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Abstract—We study the convergence of the average consensusalso provide an analytical understanding of the impact of
algorithm in wireless networks in the presence of interferace. We  transmission power on the rate of convergence.
derive an optimal MAC protocol that maximizes the rate of con The paper is organized as follows. We begin by formulating
vergence on regular lattices with periodic boundary conditons. . . .
Our results show that forming long-range communication lirks the problem _"’_md introducing our notation. We concentrate
improves convergence even in an interference-limited scario. 0N two specific arrangements of nodes: the case of nodes
being arranged physically on a grid with periodic boundary
. INTRODUCTION conditions (Section Ill). Some avenues for future work are
Consensus in general, and average consensus in particydegsented in Section V.
has become an area of increasing research focus in recent

years (e.g. see [1], [14], [12], [11] and the referencesdingr II. PROBLEM FORMULATION

Many applications including distributed estimation [1[6], a) Average Consensus Algorithmin this paper, we will
[2], motion coordination [13] and load balancing in mulépl concentrate exclusively on the average consensus algorith
processes [4] have been analyzed in this framework. Considern nodes that aim to reach consensus with the final

Initial results about such algorithms proved that the valugalue being the average of their initial scalar values. Detize
held by the nodes converge to a common number, providéue held by the-th node at time: asz; (k). Also denote by
that the interconnection graphs satisfy some connectivityk) then-dimensional vector obtained by stacking the values
constraints. Lately, the focus has shifted to analyzing ti%é all the nodes in a column vector.
convergence properties in the face of realistic commuininat We describe in brief the average consensus algorithm de-
constraints imposed by the channels between the nodes, THii¢d with a given interconnection topology among the nodes.
effects such as quantization [10], packet erasures [2], [f]he topology can be described by a graph, with an edge
additive channel noise [7], [8], and delays [9] have begun fFesent between two nodes if and only if they can exchange
gain attention. information. Denote the neighbor set of nodat time k£ by
Such works typically assume that the communication chafy(k), where the argumert is included to model dynamic
nels between each pair of nodes are uncoupled. Howevgterconnection topolgies. An iteration consists of eveogle
typical applications of consensus algorithms would ineolvi €xchanging its state variable (k) with all nodes in\; (k).
nodes communicating over wireless channels. Models wifi{ssuming this exchange happens in a single time step, the
independent channel realizations are not suitable forlegse State of the system evolves as
networks. Wireless channels are inherently coupled due to
their broadcast nature and the presence of i);lterfelraencee-Mo zilk+1) = 2i(k) —h Z (wi(k) — z;(k)),
over, in a wireless network, any two nodes can communicate
by spending enough energy. Long range interconnections leghereh is a scalar constant designed to ensure convergence of
to smaller graph diameter, but also to interference withemothe algorithm. Note that in practice, a number of transroissi
nodes. The communication topology in wireless networlae necessary for information exchange. Denote the interco
thus depends on the network protocols and is, in fact,ngction graph at timé: by G(k). The system thus evolves
design parameter. In this work, we take the first steps tosvar@ccording to the discrete time equation
analyzing the effect of _real|st|c commun_|cat|on consmsun_ 2(k+1) = (I — hL(k)) z(k), #0) =20, (2)
on the consensus algorithms and designing the communica-
tion parameters for the consensus problem. In particular, where L(k) denotes the Laplacian matrix of the gra@tk).
consider the rate of convergence of the average consenkusan easily be shown (see, e.g., [14]) that under proper
algorithm while explicitly accounting for interference. W connectivity assumptions, if the parameteis small enough,
identify scheduling algorithms that are optimal with respe consensus is achieved with each node assuming the average
to the rate of convergence of the consensus algorithms. Wdue x,, = %Zi x;(0). Throughout our presentation, we
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will assume that: is fixed and has a valuk < ﬁ where In the second phase, the nodes update their values accooding
dmax is the maximum degree corresponding to any node in thige equation (1). As in the standard model, this step is asdum
graph over all time. To ensure that the nodes converge to teebe instantaneous. Therefore, due to multiple transorissi
average ofrg, it is also essential that the graph at every tim® set up the consensus graph, in our model, the state update
step be balanced. The protocols we consider below will enswloes not occur at every time step. In fact, assuming that each
that the graph is symmetric, which satisfies this condition. communication phase is completedZntime steps,

