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Abstract—In ad hoc networks, performance objectives are of-
ten in contention with each other. Indeed, due to the transmission
errors incurred over wireless channels, it is difficult to achieve
a high rate of transmission in conjunction with reliable delivery
of data and low latency. In order to obtain favorable throughput
and delay performances, the system may choose to compromise
on its reliability and have nodes forcibly dropping a small fraction
of packets. The focus of this paper is on the characterization of
tradeoffs between the achievable throughput, end-to-end delay
and reliability in wireless networks with random access.

We consider a multihop ad hoc network comprising several
source-destination pairs communicating wirelessly via the slotted
ALOHA channel access scheme. Employing ideas from statistical
mechanics, we present an analytical framework for evaluating the
throughput, end-to-end delay and reliability performances of the
system. The main findings of this paper are (a) when the systemis
noise-limited, dropping a small fraction of packets in the network
leads to a smaller end-to-end delay though the throughput suffers
as well, and (b) when the system is interference-limited, however,
there exist regimes where dropping a few packets in the network
may actually reduce the end-to-end delay as well as increasethe
system throughput. We also present some empirical results which
corroborate the results obtained analytically.

I. I NTRODUCTION

A. Motivation

An ad hoc network comprises several source-destination
node pairs that can communicate wirelessly in a decentralized
fashion owing to their self-organizing capabilities. The nodes
are energy-limited, thus they typically employ multihop rout-
ing, wherein relay nodes assist the delivery of packets across
nodes lying far away from each other. Ad hoc networks are
touted as being extremely promising for several reasons, such
as being easily and rapidly deployable and reconfigurable,
and also for the fact that they lack single points of failure
compared to traditional network architectures, such as cellular
networks and WLANs. In spite of not having a centralized
infrastructure, these systems are intended to provide reliable
broadband services across multiple hops, for example in mesh
networks [1].

Performance goals in wireless networks, however, often
conflict with one another. For instance, it is hardly possible
to guarantee a high rate of transmission, i.e., throughput (or
a small end-to-end delay) in conjunction with highly reliable
packet delivery, due to the random transmission errors caused
by the unpredictable behavior of the wireless channel. In

particular, when the link qualities in the system are poor,
packets require to be retransmitted several times across hops
in order to assure reliable end-to-end delivery. This, however,
leads to queueing of packets at the relay nodes, resulting inan
unreasonably large average end-to-end delay, as well as a low
rate of transmission. Evidently, there exist tradeoffs between
the throughput, the end-to-end delay and reliability of ad hoc
networks.

In scenarios where reliable delivery of packets is not very
critical, a viable solution to balance end-to-end delay and
reliability is to have the nodes forcibly drop a small fraction
of packets. That way, even though the network reliability is
reduced slightly, the queueing delay of packets can be lessened
considerably. In order to determine the optimal operating point
of the system and effectively study the achievable quality of
service offered by the network, it is important to analyze
the throughput-delay-reliability (TDR) tradeoffs, whichis the
primary focus of this paper.

We consider a multihop wireless network consisting of sev-
eral source-destination pairs communicating with each other
employing the slotted ALOHA channel access mechanism,
and present an analytical framework that helps quantify the
TDR performances of the system. We find that while in the
noise-limited regime, dropping a small fraction of packetsin
the network leads to a smaller end-to-end delay at the cost
of reduced throughput, in the interference-limited scenario,
dropping a few packets in the network can help mitigate the
interference in the network leading to an increased throughput.
We also present some empirical (simulation-based) results
which closely match the values obtained analytically.

B. Related Work

Scaling laws governing the tradeoff between throughput and
delay in wireless networks comprising several users are a fairly
well-investigated topic [2], [3]. More recently, the effect of
dropping packets on the delay and throughput performance of
single-hop wireless networks has been studied [4]. However,
little work exists towards characterizing TDR tradeoffs inthe
context of multihop wireless network flows comprising a finite
number of relays.

In [5], the authors evaluate the delay-reliability tradeoff in
a wireless line network for a bounded delay packet dropping
strategy employing queueing theory. However, their analysis



neglects the dependence of the link success probabilities on
the packet dropping event. In [6], the author uses the notion
of transmission capacity to characterize the TDR tradeoffsin
wireless networks employing a packet dropping scheme based
on limited retransmissions. However, it is assumed that all
nodes in the network are backlogged, i.e, always have packets
to transmit.

