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Abstract—We study the convergence of the average consensus
algorithm in wireless networks in the presence of interference. We
derive an optimal MAC protocol that maximizes the rate of con-
vergence on regular lattices with periodic boundary conditions.
Our results show that forming long-range communication links
improves convergence even in an interference-limited scenario.

I. I NTRODUCTION

Consensus in general, and average consensus in particular,
has become an area of increasing research focus in recent
years (e.g. see [1], [14], [12], [11] and the references therein).
Many applications including distributed estimation [17],[16],
[2], motion coordination [13] and load balancing in multiple
processes [4] have been analyzed in this framework.

Initial results about such algorithms proved that the values
held by the nodes converge to a common number, provided
that the interconnection graphs satisfy some connectivity
constraints. Lately, the focus has shifted to analyzing the
convergence properties in the face of realistic communication
constraints imposed by the channels between the nodes. Thus,
effects such as quantization [10], packet erasures [2], [6],
additive channel noise [7], [8], and delays [9] have begun to
gain attention.

Such works typically assume that the communication chan-
nels between each pair of nodes are uncoupled. However,
typical applications of consensus algorithms would involve
nodes communicating over wireless channels. Models with
independent channel realizations are not suitable for wireless
networks. Wireless channels are inherently coupled due to
their broadcast nature and the presence of interference. More-
over, in a wireless network, any two nodes can communicate
by spending enough energy. Long range interconnections lead
to smaller graph diameter, but also to interference with more
nodes. The communication topology in wireless networks
thus depends on the network protocols and is, in fact, a
design parameter. In this work, we take the first steps towards
analyzing the effect of realistic communication constraints
on the consensus algorithms and designing the communica-
tion parameters for the consensus problem. In particular, we
consider the rate of convergence of the average consensus
algorithm while explicitly accounting for interference. We
identify scheduling algorithms that are optimal with respect
to the rate of convergence of the consensus algorithms. We

also provide an analytical understanding of the impact of
transmission power on the rate of convergence.

The paper is organized as follows. We begin by formulating
the problem and introducing our notation. We concentrate
on two specific arrangements of nodes: the case of nodes
being arranged physically on a grid with periodic boundary
conditions (Section III). Some avenues for future work are
presented in Section IV.

II. PROBLEM FORMULATION

a) Average Consensus Algorithm::In this paper, we will
concentrate exclusively on the average consensus algorithm.
Considern nodes that aim to reach consensus with the final
value being the average of their initial scalar values. Denote the
value held by thei-th node at timek asxi(k). Also denote by
x(k) then-dimensional vector obtained by stacking the values
of all the nodes in a column vector.

We describe in brief the average consensus algorithm de-
fined with a given interconnection topology among the nodes.
The topology can be described by a graph, with an edge
present between two nodes if and only if they can exchange
information. Denote the neighbor set of nodei at time k by
Ni(k), where the argumentk is included to model dynamic
interconnection topolgies. An iteration consists of everynode
i exchanging its state variablexi(k) with all nodes inNi(k).
Assuming this exchange happens in a single time step, the
state of the system evolves as

xi(k + 1) = xi(k)− h
∑

j∈Ni(k)

(xi(k)− xj(k)), (1)

whereh is a scalar constant designed to ensure convergence of
the algorithm. Note that in practice, a number of transmissions
are necessary for information exchange. Denote the intercon-
nection graph at timek by G(k). The system thus evolves
according to the discrete time equation

x(k + 1) = (I − hL(k))x(k), x(0) = x0, (2)

whereL(k) denotes the Laplacian matrix of the graphG(k).
It can easily be shown (see, e.g., [14]) that under proper
connectivity assumptions, if the parameterh is small enough,
consensus is achieved with each node assuming the average
value xav = 1

n

∑

i xi(0). Throughout our presentation, we



will assume thath is fixed and has a valueh < 1
2dmax

where
dmax is the maximum degree corresponding to any node in the
graph over all time. To ensure that the nodes converge to the
average ofx0, it is also essential that the graph at every time
step be balanced. The protocols we consider below will ensure
that the graph is symmetric, which satisfies this condition.