The rate of convergence of the value of the nodes is a
function of graph topology. In the case of a static graph (kT +T) = (I — hL)x(kT) (4)
tsc;]%?,:/?]gzlsé:'é.gg(.]?)[si [i;?r[la;]l) ttera? ﬁ?e I(t;o%?/grgznigsgfy gy herefore the effect of finite communication time, possibly
consensus protocol is geometric, with the rate being g@darndue to interference, is to slow down the convergence rate.

by the second largest eigenvalue modulus (SLEM) of the WWe are interested in Fhe following p.roblem: Given a set of
matrix I — hL. In general, a consensus algorithm on a gragiPdesM atknown locations and a desired consensus géaph
with smaller SLEM converges more quickly. If the matix what is the MAC protocol that minimizes the number of time

is symmetric, its SLEM can be written as its norm restricte8f€PS needed for communication (thus maximizing the update
to the subspace orthogonal to= [1 1 1...1]7 rate)? In other words, this MAC protocol should ensure the

b) Communication Protocols:iIn typical applications, fastest convergence of a consensus algorithm on a ggaph

the nodes communicate over wireless channels. In such ¥Y{le” used by nodes "M ) ) )
uations, any two nodes can potentially communicate by ex-We make the following further assumptions in this paper:
pending enough power or by lowering the transmission rate.e We limit the transmission policy to be time-invariant.
Moreover, the wireless channel is inherently multicastafy, « At the time of an update of the values of the nodes,
the interference from other nodes that are simultaneously we demand that the effective communication graph be
transmitting also needs to be accounted for. The effect of undirected, i.e., for any two nodes;j in the network,
such features on the average consensus algorithm has mot bee j € N; < i € N;. Note that this is slightly stronger than
studied previously. the necessary and sufficient condition for convergence
In particular, we consider a situation in which the physical of the average consensus algorithm that the graph be
locations of the nodes are given, which is a reasonable balanced [14].
assumption in many sensing environments. Each node them We assume half-duplex operation of the nodes, and
decides on the power with which it transmits. This power assume that packets that suffer collisions cannot be de-
determines the communication radius of the node according coded.

to the relation Under these assumptions, we are able to prove the following
P = Pyrg, (3) results:

where P, is a normalization constang is the path-loss * We present the optimal MAC scheduling protocol and t_he
exponent (typically2 < a < 5), P is the transmission power rate of convergence of the average consensus algorithm

andr, is the communication radius. All nodes at a distance !f Such a protocol is followed. _
smaller than, can receive the transmitted message « We prove that the rate of convergence increases monoton-
. .

Similar to the communication radius, we can also define (cally in the transmission power even when one accounts
an interference radius;. A node at positionz can receive a for interference.
message successfully from a node at posigjoonly if ||y — In the next section, we present the MAC protocol and the
z|| < r. (noise constraint), and there is no node at positicanalysis for the distribution of nodes on a regular grid with
z that is simultaneously transmitting, such that — «|| < periodic boundary conditions.
r; (interference constraint). In this paper, for simplicitye
assume-. = r;. The results can be generalized to other cases. [1l. ANALYSIS OF A RING AND A 2D TORUS

Given the above condition for successful transmission, weW beain b ideri d laced | i
require a medium access control (MAC) protocol for the. € Degin by considering nodes placed on a regular gn
nodes. We focus on scheduling based MAC protocols in thvlvéth periodic boundary conditions.
paper, rather than random access protocols. .

