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Abstract— In the analysis of large random ad hoc networks,
the underlying node distribution is almost ubiquitously assumed
to be the homogeneous Poisson point process. Using tools from
stochastic geometry, we make an effort to derive interference
and capacity results for clustered processes. We also reveal
connections between the regularity of a point process and these
metrics.

I. INTRODUCTION
A. Motivation and overview

A common and analytically convenient assumption for the
node distribution in large wireless networks is the homoge-
neous (or stationary) Poisson point process (PPP) of intensity
A, where the number of nodes in a certain area A is Poisson
with parameter A A, and the numbers of nodes in two disjoint
areas are independent random variables. For sensor networks,
this assumption is usually justified by claiming that sensor
nodes may be dropped from aircraft in large numbers; for
mobile ad hoc networks, it may be argued that terminals move
independently from each other. While this may be the case for
certain networks, it is much more likely that the node distribu-
tion is not “completely spatially random” (CSR), i.e., nodes are
either clustered or more regularly distributed. Moreover, even
if the complete set of nodes constitutes a PPP, the subset of
active nodes (e.g., transmitters in a given timeslot or sentries
in a sensor network), may not be homogeneously Poisson.
Certainly, it is preferable that simultaneous transmitters in an
ad hoc network or sentries in a sensor network form more
regular processes. On the other hand, many protocols have
been suggested that are based on clustered processes. This
motivates the need to extend the rich set of results available
for PPPs to other node distributions.

In this paper we consider the interference and the prob-
ability of successful transmission between a transmitter and
receiver pair in an interference-limited channel. The location
of transmitters in space is modeled as Poisson clustered
process, and fading is modeled as Rayleigh. We provide a
numerically integrable expression for the outage probability
and closed-form upper and lower bounds. We show that when
the transmitter receiver distance is greater than the typical
cluster radius, the success probability is greater than for a
PPP of the same density. We obtain the maximum intensity
of transmitting nodes for a given outage constraint, i.e., the
transmission capacity [1] of this spatial arrangement and show
that it is equal to that of a Poisson arrangement of nodes. An-
alytical tools from stochastic geometry are used, including the

probability generating functional of Poisson cluster processes,
the Palm characterization of Poisson cluster process, and the
Campbell-Mecke and Slivnyak’s theorems.

B. Results for Poisson point processes

There exists a significant body of literature for networks
with Poisson distributed nodes. Results on the interference
are available in [2]-[5], and the throughput in the presence
of interference is analyzed in [6]-[10]. Even in the case of
the PPP, the interference distribution is not known for all
fading distributions and all channel attenuation models. Only
the characteristic function or the Laplace transform of the
interference can be evaluated in all the cases. The Laplace
transform can be used to evaluate the outage probabilities
under Rayleigh fading characteristics [7], [9]. In [11] upper
and lower bounds are obtained under general fading and
PPP arrangement of nodes. [1] introduces the transmission
capacity, which is a measure of the area spectral efficiency
of the successful transmissions resulting from the optimal
contention density.

C. Regularity

Ripley’s K-function can be used to assess the regularity of a
point process [12]. For a stationary process of intensity ), the
K-function or second reduced moment function [13, p. 120f.]
is defined as

MK (r) = / H(Bo(r) PL(do) M

where By(r) is the ball of radius r centered at 0, ¢ here
is interpreted as counting measure, and P§(Y) denotes the
reduced Palm distribution, defined as Pj(Y) = P(¢\{0} €
Y |0) for Y € AN with N the o-algebra of the locally finite
and simple sequences of points in R2. So, AK (r) denotes the
number of extra points in a ball of radius r centered at a
“typical point” that is not itself counted. For the PPP, K (r) =
7r2. In regular networks, K (r) is smaller than this (at least
for small r), whereas for clustered networks, K(r) is larger
than 2.

Intuitively we expect that regular networks suffer from
smaller interference and therefore permit higher capacity,
while clustered networks suffer from lower capacity. This
paper is a first attempt to explore whether this intuition is
correct.



Fig. 1. (Left) Thomas cluster process with parameters A\, = 1,¢ = 5, and
o = 0.2. The crosses indicate the parent points. (Right) PPP with the same
intensity A\ = 5 for comparison.