In this work, we use some ideas from the literature on
statistical mechanics, in particular the totally asymmetric sim-
ple exclusion process, a particle flow model, and the mean-
field approximation. Employing these tools, we present a
simple framework to analyze ad hoc networks, which also
has the advantage of obviating the often-unwieldy queueing
theory-based analysis (that is typically used to study multihop
networks). To the best of our knowledge, this is the first
attempt at quantifying the TDR performances of ALOHA-
based multihop wireless networks, all together, whilst explic-
itly taking into consideration the nodes’ buffer occupancies
and the effect of dropping packets on the interference in the
network.

The rest of the paper is organized as follows. Section II
describes the considered ad hoc network model, and also
outlines the channel access, routing and buffering schemes
considered in this paper. Section III studies the TDR tradeoffs
in ad hoc networks, treating the noise-limited and interference-
limited regimes separately. Section IV concludes the paper.

II. SYSTEM MODEL

We consider an ad hoc network comprised of an infinite
number of source nodes, each of which intends to establish a
(in general, multihop) flow of packets to a certain destination
node lasting over an infinite duration of time. This framework
is suitable for modeling ad hoc networks since the aggregate
traffic in an ad hoc network can always be decomposed into
several unicast multihop flows. The distribution of source
nodes is assumed to be a homogeneous Poisson point process
(PPP) on the infinite planeR2 with density δ. Additionally,
the network consists of a countably infinite population of
other nodes (potential relays and destinations) arranged as a
homogeneous PPP with density1−δ. Thus, the total density of
the network is (without loss of generality) equal to unity. For
each source node, the destination node is chosen at a random
orientation, and at a random finite distance.

A. Routing Strategy

It is assumed that each source knows its own location and
the direction towards its intended destination. Packets are then
routed in a general manner as follows: each node that receives
a packet relays it to itsnth-nearest-neighbor (n ≥ 1) in a sector
of angleφ ∈ [0, π], i.e., the next-hop node is thenth-nearest-
neighbor that lies within±φ/2 of the axis to the destination.
Fig. 1 (top) illustrates the case of nearest-neighbor (n = 1)
routing.

A sample realization of the system model comprising sev-
eral source-destination pairs is shown in Fig. 1 (bottom) with
δ = 0.05 and φ = π/2. In the figure, each destination
is assumed to be located5 nearest-neighbor (n = 1) hops
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Fig. 1. (Top) Illustration of nearest-neighbor routing in asector of angle
±φ/2 along the axis to the destination for an arbitrary flow. The packet is
routed from nodei to nodei + 1, which then relays it to nodei + 2, and so
on. (Bottom) A sample realization of the ad hoc network modelcomprising
several flows (marked by thick solid lines). The circles depict the sources,
while the triangles represent destinations. In this illustration, each destination
is assumed to be located5 nearest-neighbor (n = 1) hops away from its
corresponding source node. The density of source nodes isδ = 0.05, and the
routing sector angle isφ = π/2.

away from its corresponding source. Note that in general, the
same common relay node may be a part of multiple flows, in
particular whenδ is large.

We take that all nodes use the same frequency band such
that simultaneous transmissions interfere with each other.
Furthermore, no power control is employed; we simply assume
that the transmit power at each transmitting node is equal
to unity. Also, we model the attenuation in each link as the
product of a large-scale path loss with exponentγ and an i.i.d.
Rayleigh fading component. Time is slotted, and transmission
attempts occur at slot boundaries. Now, letΦ = {xi} denote
the set of transmitters in an arbitrary time slot. Then, the total
received power at locationy on the plane in that time slot is

IΦ(y) =
∑

x∈Φ

Gxyg(x− y),

whereGxy denotes the (power) fading gain of the wireless
link betweenx and y, and g(z) = ‖z‖−γ. We define the
transmission of a packet from a node located atxj to another
located at y to experience an outage if and only if the
instantaneous signal-to-interference and noise-ratio (SINR) at



y is smaller than a thresholdΘ, i.e., the probability of a
successful transmission at the receiver aty is given by

ps = P

(

Gxjy‖xj − y‖−γ

N0 + IΦ\{xj}(y)
≥ Θ

)

, (1)

whereN0 denotes the noise (AWGN) variance.