c) Problem Formulation::The operation of the averageA' Ring Topology
consensus protocol can be divided into two phases that ar€onsidern nodes placed uniformly on a circle of radius
repeated at every update of the node values. In the first phaseentered at the origin, as shown in Figure 1. Suppose that
the nodes exchange their values, possibly through multighee transmission power is such that every node can transmit
transmissions. We consider each transmission to consume oriormation tom of its nearest neighbors on either side. As an
time step. The effective communication graph at each updaeample, in Figure 1y = 1. If we defineP,,, m < [3] as
is, thus, composed of edgés j) such that nodg has received the transmit power that enables a node to form error-fréelin
the value of nodé during the previous communication phasewith 2m neighbours . nearest neighbours on either side).



2mn 1 <&
Node 1/ Node n Ngy = T = T Z N, (6)
: ', Communication t=1

| T for Nede where N, is the number of edges that are formed in every

slot. A MAC protocol minimized” if and only if it maximizes
N,,. Without loss of generality, lef1,2,..., K} be the set
of transmitted nodes in time sldt with power allocations
to reach{iy, is,...,ix} neighbors on each side, respectively.
Assuming each node transmits Bf, < P,ax, the number of
edges formed is given by

Node 2

Node 3

K
N, <Y 2ig, (7
k=1
Figure 1. Schematic of nodes placed along a ring. where equality is achieved if and only if there are no interfe

ing transmissions (since colliding packets cannot be dedpd

Since there is no routing:

2Du§ t(omtﬂh)e gr(]agmetry, we see that the transmission radius 'S Any transmission scheme that allows collisions is subop-
rsin(=-),

timal.
A node’s message should broadcast its message to its

. MT (o .
P o< (2 Sm(T)) ’ ®) m nearest neighbors in either direction. In other words

wherea > 2 is the path-loss exponent. As stated above, for i = m for a/II k. _

simplicity, we will assume that the interference radius afle ~ * Onlyt;n =m bnear;est ”?'?hzor ncf)des e(;«_:ha?ge messages
- : - so the number of useful edges formed is a er

node is als@r sin(Z1). 9 W2ysp

If the wireless channel could support simultaneous trans- fansmitting node for alP > F,.

missions by every node, the system would evolve accordif§jese facts allow us to write

to (2), with I — hL ann x n circulant matrix with the first K
row given by Ny = Z 2m = 2mK. (8)
k=1
m times Also, the total number of nodes that are either transmitting
1-2h -h -h -+ —h 0 --- 0 receiving packets in any given slot cannot exceed hus,
m times K n
“n —h ... —h] Z(Qik+1):(2iav+1)K§n:>K§Lva 9)
k=1 av

For future reference, denote this matrix By ,,. The MAC where we have defined
protocol that we propose guarantees that the system evolves

K
according to this matrix. However, the communication phase P 1 Zik_
occurs over multiple steps. We begin by bounding the number K k=1
of steps required for this. Towards this end, we first proee thjs implies
rather intuitive result that equal power allocation per edsl N, < 2m| n . (10)
optimal in terms of using the smallest number of time slots to o 2igy +1
CONSrUCtEY . The individual node power constraints < i < m’ imply

Lemma 1. Consider the set-up described above where ealh < @ < m'. Since the right hand side of (10) is a
node has a transmission power constraiit< Py.., where decreasing function of,,, we conclude that

Py is the power needed transmit ta’ > m neighpors_ N, < Nmax A om| n . (11)
andm < |n/2|. Let T denote the number of communication 2m+1

steps to formFy ,,,. ThenT is minimized by allowing all Sincei; > m, iy, is minimized wheni, = m for all k. =
nodes to transmit at poweP,,, where P, is the transmit  The expression forV;"** above suggests a simple trans-
power that enables a node to form error-free links witx  mission schedule that we describe below. We show that this
neighbours . nearest neighbours on either side). Any extrachedule achieves the upper boundnin every time slot,
power expended by a node only results in interference amdd is therefore optimal in that it constructs ,, in the
does not help towards the formation Bf ,,,. smallest time possible among all MAC protocols.

