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Abstract—Communication between two neighboring nodes is
the most basic operation in wireless networks. Yet very little
research has focused on thelocal delay, defined as the mean time
it takes a node to connect to a nearby neighbor. This problem is
non-trivial when link distances are random but static, as isthe
case when the node distribution of a static network is modeled
as a stochastic point process. We first consider the interference-
free case, where links are independent, to study how fading
and power control affect the delay in links of random distance.
We find that power control is essential to keep the delay finite,
and that randomized power control can drastically reduce the
required (mean) power for finite local delay. Secondly, we study
the local delay in a Poisson network with ALOHA, including
both interference and noise. In this case we present an analytical
bound on the local delay.

I. I NTRODUCTION

A fundamental source of delay in wireless networks is the
time it takes for a node to successfully connect to a nearby
neighbor. Consequently, thelocal delay, defined as the mean
time, in numbers of time slots, until a packet is successfully
received over a link between nearest neighbors, is an important
quantity to study.

We tackle the problem in two steps. First, we ignore
interference but consider random link distances. In this case,
the “network” is just a collection of independent links, as
shown in Fig. 1. The link distance distributions in our analysis
will be drawn from the nearest-neighbor distances in Poisson
networks, where the nodes’ locations form a (homogeneous)
Poisson point process (PPP), but other distributions couldbe
considered as well. We take the distances to be static and
derive the mean delay (ensemble average) over the links for
different types of fading and power control strategies.

Secondly, we analyze the local delay in an actual Poisson
network with interference. The channel access scheme is
(slotted) ALOHA, and the links considered are the ones from
each transmitter to its nearest receiver. The channel fading and
the transmit/receive states are assumed iid over time, while the
nodes are static1. Again power control turns out to be critical.
We derive the first analytical bounds on the local delay with
noise, interference, and power control.

A mathematical framework for the analysis of the local
delay in Poisson ALOHA networks is provided in [1]. We
build on this framework to obtain concrete results for different

1The case where a new realization of the point process is drawnin each
time slot would be much easier to analyze.

types of fading and power control. In our previous work in
[2], we neglected noise and studied the local delay in the
interference-limited (noiseless) setting without power control
for Rayleigh fading. Here, we focus on the case with noise
and provide results for more general fading and link distance
distributions, including power control.

We shall see that in some cases, the local delay is infinite.
This phenomenon is calledwireless contention phase transi-
tion in [1]. An infinite local delay does not imply that certain
nodes cannot reach their nearest neighbors in finite time; in
fact, conditioned on the link distance, the local delay is always
finite. It implies, however, that the local delay has a heavy tail,
or, in other words, that the fraction of links with large local
delays is significant.

II. A C OLLECTION OF L INKS

Consider a collection of wireless links, as shown in Fig. 1.
Assume the links do not interfere, but they have iid random
distances and are subject to fading. Focusing on a single link,
the received power is

Pr = PhR−α ,

where P is the transmit power,h is the (power) fading
coefficient, R is the link distance, andα is the path loss
exponent. The transmission is assumed successful ifPr > θ
for some thresholdθ. GivenR, we have

ps|R = P(h > θRα/P ) = 1 − Fh(θRα/P ) ,

whereFh(x) = P(h ≤ x) is the cumulative distribution func-
tion (cdf) of the fading random variable. Fading is assumed
iid over time, which implies that the mean delay of successful
transmission, conditioned onR, is p−1

s|R. If R was also is
temporally iid, the (unconditioned) delay would simply be

D = 1/ER(ps|R) .

In this case, we could definẽh , hR−α and consider the
fading coefficient to bẽh, ignoring the distance uncertainty.
We focus on the case of fixedR, in which case the mean delay
is theensemble average

D = ER(1/ps|R) .

The static case is more interesting and practical. The distribu-
tions of the link distanceR that we consider are drawn from
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Fig. 1. A collection of links with random distances. Transmitters are denoted
by x and receivers byo.

the nearest-neighbor distributions in Poisson networks, where
the nodes are distributed according to a PPP. For the fading,
we start with Rayleigh and then extend to the Nakagami-m
model. As we shall see, power control will be necessary to
avoid infinite mean delays.

