is not able to connect 9)
p= lim M to any node at distance greater than
n—oo n

. ()

exists and € [0,00). > exp [—A(l —p)/ exp(=ApB*/*C(a)|lylI*)dy
Proof: From (4), we have B(0,z)°

T(o,m+n) < Tlo,m) + Triom(mm+n). () = exp|-(L=pp ' #2Cla) e ¥ @] 0)

From the definition of the graphf; does not depend on

Ei, i < k-. He_nce we have thdlr,, ) (m, m + n) has the 115 prove the a.e convergence using Kesten's lemma, we eedhit
same distribution a¥'(m, m-+n). Also from the invariance of 7(0,n) be a monotone sequence, which is not true in our case.



A:O.S,p:po,u=4,N0—Fading SO we have

18

k
e o < ]P)(Zti<cn)
i=1

k

(a) 1
: < exp(ncn)m il;[lv(iﬂi—l — ;)
a” k

— explren) (LU= expl-caol

oo = ]2+ + llant —n]2)
® pd-p) \* n?
< o
< exp(ncm(exp(n)_l S

(a) follows from the observatichand (b) follows from the
fact that the minimum value ofz||? + ||z2 — 1] + ... +
|zr_1—n|? is n?/k. So from (11), we hav®(T (o,n) < cn)

Figure 1. lllustration of the a.e. convergencelof/t

cn L L n2
For (a) see [6, Sec 2.A]. From (10), we observe that the tail < ZGXP(”C” +nk)p" (1 —p)” exp <_01Z>
probability of D, decays exponentially fast and hence has a k=1
finite second moment. For the disk model we hdve < b (@

c1
- . < € e (—— )
and hence has a finite second moment. Since the sequence — en exp(ien) exp ¢

D,, is also monotonic, we have convergence with probabiliwhere(a) follows by choosing;’ such thap(1—p)/(exp(n)—
one. We also havé&[D,]/n > E[D,] > 0. Using Lemma 7, 1) < 1 and usingk = cn for all the terms. The right hand side
one can also deduge, = 1/u and from Lemma 5, we have goes to0 if ¢ < +/c;/i7. Hence we haveZ[T'(0,n)/n] > ¢
w1 < oo for the interference and the disk model. B \which impliesy > c. u
Lemma 5:For the interference and disk moo%elzs > 0. We now analyze the properties of the time required for a tlirec
Proof: The basic idea is to use the conflict that larggsnnection to form betweemandz. For both the models, the

hops implies fewer hops but also imply a smaller probabilityme required is a geometric distribution, i.e.,
of connection and hence more time to connect. Smaller hops

means smaller time of connection (better probability) but a  P(Time taken for the first direct connection
larger number of hops. We first show that> 0 for the disk betweeno,z =n) = (1 —n)""'n

model we have considered. We have that
1) Interference model:

n
P(T(o,n) <) =0 1 = p(1 = p) exp(=Apl|z[|*5*/*C(a)).
2) Disk model: This can happen iffr| < a and

since the maximum distance covered in a single time slot is 1 = p(1 — p) exp(—Aprb?).

a. Hence we have thaE[T(o,n)/n] > 1/a. This implies

@w>1/a> 0. So we have the following trivial boundy[T°(0,n)] < np~!.
We will show that From this bound, a good value pfto decrease the average
delay isp ~ (8=2/*C(a)~1)/2.
P(T'(o,n) <cn) — 0 Lemma 6:The tail probability of7°(0, n) when X is large

(so that there is a node with high probability near each erteg

as for some positivec. This impliesE[T
S P P [T (0,n)/n] > point) can be bounded as

c for somec > 0. For the sake of convenience let be

identified with[cn]. So to evaluate the evefif'(o,n) < cn}, P(T(0,n) > k) < I, _,(k+1,n)
we consider only those paths which have a maximunarof . ) ]
hops. By the union bound we have wherel, (n,k + 1) is the regularized beta function.

Proof: We have

P(T(o,n) <cn) < i (12) n
;p T(O’ n) < Z TT(O,nfl)(n -1, n)

wherep; = P(T(o,n) < cn|we reached: from o in i hops. =t

The time to any single direct hop between two nodesnd WhereTr( ,—1)(i — 1,7) are iid. We also havé’r(g;—1)(i —
r is a geometric random variable with parametér) = 1,i) <t; where

p(1 — p)exp(—ci||z||?), wherec; = \pB*/*C(a). So the
times to form the individual hops in & hop path between
0,71,%2...,TK—1,n are a series of geometric random vari-

ablest; with parameters)(z;_; — z;) (they are independent 3If t1...t; iid geometric random variables with parametggs then
because they occur in different time slots. See (3)).7Let0. k

_ k k
P> ti < a) < exp(na) (1 i :,n) [1»:
i=1

=1

t; = Time taken for the first direct connection betweerl,

2In general we conjecture if the probability of connectivitiecreases
exponentially,.. > 0 for anyn > 0.



A=0.5,p=0.4,T=230,3=0.8

Jto such that

P(B(o, (n" ' —¢€)) C % C B(o, (' +€)) > 10, Vt >t

Proof: Follows from Lemma 7. The proof is similar to
[9, Pg 10] replacing the statements of a.e. to “in probafilit
]

V. CONCLUSIONS

In this paper we have introduced the concept of the time
taken for a physical path to form between a transmitter and a
receiver in a multihop ALOHA network. We have showed that
this time scales linearly with the transmit receive paitalise.

This in some sense implies that every node can be accessed in
a time that is linear with the distance. So in a route discpver
flooding algorithm, the time to find the route scales linearly
with the diameter of the network. We also showed that the
nodes which are able to connect to a node at the origin by a
certain time are located in a circle of radius that scalessality

Figure 2. lllustration of the shape theorem

with time.
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t; are iid and geometric distributed with parameterHence
we have

P(T'(0 k P . k 12 o
s > < t; >

(T(0,n) > ) Q> k) w2
@ Lk +1
= 1-1Iynk+1) 3]
= Ilfn(k + 1, n)

(a) follows from the fact that the sum of geometric randomi“]

variables follows a negative binomial distribution. ]

Instead of using the properties of the binomial random vari-
ables in (12), we can use the central limit theorem to derivé®]
there exists three constants cpandcs such that 6]

P(T(0,n) > c1n) < caexp(—csn)
(7]

(8]

and the constants do not dependomBy translation invariance
and isotropy of the PPP, we have

(13)

Let B, = {z : T(o, ) < t}, i.e., the set of points reachable
by time t. We prove the convergence @, /t to a fixed set [10]
B(o,u~t) (shape theorem). In (6), we considered the tin'ﬁ1
alongo andn along the x-axis. By the isotropy of the poin ]
process, and the process, we have that for enye S*, [12]
T(0,meq)/n — pin L2. The next two theorems follow closely 13l
the technique used in [9] to prove the shape theorem for
Euclidean first passage percolation. For a random variable[14]
let | X |2 denote theL, norm \/E(X?). We present the next
lemma without a proof because of space constraints.

Lemma 7:We havelim,|_. T'(0,z)/||z|| — p in L%

Note that we have replaced the integer index with a conti®!
uous variable over all directions.

B(T(2,y) > erlle = yl) < e2exp(—eslz — y]) o

[15]

Theorem 1:(Shape theorem) Whem > 0, B, /t converges
in probability to B(o, u~!). More preciselyy § > 0, ¢ > 0,
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