D. Neyman-Scott cluster processes

Neyman-Scott cluster processes [13, Sect. 5.3] are Poisson
cluster processes that result from homogeneous independent
clustering applied to a stationary Poisson process. The parent
points form a stationary Poisson process ¢, = {x1,z2,...}
of intensity A,. The clusters N are of the form N*: = N; +
x; for each x; € ¢,. The N; are a family of identical and
independently distributed finite point sets with distribution C'
independent of the parent process. The complete process ¢ is
given by
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The daughter points of the representative cluster Ny are
scattered independently and with identical distribution F(z) =
J f(z)dz around the origin. The intensity of the cluster
process is A = A, ¢, where ¢ is the average number of points
in the representative cluster.

If the number of nodes per cluster is Poisson (with intensity
c), the resulting process is a Poisson cluster process. We will
further specialize to Matern cluster processes and Thomas
cluster processes. For Matern cluster process each point is
uniformly distributed in a ball of radius a around the origin.
In Thomas cluster process each point is scattered using a
symmetric normal distribution with variance o2 around the
origin, i.e., each child cluster forms an inhomogeneous Poisson
process with intensity
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so that the mean number of children per parent is ¢. A Thomas
cluster process is illustrated in Fig.1 (left).

Il. REGULARITY AND INTERFERENCE

Let ¢ be a stationary, isotropic, and simple point process on
R2. Each transmitter at location z; is assumed to transmit unit
power. The power received by a receiver located at ~ due to a
transmitter at x; is modeled as h;g(x; — z), where h; denotes
the fading (assumed iid), and g(«) generally represents the
power law and is usually taken to be ||z|| =%, (1 +||z||)~“ or
min{1, ]| =}.
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The conditions required for existence of the quantity I() are
discussed in [14]. Let P'C be the reduced Palm distribution
at the origin and KC,,(B) denote the reduced n-th factorial
moment measure of . B=B; x ... x B,,_1, B; € R2.

#
ICn(B):/ > 1s(a,..,2.1)PO(de).  (4)
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Note that the interference distribution need not be the same
for all points (Palm distributions are not stationary in general).
First and second moments can be determined using the sec-
ond and third order reduced factorial moments. The average
interference is given by

E'4(2) = E!O[ Z hig(xi — z)] ®)
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where K'(r) = dK(r)/dr. Since the process is stationary,
K2(B) can be expressed as [13]

Ka(B) = 55 [ e @io ®

where o(?)(z) is the second order product density?.
We expect E'°I4(y) to increase with decreasing regularity?.
Example: Thomas Cluster Process. In this case, from
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where A = )\, ¢. we obtain
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which shows that the mean interference is indeed larger than
for the PPP.

I1l. OUTAGE AND TRANSMISSION CAPACITY OF
CLUSTERED PROCESSES

A. System model and assumptions

In this section we focus on Poisson cluster processes with
transmitter locations ¢ = {z;} on R2. The receiver is assumed
to be at a distance R from the transmitter and not to belong
to the cluster process.

Let W denote the additive Gaussian noise at the receiver.
We say that the communication from a transmitter at location
x to a receiver situated at z is successful if and only if

hyg(x — z) ST or heg(x — z) > T
W+ I\ (2 (2) W+1Iy(z) ~ 1+T
Note that there is no point of the point process at z (wpl),

and ||z — z|| = R by the assumption of a transmit-receiver
distance of R.

(11)

Lintuitively, this indicates the probability that there are two points are
separated by ||z||. For PPP, it is 0(?) (z) = A2 independent of .
2Note that for g(z) = ||z|| =%, EI,(y) is diverging.



The reduced Palm distribution P; of a Neyman-Scott cluster
process ¢ is given by [13], [15]

P,=PxC) (12)

where P is the distribution of ¢, and C" is the reduced Palm
distribution of the finite representative cluster process Ng. “x”
denotes the convolution of distributions, which corresponds to
the superposition of ¢ and Ny. The Palm distribution C}, is
given by
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where T, ¢ = ¢ — z, i.e, the translated point process. Let
Y.=Y +=x
~ 1
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Let C() denote the probability distribution of the representa-
tive cluster. Using the Campbell-Mecke theorem [13], we get

= 2 [, [ e

Here N denotes the space of locally finite and simple point
sequences [13] on R2. Since the representative cluster has a
Poisson number of points, by Slivnyak’s theorem we have

! (de)eF(dz)  (15)

C.(.) = C(.). Hence
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The generating functional G(v) = E[[[,c,v(z)] of

Neyman-Scott cluster processes is given by [13]

G(v) = exp{ - )\p/ {1 - M(/ vz + y)f(y)dy)]d:c}
R2 R2

(18)