The rate of convergence of the value of the nodes is a
function of graph topology. In the case of a static graph
topology (i.e.,G(k) = G for all time k), it can be easily
shown (see, e.g., [5], [14], [15]) that the convergence of the
consensus protocol is geometric, with the rate being governed
by the second largest eigenvalue modulus (SLEM) of the
matrix I − hL. In general, a consensus algorithm on a graph
with smaller SLEM converges more quickly. If the matrixL
is symmetric, its SLEM can be written as its norm restricted
to the subspace orthogonal to1 = [1 1 1...1]T .

b) Communication Protocols::In typical applications,
the nodes communicate over wireless channels. In such sit-
uations, any two nodes can potentially communicate by ex-
pending enough power or by lowering the transmission rate.
Moreover, the wireless channel is inherently multicast. Finally,
the interference from other nodes that are simultaneously
transmitting also needs to be accounted for. The effect of
such features on the average consensus algorithm has not been
studied previously.

In particular, we consider a situation in which the physical
locations of the nodes are given, which is a reasonable
assumption in many sensing environments. Each node then
decides on the power with which it transmits. This power
determines the communication radius of the node according
to the relation

P = P0r
α
c , (3)

where P0 is a normalization constant,α is the path-loss
exponent (typically2 ≤ α ≤ 5), P is the transmission power
and rc is the communication radius. All nodes at a distance
smaller thanrc can receive the transmitted message.

Similar to the communication radius, we can also define
an interference radiusri. A node at positionx can receive a
message successfully from a node at positiony only if ||y −
x|| < rc (noise constraint), and there is no node at position
z that is simultaneously transmitting, such that||z − x|| <
ri (interference constraint). In this paper, for simplicity,we
assumerc = ri. The results can be generalized to other cases.

Given the above condition for successful transmission, we
require a medium access control (MAC) protocol for the
nodes. We focus on scheduling based MAC protocols in this
paper, rather than random access protocols.

c) Problem Formulation::The operation of the average
consensus protocol can be divided into two phases that are
repeated at every update of the node values. In the first phase,
the nodes exchange their values, possibly through multiple
transmissions. We consider each transmission to consume one
time step. The effective communication graph at each update
is, thus, composed of edges(i, j) such that nodej has received
the value of nodei during the previous communication phase.

In the second phase, the nodes update their values accordingto
the equation (1). As in the standard model, this step is assumed
to be instantaneous. Therefore, due to multiple transmissions
to set up the consensus graph, in our model, the state update
does not occur at every time step. In fact, assuming that each
communication phase is completed inT time steps,

x(kT + T ) = (I − hL)x(kT ) (4)

Therefore the effect of finite communication time, possibly
due to interference, is to slow down the convergence rate.

We are interested in the following problem: Given a set of
nodesM at known locations and a desired consensus graphG,
what is the MAC protocol that minimizes the number of time
steps needed for communication (thus maximizing the update
rate)? In other words, this MAC protocol should ensure the
fastest convergence of a consensus algorithm on a graphG
when used by nodes inM.

We make the following further assumptions in this paper:

• We limit the transmission policy to be time-invariant.
• At the time of an update of the values of the nodes,

we demand that the effective communication graph be
undirected, i.e., for any two nodesi, j in the network,
j ∈ Ni ⇔ i ∈ Nj . Note that this is slightly stronger than
the necessary and sufficient condition for convergence
of the average consensus algorithm that the graph be
balanced [14].

• We assume half-duplex operation of the nodes, and
assume that packets that suffer collisions cannot be de-
coded.

Under these assumptions, we are able to prove the following
results:

• We present the optimal MAC scheduling protocol and the
rate of convergence of the average consensus algorithm
if such a protocol is followed.

• We prove that the rate of convergence increases monoton-
ically in the transmission power even when one accounts
for interference.

In the next section, we present the MAC protocol and the
analysis for the distribution of nodes on a regular grid with
periodic boundary conditions.

III. A NALYSIS OF A RING AND A 2D TORUS

We begin by considering nodes placed on a regular grid
with periodic boundary conditions.

A. Ring Topology

Considern nodes placed uniformly on a circle of radius
r centered at the origin, as shown in Figure 1. Suppose that
the transmission power is such that every node can transmit
information tom of its nearest neighbors on either side. As an
example, in Figure 1,m = 1. If we definePm, m ≤ ⌊n

2 ⌋ as
the transmit power that enables a node to form error-free links
with 2m neighbours (m nearest neighbours on either side).