Proof: We need to form2mn edges inT time slots. Lemma 2. Consider the set-up described above, where the
Consequently, the average number of edges formed per stwitrix F; ,,, iS to be constructed in the minimum number



of time steps. If each node transmits at powRy,, any based MAC protocol, the error vectefk) = xz(k) — 1z,
transmission schedule that is used to constréigt,, must converges geometrically to zero with the rate of degaat
consume at leastm + 1 time slots. Moreover, it is alwaysis bounded as .

possible to form a schedule that consumes at Maest 1 prmT S B < pm T (13)

time slots. (myn) . (mn) o
where p; = 1 — h(2m + 1) + RS}, with S, =
Proof: Without loss of generality, suppose node 1 transin(&mtlrz) =01 N_1

mits atP,,. Then, ifm nodes on either side should receive its sin(z)

message, then Proof: The communication graph at each update step is
« none of these&m neighbors can transmit at this timePalanced and connected. Thus, the node values converge to
(half-duplex constraint); the average of their initial values with the decay rate as the

« there must be atleastm + 1 mod n nodes between modulus of the second largest eigenvalug®f,, [14]. Since
any two nodes that transmit simultaneously. (interferenda, i circulant, its eigenvalues can be calculated as

constraint). m l=n—m
Therefore, the maximum number of simultaneous transmispr =1 — 2mh + hZe’j¥ +h Z e IEE
sions possible i$ 5 |. Extending this argument, it + 1 I=1 l=n—1
time slots, at m0§(2m_+ 1)[ 355 | nodes can transmit. In l=m onlk
other words, maximizing the number of transmitting nodes =1 —2mh + 2hz cos ( - )
per time slot requires that all nodé8m + 1) nodes apart =1
should transmit, as long as the half-duplex and interfezenc l=m ok
constraints are satisfied. Thus affen + 1 time slots, =1—=(2m+1)h+h(1+2 Z cos ( " )
=1
n—2m+1 n =remn,2m+1 12 . (2m+1)7k
( o) =rem )0 - mt Dhn )
nodes are yet to transmit. Since all nodes that are+ 1 sin (%7)
apart have already transmitted, the remaining nodes are at 2 gtmm)
"k

most2m nodes apart. This implies that at most one node can (m.m)
be scheduled for transmission in any slot. Therefore we need =1— (2m +1)h+hS;™", k=0,1,---,n—1
rem(n, 2m + 1) more time slots to construdf; ,,,. The upper

) ; We can confirm thap, = 1. The second largest eigenvalue is
bound can be derived by observing that (dm2m+1) < 2m.

given by p; = p,_1. Since any MAC schedule &m + 1 <
T, < 4m + 1 the result follows. From Lemma 2, the system
updates its values eveff = (2m + 1) 4+ rem(2m + 1) time
steps, so thatm + 1 < T < 4m + 1. Thus we obtain that

1
the convergence rate is lower bounded &y*** and upper
1

[ |

d) Scheduling Alogrithm:\We describe the MAC proto-
col for a givenP,,. Let the nodes be numberéd, 1,...n—1}.
Denote the set of nodes that are yet to transmiShynd the
set of transmitters in time slatby Q,;. The MAC algorithm

is as follows: bounded byp;™**. ]
1) Initialize: S = {0,1,...n — 1} andt = 1.
2) For everyt > 1, while S is non-empty: 6000

a) Pick any node € S. Form a set of node®, =
.