A. The Rayleigh/Rayleigh case

Here we consider the case where the link distanceR is
Rayleigh distributed with mean(2

√
λ)−1, corresponding to

the nearest-neighbor distance in a Poisson network of intensity
λ [4]:

fR(r) = 2λπr exp(−λπr2) , r ≥ 0. (1)

The fading random variables are also Rayleigh, with mean1.
In this case, the success probability of a transmission over
distanceR is ps|R = exp(−θRα/P ). For constantP , the
mean delay

D = 2πλ

∫ ∞

0

exp(θrα/P )r exp(−λπr2)dr

diverges to infinity as soon asα > 2. Hence:

Fact 1 With Rayleigh fading and Rayleigh link distances,
power control is needed as soon as the path loss exponent
is larger than2. In other words, any constant power is not
sufficient to keep the mean delay finite ifα > 2.

For α = 2 and all constantP , we have

D =
λπ

λπ − θ/P
. (2)

For α > 2, the transmit power needs to be chosen as a
function of the link distanceR. So we will henceforth assume
that the transmitter knowsR, which is a reasonable assumption
given that the distance remains constant forever, and that it
chooses its transmit power as

P , aRα−2+b , (3)

where a the power control factor, and b the power control
exponent. In this case, the success probability becomesps|R =

exp(− θ
aR2−b), and the mean delay, now a function ofa and

b, is

D(a, b) = 2λπ

∫ ∞

0

exp

(

θ

a
r2−b

)

r exp(−λπr2)dr . (4)

For b < 0, the integral diverges for all values of the remain-
ing parameters (not enough power if the nearest neighbor is
far). Forb > 2, the integral diverges since there is not enough
power for receivers that are very close (R ≪ 1). This second
type of divergence is due to the singularity of the path loss law
at the origin. If a bounded path loss law is used, say(1+R)−α

(and the corresponding transmit power), the first exponential
in (4) is to be replaced byexp( θ

a (1+r)2−b), which results in a
finite delay for allb ≥ 0. This integral does not admit a closed-
form expression, though. We will therefore continue with the
unbounded path-loss law and restrict ourselves to the regime
b ∈ [0, 2], knowing that for bounded path loss the delay could
be reduced by choosingb > 2, i.e., by over-compensatingfor
the large-scale path loss.

1) b = 0: We obtain

D(a, 0) =
λπ

λπ − θ/a
, θ < aλπ , (5)

which shows that the mean delay exhibits aphase transition.
There is tension between the delay given the distancer, call it
D(r), for which log D(r) = c2r

2, and the densityfR(r), for
which log fR(r) ∼ −c1r

2 as r → ∞. Hence the local delay
is finite if c1 > c2, which is exactly the condition in (5).

So, if the power control factora is large enough, the local
delay will be finite even if the power is adjusted in proportion
to Rα−2 only — thus the compensation for the large-scale
path loss does not have to be complete. In particular, forα =
2, the transmit power can be chosen to be the same for all
nodes, irrespective of their nearest-neighbor distance (see (2)).
In other words, the distances do not need to be known at the
transmitter forα = 2.

2) b = 2: With complete compensation for the large-scale
path loss, the integration in (4) becomes obsolete since the
success probability does not depend on the distanceR, and
we obtain immediately

D(a, 2) = exp

(

θ

a

)

. (6)

In this case, the delay increases exponentially inθ, or log D =
Θ(θ) asθ → ∞.

3) b = 1: Let t , θ
2a

√
λπ

. Then

D(a, 1) = 1 +
θ exp(t2) (1 + erf t)

2a
√

λ

= 1 +
√

πt exp(t2)(1 + erf t) . (7)

So in this case,log D = Θ(θ2). We observe that there is no
phase transition forb = 1 or b = 2.



4) Generalb ∈ (0, 2]:

Proposition 1 If P ∝ Rα−2+b, for any 0 < b ≤ 2, the links
can support arbitrary rates at finite mean delays.

