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Abstract—This paper focuses on determining the optimum transmission probability that
maximizes the per-node throughput in a random wireless ad hoc network. The network
self-interference is modeled as a Gaussian random variable which is equal to the sum of the
interference from all other transmitting nodes. Given the path loss exponent η, node density
λ, and the near field cut-off radius d0, analytical throughput expressions are derived for
three different scenarios - the AWGN channel, block Rayleigh faded channel with no CSI at
the transmitter and the same channel assuming perfect CSI at the transmitter.

1 Introduction

Wireless ad hoc networks consist of a set of nodes that communicate among themselves over
a wireless channel. There is no centralized control. The nodes cooperate in routing the data
packets from the transmitting node to the intended destination node. In doing so, efficient
routing protocols must be chosen respecting the power and delay constraints. This paper uses
the network self-interference model in [1] to characterize the network throughput. Though
[2, 3] focus on optimizing the resource allocation in multiple-access schemes, they do not
model the network self-interference. [1] determines the distribution of the interference but
does not come up with a closed form expression for the network throughput. [4] characterizes
the interference in a random ad hoc network to compare its performance with a regular grid
network.

In this paper, the following network model is considered [5]. Nodes are randomly dis-
tributed in the plane according to a Poisson point process of density λ. Each node is assumed
to transmit at the same frequency f with the same power P0 using an omnidirectional antenna.
Nodes make independent decisions on whether to transmit or listen. In any given time slot,
a node transmits with the attempt probability α. This paper does not confine itself to any
particular routing scheme. The destination node is always chosen randomly from the nearest
neighbors (within radius R) of the transmitting node. It is further assumed that no other node
within radius d0 of the destination node transmits in the same time slot, where d0 is referred
to as the near field cut-off radius. It depends on the path loss exponent η chosen to model the
network.

The destination node experiences interference of varying degree from all the transmitting
nodes other than its source in the network. For a successful transmission, the following has to



hold

Pr

Nt + I
> Θ (1)

where Pr is the received power, I is the total interference and Nt is the thermal noise at the
receiver.

The per-node throughput is the rate at which a node successfully transmits packets. For a
network with uniform traffic across all links, the per-node throughput will be the same for all
the nodes (boundary effects are ignored). Let A denote the source and B the destination. In
terms of probabilities, the per-node throughput can be defined as

ζ = α(1 − α)P (SINR > Θ) , (2)

where α is the probability that A transmits and (1 − α) and the probability that B does not
transmit in that same time slot. This manuscript aims at deriving a generalized expression for
the throughput in terms of the various network parameters. It further determines the transmit
probability that maximizes this throughput by plotting the throughput curve. The analytical
results are verified by comparing them with the throughput curves obtained from simulations.

The throughput expressions are derived for three different scenarios - the AWGN channel,
the block Rayleigh faded channel with no CSI at the transmitter and the block Rayleigh fad-
ing channel with perfect CSI at the transmitter. These expressions help analyze the network
throughput for various routing and MAC protocols. The simulation curves illustrate how fading
degrades the per-node throughput compared to an AWGN channel and how opportunistic trans-
mission (perfect CSI at transmitter) not only helps overcome this degradation, but also reach
a substantially higher throughput than in the non-faded case. The packet loss probabilities for
all three cases are also compared.

2 Modeling Interference

The nodes comprising the random network are assumed to be randomly distributed in a square
field of side 2L. Let (X, Y ) denote the Cartesian coordinate of a node. Then both X and Y are
uniformly distributed in [−L, L], independent of the positions of other nodes in the network.
Also, it can be easily shown that the number of nodes in a given area, for all practical purposes,
is given by a two-dimensional Poisson distribution [4]. Thus, in an area A in the plane, the
probability of finding k nodes is given by

P (k in A) =
e−λA(λA)k

k!
(3)

where λ = N/(4L2) is the node density. Since each node transmits with probability α, the
number of transmitting nodes in this area A follows another Poisson distribution with parameter
λαA.

A path loss model g(r) is chosen such that it satisfies the following two conditions [1]
g(r) is monotone decreasing,

lim
r→0

g(r) = ∞, lim
r→∞

g(r) = 0 (4)

and

lim
r→∞

r2g(r) = 0 (5)



(5) is required to ensure finite interference at a node even for an infinite network. It must,
however, be kept in mind that this is a far-field approximation model and that it does not hold
for transmitters very close to the destination [6].