{j|j:i+8(2m+1),0§8§LﬁJ—1}- 5000
Qr — SN Y,
by S8\
t—t+1
As proved above, the final value ofwill T = 2m + 1 +
remn,2m + 1). The MAC protocol that we denote b,
consists of picking one element of the d&@;, Qs,... Or}

4000

3000

Time for the error norm to become half

at a time, inT time slots. Notice thaP; forms the maximum 20007+
number of edges possible with a power allocation/yf to
each node, in the shortest possible time. Theref@te,is 10001 O+
optimal in that it will result in the fastest rate of convenge I s
for a givenF .. % 05 1 15 ° éé zc.bs 65 . 3{2 ° m;
We are now in a position to present the rate of convergen Transmission Power
of the average consensus protocol for the regular grid with
interference constraints. Figure 2. Variation of the convergence rate with the trassion power for
a ring.

Theorem 3. Consider the problem set-up described above. If
each node transmits at powd?,, and follows a scheduling- e) Remarks::



1) The upper bound for the decay can be achieved by using
the transmission schedul®,, provided2m + 1 divides
n. If this condition is not true, the upper bound is strict.

2) For any given transmission pow#t,,, we see that the
MAC constraints reduce the rate by a factorfofvhere
2m+1<T <4m+ 1.

3) The rate of convergence is an increasing function in
m, and hence inP,,. A numerical illustration of this
fact is provided in Figure 2. For the purpose of the
plot, we have plotted the time taken for the error norm
to become half, as a function of transmission power
for 31 nodes arranged regularly on a ring of radius
1 unit. We have assumed = 2, h = 5~ and the Eommurication
constant of proportionality in equation (5) as unity. range for a node
This is somewhat counter-intuitive since it indicates that
rate reduction due to a larger number of steps in the Figure 3. Schematic of nodes placed along a 2-dimensionas.to
communication phase is always compensated by the
increase in rate due to higher connectivity. That forming ) ) )
long range communication links would lead to fastef®nsensus graph. We denote this matrixiy,,. F2,, is an
convergence even in networks with interference was nBt< " block circulant matrix with its firs{ rows described by
a priori evident. m times

4) The effect of increasing the transmission power becomes FR T F - F. 00 - 0
more prominent a®,,, increases. This can again be seen

P e
S

from Figure 2. For large:, approximating m times
1 3 I I Fl} ’
sin (E) ~ o 3 (E) ) (14) b
n n n where thel x [ matricesF,, Fi, ..., F,, are also circulant,
we can express the spectral gap $G — p; as with the first row of matrixF} being
i (2mtDT N, (k) times Ny, (k) times
SG = h(2m+1)—hLﬁ) —_— —_—
sin (X) dp “1-1---1 0 - “1-1.--1],,
@m+D7 8 (2m+1)® (17)
~ h(@2m+1)-h—nr— 3 n° with
n ~ 3n% A
. . . . m = <vm?—k?
Simplifying this expression Non (k) LT 1 5 m* = kL€ L)
B2 dO = (2m + 1) -1
SGA 3?2m(21m +7r12)(2m + 2). (15) dy = —1, Vi > 1.
T 3n?

We can easily bound the number of time steps required to

This suggests that for large the spectral gap increasesgrm the matrix F,
1

with m3. For a fixedm, SG scales aé)(nl—z) for large
n. Lemma 4. If each node transmits at powd?,,, any trans-

mission schedule that is used to constriiét,, has at least

(2m + 1)? time slots. Moreover, it is always possible to form
The above results can be generalized to higher dimensioasschedule that has at mo(2m + 1)2 — 1 time slots.