Proof: Letting x , r2, the delay (4) is of the form

c1

∫ ∞

0

exp
(

− x(c1 − c2x
−b/2)

)

dx , c1, c2 > 0 .

For b ≤ 2, the integral can only diverge due to the upper
integration bound. To show that it converges even forb ≪ 1,
we compare the integrand withexp(−bx). We observe that

exp
(

−x(c1−c2x
−b/2)

)

< exp
(

−c1x

2

)

for x >

(

2c2

c1

)2/b

,

which proves finiteness of the delay for all0 < b ≤ 2, c1 > 0
and0 < c2 < ∞. For a transmission rateρ, θ = 2ρ − 1 (or a
multiple of it, depending on the code), soc2 = θ/a is finite
for all rates.

The delays will become extremely large asb → 0, a → 0,
and/orθ → ∞, but there is no phase transition.

B. The gamma/Rayleigh case

Here we consider the scenario where the link distance is
gamma distributed, parametrized by an integern:

fRn
(r) =

2

Γ(n)
(λπ)nr2n−1 exp(−λπr2) .

We will refer to this link distance model as the gamma(n)
model. The fading is still Rayleigh.

The gamma distribution models the case where a node
transmits to itsn-th nearest neighbor in a Poisson network
[4]. CalculatingERn

exp( θ
aR2−b

n ), we find:

Proposition 2 For a transmit powerP = aRα−2
n , the mean

delay for the gamma(n) case,Dn, is the mean delay in the
Rayleigh case,D1, raised to then-th power:

Dn(a, 0) = (D1(a, 0))n , n ∈ N . (8)

If the path loss is fully compensated for,i.e., P = aRα
n,

Dn(a, 2) = exp(θ/a), irrespective ofn.

In this result, the transmit powers are adjusted according to
n, so the nearest-neighbor and the second-nearest-neighbor
delays, related by (8), are achieved using different powers.
If the transmit power is chosen according to the distance to
the second-nearest neighbor, the time to connect to the nearest
neighbor is bounded as

D1(a, 0) <
√

D2(a, 0) (9)

and
D1(a, 2) < D2(a, 2) , (10)

sinceR2 > R1 a.s.
The mean transmit power is

aE(Rα−2+b
n ) = a(λπ)1−α/2−b/2 Γ(n + α/2 + b/2 − 1)

Γ(n)
.

(11)

C. The Rayleigh/Nakagami case

We return to the case of Rayleigh link distances (or
gamma(1)). The delay results for the Rayleigh fading case
can be generalized to Nakagami-m fading:

Proposition 3 (Nakagami fading) With Nakagami-m fad-
ing, m ≥ 1/2, and b = 0, the mean delay is finite if

θ <
aλπ

m
(12)

and infinite if

θ >
aλπ

m
. (13)

For b = 2, the mean delay is

D(a, 2) =
Γ(m)

Γ(m, mθ/a)
, (14)

whereΓ(·, ·) is theupperincomplete gamma function.

Proof: Let H be a Nakagami-m (power) fading random
variable. From

P(H < x) =
Γ(m, mx)

Γ(m)

follows

ps|R =
Γ(m, mθR2−b/a)

Γ(m)
,

and examining the range whereE(p−1
s|R) is finite yields the

result forb = 0. For b = 2, the delay is simplyp−1
s , which is

independent ofR.
Remarks.For b = 0 it is interesting to note that the phase
transition occurs at a value ofθ that is directly proportional
to the amount of fading or the variance of the fading random
variableh. The more fading (the smallerm), the higher the
threshold can be chosen while still achieving finite delay. If
m > aλπ/θ, then the delay becomes infinite due to a lack
of diversity. For b = 2, the delay is decreasing (to 1) with
increasingm if θ/a < 1 and increasing (diverging to∞) if
θ/a > 1. This is intuitive since without fading, the delay is1
if θ/a < 1, in which case transmissions always succeed, and
infinity otherwise.