B. Buffering and Transmission Policy

We now introduce a buffering and transmission policy for
each flow in the network, which obeys the following two rules.

1) All the buffering in the network is performed at the
source nodes, while each relay node has a buffer size
of unity (for each flow it is associated with). Thus, all
the queueing occurs at the source, while relay nodes
may hold at most one packet (per flow). We also take
that the source nodes are backlogged, i.e., they always
have packets to transmit.

2) Incoming transmissions are not accepted by relays if
their buffer already contains a packet.

The two aforementioned rules together mean that a suc-
cessful transmission may occur only when a node has a
packet and its target node’s buffer is empty. Employing this
transmission scheme prevent packets from getting closely
spaced, and in consequence, efficiently regulates traffic along
the flows in a completely distributed manner. Furthermore,
it prevents the end-to-end delay from getting excessive since
packets never get stacked up at buffers, in particular when the
link reliabilities are small. A more detailed discussion ofthe
benefits of using this single-buffer transmission scheme can be
found in our previous work [7] (and the references therein).

We remark that since the distribution of nodes is homoge-
neous, it is sufficient to analyze a “typical” flow in the system.
Fig. 2 depicts the schematic of a representative flow in the
network acrossN relays. The source node is numbered 0,
while the relay nodes are numbered1 throughN . All the
results in this paper are obtained for an “average” network,
that is the one obtained upon averaging over all possible
realizations of the channels and the underlying point processes.

For a typical flow acrossN relay nodes, we denote the
occupancyof node i’s buffer (corresponding to that flow) in
time slot t by τi[t], 0 ≤ i ≤ N . We takeτi[t] = 1 when
nodei’s buffer is occupied, i.e., it has a packet, andτi[t] = 0
otherwise. Since the source node is always backlogged,τ0[t] =
1, ∀t. Note that a packet may successfully hop between nodes
i and i+ 1 in time slott only if {τi[t], τi+1[t]} = {1, 0}, and
furthermore, if its transmission is successful, which happens
with probability (w.p.)ps.

C. MAC Scheme: slotted ALOHA

We assume that transmissions in the network are completely
uncoordinated; the transmission scheme is slotted ALOHA.
Accordingly, in each time slot, every nodehaving a packet
independently transmits with some (contention) probability q
or remains idle w.p.1 − q.
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Fig. 2. Depiction of a “typical” flow with the link reliabilities ps. The
source node (numbered0) is always backlogged and has a large buffer that
feeds packets required to be delivered. Relays1, . . . , N have buffer sizes of
unity. In the above figure, filled circled represent nodes with packets while
empty circles indicate nodes with empty buffers. For this snapshot, we see that
a transmission from nodeN −2 to nodeN −1 will fail becauseτN−1 = 1.

D. Performance Metrics

We are interested in the performance of the ad hoc network
in its steady state(ast→ ∞). The performance of the system
is characterized based on three end-to-end metrics, throughput,
mean end-to-end delay and reliability, each evaluated for a
typical flow at steady state. They are formally defined as
follows.

• The per-flow throughput T , is defined as the average
number of packets successfully delivered (to the destina-
tion) in unit time, along a typical flow in the network.

• Themean end-to-end delay,D, is defined as the average
number of time slots it takes for the packet at the head of
the source node1 to successfully hop to the destination.

• The end-to-end reliability R is defined as the fraction
of packets generated at the source that are eventually
successfully delivered. By definition,0 ≤ R ≤ 1.

III. TDR CHARACTERIZATION FOR THE ALOHA- BASED

WIRELESSNETWORK

In this section, we introduce a framework based on mean-
field theory that we will employ to characterize the TDR
tradeoffs for the considered ad hoc network model. For an-
alytical tractability, we neglect the interactions between flows
that occur via common relays2. We treat the noise-limited and
interference-limited regimes separately.

A. The Noise-limited Regime

We first consider the scenario where the noise power in the
network is much stronger than the interference. This occurs,
for instance, when the source densityδ is small, or when the
path loss exponentγ is large. Transmission success events
across links are independent of the occupancies of other nodes
in the network and occur w.p.ps = P(SNR≥ Θ).