We present the case when nodes are placed in a regular lattice . . .

in two dimensions with periodic boundary conditions, ian, Proof. Usmg. argumentz S|m|lgr to those used_ n

a 2-D torus as in Figure 3. L_emma 2, a maximum O[WJ simultaneous tran_smls-
As before, defing?,, to be the transmit power that enables$'0Ns can be scheduled per time slot. After + 1)*time

a node to form error-free links with. neighbors in the axial SIOtS,

directions. For simplicity, we assume that the torus is fedm I n |@2m+1)2 = rem(n, (2m +1)%)  (18)

by making a square grid periodic. Thus, there gfe agents (2m +1)2

in either of the axial directions. ThUS, we see that nodes are yet to transmit. Therefore we need at |@&t+

P m\® 1)? time slots to construct the consensus graph. It is always

m X (ﬁ) ) (16) possible to form a transmission schedule to complete the res

wherea > 1 is the path-loss exponent. As before, the objectivoef the transmissions in

is to construct the Laplacian matrix of the near@sheighbor remn, (2m +1)%) < 2m+1)? — 1 (19)

B. Torus



time slots. B share the same eigenvectors) to compute the eigenvalues of
Bounding the rate of decay of the error poses some problelzrggb) as
in tori of dimensions two or higher. Essentially, this isateld

to the fact that the nodes that can receive data from a pkaticu s = Z M, (23)
node are specified through circular disks. While in a one-
dimensional ring such disks can cover the entire ring, iéig where, , is ther" eigenvalue off; Vr,s = 0,1,...,1 — 1.

dimensions, such coverage is not possible. For our purposengw, from the 1D torus calculation, it is apparent that
we lower and upper bound such discs by squares of suitable

side length that cover the entire region. To this end, werbegi _ " 2nrk
with the following preliminary resuilt. e = di Z 2 cos 1) (24)

Lemma 5. Let T»(n) denote a set ok = {*> nodes uniformly Using this result, and making use of the fact that= F;
placed on a unit 2D torug0, 1]%at (r;,r;) = (\/_ \/_) for vt >1, we obtain that
i,j = 0,1,...y/n — 1. Let Gpm) be the consensus graph .
i yahe 2rrk
formed ovelTQ(n) by pIecmg edges between each neddth 1 = dy — 2 Z cos [ ZFT
all other nodesj # i satisfying '

m

Ly(ri,ry) < % 1<m< L@J. (20) +2Z<d1—2zcos(2wk )) Ob<2725t).

k'=1
Also denote the Laplacian @™ by L% and its maximum Plugging in the values af, andd; and simplifying, we obtain
degree by, So that the correspondlng consensus matrix is

defined asF\™ = I — hL{ pe = 2m+1)%* — (1 +2vrha+2veh),  (25)

following hoId: ) N
1. G™ is a subgraph of7 (. where we have defineti,!"") = 7" cos (2z2) for nota-

2. The eigenvalues of thEéom) are tional convenience. Now, we note that

(ml) Sln((2m+l)ﬂ'r)
o, =1—h(2m+1)* + hSmH 8™, (21) 142D — 4

(m.b), 26
m (&) Sy (26)

Proof: The first result follows from the definition af,
norm: Any nodej for which Ly(r;, 7;) < Z- necessanly Thus the eigenvalues dfs

satlsﬁeskegrfg)}((m,ﬂ, [rik]) < T Therefore, any edge in 2 =1 — hy%, = 1— h(2m +1)° + hSl(lm*l)SZEm’”. 27)

™ — 1 — KL are given by

Ggm)is also present i&"™, which means?ém) is a subgraph

of Goo( ) . .
. . . . . We are now in a position to bound the rate of decay for the
1
Given the standing assumptuhn< 5——, this implies that case of the torus.

a consensus algonthm @™ must converge at least as fast ) NG
as one onG™, provided the iterations occur at the samdn€orem 6. If each node transmits &, (m < [*5-]), there

rate. This allows us to lower bound the convergence rate egpsts a transmission schedule such that the state cow®ian
consensus algorithms (ﬁgm) as follows. 0(k) = z(k) — 1z4, converges to zero at a ra@that is lower