Figure 1. Schematic of nodes placed along a ring.

Due to the geometry, we see that the transmission radius is
2r sin(mπ

n
), and

Pm ∝ (2r sin (
mπ

n
))α, (5)

whereα ≥ 2 is the path-loss exponent. As stated above, for
simplicity, we will assume that the interference radius of each
node is also2r sin(mπ

n
).

If the wireless channel could support simultaneous trans-
missions by every node, the system would evolve according
to (2), with I − hL an n × n circulant matrix with the first
row given by

[

1− 2h

m times
︷ ︸︸ ︷

−h − h · · · − h 0 · · · 0

m times
︷ ︸︸ ︷

−h − h · · · − h
]

.

For future reference, denote this matrix byF1,m. The MAC
protocol that we propose guarantees that the system evolves
according to this matrix. However, the communication phase
occurs over multiple steps. We begin by bounding the number
of steps required for this. Towards this end, we first prove the
rather intuitive result that equal power allocation per node is
optimal in terms of using the smallest number of time slots to
constructF1,m.

Lemma 1. Consider the set-up described above where each
node has a transmission power constraintP ≤ Pmax, where
Pmax is the power needed transmit tom′ ≥ m neighbors
and m ≤ ⌊n/2⌋. Let T denote the number of communication
steps to formF1,m. Then T is minimized by allowing all
nodes to transmit at powerPm, where Pm is the transmit
power that enables a node to form error-free links with2m
neighbours (m nearest neighbours on either side). Any extra
power expended by a node only results in interference and
does not help towards the formation ofF1,m.

Proof: We need to form2mn edges inT time slots.
Consequently, the average number of edges formed per slot

is

Nav =
2mn

T
=

1

T

T∑

t=1

Nt, (6)

where Nt is the number of edges that are formed in every
slot. A MAC protocol minimizesT if and only if it maximizes
Nav. Without loss of generality, let{1, 2, . . . , K} be the set
of transmitted nodes in time slott, with power allocations
to reach{i1, i2, . . . , iK} neighbors on each side, respectively.
Assuming each node transmits atPik

≤ Pmax, the number of
edges formed is given by

Nt ≤
K∑

k=1

2ik, (7)

where equality is achieved if and only if there are no interfer-
ing transmissions (since colliding packets cannot be decoded).
Since there is no routing:

• Any transmission scheme that allows collisions is subop-
timal.

• A node’s message should broadcast its message to its
m nearest neighbors in either direction. In other words
ik ≥ m for all k.

• Only m ≤ m′ nearest neighbor nodes exchange messages
- so the number of useful edges formed is always2m per
transmitting node for allP ≥ Pm.

These facts allow us to write

Nt =

K∑

k=1

2m = 2mK. (8)

Also, the total number of nodes that are either transmittingor
receiving packets in any given slot cannot exceedn. Thus,

K∑

k=1

(2ik + 1) = (2iav + 1)K ≤ n⇒ K ≤ ⌊ n

2iav + 1
⌋, (9)

where we have defined

iav ,
1

K

K∑

k=1

ik.

This implies
Nt ≤ 2m⌊ n

2iav + 1
⌋. (10)

The individual node power constraintsm ≤ ik ≤ m′ imply
m ≤ iav ≤ m′. Since the right hand side of (10) is a
decreasing function ofiav, we conclude that

Nt ≤ Nmax
t , 2m⌊ n

2m + 1
⌋. (11)

Sinceik ≥ m, iav is minimized whenik = m for all k.
The expression forNmax

t above suggests a simple trans-
mission schedule that we describe below. We show that this
schedule achieves the upper bound onNt in every time slot,
and is therefore optimal in that it constructsF1,m in the
smallest time possible among all MAC protocols.

Lemma 2. Consider the set-up described above, where the
matrix F1,m is to be constructed in the minimum number



of time steps. If each node transmits at powerPm, any
transmission schedule that is used to constructF1,m must
consume at least2m + 1 time slots. Moreover, it is always
possible to form a schedule that consumes at most4m + 1
time slots.

Proof: Without loss of generality, suppose node 1 trans-
mits atPm. Then, ifm nodes on either side should receive its
message, then

• none of these2m neighbors can transmit at this time
(half-duplex constraint);

• there must be atleast2m + 1 mod n nodes between
any two nodes that transmit simultaneously. (interference
constraint).

