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Abstract—Communication between two neighboring nodes is types of fading and power control. In our previous work in
the most basic operation in wireless networks. Yet very lite [2] we neglected noise and studied the local delay in the
research has focused on théocal delay, defined as the mean time ;\:oference-limited (noiseless) setting without powenteol

it takes a node to connect to a nearby neighbor. This problemsi for Ravleigh fadi H f th ith noi
non-trivial when link distances are random but static, as isthe 0F Rayleigh fading. Here, we Tocus on the case with noise

case when the node distribution of a static network is modete @nd provide results for more general fading and link distanc
as a stochastic point process. We first consider the interfence- distributions, including power control.

free case, where links are independent, to study how fading \We shall see that in some cases, the local delay is infinite.
and power control affect the delay in links of random distan®. ;5 yhenomenon is calledireless contention phase transi-
We find that power control is essential to keep the delay finite . . e - .
and that randomized power control can drastically reduce the tion in [1]. An infinite IOC‘T"' delay does. not lmp!y thqt ce_rtaln )
required (mean) power for finite local delay. Secondly, we sidy nodes cannot reach their nearest n6|ghb0rs in finite time; in
the local delay in a Poisson network with ALOHA, including fact, conditioned on the link distance, the local delay vgagls
both interference and noise. In this case we present an andigal  finjte. It implies, however, that the local delay has a heaily t

bound on the local delay. or, in other words, that the fraction of links with large lbca
| INTRODUCTION delays is significant.

A fundamental source of delay in wireless networks is the I[I. A COLLECTION OFLINKS

time it takes for a node fo successfully connect to a nearbyconsider a collection of wireless links, as shown in Fig. 1.
neighbor. Consequently, thecal delay defined as the mean oqgme the links do not interfere, but they have iid random

time, in numbers of time slots, until a packet is succesgiullyjgiances and are subject to fading. Focusing on a sindte lin
received over a link between nearest neighbors, is an iApoIrty o raceived power is

quantity to study.

We tackle the problem in two steps. First, we ignore P.=PhR™%,
interference but consider random link distances. In thieca
the “network” is just a collection of independent links, a
shown in Fig. 1. The link distance distributions in our ars#y
will be drawn from the nearest-neighbor distances in Poiss?
networks, where the nodes’ locations form a (homogeneoug
Pois;on point process (PPP), but ot.her distributions cbgld psir = P(h > OR*/P) =1 — F},(§R*/P),
considered as well. We take the distances to be static and
derive the mean delay (ensemble average) over the links Y#ere i, (z) = P(h < z) is the cumulative distribution func-
different types of fading and power control strategies. tion (cdf) of the fading random variable. Fading is assumed

Second]y, we ana]yze the local de|ay in an actual Poiss% over time, which ImplleS that the mean delay of succdssfu
network with interference. The channel access schemeti@nsmission, conditioned oR, is p; . If R was also is
(slotted) ALOHA, and the links considered are the ones frofgmporally iid, the (unconditioned) delay would simply be
each transmitter to its nearest receiver. The channeldeaatial D = 1/Er(py )
the transmit/receive states are assumed iid over timeewinéd RAPsIR) -
nodes are stattc Again power control turns out to be critical.In this case, we could define 2 AR~ and consider the
We derive the first analytical bounds on the local delay wittading coefficient to be:, ignoring the distance uncertainty.
noise, interference, and power control. We focus on the case of fixed, in which case the mean delay

A mathematical framework for the analysis of the locak the ensemble average
delay in Poisson ALOHA networks is provided in [1]. We
build on this framework to obtain concrete results for difet D = Er(1/psr) -

gvhereP is the transmit powerh is the (power) fading
coefficient, R is the link distance, andv is the path loss
xponent. The transmission is assumed successftl it ¢
5some threshold. Given R, we have

