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Abstract— Power control plays an important role in the
design and operation of wireless networks. In this paper, we
first define two critical metrics, transport density and channel
access time to measure the system performance. The trade-off
between these two metrics as a function of the peak power
constraint is discussed in two cases, a fixed peak power case
and an adjusted peak power case. Our analysis shows that the
adjusted peak power constraint outperforms the fixed one in
terms of both transport density and channel access time. Based
on these observations, a novel and fully distributed energy-
efficient MAC scheme with adjusted peak power constraint
is proposed to schedule the concurrent transmissions in an
efficient way. Better performance can be achieved by balancing
between transport density and channel access time. Simulation
results confirm the expected gains relative to standard MAC
schemes: the transport density is increased by more than 50%
compared to CSMA and by about a factor of 3 compared to
ALOHA.

I. INTRODUCTION

A. Motivation

In a wireless network of n links sharing the same fre-
quency bandwidth with each link corresponding to a trans-
mitter and an associated receiver, the goal of power control
is to adjust the transmit powers such that the signal-to-
interference-plus-noise ratio (SINR) of each receiver meets
a given threshold required for acceptable performance. The
SINR for the ith receiver is given by

ρi =
aiiPi∑

j 6=i aijPj + η
, (1)

where aij is the static channel gain from the jth transmitter
to the ith receiver, Pi is the power of the ith transmitter, and
η is the noise power. Each receiver has a minimal SINR
requirement ρ > 0. The iterative distributed power control
algorithm [1]

P (k + 1) = FP (k) + u, (2)

converges to a minimal power solution P ∗, where P =
(P1, · · · , Pn)T ∈ Rn+ (denoted as P > 0) is the column

vector of transmit power, u =
(
ρη
a11
, ρηa22 , . . . ,

ρη
ann

)T
, and F

is a matrix with

Fij =

{
0, if i = j
ρaij
aii

, if i 6= j
(3)
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where i, j ∈ {1, 2, · · · , n}. (2) can be rewritten in the form

Pi(k + 1) =
ρ

ρi(k)
Pi(k), (4)

where ρi(k) is the current SINR for ith receiver at time k,
and Pi(k) is the power of the ith transmitter at time k.

The distributed power control algorithm with peak power
constraint has been proposed in [2] as follows

Pi(k + 1) = min

{
ρ

ρi(k)
Pi(k), pmax

}
, (5)

where pmax is the peak power constraint for all transmitters.
However, the problem using (5) is that a transmitter may

hit its peak power at some iteration point with its receiver’s
SINR less than the desired threshold [3]. As a result, the
transmitters cannot guarantee that their associated receivers
achieve the desired SINR threshold even though they con-
tinue to transmit at peak power while the power of those
nodes that satisfy the SINR condition at the same iteration
point will converge to a feasible solution less than the peak
power constraint. In other words, those links that transmit at
peak power are undesirable in the network since they cannot
meet their SINR threshold but still cause interference to the
other links. From a view of energy-efficient MAC design,
this is doubly wasteful: on the one hand, transmitting at
peak power in vain is very energy-inefficient; on the other,
it causes high interference. Hence, it is of great importance
to design a MAC scheme with better power control. For a
pool of link candidates, we update the nodes’ transmit power
using (4) and shut down any node whose transmit power hits
the peak power. After some iteration, the remaining links
will converge to some feasible power within the peak power
constraints.

The key questions now are: (i) what peak power con-
straints should we choose, a fixed peak power constraint for
every node or a different peak power constraint for different
nodes? (ii) Given a large number of link candidates, how can
we schedule more concurrent transmissions in a faster way,
i.e., is there a tradeoff between scheduling and efficiency?
In this paper, we will address these questions.

B. Related Work

Much of the study on cellular network power control
started in the 1990s such as in [1], [4], [5]. An efficient and



distributed power control algorithm for cellular systems, now
commonly referred to as the Foschini-Miljanic algorithm,
was provided in [1]. [6], [7] proposed joint power control and
scheduling algorithms. Moreover, constrained power control
has been studied in [8], [9] since the maximum transmit
power of a mobile user is limited. A heuristic scheduling
scheme is provided in [6] to determine a maximum subset of
concurrently active links by shutting down the link with the
minimum SINR until all the SINR requirements are satisfied.
However, it is not distributed since one node needs all the
SINR information from other nodes in order to decide if it
can transmit or not. In [10] we proposed a MAC scheme that
includes the peak power constraint in a natural way. Similar
idea is applied to the MAC scheme in this paper, which is
fully distributed and less complex.