1) Case 1: R = 1: We first consider the case with perfect
reliability: all packets along each flow are retransmitted until
they are successfully received. As described in our prior work
[7], whenR = 1, the transport of packets along each route

1Note that we consider only thein-network delay since the source nodes
are always backlogged.

2In other words, it is not possible for the same common relay node transmit
or receive multiple packets (corresponding to different flows) simultaneously.
This assumption is quite reasonable for small values of the contention
parameterq or smallδ (when the flows in the network themselves are sparse).



exhibits an analogy to a particle flow model in statistical
mechanics, namely the totally asymmetric simple exclusion
process (TASEP) [8]. We now use some known results from
the TASEP literature to analyze the TDR characteristics.

As proven in [7], in the long-time limit (t ≫ 0), the
slotted ALOHA-based flow reaches a steady state wherein the
probabilitiesP(τi[t] = 0) (and P(τi[t] = 1)), 0 ≤ i ≤ N ,
become temporally stationary (independent of time). Hereafter,
we use the simplified notationτi :, limt→∞ τi[t] to denote
the steady state occupancy of nodei. Sinceτi ∈ {0, 1}, we
haveP(τi = 1) = Eτi and P(τi = 0) = 1 − Eτi. From [7,
Eqn. 12], we have

Eτi =
(1 − qps)

∑N−i
n=0

B(N − n)B(n) + qpsB(N)

B(N + 1) + qpsB(N)
, (2)

whereB(0) = 1, and

B(k) =

k−1
∑

j=0

1

k

(

k

j

)(

k

j + 1

)

(1 − qps)
j , k > 0.

The steady state occupancies depend non-trivially on the
product termqps, as depicted in Fig. 3. Also, notice the
particle-hole symmetry3, i.e., Eτi ≡ 1 − EτN+1−i. Hence, in
a system with an odd number of relays, the middle relay has
an occupancy of exactly1/2. The average number of packets
in the flow at steady state is

∑N
i=0

Eτi = 1 +N/2.
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Fig. 3. Average node occupancies at steady state for an ALOHA-based flow
with N = 5 andR = 1. Notice that they depend non-trivially on the product
term qps. Notice the particle-hole symmetry:Eτi = 1 − EτN+1−i .

The following lemma quantifies the throughput and mean
end-to-end delay across a typical flow in closed-form.

Lemma 3.1:For an ALOHA-based line flow alongN re-
lays, the steady state throughput at full reliability (R = 1)
is

T =
qpsB(N)

B(N + 1) + qpsB(N)
, (3)

while the average end-to-end delay is given by

D = (1 +N/2)/T. (4)

3Particles (packets) moving towards the destination is equivalent to holes
(empty buffers) moving towards the source.

Proof: Now, at any instant of time (in steady state),
relay nodeN ’s buffer has a packet w.p.τN ; furthermore, it
transmits w.p.q, and the transmission succeeds w.p.ps. Thus,
the throughput is simply given byT = qpsEτN , which is
identical to (3).
Recall that at steady state, the average number of packets in
the flow is

∑N
i=0

Eτ = 1 + N/2. By Little’s theorem [9],
D =

∑N
i=0

Eτi/T .
Evidently,T → 0 while D → ∞ asps → 0. Also, asN →

∞, T →
(

1 −√
1 − qps

)

/2 [7, Eqn. 14]. It is interesting to
note that irrespective of the values ofq andps, the product of
throughput and average delay for theR = 1 case is equal to
the constant1 +N/2.

Fig. 4 plots a portion of the TDR region for the slotted
ALOHA-based flow withR = 1 and q = 0.2, for different
values ofN ; they are essentially hyperbolas along theR = 1
axis. For each value ofN , the curves are obtained by plotting
the throughput (3) and delay (4) for different values ofps.
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Fig. 4. A portion of the region (forps = {0.1, . . . , 1}) depicting the mean
end-to-end delay versus the throughput for the ALOHA-basednetwork, along
the R = 1 axis. For each value ofN , the TD curve is a hyperbola.