D. Induced fading: Random power control

We focus again on the case of Rayleigh distances.
Comparing the expression for temporally iid link dis-
tances,1/ER(ps|R), and the expression for the static case,
ER(1/ps|R), it is apparent from Jensen’s inequality that much
can be gained by temporal fluctuations in the received power.
With static link distances, such an effect can be realized by
random power control. It seems plausible that inducing fading
by randomly varying the transmit power helps keep the mean
delay finite. Since heavier-tailed distributions can be expected
to yield better results, we use the Pareto distribution with
complementary distribution

P(H > x) =

(

k − 1

kx

)k

, k > 1, x ≥ 1 − 1/k ,



parametrized with a single parameterk such thatE(H) = 1
for all k > 1. The transmit power is then chosen to be
P = HRα−2+b, with H temporally independently Pareto.
Assuming no channel fading, it follows that

ps(R) =







(

k−1
kθR2−b/a

)k

for R2−b > a(k−1)
θk

1 otherwise

For b = 0 and integerk ≥ 2, the local delay is of the form

DNNT(a, 0) = 1 + Q(ξ) exp

(

−k − 1

kξ

)

,

whereξ , θ/(λπa) and

Q(ξ) = c1ξ + c2ξ
2 + . . . + ckξk

is a polynomial of orderk. Straightforward yet tedious calcu-
lation yields

cj =
kj+1

(k − 1)j−1

Γ(k − 1)

Γ(k − j + 1)
, j ∈ {1, 2, . . . , k} .

Unlessa ≫ θ, which is impractical, the minimum local delay
is attained atk = 2, as expected, since this choice ofk
produces the heaviest tail. In this case,

D(a, 0) = 1 + (4ξ + 8ξ2) exp(−1/(2ξ)) ,

which is finite for all choices ofθ and a, and D(a, 0) =
Θ(θ2), θ → ∞! So, inducing fading with a polynomial-tail
distribution ensures the finiteness of the local delay for all
choices of parameters, and it achieves much better asymptotic
scaling of the delay with respect toθ than Rayleigh fading,
where the delay scales at least exponentially inθ. So we
observe that fading with exponential tail appears to resultin a
delay that increases at least exponentially inθ, whereas fading
with a polynomial tail results in a delay that increases only
polynomially in θ.

Fig. 2 shows a comparison of the local delay in the case of
Rayleigh fading and Pareto induced fading. For small power
levels, only the Pareto delay is finite, where for larger power
levels, the Rayleigh delay is slightly smaller. In the limit, as the
power increases, the local delay approaches1 in both cases,
as expected.

For b = 2,

D(a, 2) =







(

kθ/a
k−1

)k

if θk > a(k − 1)

1 otherwise.

which is again minimized fork = 2. The asymptotic scaling
with respect toθ is not improved by the largerb. The
fact that D(a, 2) = Θ(θk) is interesting; it confirms that
the delay scaling is closely tied to how fast the tail of the
(complementary) fading distribution decays.

In conclusion:

Fact 2 Drawing the transmit power from a Pareto distribution
in an iid fashion in each time slot drastically reduces the mean
power required to keep the delay finite.

5 10 15 20 25 30
0

10

20

30

40

50

60

a

D

 

 

Pareto
Rayleigh

Fig. 2. The local delay for Rayleigh fading case and Pareto random power
control (k = 2) for b = 0, θ = 10, λ = 1/4. The phase transition in the
Rayleigh case occurs ata = θ/(λπ) = 40/π ≈ 12.7.

The disadvantage of Pareto power control is the high peak-to-
average power ratio.

III. POISSONNETWORKS WITH NOISE AND

INTERFERENCE

The collection of links considered in the previous section
can be regarded as a “network” without interference. In this
section, we include interference,i.e., we are considering an
actual wireless network. To reflect the fact that now the
transmissions take place between two nearby nodes in a
network, we now speak of thelocal delay instead of just the
(mean) delay.