1The case where a new realization of the point process is diavemch The static ca_se 'S_ more interesting and _prac'ucal. Theillistr
time slot would be much easier to analyze. tions of the link distance? that we consider are drawn from



exp(—2R*7%), and the mean delay, now a function ofind

/ b, is
Rj D(a,b) = 2/\7T/ exp (grg_b) rexp(—=Arr?)dr. (4)
R 5o 0 ¢
——p
Forb < 0, the integral diverges for all values of the remain-
Q ing parameters (not enough power if the nearest neighbor is
X

far). Forb > 2, the integral diverges since there is not enough
power for receivers that are very closk « 1). This second
type of divergence is due to the singularity of the path lass |
Fig. 1. A collection of links with random distances. Trantiers are denoted at the origin. If a bounded path loss law is used, Say R) ™«
by x and receivers bp. (and the corresponding transmit power), the first expoaknti
in (4) is to be replaced byxp(£(1+r)?~?), which results in a

h iahbor distributi in Poi finite delay for allb > 0. This integral does not admit a closed-
the nearest-neighbor distributions in Poisson networkeres form expression, though. We will therefore continue witk th

the nodes grr]e distlri_bur;[ed chhording tog PPE’ For lihe faqiﬂﬂbounded path-loss law and restrict ourselves to the egim
we start with Rayleigh and then extend to the Nakagami-, [0, 2], knowing that for bounded path loss the delay could

model. As we shall see, power control will be necessary I reduced by choosirig> 2, i.e, by over-compensatingpr
avoid infinite mean delays. the large-scale path loss.

A. The Rayleigh/Rayleigh case 1) b=0: We obtain
Here we consider the case where the link distaicés AT
D(a,0) = ——— 0 A 5
Rayleigh distributed with meai2yv/\)~!, corresponding to (a,0) < AT ®)

M —0/a’
the nearest-neighbor distance in a Poisson network ofditten . -
X [4]: which shows that the mean delay exhibitplaase transition

There is tension between the delay given the distanhcall it
= —\rr? > 0. ' :
Tr(r) = 2Amrexp(=Amr), v =0 (1) D(r), for whichlog D(r) = cor?, and the densityr(r), for
The fading random variables are also Rayleigh, with meanWhich log fr(r) ~ —c1r® asr — co. Hence the local delay
In this case, the success probability of a transmission ov@rfinite if ¢; > ¢, which is exactly the condition in (5).
distanceR is pyr = exp(—6R“/P). For constantP, the So, if the power control factos is large enough, the local

mean delay delay will be finite even if the power is adjusted in propantio
- to R*~2 only — thus the compensation for the large-scale
D= 27T)\/ exp(0r / P)r exp(—Amr?)dr path loss does not have to be complete. In particularqfer
0 2, the transmit power can be chosen to be the same for all

nodes, irrespective of their nearest-neighbor distaree (2)).
In other words, the distances do not need to be known at the

) . . ] ] . transmitter fora = 2.
Fact 1 With Rayleigh fading and Rayleigh link distances, 2) b = 2: With complete compensation for the large-scale

power control is needed as soon as the path loss expon At loss, the integration in (4) becomes obsolete since the

IS ]'cf"?“ger thalr(12. Inhother WO(I:JdSI, a?y_co!'f;st;nt POWET 1S N0k ;ccess probability does not depend on the distaicand
sufficient to keep the mean delay finitevit> 2. we obtain immediately

diverges to infinity as soon as > 2. Hence:

For o = 2 and all constanf’, we have 9
\ D(a,2) = exp (—) ©)
T
D=s5—ap @

In this case, the delay increases exponentialliarlog D =
For a > 2, the transmit power needs to be chosen as@ () asf — oc.
function of the link distancéz. So we will henceforth assume  3) p = 1: Lett 2 —%_. Then
that the transmitter know®, which is a reasonable assumption 20w

gir:/en tha_t the distgnce remains constant forever, and that i D) =1+ 0 exp(t2) (1 + erft)
a, =
chooses its transmit power as 20
P & qRO2Y (3) =1+ Vrtexp(t?)(1 4 erft). )

where a the power control factor and b the power control So in this caselog D = ©(6?). We observe that there is no
exponentln this case, the success probability becomgs = phase transition fob =1 or b = 2.