2) Case 2: R < 1: For the case with100% reliability, the
delay and throughput performances of the network are very
poor, in particular when the link reliabilityps is small. In
order to achieve favorable TDR tradeoffs, relay nodes may
instead choose to drop a small fraction of packets. In the rest
of this paper, we consider astochastic packet dropping scheme
which is straightforward to implement in a distributed fashion
(with zero overhead). Accordingly, at every time slot, each
node having a packet decides to drop the packet in its buffer
or not stochastically (based on the toss outcome of a biased
coin).

In this subsection, we evaluate the throughput, delay and
reliability performances of the ALOHA-based network in
the noise-limited regime. We show that dropping a small
fraction of packets helps lessen the end-to-end delay (due
to reduced queueing); however, it also results in a decreased
flow throughput. We now provide a mean-field theory-based
analytical framework for analyzing the TDR region of the
wireless network.

Let ξ denote the packet dropping probability (or the bias



of the tossed coins). In an arbitrary time slott → t + 1, the
following events can alter the configuration of nodei.

1) If node i, 0 ≤ i ≤ N has a packet in its buffer,
• it decides to drop its packet w.p.ξ.
• it decides to transmit its packet w.p.(1 − ξ)q

(product of the packet-retention and the contention
probabilities), and the packet hops to nodei+ 1 (if
its buffer is empty) w.p.ps.

2) If nodei− 1 (1 ≤ i ≤ N +1) has a packet in its buffer,
it chooses to transmit (w.p.(1−ξ)q), and its packet hops
to nodei (provided its buffer is empty) w.p.ps.

In case 1), we haveτi[t] = 1 andτi[t+ 1] = 0. Likewise, the
occurrence of 2) implies thatτi[t] = 0 while τi[t+ 1] = 1.

Following 1) and 2), the evolution of the node occupancies,
τi for 1 ≤ i ≤ N takes the form

∆τi[t] = −ξiτi − (1 − ξi)qiτi(1 − τi+1[t])ps,i

+(1 − ξi−1)qi−1τi−1[t](1 − τi[t])ps,i−1, (5)

where∆τi[t] = τi[t+1]−τi[t], and{ξi, ξi−1}, {qi, qi−1}, and
{ps,i, ps,i−1} are all independent Bernoulli random variable
pairs with meansξ, q and ps respectively. At steady state,
P(limt→∞ τi[t] = 1) becomes temporally stationary. In other
words, E limt→∞ ∆τi[t] = 0. From (5), this means that the
set of equations,

−ξEτi − (1 − ξ)qps [E [τi(1 − τi+1)] − E [τi−1(1 − τi)]] = 0,

1 ≤ i ≤ N , has a solution. To solve for the mean node
occupancies, we employ themean-field approximation4, ac-
cording to which the occupancies of the nodes are assumed
to be uncorrelated5, i.e., ∀i, j,E[τiτj ] = EτiEτj . Then, for
1 ≤ i ≤ N , (5) simplifies to

ps(1−ξ)q
[

Eτi−1(1−Eτi)−Eτi(1−Eτi+1)
]

−ξEτi = 0. (6)

The steady state occupancies of nodes,Eτi, 1 ≤ i ≤ N are
evaluated by simultaneously solving this set ofN non-linear
equations, and may be performed numerically.

Fig. 5 plots the numerically evaluated mean occupancies of
the nodes in the ALOHA-based flow, for some values of the
packet dropping probabilityξ. As expected, observe that the
node occupancies decrease with increasingξ. The empirical
(simulation-based) values are also shown, and they closely
match the values obtained numerically.

Asymptotics: When the number of nodes in the flow is large
(N ≫ 1), the set of non-linear equations (6) may be solved
in closed form by explicitly considering thequasi-continuum
limit. Accordingly, we fix the total length of the line network
to a constantl, and take the lattice spacing constant to beǫ =
l/N . Thus, forN ≫ 1, ǫ≪ 1, and the rescaled nodal position
variablexi = il/N = iǫ, 1 ≤ i ≤ N (hence,1/N ≤ xi ≤ 1)
is quasi-continuous. Without loss of generality, we may take
the constantl = 1.

4The mean-field approximation is tight at small values of the ’effective’
link reliability qps, and gets looser with increasing values of that product
term [8].