A. The network model

We consider a marked Poisson point process (PPP) of
potential transmitterŝΦt = {(xi, txi

)} ⊂ R
2 × {0, 1}, where

Φt = {xi} is a homogeneous PPP of intensityλ and the
marks{txi

} are iid Bernoulli withP(t = 1) = p = 1 − q. A
mark of 1 indicates that the node transmits (in the time slot
considered) whereas a0 indicates it is idle. The receivers form
an independent PPPΦr of intensityλr. We denote the point
process of all nodes byΦ = Φt ∪ Φr. The large-scale path
loss is assumed to berα over distancer. A transmission from
a nodex ∈ Φt to a nodey ∈ Φr is successful if the signal-
to-interference-plus-noise ratio (SINR) exceeds a threshold θ.
The SINR is defined as

SINRxy ,
Sxy

W + Ixy
,

where the desired signal is the product of transmit power,
transmit mark, fading, and path gain,i.e., Sxy , Pxtxhxy‖x−
y‖−α, W is the noise power, and

Ixy ,
∑

(z,tz)∈Φ̂\{(x,tx)}

Pztzhzy‖z − y‖−α .



In this section, we assume the fadinghxy to be exponential
with mean1 and iid for all transmitter-receiver pairs and over
time (block Rayleigh fading). Time is slotted, and transmission
attempts are synchronized. We also assumeW ≡ 1, without
loss of generality, which makes the success probabilities
P(SINR > θ) compatible with the ones in the previous
section, whereI ≡ 0.

Let CΦ be the event that the typical node situated at the
origin o , (0, 0) ∈ R

2 successfully connects to its nearest
receiver y ∈ Φr in a single transmission (one time slot)
conditioned onΦ. This is thenearest-receiver transmission
model (NRT). Since all events considered are temporally iid,
there is no need to add a time index to this event. Conditioning
onΦ having a point at the origino implies that the expectations
that involve the point process are taken with respect to the
Palm distributionP

o of Φ and denoted byEo [3].

P
o(CΦ) = P

o(SINRoy > θ | Φ) .

Conditioned onS, the transmission successes are temporally
iid, so the conditional local delay is geometric with mean
P

o(CΦ)−1. The local delay is then obtained by integration with
respect to (w.r.t.)Φ:

D , E
o
Φ

(

1

Po(CΦ)

)

.

In the next subsections, we evaluate the local delay for
different scenarios.

B. Fixed transmit power

Let I be the total received power at the origin,

I ,
∑

(x,tx)∈Φ̂t

Pxtxhx‖x‖−α , (15)

with hx iid exponential, and

LI(s | Φ) = E
o
t,h(exp(−sI | Φ))

the conditional Laplace transform givenΦ. Instead of condi-
tioning onΦ, we may also condition onΦt andR, since the
receiver processΦr enters the calculation only through the
link distanceR.

First we analyze the case of fixed (unit) transmit power lev-
els and focus solely on the interference. We have the following
relationship between the (conditional) success probability and
the Laplace transform:

ps|R,Φt
= P(h ≥ IθRα | R, Φ)

= E
o
t,h exp(−IθRα)

= LI(θR
α | Φt) (16)

GivenΦt andR, the transmission success events are iid; hence,
the (conditional) delay is geometric with meanp−1

s|R,Φ, and we
obtain the local delay by integrating w.r.t.Φt andR. We first
take the expectation w.r.t. the point process to obtain the local
delay conditioned on the link distanceR. To this end, we need

the following result [2, Lemma 2]:
For Px ≡ 1 ,

E
o

(

1

LI(s | Φt)

)

=
1

p
exp

(

pλC(α)s2/α

q1−2/α

)

, (17)

where
C(α) , 2π2/(α sin(2π/α)) . (18)

The factor1/p stems from the ALOHA transmit probability.
Replacings in (17) by θRα and taking the expectation with
respect to the nearest-receiver distanceR (per (16)) yields the
local delay:

D =
1

p
ER exp

(

pλC(α)θ2/αR2

q1−2/α

)

(19)

Since the delay givenR is proportional toexp(cR2), the local
delay is finite in the noise-free case provided the transmit
probability (and thus interference)p is small enough [2].
However, if noise is included, we have seen in Fact 1 that
constant transmit power only result in finite local delay for
α = 2, even if interference is ignored. But forα = 2,
C(α) = ∞, so the local delay with interference is trivially
infinite for α = 2. Hence:

Fact 3 In a static network with noise and interference with
the same transmit power at all nodes, the local delay is infinite
for all path loss exponents, rates, and transmit probabilities.