4) Generaldb € (0,2]: C. The Rayleigh/Nakagami case

We return to the case of Rayleigh link distances (or
gamma(l1)). The delay results for the Rayleigh fading case
can be generalized to Nakagamifading:

Proposition 1 If P oc R*~2+%, for any0 < b < 2, the links
can support arbitrary rates at finite mean delays.

Proof: Letting = £ 2, the delay (4) is of the form N o ] ]
Proposition 3 (Nakagami fading) With Nakagamin fad-

01/ exp (— (e — Cﬂfb/i’))dx, c1,c2 > 0. ing, m > 1/2, andb = 0, the mean delay is finite if
0 . . aAT
For b < 2, the integral can only diverge due to the upper 0 < o (12)
integration bound. To show that it converges evendfex: 1, d infinite if
we compare the integrand withp(—bz). We observe that ~and Infinite | W
0> —. (13)
m

2/b
(e — o —b/2 _%) 22
exp (—z(c1—caz™"?)) < eXp( 9 for z > ( 1 ’ For b = 2, the mean delay is

which proves finiteness of the delay for alk b < 2, ¢; >0
and0 < ¢; < oo. For a transmission rate, 6§ =2 — 1 (or a
multiple of it, depending on the code), 89 = 6/a is finite

I'(m)

P = N mofa)

(14)

whereI'(-, ) is theupperincomplete gamma function.

for all rates.

The delays will become extremely large @as- 0, a — 0, Proof: Let H be a Nakagamin (power) fading random
and/oré — oo, but there is no phase transition. variable. From
B. The gamma/Rayleigh case P(H < z) = I'(m, mx)

Here we consider the scenario where the link distance is I'(m)
gamma distributed, parametrized by an integer follows

9 _ D(m,mfR*7"/a)
fr, (T) = W(/\ﬂ.)nrwz—l eXp(—/\7T7’2) ) Ps|lR = F(m) )

We will refer to this link distance model as the gamma(rgnd examining the range whep ) is finite yields the
model. The fading is still Rayleigh. result forb = 0. Forb = 2, the delay is simply; !, which is

The gamma distribution models the case where a notfélependent ofz. _ [
transmits to itsn-th nearest neighbor in a Poisson networkRemarks.For b = 0 it is interesting to note that the phase
[4]. CalculatingEg,, exp(gRE;b), we find: transition occurs at a value df that is directly proportional

to the amount of fading or the variance of the fading random
Proposition 2 For a transmit powerP = aR%~2, the mean variableh. The more fading (the smaller), the higher the
delay for the gamma(n) casé),, is the mean delay in the threshold can be chosen while still achieving finite deldy. |
Rayleigh case]D,, raised to then-th power: m > alw /60, then the delay becomes infinite due to a lack
n of diversity. Forb = 2, the delay is decreasing (to 1) with
Dy (a,0) = (D1(a, 0))", neN. (8) increasingm if 8/a < 1 and increasing (diverging too) if
If the path loss is fully compensated fae, P = aR%, 6/a > 1. Thisis intuitive since without fading, the delay is
D,.(a,2) = exp(f/a), irrespective ofn. if #/a < 1, in which case transmissions always succeed, and

. . , . infinity otherwise.
In this result, the transmit powers are adjusted according t

n, So the nearest-neighbor and the second-nearest-neigibotnduced fading: Random power control

delays, related by (8), are achieved using different powers\we focus again on the case of Rayleigh distances.
If the transmit power is chosen according to the distance @bmparing the expression for temporally iid link dis-

the second-nearest neighbor, the time to connect to thefﬁteafances,l/ER(ps‘R), and the expression for the static case,

neighbor is bounded as Er(1/psr), it is apparent from Jensen’s inequality that much
D1 (a,0) < \/Da(a,0) g) can be gained by temporal fluctuations in the received power.
1(a,0) 2(a,0) © With static link distances, such an effect can be realized by

and random power controllt seems plausible that inducing fading
D1(a,2) < Da(a,2), (10) by randomly varying the transmit power helps keep the mean

delay finite. Since heavier-tailed distributions can beeeted
to yield better results, we use the Pareto distribution with
complementary distribution

since Ry > Ry a.s.
The mean transmit power is
n+a/24b/2-1)