5Sinceτi, τj ∈ {0, 1}, this also means that the occupancies are indepen-
dent asP(τi = 1, τj = 1) = E[τiτj ] = EτEτj = P(τi = 1)P(τj = 1).
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Fig. 5. Values of the mean node occupancies (solid lines) forseveral values of
ξ with N = 5 relays, obtained upon numerically solving the set of equations
(6). Values obtained empirically (dashed lines) are also plotted, and are seen
to closely match the values obtained numerically.

From the Taylor series expansion forEτi−1 and Eτi+1 in
powers ofǫ, we obtain

Eτi±1 = Eτi ± ǫ∂Eτi/∂xi +O(ǫ2). (7)

Employing (7) in (6) and neglecting terms with quadratic or
higher orders inǫ, we obtain

∂Eτi (2 − 1/Eτi) ≈ K∂xi, 1 ≤ i ≤ N,

whereK = ξ/ ((1 − ξ)qpsǫ). Integrating both sides, we get

2Eτi − ln Eτi ≈
ξi

(1 − ξ)qpsǫ
+ Ci, (8)

for some constantsCi, 1 ≤ i ≤ N .
Note that settingξ = 0 emulates the case wherein packets are
never dropped (R = 1). Settingξ = 0, we may write

Ci = 2∆i − ln ∆i, 1 ≤ i ≤ N,

where we have from (2),

∆i =
(1 − qps)

∑N−i
n=0

B(N − n)B(n) + qpsB(N)

B(N + 1) + qpsB(N)
.

Now, the solution to (8) is expressible in terms of the
Lambert W function [10] as

Eτi ≈ −1

2
W
(

−2 exp

(

− ξi

(1 − ξ)qps
− Ci

))

, (9)

whereW(z) denotes the value of the Lambert W function atz.
The Lambert W function, however, is a multi-valued function
with two real branches,W0 andW−1. The branches merge at
z = −1/e where the Lambert W function takes the value−1
[10]. To evaluate (9), we need to choose the right branch of
the Lambert W function.

To this end, we observe that the node occupancies monoton-
ically decrease with proximity to the destination node. In other
words, node1 is the bottleneck node. This can be explained by
noting that the destination is always willing to accept packets;
thus theN th relay node can empty its buffer at the highest



rate. However, theN − 1th relay needs theN th relay to be
empty to transmit its packet, so the likelihood that it will be
occupied is higher when compared to nodeN , and so on.

Let ψi = −2 exp (− (Kix+ Ci)). Evidently,ψi is always
negative andψi ↑ 0 as i → ∞. Now, for z < 0, W0(z)
is an increasing function ofz, while W1(z) decreases with
increasingz [10]. Noting thatEτi is be a decreasing function
of i, it is possible to show after some manipulations that

Eτi =

{

−1/2W−1(ψi) if i ≤ i∗

−1/2W0(ψi) if i > i∗,
(10)

where i∗ is the smallest value ofi that satisfiesφi < φi+1,
i.e.,

i∗ = arg min
i
ψi.

Fig. 6 depicts the analytically obtained values ofEτi in a
long network (N = 20) (10) for several values of the packet
dropping probabilityξ.
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Fig. 6. Analytical approximation of the mean occupancies ofnodes (9) in a
long (N = 20) flow with ps = 0.75 andq = 0.05.

End-to-end Delay, Throughput and Reliability: We now de-
rive analytical expressions for the throughput, end-to-end delay
and reliability in terms of the steady state node occupancies,
for the general case (R < 1).

Proposition 3.2:For a (typical) ALOHA-based flow along
N relay nodes, we have the following.
(a) The steady-state throughput is

T = qpsEτN . (11)

(b) The delay experienced by a packet at theith node,0 ≤
i ≤ N , follows a geometric distribution with parameter

si = qps(1 − Eτi+1). (12)

Consequently, the mean end-to-end delay is

D =
N
∑

i=0

(qps(1 − Eτi+1))
−1 . (13)

(c) The end-to-end reliability of the network is

R =

N
∏

i=0

si(1 − ξ)

si + ξ − siξ
, (14)

Proof: The proof of (a) is similar to the proof of Lemma
3.1. Indeed, as explained earlier, the probability that thepacket
at nodeN successfully hops to the destination in one time slot
is qpsEτN .