II. SYSTEM MODEL AND PERFORMANCE METRICS

A. System Model

We consider a wireless network on the plane R2 where n
transmitters are uniformly distributed in a l × l square and
their associated receivers are uniformly located in the circle
centered at these transmitters with radius Ri iid Rayleigh
distributed with expectation E [Ri]. Assume that the static
channel gain is aij = max

{(
d0
dij

)γ
, 1
}

, where γ is the
path loss exponent, d0 is the normalization distance, and dij
is the distance between transmitter j and receiver i. Also,
assume that all nodes in the wireless network share the same
frequency bandwidth.

B. Channel Access Time

In [11], the concept of contractive interference functions
is introduced to study the distributed power control law.
[11, Theorem 1] states that if I is a contractive interference
function, then it has a unique fixed point P ∗ and for every
initial vector P (0), the sequence P (k + 1) = I (P (k))
converges geometrically to P ∗ as follows ‖P (k)−P ∗‖v∞ ≤
ck‖P (0) − P ∗‖v∞, where ‖x‖v∞ = maxi

∣∣∣xi

vi

∣∣∣ for a given
vector v > 0 and I(P (k)) = FP (k) + u, or, elementwise,
Ii(P (k)) =

ρ
ρi(k)

Pi(k) for (4). In the following, considering
v = 1 results in ‖x‖∞ = maxi |xi|.

Convergence time is a critical parameter in the evaluation
of a distributed power control algorithm. In [11], the
convergence time Kδ

1 is defined as follows:

Definition 1. [11] The convergence time Kδ is defined to
be the smallest k such that ‖P (k)− P ∗‖∞ ≤ δ.

Note that ‖P (k) − P ∗‖∞ ≤ ck‖P (0) − P ∗‖∞. Letting
ck‖P (0) − P ∗‖∞ ≤ δ and if c < 1, it is shown that
Kδ =

⌈
1

ln c ln
δ

‖P (0)−P∗‖∞

⌉
, where dxe denotes the smallest

integer great than x.
We can learn two things from this definition: (i) From

the mathematical definition of convergence, the fact that
P (k) converges to P ∗ is equivalent to the statement that

1Kδ is called the convergence time of the iteration in [11]. We use the
convergence time in this paper for brevity and clarity.

for ∀δ > 0, there is an integer Kδ such that k ≥ Kδ

implies ‖P (k) − P ∗‖∞ ≤ δ. Therefore, the convergence
time condition follows from the convergence directly. (ii)
This definition enables us to obtain a theoretical convergence
time for the distributed power control algorithm. From
[1], P ∗ = (I − F )−1 u as long as the Perron–Frobenius
eigenvalue of F is less than 1. However, the information
of the theoretical minimal power solution P ∗ is usually not
available to the nodes if there is no centralized controller.
Since the SINR requirement ρ is known to all nodes, we can
redefine the convergence time similarly and extend it to an
energy-efficient MAC scheme where power control is used
in the channel access phase to decide what subset of links is
good to transmit. We call the time that the network spends
in this phase the channel access time which is defined as
follows:

Definition 2. (Channel Access Time) The channel access
time Kδ′ is defined to be the smallest k such that ‖ρ(k) −
ρ‖∞ ≤ ε, where ρ(k) = [ρ1(k), ρ2(k), · · · , ρn(k)] and ρ =
ρ1n×1.

Next, we will show that these two definitions are equiva-
lent.

Lemma 3. Kε and Kδ are equivalent in the sense that there
exists an ε(δ) such that Kε(δ) = Kδ .

Proof: First, note that for any k ≥ 1,

Pi(k) = Ii(P (k − 1))

= ρ

∑
j 6=i aijPj(k − 1) + η

aii

> ρ
η

aii

≥ ρ
η

maxi {aii}
.

Hence, for k ≥ 0 and ∀i ∈ {1, 2, · · · , n}, Pi(k) is lower
bounded by pmin = min

{
ρ η
maxi{aii} ,mini {Pi(0)}

}
. As-

sume that the initial power Pi(0) > 0 for ∀i ∈ {1, 2, · · · , n}.
Hence, pmin > 0.