) RN v
a—2+by _ 1—a/2-b/2
aE(Ry ) = a(r) )

P(H > z) = (kk_l

. k
1) ) L k>1,2>1-1/k,

T



parametrized with a single parametesuch thatE(H) = 1 60 : — pareto
for all k& > 1. The transmit power is then chosen to b ! - - -Rayleigh
P = HR°~%** with H temporally independently Pareto. s ! i
Assuming no channel fading, it follows that !
k I
k— — a(k—1 40 H 4
pu(y = | (k) for 1 > 2t -
1 otherwise |
0 30 . .
For b = 0 and integerk > 2, the local delay is of the form '
k—1 | ]
DT (a,0) = 1+ Q(¢) exp (——kg ) , 20 ;
where¢ = 0/(\ra) and 10 1
Q) =1+ + .. +cptt
O L L L L
is a polynomial of ordek. Straightforward yet tedious calcu- 5 10 15 a 20 25 30
lation yields

fei+1 I‘(k _ 1) Fig. 2. The local delay for Rayleigh fading case and Paretdam power
— - , jed{1,2,...,k}. control (¢ = 2) for b = 0, & = 10, A = 1/4. The phase transition in the
(k—=1)y"1T(k—j+1) Rayleigh case occurs at= 6/(A7) = 40/m ~ 12.7.

Unlessa >> 6, which is impractical, the minimum local delay
is attained atk = 2, as expected, since this choice bf ) ) )
produces the heaviest tail. In this case, The disadvantage of Pareto power control is the high peak-to

average power ratio.
D(a,0) = 1+ (4 + 86%) exp(—1/(2¢)) ,

which is finite for all choices of and a, and D(a,0) =
o . : : . / .

©(6%), 6 — ool So, inducing fading with a polynomial-tail 1o ¢ollection of links considered in the previous section

distribution ensures the finiteness of the local delay for gl pe regarded as a “network” without interference. In this

choices of parameters, and it achieves much better asympi@L tion we include interferencee., we are considering an

scaling of the delay with respect ®than Rayleigh fading, .51 wireless network. To reflect the fact that now the

where the delay scales at least exponentiallyyinSo we  yansmissions take place between two nearby nodes in a

observe that fading with exponential tail appears to resudt network, we now speak of thiecal delayinstead of just the
delay that increases at least exponentiallg.imwhereas fading (mean) delay

with a polynomial tail results in a delay that increases only
polynomially in 6. A. The network model

Fig. 2 shows a comparison of the local delay in the case ofwe consider a marked Poisson point process (PPP) of
Rayleigh fading and Pareto induced fading. For small powgbtential transmitters, = {(z;,%,,)} c R? x {0,1}, where
levels, only the Pareto delay is finite, where for larger pow&, — {z,} is a homogeneous PPP of intensityand the
levels, the Rayleigh delay is slightly smaller. In the lingis the marks{t,,} are iid Bernoulli withP(t =1) =p=1—¢. A
power increases, the local delay approaches both cases, mark of 1 indicates that the node transmits (in the time slot

as expected. considered) whereastaindicates it is idle. The receivers form

Cj =

IIl. POISSONNETWORKS WITHNOISE AND
INTERFERENCE

Forb =2, an independent PP®,. of intensity \,.. We denote the point
) process of all nodes by = &, U ®,.. The large-scale path
(’“"/“) if 0k > a(k — 1) : ; e
D(a,2) = k—1 loss is assumed to beé' over distance. A transmission from
1 otherwise. a nodex € ¢, to a nodey € @, is successful if the signal-