Where M(z) = >, pn2™ is the moment generating function

of the number of points in the representative cluster. Since this

number is Poisson with mean ¢,

M(z) = exp(—¢(1 — 2)). (19)
The generating functional for the representative cluster G.(v)
is given by

Gelw) = M ( /R o) f(2)de) (20)

Analyzing  interference  requires  evaluation  of
Ey(IT,eqv(x)). From (12), (17), and (18) and basic
integral manipulation, it follows that

Ey(]] v()) =
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The above equation holds when all the integrals are finite. If
further f( ) depends only on lz]| and v(z) = v(—z), then

Jre yY)dy = [ v(z —y) f(y)dy = v f, then

E('J(H v(x)) :exp{ - /11&2 [1 — M ((v* f)(m))}dx}
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B. Outage capacity

In this section we consider the outage probability and
transmission capacity for Newman-Scott cluster process, with
the number of points in each cluster Poisson with mean ¢ and
distribution function f(z). Let the transmitter be located at the
origin and the receiver at location z at distance R = ||z|| from
the transmitter. With a slight abuse of notation we shall be
using R to denote the point (R, 0). The probability of success
for this pair is given by

hag(2)
W+ I\ (0}(2)
We now assume Rayleigh fading, i.e., the received power is
exponentially distributed with the mean p determined by ¢(-)

and the distance to the transmitter. Adapting the technique
given in [7] to cluster processes yields

P(success) = ]P’( > T) (23)

PP(success) = / e 19 gP(W + I 0y (2) < 5) (24)
0

= V1, 0y (2) WL/ 9(2) 0w (1T 9(2)) , (25)

where ¢ x denotes the Laplace transform of the random
variable X. Now the question is about evaluating the Laplace
transform of the interference at Y given that there is a point
at the origin.

Urp(s) = Bple " mes o] (26)
a8 S
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At s = uT/g(R) we observe that the above expression will
be independent of the mean of the exponential distribution .

Lemma 1 (Outage probability) The probability of success-
ful transmission between the transmitter at the origin and the
receiver located at z, when W = 0 (no noise), is given by

P(success) :exp{ - Ap /Rz {1 — exp(—¢éf(R, y))}dy}

< [ esp(-c(R )Wy (28)
]R2
where
_ gz —y—R) \d
a(R) = [ T, P @
Proof: Follows from (22) and (27). O

Remarks. The first term in (28) captures the interference
without the cluster at the origin (i.e., without conditioning);
it is independent of > since the original cluster process



is stationary. The second term is the contribution of the
transmitter’s cluster; it is identical for all z with ||z|| = R,
since f and g are isotropic. So the success probability itself is
the same for all z at distance R, as expected from stationarity.

Lemma 2 (Lower bound)
P(success) > P,(A)P,(¢f*) (30)

where P,()\) denotes the success probability when ¢ is
distributed as a PPP, f* = min,—1 o | fl|pllfllq Where
1/p+1/q =1 (conj. exponents), and A = \,¢.

Proof: The first factor in (22) can be lower bounded
by the success probability in the standard PPP P,()), and
the second factor can be lower bounded by P,(cf*) (details
omitted due to space constraints).

For a > 1//7 (Matern) and ¢ > 1/v/27 (Thomas), we
get P(success) > P,(A)P,(¢). In general, f* < || flloollfll1,
which is 1/7a? for Matern and 1/2mo? for Thomas processes.
In the latter case, when f is Gaussian, f x f is also Gaussian
with variance 202, hence f* < 1/4mo?. Hence for large a or
o, we have P(success) Z P,(A). For g(z) = ||z|| =%, Py(A) is
given by [7]

P,(\) = exp(=AR*T**C(a)) (31)

where C(a) = (27T(2/a)l(1 — 2/a))/a = %csc(%r/a)
and I'(z) = [~ t*~'e~'dt is the gamma function.
Lemma 3 (Upper bound) Let 3* = sup, g2 B(R,y). Then

P(success) < P, (ﬁ) (32)

Proof: Again apply bounding techniques to (28). O

From the above two lemmata, we obtain the bounds

P,(N)Py(cf*) < P(success) < P, (ﬁ) (33)
We also have 5* < min{sup{f(z)}R?*T?/*C(a),1}. From
the above inequality P(success) — P,(\) as ¢/o — 0 or
¢/a — 0, which is intuitive.