Clearly, power control is needed. With noise and power
control,

ps|R,Φt
= P(h ≥ Rαθ(I + 1)/P | R, Φt))

= E
o
t,h exp(−Rαθ/P ) exp(−RαI/P )

= E
o
t,h exp(−θR2−b/a) exp(−θR2−bI/a) , (20)

where the first exponential factor is due to the noise and the
second due to the interference. Power control complicates the
analysis since it changes the distribution of the interference. In
(15), only the fading random variableshx are temporally iid,
whereas the power control random variablesPx stay constant
over time.

C. Power control at single transmitter

If only the node under consideration uses the power control
schemeP = aRα−2+b while the other nodes transmit at unit
constant power, the interference is unchanged, and the local
delay (with noise and interference) follows from (19) and (20):

D(a, b) = 2πλr

∫ ∞

0

exp

(

θ

a
r2−b

)

·

exp

(

λp(θ/a)2/αC(α)r4/α−2b/α

q1−2/α

)

r exp(−πλrr
2)dr ,

(21)

which is finite wheneverα > 2 and b > 0 or, if α > 2 and
b = 0, for small enoughp and large enougha. For b = 2, the
first two exponentials do not depend onr, and the local delay
is given by their product. Of course this is a selfish approach
that only works for a single transmitter in the network.
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Fig. 3. The local delay in the NRT case with noise and interference as a
function of the power control factora. The solid curve (top) is a simulation,
the dashed curve below is obtained by numerical integrationof (22). The dash-
dotted curve is the local delay if noise is ignored, which is independent of
a. The bottom curve is the delay if interference is ignored. Other parameters
areb = 0, λ = 1/4, λr = 2, p = 1/5, α = 4, andθ = 10. The local delay
is lower bounded by1/p = 5 due to ALOHA.

D. Power control at all nodes

Since it appears impossible to get an exact closed-form
solution for the case with full power control, we replace the
interferer’s transmit powers by their averages (11) (setn = 1),
which, due to the convexity of the exponential and by Jensen’s
inequality, yields a lower bound on the local delay:

DNRT(a, b) =
1

p
ER

(

exp

(

θ

a
r2−b

)

exp(c3r
(4−2b)/α)

)

(22)
where

c3 =
λp

(

θ(λrπ)1−α/2−b/2Γ(α/2 + b/2)
)2/α

C(α)

q1−2/α

andR is distributed as in (1) but with intensityλr.
Fig. 3 shows a simulation result and the result of the

numerical integration. As expected, the analytical resultis a
lower bound on the delay. For comparison, also shown are
the curves for the cases where noise and interference only are
considered.

IV. CONCLUSIONS

We have analyzed the local delay in static Poisson ALOHA
networks with noise. First, we considered the interference-free
case,i.e., a collection of independent links of fixed random
distances. If power control of the formP = aRα−2+b is used,
the the delay for Rayleigh fading is finite forb = 0 and some
conditions onθ, a, andλ, and it is always finite forb > 0. For
b = 0, a similar condition holds for Nakagami fading. If power
control is randomized with a distribution with polynomial tail,

the local delay is finite even forb = 0. So, induced fading can
greatly increase the stability region.

Extensions from nearest-neighbor communication ton-
th nearest neighbor communication are possible in a fairly
straightforward manner, as are extensions tod dimensional
Poisson networks.

The analysis of networks with both noise and interference
is tricky due to the effect of power control: On the one hand,
power control is needed to overcome the noise, on the other, it
complicates the interference distribution. In a network where
a new realization of the point process is drawn in each time
slot, the problem would not exist, for in this case the variations
of the transmit power could be combined with the fading. In
static networks, however, only the fading states vary in an
iid fashion, whereas power control is static over time, as the
distance to the nearest neighbor stays constant. We resort to
deriving a lower bound by replacing the interferers’ actual
powers by their averages and invoking Jensen’s inequality.
This is, to the best of our knowledge, the first analytical bound
on the local delay with noise, interference, and power control.
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