_ S i __ to-interference-plus-noise ratio (SINR) exceeds a tlolesh
which is again minimized fok = 2. The asymptotic scaling the SINR is defined as

with respect to# is not improved by the largeb. The

fact that D(a,2) = ©(6*) is interesting; it confirms that SINR,, = A,

the delay scaling is closely tied to how fast the tail of the W+ Ly

(complementary) fading distribution decays. where the desired signal is the product of transmit power,
In conclusion:

transmit mark, fading, and path gairg., S, £ Potphyy|lx—
y||~%, W is the noise power, and
Fact 2 Drawing the transmit power from a Pareto distribution

A -
in an iid fashion in each time slot drastically reduces theame Loy = Z Potohayllz =yl
power required to keep the delay finite. (z,t2)€\{(2,t)}



In this section, we assume the fading, to be exponential the following result [2, Lemma 2]:

with mean1 and iid for all transmitter-receiver pairs and oveFor P, =1,

time (block Rayleigh fading). Time is slotted, and transiua 1 1 PAC(a)s2/®

attempts are synchronized. We also assuine= 1, without E° <W) = —exp <1_72/a) : (17)

loss of generality, which makes the success probabilities AN p q

P(SINR > ¢) compatible with the ones in the previousvhere Ao

section, wherd = 0. Cla) = 27°/(asin(2r/a)). (18)
Let Co be the event that the typical node situated at thehe factor1/p stems from the ALOHA transmit probability.

origin o £ (0,0) € R? successfully connects to its nearesReplacings in (17) by /R* and taking the expectation with

receivery € @, in a single transmission (one time slotkespect to the nearest-receiver distafcéper (16)) yields the
conditioned on®. This is thenearest-receiver transmissionjocal delay:

model (NRT) Since all events considered are temporally iid, 1
there is no need to add a time index to this event. Conditgnin D = —-Egpexp (
on ® having a point at the originimplies that the expectations p
that involve the point process are taken with respect to tince the delay giver® is proportional teexp(cR?), the local

p/\C(oz)HQ/O‘R2) (19)

q1—2/a

Palm distribution?® of ® and denoted b¥° [3]. delay is finite in the noise-free case provided the transmit
, , probability (and thus interference) is small enough [2].
P?(Co) = P?(SINRoy > 6| D). However, if noise is included, we have seen in Fact 1 that

Conditioned ors, the transmission successes are temporaﬁf)nftam transmit power only result in finite local delay for

iid, so the conditional local delay is geometric with mean?, ~ 2, even if interference is ignored. But far = 2,

P°(C)~t. The local delay is then obtained by integration witlg(.a? = 00, S0 the Ioca! delay with interference is trivially
respect to (W.r.L)p: infinite for a« = 2. Hence:

Ao 1 Fact 3 In a static network with noise and interference with
D =Eg <—]P’0(Cq>)> : the same transmit power at all nodes, the local delay is it&ini
for all path loss exponents, rates, and transmit probaibsit
In the next subsections, we evaluate the local delay for . ] .
different scenarios. Clearly, power control is needed. With noise and power
control,
B. Fixed transmit power Poira, = P(h > RYO(I +1)/P | R, ®,))
Let I be the total received power at the origin, = E7 ), exp(—R“0/P) exp(—R*I/P)
= Z Potyhglz]| ¢, (15) =E7, exp(—0R*"*/a) exp(—0R* "I /a), (20)
(,t5) €D, where the first exponential factor is due to the noise and the

second due to the interference. Power control complicaies t
analysis since it changes the distribution of the interfeee In

Li(s| ®) =E?, (exp(—sl | ®)) (15), only the fading random variablés are temporally iid,

’ whereas the power control random variablgsstay constant

the conditional Laplace transform givan Instead of condi- over time.
tioning on ®, we may also condition o®, and R, since the
receiver proces®, enters the calculation only through th
link distanceR.

with h, iid exponential, and

eC. Power control at single transmitter
If only the node under consideration uses the power control