The proof for the above lemmata also indicates that it is only
by conditioning on the event that there is a point at the origin
that the success probability of Neyman-Scott cluster process
can be lower than that of the Poisson of the same intensity.
This implies that the cluster around transmitter causes the
maximum damage. So as the receiver moves away from the
transmitter Neyman-Scott cluster process has better success
probability than that of Poisson. It is not true in general
that Neyman-Scott cluster processes have a lower success
probability than PPPs of the same intensity. For example from
Figure 3, we see that for R < 0.8, the PPP has a better success
probability than the Matern process.

A more detailed analysis reveals that a PPP with intensity
ApC has a lower success probability than that a clustered pro-
cess of the same intensity for large transmit-receiver distances.
On the other hand, for small R, the success probability of the
PPP is higher. So there exists an R* such that P(success) <
Py(A\pc) for R < R* and vice versa.

R=0.5,T=1,A =1,c =4
T T

T
Lower bound
—-— Upper bound
— — — Poisson

Cluster (Numerical Evaluation) H

001 fr—err T -
o i i i i i i
1 2 3 4 5 6 7 8
o
Fig. 2. Comparison of the bounds
a=4,T=0.1, a=0.6
0.8 T T T T
° = CIusterAp:l, c=2
\\\ —&— Poisson , A=2
07k + \\ Cluster, A =1,c=2.5
\ \ —+— Poisson, A=2.5
\

I
=)
T

=3
o

P(non-outage)
° ° °
N w »
T T T

o
B
T

1.6

Fig. 3. Comparison of success probability for Poisson and Matern processes.

C. Transmission capacity

Let P(A\,T) denote the success probability of the cluster
process with intensity A = A,¢ and threshold 7". Transmission
capacity is defined [1] as C(e,7) = (1 — e)sup,{X :
P(\T) > 1—¢€}. Let Ci(e,T) and C, (e, T) denote lower
and upper bounds to the transmission capacity.

For a PPP we have P,(\,T) = exp(—AR*T?/*C(a)).

Hence,
Cyp(e,T) —In(1 —¢) €
= " WTYec() T R0 <<l B9
For Neyman-Scott cluster processes, the intensity A = \,¢. We
first to try to consider both A, and ¢ as optimization parameters
for the transmission capacity, i.e.

C(e,T) :=sup{Apc: A\, > 0,¢ > 0, outage-constraint} (35)

without individually constraining the parent node density or
the average number of nodes in a cluster.
above

Lemma 4 (Lower bound) With the definitions,

C(e,T) > Ci(e,T) = Cp(e,T).



Proof: From the lower bound on P(success) (see Lemma
2), we have to solve for sup{\,¢} under the constraint

1 1. CyleT)
Bl 1= T o
So we have Cj(¢,T) = C,(e,T). This solution requires

Ap — o0, while ¢ — 0, such that ¢\, = C,(e,T), which
is a degenerate Poisson case. O

e +ef* <

(36)

With some more work an upper bound can be established:
Lemma 5 (Upper bound) Let p(T) = k/8 with k& =
[ B(R.y)f(y)dy, B = min{sup{f(z)} R*T**C(«),1}. For
e<1—ePT) we have

Cle,T) < Cyule,T) = Cp(e,T)
From the two lemmata follows:

@37

Theorem 6 (Transmission capacity |) For ¢ < 1 — e=?(T)
we have C(e,T) = Cp(e, T).

So for small ¢, the transmission capacity is equal to the PPP of
the same intensity. This capacity is achieved when A, — oo
and ¢ — 0. This is the scenario in which the cluster process
becomes a degenerate PPP. This is due to the definition of the
transmission capacity as C(e,T") := sup{A\p¢ : A\p > 0, >
0, outage-constraint}. Here we have two variables to optimize
over for a simple and single function optimization. So we try
to fix Ap as constant and find the transmission capacity with
respect to ¢. So the new transmission capacity is

C*(e,T) := Ap(1 — €)sup{c : ¢ > 0, outage-constraint} (38)
We can establish the following bounds for C*(e, T'):
Theorem 7 (Transmission capacity 11)

ApCop(e, T) ApCop(e, T)

A+ A — 0+ D)

<%, T) < (39)

IV. CONCLUDING REMARKS

We have derived interference and capacity results for
Neyman-Scott processes. The main conclusions are that, com-
pared to the PPP, the outage is larger for small transmission
distances but smaller for large distances, and that clustering
reduces the achievable transmission capacity.
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