In order to prove (b), let us suppose that a packet arrives at
an arbitrary nodei, 0 ≤ i ≤ N . The three events that need to
occur in the following order for the packet to be able to hop
to nodei+ 1 successfully are:
(1) Nodei transmits its packet.
(2) Nodei+ 1 has an empty buffer.
(3) Nodei’s transmission is successful.

Since the node occupancies are assumed to be independent
of each other (by the mean-field approximation), the proba-
bility of node i + 1 having an empty buffer conditioned on
the fact that a packet arrives at nodei is still 1 − Eτi+1. The
events (1), (2) and (3) are also clearly independent of each
other, thus the probability that it hops successfully toi+ 1 in
a time slot is

si = qps(1 − Eτi+1).

Consequently, the delay experienced by a packet at nodei is
geometrically distributed with mean1/si.

We now derive (c), i.e., compute the fraction of packets
successfully hopping from nodei to i+1, 1 ≤ i ≤ N . Suppose
the packet stays at nodei for ni slots before hopping to node
i+ 1. The reliability ri across the linki→ i+ 1, is

ri = (1 − ξ)ni (15)

From (12), we know thatni ∼ Geo(si). Therefore, we get

ri =

∞
∑

k=1

(1 − si)
k−1si(1 − ξ)k =

si(1 − ξ)

1 − (1 − si)(1 − ξ)
.

The end-to-end reliability is simplyR =
∏N

i=0
ri, which is

equivalent to (14).
Fig. 7 depicts the achievable throughput, mean end-to-end

delay and reliability values for a typical flow in the considered
ad hoc network model forps = [0.1, 0.2, . . . , 0.9, 1], q = 0.2
and N = 5. The corresponding empirical values are also
plotted (dashed lines), and are shown to closely match the
analytical curves. We see that in the noise-limited regime,
the average end-to-end delay may be reduced significantly
by increasing the packet dropping probability. The tradeoff
is that increasingξ also results in emptying some buffers in
the network, thus the reliability and throughput performances
of the ad hoc network deteriorate.

B. The Interference-limited Regime

Typically, the performance of ad hoc networks is limited
not only by thermal noise but also by the interference in the
network due to concurrent transmissions. We argue that in
order to study this general case, it is sufficient to analyze
the case where the system is purely interference-limited.
Indeed, under the conditions of Rayleigh fading, the success
probability across a typical link in the PPP network is equalto
the product of the Laplace transforms of noise and interference
[11]. Since the Laplace transform of noise for any given value
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Fig. 7. Analytically (solid lines) and empirically (dashedlines) obtained TDR Tradeoffs for an ad hoc network flow alongN = 5 relays. In the noise-limited
regime, increasingξ helps reduce the end-to-end delay significantly, although the throughput and reliability performances worsen.

of Θ is independent of the occupancies of other nodes in
the network (or equivalently, of the packet dropping process),
the effective value of the link reliability (in the general case)
is simply the link reliability for the interference-limited case
scaled down by a constant factor. Thus, it is adequate to
analyze the TDR performance for the interference-limited
regime, and the results extend directly for the general scenario.
In this section, we define the success probability (across a
typical link) asps = P(SIR ≥ Θ), which critically depends
on the occupancies of other nodes in the network.

1) Case 1: R = 1: We first consider the case with100%
reliability, i.e., all packets are retransmitted until successfully
received. Recall from Subsubsection III-A1 that whenR = 1,
the product of throughput and mean end-to-end delay is equal
to 1 +N/2 (as a consequence of Little’s theorem). Thus, the
TD curve is a hyperbola along theR = 1 axis (equivalent to
the plot in Fig. 4).

2) Case 2: R < 1: Next, we consider the case whereR <
1. Note that dropping a fraction of packets leads to a decreased
intensity of interfering nodes in the network, thus the link
reliabilities increase with increasingξ. We now proceed to
derive the success probability across a typical link.

To this end, suppose that the mean node occupancies for a
typical flow at steady state are (1,Eτ1, . . . ,EτN ). The average
number of potential interferers in each flow is1 +

∑N
i=1

Eτi.
With δ being the density of source nodes (or flows) andq the
ALOHA contention probability, it follows that the density of
interferers is at most6

λI / δq

(

1 +

N
∑

i=1

Eτi

)

. (16)

Even though transmissions in the network are completely
uncoordinated, the interference is actually spatially andtem-
porally correlated owing to the presence of common random-
ness in the locations of nodes [12]. However, for analytical
tractability, we make the relaxed assumption that the set
of interfering nodes forms a PPP with densityλI , which

6This term is actually an upper bound, owing to the existence of relay
nodes having multiple packets in its buffer (correspondingto several flows).
The bound is tight for smallq (when the density of interferers is small), or
small δ (when the flows in the network themselves are sparse).

is actually quite reasonable at smallq [12]. We have the
following lemma concerning the success probability acrossa
typical link in the considered system model.