Therefore, the maximum number of simultaneous transmis-
sions possible is⌊ n

2m+1⌋. Extending this argument, in2m+1
time slots, at most(2m + 1)⌊ n

2m+1⌋ nodes can transmit. In
other words, maximizing the number of transmitting nodes
per time slot requires that all nodes(2m + 1) nodes apart
should transmit, as long as the half-duplex and interference
constraints are satisfied. Thus after2m + 1 time slots,

n− (2m + 1)⌊ n

2m + 1
⌋ = rem(n, 2m + 1) (12)

nodes are yet to transmit. Since all nodes that are2m + 1
apart have already transmitted, the remaining nodes are at
most2m nodes apart. This implies that at most one node can
be scheduled for transmission in any slot. Therefore we need
rem(n, 2m + 1) more time slots to constructF1,m. The upper
bound can be derived by observing that rem(N, 2m+1) ≤ 2m.

d) Scheduling Alogrithm::We describe the MAC proto-
col for a givenPm. Let the nodes be numbered{0, 1, . . . n−1}.
Denote the set of nodes that are yet to transmit byS, and the
set of transmitters in time slott by Qt. The MAC algorithm
is as follows:

1) Initialize: S = {0, 1, . . . n− 1} and t = 1.
2) For everyt ≥ 1, while S is non-empty:

a) Pick any nodei ∈ S. Form a set of nodesQt =
{j | j = i + s(2m + 1), 0 ≤ s ≤ ⌊ n

2m+1⌋ − 1}.

b)
Qt ← S ∩Qt

S ← S \Qt

t← t + 1
As proved above, the final value oft will T = 2m + 1 +
rem(n, 2m + 1). The MAC protocol that we denote byP1

consists of picking one element of the set{Q1,Q2, . . .QT }
at a time, inT time slots. Notice thatP1 forms the maximum
number of edges possible with a power allocation ofPm to
each node, in the shortest possible time. Therefore,P1 is
optimal in that it will result in the fastest rate of convergence
for a givenF1,m.

We are now in a position to present the rate of convergence
of the average consensus protocol for the regular grid with
interference constraints.

Theorem 3. Consider the problem set-up described above. If
each node transmits at powerPm and follows a scheduling-

based MAC protocol, the error vectorǫ(k) = x(k) − 1xav

converges geometrically to zero with the rate of decayβ that
is bounded as

ρ
1

2m+1

1 ≤ β ≤ ρ
1

4m+1

1 (13)

where ρ1 = 1 − h(2m + 1) + hS
(m,n)
1 , with S

(m,n)
p ,

sin( (2m+1)πp

n
)

sin( π
n

) , p = 0, 1, . . .N − 1.

Proof: The communication graph at each update step is
balanced and connected. Thus, the node values converge to
the average of their initial values with the decay rate as the
modulus of the second largest eigenvalue ofF1,m [14]. Since
F1,m is circulant, its eigenvalues can be calculated as

ρk =1− 2mh + h
m∑

l=1

e−j 2πk
n + h

l=n−m∑

l=n−1

e−j 2πk
n

=1− 2mh + 2h

l=m∑

l=1

cos (
2πlk

n
)

=1− (2m + 1)h + h(1 + 2
l=m∑

l=1

cos (
2πlk

n
))

=1− (2m + 1)h + h
sin ( (2m+1)πk

n
)

sin (πk
n

)
︸ ︷︷ ︸

,S
(m,n)
k

=1− (2m + 1)h + hS
(m,n)
k , k = 0, 1, · · · , n− 1.

We can confirm thatρ0 = 1. The second largest eigenvalue is
given byρ1 = ρn−1. Since any MAC schedule at2m + 1 ≤
Tm ≤ 4m + 1 the result follows. From Lemma 2, the system
updates its values everyT = (2m + 1) + rem(2m + 1) time
steps, so that2m + 1 ≤ T ≤ 4m + 1. Thus we obtain that

the convergence rate is lower bounded byρ
1

2m+1

1 and upper

bounded byρ
1

4m+1

1 .
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Figure 2. Variation of the convergence rate with the transmission power for
a ring.

e) Remarks::



1) The upper bound for the decay can be achieved by using
the transmission scheduleP1, provided2m + 1 divides
n. If this condition is not true, the upper bound is strict.