To begin with, note that the Laplacian matrixf,?) bounded as
foo”)is ann x n block circulant matrix with itd rows as e sET
_ AT <B <A (28)
m times
Fb i It -~ FL 00 - 0 where
m tmes Moo= (1= hEm+ 1)+ RS
h R Fl} Ixn’ Ay = (1 —h(2m+1)? + hSYh’ﬁ)
Here thel x [ matricesF, and F; are also circulant, with their o= LEJ-
first row being V2
m times m times Proof: Without loss of generality, assume that node 0,
[ dy =1—-1---—=1 0 0 -+ —1—-1---—1 L » located at the origin, transmits first with powgy,. Assuming
X1

(22) there are no collisions, a node at positiowan successfully
with dy = (2m +1)2 — 1 andd; = —1. Given this structure, receive its packet only if

we can use the properties of block circulant matrices and the

Lo(r) < 2 29
fact that Fj;s are themselves circulant (and consequently will 2(r) < ﬁ’ (29)



where Ly(.) denotes the familial., norm. Denoting bysS,,
the set of all such nodes, we may write

long-range links increases the rate of convergence, evirein
presence of interference.
m The work can be extended in many directions. An im-
%}- (30) mediate extension is the consideration of other classes of
. . raphs. In [19], we have extended this work to a class of
Using Lemma S(,mt)he CO”S?,Q)SUS graph formed will alwa brid graphs where nodes form a random geometric graph
be a Sl_Jbgraph o™ = (_V’ Es”) whereV is the set of a!l on top of a backbone of regularly present nodes. Cayley
nodes in t_he torus an#,, is the set of all edges formed usmggraphs and expander graphs have been shown to lead to good
the Locneighbourhood: convergence properties for consensus algorithms [3]. lit wi
be useful to extend our framework to such graphs. Another
direction is to consider the effect of data loss throughaffe

Sm = {l|La(r) <

B = {(9)Lee(rivri) < =

}. (31)

Since the convergence «ﬂgm) cannot be faster tha@{?", a
letting n» = [?we can use the above result to work with thé
eigenvalues of\"":

ppg =1 — h(2m + 1) + hS{mD 5leh, (32)

for p,q=0,1,..../n— 1. It is easy to see that the maximum
eigenvalue is 1. The second largest eigenvalue is correspori]
top=1, ¢ =0 and is given by

pro=1—h@m+1)2+hs{™D 2 ). (33)

(2
Similar to G2 we can defingz{2” whose vertex set consists
of all nodes on the torus but whose ed@%”) is defined as [3]

Em) —

o0

(5, 3) Lo (i 73) < T2}, @4

7

But for all nodesi, j on Gg’f) 5]

IN

Si=

max(|ri, [r;])

(6]

m 1 m
V2| \/§J =<
Geometrically, this can be understood as stating that arequd’!
of side2L\%J is completely contained in a concentric circle
(i.e., having the same centroid) of radius

Hence we have proved thet?” Gém) - so the conver-
gence onG{2” cannot be faster than that 63"&’”) for the same g
update rate. Substituting with /m in the result of Lemma 5
the second largest eigenvalue turns out to be equaktas (10]
defined above. Using arguments similar to those in Theorem 3,
we see that

:>£2(7’1',Tj) <

(8]

[11]

1 1 _
A1(27n+1)2 < 6 < )\22(2m+1)271 . (35)

B g

IV. CONCLUSIONS ANDFUTURE WORK

In this paper, we introduced a framework for considering3l
the effects of realistic communication networks on average
consensus algorithms. In particular, we considered theeiss
of designing the transmission power of nodes and the medil
access control scheduling algorithm to optimize the rate of
convergence. For lattices with periodic boundary conddio [15]
we analytically characterized the effect of these communi-
cation parameters on the distributed algorithm perforreaném]
We showed that increasing transmission power and forming

other than interference. Due to fading, stochastic padsses
re unavoidable in wireless channels. While the impact of
such losses on average consensus algorithms has begun to be
addressed [2], [6], it will be interesting to see the effecbur
framework with interference explicitly being considered.
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