‖ρ(k)− ρ‖∞ = max
i
{|ρi(k)− ρ|}

= max
i

{∣∣∣∣ ρPi(k)

Pi(k + 1)
− ρ
∣∣∣∣}

= ρmax
i

{∣∣∣∣Pi(k)− Pi(k + 1)

Pi(k + 1)

∣∣∣∣}
≤ ρ

pmin
max
i
{|Pi(k)− Pi(k + 1)|}

≤ ρ

pmin
max
i
{|Pi(k)− P ∗i |}+

ρ

pmin
max
i
{|Pi(k + 1)− P ∗i |}

=
ρ

pmin
‖P (k)− P ∗‖∞ +

ρ

pmin
‖P (k + 1)− P ∗‖∞

≤ ρ (1 + c)

pmin
‖P (k)− P ∗‖∞.



Hence, choosing ε = ρ(1+c)
pmin

δ and ‖P (k) − P ∗‖∞ ≤ δ
implies ‖ρ(k) − ρ‖∞ ≤ ε. By definition, it is possible to
have Kε = Kδ .

This holds intuitively since that P (k) converges to P ∗

implies that ρ(k) converges to ρ if the powers are updated
using (4). Therefore, the channel access time can be obtained
once every receiver’s SINR is within the error range ε which
is much simpler than the form in [11]. Another difference
is that the original definition is transmitter-centric while the
channel access time is receiver-centric.

C. Transport Density

Similarly to the transport capacity in [12], [13], we will
use the following variation of the transport density in [14].

Definition 4. (Transport Density) The transport density is
defined as the sum of the products of bits and the distances
of all scheduled links whose SINR satisfies ‖ρ(k)−ρ‖∞ ≤ ε,
averaged over the network realizations. It is denoted as T .
Assume that all n links in a wireless network are located
within a l× l region and within a time slot, a link will carry
the same number of bits (W ) regardless of its length as long
as it can be scheduled successfully, i.e., its SINR requirement
can be satisfied. Then, the transport density is

T =
W

l2
E

[
n∑
i=1

dii1{|ρi(k)−ρ|≤ε}

]
,

where 1A is the indicator function and dii is the link distance
of link i.

Its unit is bits · m/m2. Note that ρ(k) → ρ can only be
achieved in the limit as k →∞. Therefore, it is reasonable
to loosen the convergence condition to be that the error of
SINRs is within some range ε� 1.

This metric is a precise indicator of a network’s capacity.
For link scheduling, maximizing the transport density is more
meaningful than maximizing the number of successfully
scheduled links as in [10] since a longer link contributes
more to the transport capacity than a shorter link.

III. ENERGY-EFFICIENT MAC SCHEME WITH PEAK
POWER CONSTRAINT

The goal of our work is to design an energy efficient MAC
scheme with a peak power constraint that achieves a high
transport density at small channel access time.

A. A Novel MAC Scheme

Our proposed MAC scheme with Peak Power Constraint
(MAC/PPC) operates in a totally distributed way. Each
transmitter only needs to know its channel gain and its
associated receiver’s SINR. No information from other nodes
is needed. Compared to the D2PC-MAC scheme in [10],
this MAC scheme is fully distributed and less complex.
Each transmitter makes the decision to transmit or not
independently by checking if its transmit power is greater
than its peak power constraint.

In the algorithm, we implement the power control algo-
rithm in (4) and eliminate the link i as soon as its transmit

power reaches pi,max. Thus, the remaining links can satisfy
their SINR conditions, and their powers will converge to
some P ∗i < pi,max. Consequently, the remaining links
constitute the subset of links that can transmit concurrently
with minimal power levels. The details are given in the
following algorithm:

Algorithm 1 MAC/PPC
1: Run the distributed power control algorithm for a given

set S of n links with initial power Pi(0) = ρη/aii;
2: If any link i’s power Pi(k) ≥ pi,max, shut down the link

immediately;
Run the algorithm until the SINRs for the remaining
links satisfy the condition ‖ρ(k)−ρ‖∞ ≤ ε for a given
ε

In Algorithm 1, the choice of peak power is a key
parameter that will affect the system performance. There
exists a trade-off between the transport density and the
channel access time when choosing different peak power in
Algorithm 1 as we discuss in the following.