2) For any given transmission powerPm, we see that the
MAC constraints reduce the rate by a factor ofT where
2m + 1 ≤ T ≤ 4m + 1.

3) The rate of convergence is an increasing function in
m, and hence inPm. A numerical illustration of this
fact is provided in Figure 2. For the purpose of the
plot, we have plotted the time taken for the error norm
to become half, as a function of transmission power
for 31 nodes arranged regularly on a ring of radius
1 unit. We have assumedα = 2, h = 1

2n
and the

constant of proportionality in equation (5) as unity.
This is somewhat counter-intuitive since it indicates that
rate reduction due to a larger number of steps in the
communication phase is always compensated by the
increase in rate due to higher connectivity. That forming
long range communication links would lead to faster
convergence even in networks with interference was not
a priori evident.

4) The effect of increasing the transmission power becomes
more prominent asPm increases. This can again be seen
from Figure 2. For largen, approximating

sin
(pπ

n

)

≈ pπ

n
− 1

3

(pπ

n

)3

, (14)

we can express the spectral gap SG, 1− ρ1 as

SG = h(2m + 1)− h
sin ( (2m+1)π

n
)

sin (π
n

)

≈ h(2m + 1)− h
(2m+1)π

n
− π3

3
(2m+1)3

n3

π
n
− π3

3n3

Simplifying this expression

SG≈
hπ2

3n2 2m(2m + 1)(2m + 2)

1− π2

3n2

. (15)

This suggests that for largen, the spectral gap increases
with m3. For a fixedm, SG scales asO( 1

n2 ) for large
n.

B. Torus

The above results can be generalized to higher dimensions.
We present the case when nodes are placed in a regular lattice
in two dimensions with periodic boundary conditions, i.e.,on
a 2-D torus as in Figure 3.

As before, definePm to be the transmit power that enables
a node to form error-free links withm neighbors in the axial
directions. For simplicity, we assume that the torus is formed
by making a square grid periodic. Thus, there are

√
n agents

in either of the axial directions. Thus, we see that

Pm ∝
(

m√
n

)α

, (16)

whereα ≥ 1 is the path-loss exponent. As before, the objective
is to construct the Laplacian matrix of the nearestm-neighbor

Figure 3. Schematic of nodes placed along a 2-dimensional torus.

consensus graph. We denote this matrix byF2,m. F2,m is an
n×n block circulant matrix with its firstl rows described by

[

F0

m times
︷ ︸︸ ︷

F1 F2 · · · Fm 0 0 · · · 0

m times
︷ ︸︸ ︷

Fm Fm−1 · · · F1

]

l×n
,

where thel × l matricesF0, F1, . . ., Fm are also circulant,
with the first row of matrixFk being
[

dk

Nm(k) times
︷ ︸︸ ︷

−1− 1 · · · − 1 0 · · ·
Nm(k) times

︷ ︸︸ ︷

−1− 1 · · · − 1

]

l×1

,

(17)
with

Nm(k) , |{l | |l| ≤
√

m2 − k2, l ∈ Z}|
d0 = (2m + 1)2 − 1

dk = −1, ∀k ≥ 1.

We can easily bound the number of time steps required to
form the matrixF2,m.

Lemma 4. If each node transmits at powerPm, any trans-
mission schedule that is used to constructF2,m has at least
(2m + 1)2 time slots. Moreover, it is always possible to form
a schedule that has at most2(2m + 1)2 − 1 time slots.

Proof: Using arguments similar to those used in
Lemma 2, a maximum of⌊ n

(2m+1)2 ⌋ simultaneous transmis-
sions can be scheduled per time slot. After(2m + 1)2time
slots,

n− ⌊ n

(2m + 1)2
⌋(2m + 1)2 = rem(n, (2m + 1)2) (18)

nodes are yet to transmit. Therefore we need at least(2m +
1)2 time slots to construct the consensus graph. It is always
possible to form a transmission schedule to complete the rest
of the transmissions in

rem(n, (2m + 1)2) ≤ (2m + 1)2 − 1 (19)



time slots.
Bounding the rate of decay of the error poses some problems

in tori of dimensions two or higher. Essentially, this is related
to the fact that the nodes that can receive data from a particular
node are specified through circular disks. While in a one-
dimensional ring such disks can cover the entire ring, in higher
dimensions, such coverage is not possible. For our purpose,
we lower and upper bound such discs by squares of suitable
side length that cover the entire region. To this end, we begin
with the following preliminary result.