: , . , —  pa—2+b \whi : .
First we analyze the case of fixed (unit) transmit power le$chemer = aR* while the other nodes transmit at unit

els and focus solely on the interference. We have the fofigwi COnStant power, the interference is unchanged, and thé loca
relationship between the (conditional) success prohgtaid  delay (with noise and interference) follows from (19) an@)(2

the Laplace transform; oo 9
D(a,b) = 277)\T/ exp (—rQb) :
pS‘R.@t - P(h 2 1oR" | R7 CI)) 2/O(y 4/aa—2b/o¢
= Ef ), exp(—I0R") exp ()\p(b’/a) E(iir ) rexp(—m A r?)dr,
= L;(AR* | ®,) (16) q 1)

Given®; andR, the transmission success events are iid; henaehich is finite whenevery > 2 andb > 0 or, if « > 2 and
the (conditional) delay is geometric with mepsf‘l}%_’q), and we b= 0, for small enouglp and large enough. Forb = 2, the
obtain the local delay by integrating w.r®, and R. We first first two exponentials do not depend snand the local delay
take the expectation w.r.t. the point process to obtaindball is given by their product. Of course this is a selfish approach

delay conditioned on the link distanég To this end, we need that only works for a single transmitter in the network.
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Fig. 3. The local delay in the NRT case with noise and interfee as a

function of the power control factai. The solid curve (top) is a simulation,

the dashed curve below is obtained by numerical integratfd®2). The dash-
dotted curve is the local delay if noise is ignored, whichridependent of
a. The bottom curve is the delay if interference is ignorechedtparameters
areb=0,A=1/4, A\, =2,p=1/5, a =4, andd = 10. The local delay
is lower bounded byl /p = 5 due to ALOHA.

D. Power control at all nodes

the local delay is finite even fdr= 0. So, induced fading can
greatly increase the stability region.

Extensions from nearest-neighbor communicationnto
th nearest neighbor communication are possible in a fairly
straightforward manner, as are extensionsdtdimensional
Poisson networks.

The analysis of networks with both noise and interference
is tricky due to the effect of power control: On the one hand,
power control is needed to overcome the noise, on the other, i
complicates the interference distribution. In a networkeweh
a new realization of the point process is drawn in each time
slot, the problem would not exist, for in this case the vz
of the transmit power could be combined with the fading. In
static networks, however, only the fading states vary in an
iid fashion, whereas power control is static over time, as th
distance to the nearest neighbor stays constant. We resort t
deriving a lower bound by replacing the interferers’ actual
powers by their averages and invoking Jensen’s inequality.
This is, to the best of our knowledge, the first analyticalrmbu
on the local delay with noise, interference, and power abntr
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Since it appears impossible to get an exact closed-fo
solution for the case with full power control, we replace the
interferer’s transmit powers by their averages (11) {(set 1), (]
which, due to the convexity of the exponential and by Jerssen’
inequality, yields a lower bound on the local delay:

DN (a,b) = lIER (exp (grg_b) exp(03r(4_2b)/o‘))
D a
(22)

(2]

(3]
[4]
(5]

where

Ap (G(Arw)l_“/z_b/Ql"(a/Q + b/2))2/ “C(a)
q172/a

C3 =
(6]
and R is distributed as in (1) but with intensity,..

Fig.3 shows a simulation result and the result of the
numerical integration. As expected, the analytical resuk

lower bound on the delay. For comparison, also shown are
the curves for the cases where noise and interference oaly ar

considered.

IV. CONCLUSIONS

We have analyzed the local delay in static Poisson ALOHA
networks with noise. First, we considered the interfereinee
case,i.e., a collection of independent links of fixed random
distances. If power control of the forfd = e R*~%*? is used,
the the delay for Rayleigh fading is finite féor= 0 and some
conditions or¥, a, and\, and it is always finite fob > 0. For
b = 0, a similar condition holds for Nakagami fading. If power
control is randomized with a distribution with polynomiallf
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