Lemma 3.3:For the ALOHA-based ad hoc network, the
probability of a successful transmissionps = P[SIR> Θ] for
a typical link is

ps =

(

(1 − δ)φ

(1 − δ)φ+ 2λIc

)n

, (17)

where λI is the intensity of interferers, andc = πΓ(1 +
2/γ)Γ(1 − 2/γ)Θ2/γ.

Proof: This is a generalization of [13, Prop. 5.1]
Substituting forλI in (17) using (16), we obtain the success
probability across a typical link to be lower-bounded as

ps '





(1 − δ)φ

(1 − δ)φ+ 2δq
(

1 +
∑N

i=1
Eτi

)

c





n

, (18)

where the approximation is tight for smallq.
The steady state occupancies of nodes,Eτi, 1 ≤ i ≤ N ,

may be obtained by simultaneously solving the set ofN non-
linear equations (6), where the value ofps is as given by (18).
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Fig. 8. Values ofEτi obtained numerically (solid lines) using (6) for some
system parameter values. The empirical values (dashed lines) are also plotted,
and are seen to match the theoretical ones closely.
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Fig. 9. TDR performances of the ALOHA-based flow versusξ, for N = 5, n = 1, φ = π/2, γ = 4, q = 0.2 andΘ = 10 dB. The empirical results (dashed
lines) match the analytical ones(solid lines). Note that athigh δ, dropping a small fraction of packets can actually help improve the system throughput.

Fig. 8 shows numerically obtained values (solid lines) of
the mean node occupancies forN = 5, n = 1, φ = π/2,
γ = 4, q = 0.2 andΘ = 10 dB, and several values ofξ. The
corresponding empirical values (dashed lines) are also plotted,
and they corroborate the values obtained numerically.

The throughput, delay and reliability performances of the
multihop flow are quantified using (11), (13) and (14) respec-
tively, together with values of the mean node occupancies. Fig.
9 depicts the TDR performances of the ALOHA-based line
network versusξ, in the interference-limited regime, for some
values of the system parameters. We observe the following.

• Whenδ is small (for example, whenδ = 0.05), increasing
the packet dropping probabilityξ reduces the system
throughput. However, asδ gets larger (for instance, when
δ = 0.1), dropping a few packets helps mitigate the
interference, thus the link reliabilities increase, and the
throughput across a typical flow improves (for example, at
ξ = 0.005). As ξ increases further, the loss in throughput
due to dropped packets exceeds the gain in throughput
due to interference mitigation, and the throughput begins
to fall. Indeed, there exists an optimum value ofξ that
maximizes the throughput of the flow.

• As expected, with increasingξ or decreasingδ, the mean
end-to-end delay decreases; the reliability also suffers.

IV. SUMMARY

We considered a multihop wireless network consisting
of several source-destination pairs communicating with each
other in a completely uncoordinated manner. Employing the
mean-field approximation, we presented a framework for com-
puting the steady state mean node occupancies, and quantify-
ing the network’s TDR performance. As intuitively expected,
we found that in the noise-limited regime, dropping a small
fraction of packets in the network leads to a smaller end-
to-end delay at the cost of reduced throughput, whereas, in
the interference-limited scenario, dropping a few packetsin
the network can help mitigate the interference in the network
leading to an increased throughput. We also provided some
empirical (simulation-based) results to corroborate the theory.

In conclusion, we view this work as an initial effort towards
understanding the throughput, delay and reliability tradeoffs in

multihop wireless networks. Extending the analysis in order to
accommodate different source traffic models such as constant
bit rate and Bernoulli, other MAC schemes such as CSMA
and spatial TDMA, and more sophisticated packet dropping
strategies such as those based on bounded delay and limited
retransmissions are interesting directions for future work.
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