Lemma 5. Let T2(n) denote a set ofn = l2 nodes uniformly
placed on a unit 2D torus[0, 1]2at (ri, rj) = ( i√

n
, j√

n
) for

i, j = 0, 1, . . .
√

n − 1. Let G
(m)
p be the consensus graph

formed overT2(n) by placing edges between each nodei with
all other nodesj 6= i satisfying

Lp(ri, rj) ≤
m√
n

, 1 ≤ m ≤ ⌊
√

n

2
⌋. (20)

Also denote the Laplacian ofG(m)
p by L

(m)
∞ and its maximum

degree bydmax so that the corresponding consensus matrix is
defined asF (m)

p = I − hL
(m)
∞ for some0 ≤ h ≤ 1

2dmax
. The

following hold:
1. G

(m)
2 is a subgraph ofG(m)

∞ .
2. The eigenvalues of theF (m)

∞ are

λ∞
a,b = 1− h(2m + 1)2 + hS(m,l)

a S
(m,l)
b . (21)

Proof: The first result follows from the definition ofLp

norm: Any nodej for which L2(ri, rj) ≤ m√
n

necessarily
satisfies max

k∈{1,2}
(|ri,k|, |rj,k|) ≤ m√

n
. Therefore, any edge in

G
(m)
2 is also present inG(m)

∞ , which meansG(m)
2 is a subgraph

of G
(m)
∞ .

Given the standing assumptionh < 1
2dmax

, this implies that

a consensus algorithm onG(m)
∞ must converge at least as fast

as one onG(m)
2 , provided the iterations occur at the same

rate. This allows us to lower bound the convergence rate of
consensus algorithms onG(m)

2 as follows.
To begin with, note that the Laplacian matrixL(m)

∞ of
G

(m)
∞ is ann× n block circulant matrix with itsl rows as

[

F0

m times
︷ ︸︸ ︷

F1 F1 · · · F1 0 0 · · · 0

m times
︷ ︸︸ ︷

F1 F1 · · · F1

]

l×n
.

Here thel× l matricesF0 andF1 are also circulant, with their
first row being
[

dk

m times
︷ ︸︸ ︷

−1− 1 · · · − 1 0 0 · · ·
m times

︷ ︸︸ ︷

−1− 1 · · · − 1

]

l×1

,

(22)
with d0 = (2m + 1)2 − 1 andd1 = −1. Given this structure,
we can use the properties of block circulant matrices and the
fact thatFks are themselves circulant (and consequently will

share the same eigenvectors) to compute the eigenvalues of
L

(m)
∞ as

µ∞
r,s =

l−1∑

t=0

ηr,te
−j 2πst

l (23)

whereηr,t is therth eigenvalue ofFt ∀r, s = 0, 1, . . . , l − 1.
Now, from the 1D torus calculation, it is apparent that

ηr,t = dt −
m∑

k=1

2 cos

(
2πrk

l

)

. (24)

Using this result, and making use of the fact thatFt = F1

∀t ≥ 1, we obtain that

µ∞
r,s = d0 − 2

m∑

k=1

cos

(
2πrk

l

)

+ 2

m∑

t=1

(

d1 − 2

m∑

k′=1

cos

(
2πrk′

l

))

cos

(
2πst

l

)

.

Plugging in the values ofd0 andd1 and simplifying, we obtain

µ∞
r,s = (2m + 1)2 − (1 + 2V (r,l)

m )(1 + 2V (s,l)
m ), (25)

where we have definedV (r,l)
m =

∑m

k=1 cos
(

2πkr
l

)
for nota-

tional convenience. Now, we note that

1 + 2V (r,l)
m =

sin ( (2m+1)πr

l
)

sin (πr
l

)
, S(m,l)

r . (26)

Thus the eigenvalues ofF (m)
∞ = I − hL

(m)
∞ are given by

λ∞
a,b = 1− hµ∞

a,b = 1− h(2m + 1)2 + hS(m,l)
a S

(m,l)
b . (27)

We are now in a position to bound the rate of decay for the
case of the torus.