B. Fixed Peak Power Case

To see how the choice of peak power affects the transport
density and the channel access time, we first set pi,max to
be the same peak power pmax for each node.

Fig. 1 shows the influence of different peak power pmax

on the transport density and channel access time when
jointly scheduling the links and updating the powers using
Algorithm 1 for a fixed number of total links. As illustrated
in Fig. 1(a), the transport density is a concave function of the
peak power pmax. Larger pmax does not necessarily generate
higher transport density. The maximum is achieved around
15 in this setup. On the other hand, the channel access time
always increases with the peak power. That means, it is
undesirable to choose the peak power too large since it will
increase the channel access time without any benefit for the
transport density. Hence, the peak power parameter needs
to be tuned such that the transport density and the channel
access time are well balanced. Here, in our setup, the range
between [8, 20] is a good choice.

C. Adjusted Peak Power Case

Fig. 1 shows the case of fixed peak power constraint for
every node. It might be inefficient since the link distances are
different. Normally, a long link tends to need a higher power
level while lower power likely guarantees the convergence
of short links’ SINR. So when a short link cannot coexist
with the other links, it will take more time to shut it down
if the same (and usually large for short links) peak power
constraint is set for every node. Therefore, it is preferable if
the peak power constraint can be adjusted based on the link
distance or a function of link distance, i.e., channel gain aii.
A candidate is to set

pi,max = min {βρη/aii, pmax} , (6)
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Fig. 1: Transport density and channel access time as a function of pmax with n = 50, l = 20, E[Ri] = 1, ρ = 12 dB, ε = ρ/100, γ = 4,
d0 = 0.1, η = 10−6, Pi(0) = ρη/aii. The results are averaged over 10000 realizations for each pmax.
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Fig. 2: Transport density and channel access time as a function of adjusted peak power parameter β with n = 50, l = 20, E[Ri] = 1,
ρ = 12 dB, ε = ρ/100, γ = 4, d0 = 0.1, η = 10−6, Pi(0) = ρη/aii, pmax = 10. The results are averaged over 10000 realizations for
each β.

where pi,max is the individual peak power constraint for node
i, pmax is the peak power choice mentioned in the fixed peak
power case and β is a parameter that adjusts the dynamic
range of this variable.

Fig. 2 shows the channel access time and transport density
as a function of parameter β given a fixed number of total
links and compares the adjusted peak power case with the
fixed peak power case. The fixed peak power case has
nothing to do with the parameter β and therefore is flat.
In Fig. 2(a), it is illustrated that the transport density using
adjusted peak power in (6) is better than that using the fixed
peak power when β is greater than 45. There is no penalty for
the performance gain in transport density. On the contrary,
the channel access time is dramatically improved compared
to the fixed peak power case. Therefore, it can increase the
transport density and reduce the channel access time at the
same time by using adjusted peak power. As a result, it can
outperform the fixed peak power case easily.

Fig. 3 illustrates the trade-off between the channel access

time and transport density with varied parameter β and pmax.
For fixed peak power case, a longer channel access time
is needed to obtain the maximal transport density. Also,
this plot can serve as a tool for MAC design, i.e., given an
acceptable channel access time and transport density, pmax

and β can be chosen properly based on this plot. Moreover,
the upper envelope of the curves with different β (illustrated
as the dashed curve in Fig. 3) can serve as the best achievable
performance curve for n = 50. In a wireless system with any
number of links, a similar performance curve can be obtained
for MAC design to select proper values for the parameters
pmax and β.

Remarks.

• ‖ρ(k)−ρ‖∞ ≤ ε is not the strict convergence condition.
It might occur that there is no power solution even
if ‖ρ(k) − ρ‖∞ ≤ ε is satisfied or no link gets
scheduled. However, simulation shows that for n = 50,
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ρη/aii, β = 60. The dashed curve is the upper envelope for all β.
The results are averaged over 10000 realizations.

the estimated convergence probability (defined in [15])
for the scheduled links is 99.4% for the fixed peak
power case and 99.9% for the adjusted peak power case
which is surprisingly good. This issue can be solved
simply by setting the desired SINR slightly greater than
the SINR requirement such that the condition implies
convergence.

• A wireless network usually has a power constraint that
is limited by hardware or regulations. Here, we assume
that both the fixed peak power and the adjusted peak
power discussed are no larger than that hard power
constraint.