Theorem 6. If each node transmits atPm (m ≤ ⌊
√

n

2 ⌋), there
exists a transmission schedule such that the state covariance
δ(k) = x(k)−1xav converges to zero at a rateβ that is lower
bounded as

λ
1

(2m+1)2

1 < β < λ
1

2(2m+1)2−1

2 (28)

where

λ1 =
(

1− h(2m + 1)2 + hS
(m,

√
n)

1

)

λ2 =
(

1− h(2m̃ + 1)2 + hS
(m̃,

√
n

1

)

m̃ = ⌊ m√
2
⌋.

Proof: Without loss of generality, assume that node 0,
located at the origin, transmits first with powerPm. Assuming
there are no collisions, a node at positionr can successfully
receive its packet only if

L2(r) ≤
m√
n

, (29)



whereL2(.) denotes the familiarL2 norm. Denoting bySm

the set of all such nodes, we may write

Sm = {l|L2(r) ≤
m√
n
}. (30)

Using Lemma 5, the consensus graph formed will always
be a subgraph ofG(m)

∞ = (V, E
(m)
∞ ) whereV is the set of all

nodes in the torus andE∞ is the set of all edges formed using
the L∞neighbourhood:

E(m)
∞ = {(i, j)|L∞(ri, rj) ≤

m√
n
}. (31)

Since the convergence ofG(m)
2 cannot be faster thanG(m)

∞ ,
letting n = l2we can use the above result to work with the
eigenvalues ofF (m)

∞ :

ρpq = 1− h(2m + 1)2 + hS(m,l)
p S(q,l)

q , (32)

for p, q = 0, 1, ...,
√

n− 1. It is easy to see that the maximum
eigenvalue is 1. The second largest eigenvalue is corresponds
to p = 1, q = 0 and is given by

ρ1,0 = 1− h(2m + 1)2 + hS
(m,l)
1 , λ1. (33)

Similar toG
(m)
∞ we can defineG(m̃)

∞ whose vertex set consists
of all nodes on the torus but whose edgesE

(m̃)
∞ is defined as

E(m̃)
∞ = {(i, j)|L∞(ri, rj) ≤

m̃√
n
}. (34)

But for all nodesi, j on G
(m̃)
∞

max(|ri|, |rj |) ≤ m̃√
n

⇒ ℓ2(ri, rj) ≤
√

2⌊ m√
2
⌋ 1√

n
<

m√
n

.

Geometrically, this can be understood as stating that a square
of side 2⌊ m√

2
⌋ is completely contained in a concentric circle

(i.e., having the same centroid) of radiusm.
Hence we have proved thatG

(m̃)
∞ ⊂ G

(m)
2 - so the conver-

gence onG(m̃)
∞ cannot be faster than that onG(m)

2 for the same
update rate. Substitutingm with m̃ in the result of Lemma 5
the second largest eigenvalue turns out to be equal toλ2 as
defined above. Using arguments similar to those in Theorem 3,
we see that

λ
1

(2m+1)2

1 < β < λ
1

2(2m+1)2−1

2 . (35)

IV. CONCLUSIONS ANDFUTURE WORK

In this paper, we introduced a framework for considering
the effects of realistic communication networks on average
consensus algorithms. In particular, we considered the issue
of designing the transmission power of nodes and the medium
access control scheduling algorithm to optimize the rate of
convergence. For lattices with periodic boundary conditions
we analytically characterized the effect of these communi-
cation parameters on the distributed algorithm performance.
We showed that increasing transmission power and forming

long-range links increases the rate of convergence, even inthe
presence of interference.

The work can be extended in many directions. An im-
mediate extension is the consideration of other classes of
graphs. In [19], we have extended this work to a class of
hybrid graphs where nodes form a random geometric graph
on top of a backbone of regularly present nodes. Cayley
graphs and expander graphs have been shown to lead to good
convergence properties for consensus algorithms [3]. It will
be useful to extend our framework to such graphs. Another
direction is to consider the effect of data loss through effects
other than interference. Due to fading, stochastic packet losses
are unavoidable in wireless channels. While the impact of
such losses on average consensus algorithms has begun to be
addressed [2], [6], it will be interesting to see the effect in our
framework with interference explicitly being considered.
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