IV. COMPARISON WITH ALOHA AND CSMA

For the purpose of comparison, we use the CSMA scheme
implemented as follows: if a receiver’s interference power
level is smaller than a threshold, the receiver sends a feed-
back signal to its transmitter to set the transmit power to
be

Pi =
αρη

aii
, (7)

where α > 1 serves as a marginal protection to tolerate
interference from other links; otherwise, it is impossible to
satisfy the receiver i’s SINR. The CSMA scheme is described
in detail in [10]. Denote this CSMA scheme above as Rx-
CSMA since it uses the receiver to “sense” the channel.
Similarly, Tx-CSMA lets the transmitter detect the power
level and compares it to its predefined threshold to decide if
it can transmit. Also, define ALOHA as scheduling each link
independently with probability p. ALOHA can be optimized
by choosing p as a function of the total number of links n.
The ALOHA’s transport density is obtained by optimizing
over different p, i.e., TALOHA = maxp∈[0,1] TALOHA(p),
where TALOHA(p) is the transport density of ALOHA for
a given p. The power that ALOHA uses is also given in (7).
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Fig. 4: Transport density of successfully scheduled links vs. the
number of total links for differenct schemes with α = 1.5, l = 20,
E[Ri] = 1, ρ = 12 dB, ε = ρ/100, γ = 4, d0 = 0.1, η = 10−6,
Pi(0) = ρη/aii, β = 60, pmax = 10. For each n, the results are
averaged over 10000 realizations.

Fig. 4 shows the transport density of different schemes.
ALOHA has the smallest transport density due to its random-
ness. Rx-CSMA and Tx-CSMA roughly converge to a max-
imum asymptotically since they essentially create a guard
zone around the receivers or transmitters. The figure verifies
the statement in [14] that CSMA can increase the spatial
reuse by about a factor of 2 compared to ALOHA. MAC/PPC
can obtain a higher transport density than ALOHA, Rx-
CSMA and Tx-CSMA for most cases. For larger number of
total links (n), the transport density for MAC/PPC decreases.
It is mainly because the links are too dense and cause too
much interference to each other. As a result, the MAC/PPC
will shut down most of the links at the very first few
iterations even if some of them may converge within the
range of pmax later. Even although the transport density of
MAC/PPC scheme for larger number of total links decreases,
the channel access time is also reduced accordingly as in
Fig. 5. The spatial reuse can be increased by as much as
more than 50% compared to CSMA and about a factor of 3
compared to ALOHA.

Remarks.
• For larger number of total links, we can use random

thinning, i.e. ALOHA, such that the active number
of links in the network is the same as the number
of links that achieves the maximal transport density in
Fig. 4. Then the MAC/PPC is employed. As a result, a
consistently high transport density could be achieved.

• The values of β and pmax used in the simulations are
not optimally chosen. We can formulate an optimiza-
tion problem to search for the values of these two
parameters such that the transport density is maximized
with channel access time smaller than some threshold.
Or we can define a new metric transport efficiency =
transport density/channel access time to combine these
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Fig. 5: Channel access time of successfully scheduled links vs.
the number of total links with l = 20, E[Ri] = 1, ρ = 12 dB,
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pmax = 10. The results are averaged over 10000 realizations.

two system performance metrics. Its advantage is that
only one metric needs to be optimized.

• The initial power vector is set to be Pi(0) = ρη/aii. It
is the minimal power required for node if all other nodes
are idle. The choice builds the connection between
the initial power vector and the adjusted peak power
constraint, i.e., pi,max = min {βPi(0), pmax}. The
initial power vector can reduce the channel access time
if it is sufficiently close to the optimal power vector [3].
A better choice might be available.

V. CONCLUSIONS

In this paper, we defined two critical performance metrics,
transport density and channel access time and discussed
the trade-off between them. A novel and distributed MAC
scheme was proposed to schedule more concurrent trans-
missions and therefore increase the spatial reuse. Nodes
are allowed to transmit only if their power is lower than
some adjusted peak power constraint. With this specially
selected constraint, this MAC scheme is easy to implement
and fast to converge to minimal powers. Simulation results
provide insight into the design of MAC protocol. For
wireless networks that are sensitive to delay, our proposed
MAC scheme is desirable. Moreover, our MAC scheme only
needs the power level and the SINR from its own receiver
and therefore is fully distributed and not computationally
complex.
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