In this paper, g(r) is modeled for 2 different channel models - the AWGN channel and the
Rayleigh faded channel. The mean and the variance of the interference at a receiver node is
determined for these 2 channel models in terms of the transmit probability, α, of a node in the
network.

2.1 AWGN channel

The channel is assumed to be perfectly Gaussian with no distortion of the transmitted signal.
For this channel, the path loss model is taken to be

g(r) =
K

rη
, η > 2 (6)

where K = c2/(4πf)2.

Without loss of generality, the receiver node is assumed to be located at the origin. It is
shown in [1, 7] that the characteristic function of the total interference at the receiver due to all
transmitting nodes beyond d0 is given by

ΦI(ω) = exp

(

iλαωP0

∫ g(d0)

0

[

g−1(t)
]2

eiωtdt

)

(7)

The first and the second central moments of this characteristic function represent the mean and
variance of the interference and are given by

µ1 =
λαπd2

0

(1 − 2/η)

KP0

dη
0

σ2
1 =

λαπd2
0

(1 − 1/η)

(

KP0

dη
0

)2

. (8)

Observe that the mean and the variance of the total interference power vary linearly with α.
Also observe that for η = 2, the mean interference diverges, thus, justifying the requirement in
(5). From the Central Limit theorem, for a large number of interferers, the distribution of the
total interference power tends to a Gaussian, i.e.,

Iµ1,σ2

1
∼ N (µ1, σ

2
1) (9)

This is a valid approximation since the probability of the interference being negative is negli-
gible for the above distribution.

2.2 Rayleigh faded channel

The above analysis is now extended to the Rayleigh faded channel model. Here the channel
distorts the signal in addition to adding Gaussian noise at the receiver. The path loss model is
taken to be

g(r, t) =
t2

rη
, 0 ≤ t < ∞, d0 ≤ r < ∞ (10)



where t is the fading coefficient of the channel. It is Rayleigh distributed with parameter
σ =

√

1/2 such that E [t2] = 1. The interference statistics are derived in a manner similar to
what is done in [1]. It is presented here for better understanding.

As discussed earlier, the set of transmitting nodes form a Poisson process with parameter
λ′ = λα. Let Y be the total interference power at the destination terminal.

Y =
∑

g(ri, ti) (11)

where the summation is over all transmitting nodes in the network. Let Ya be defined as follows,

Ya =
∑

ri≤a

g(ri, ti) (12)

i.e., interference power from all transmitters within a disk of radius a from the destination node.
Thus, we have lima→∞ Ya = Y . Let φYa

be the characteristic function of Ya.

φYa
(w) = E

[

eiwYa
]

(13)

This can be evaluated using conditional expectations as follows,

E
[

eiwYa
]

= E
[

E
[

(eiwYa/k in Da

]]

=
∞
∑

k=0

e−λ′πa2

(λ′πa2)k

k!
E
[

eiwYa/k in Da

]

(14)

where ‘k in Da’ means that there are k interfering nodes in a ring Da. The nodes are uniformly
distributed in this disk so that

fR(r) ∼ 2r/(a2 − d2
0), d0 ≤ r ≤ a (15)

Also, the probability distribution of the fading coefficient is given to be

fT (t) ∼ 2te−t2 , 0 ≤ t < ∞ (16)

The fading is independent from one channel to the other as is the distribution of the node radius.
Thus, the conditional expectation can be evaluated to be

E
[

(eiwYa/k in Da

]

=

[
∫ ∞

0

∫ a

d0

2r

(a2 − d2
0)

2te−t2ejwg(r,t)drdt

]k

(17)

Substituting back in (14)

E
[

eiwYa
]

= exp

[

λ′πa2

{
∫ ∞

0

∫ a

d0

2r

(a2 − d2
0)

2te−t2ejwg(r,t)drdt − 1

}]

= exp

[
∫ ∞

0

2te−t2λ′πa2

{
∫ a

d0

2r

(a2 − d2
0)

ejwg(r,t)dr − 1

}

dt

]

(18)

Applying the limit a → ∞ as in the non-faded case, the characteristic function of the total
interference becomes

Φ(w) = exp

[

∫ ∞

0

2te−t2jλ′πw

∫ g(d0,t)

0

[

g−1(x, t)
]2

ejwxdxdt

]

(19)



The mean and the variance of the total interference is then calculated to be,

µ2 = Φ′(w)|w=0 =
λαπd

(2−η)
0

(1 − 2/η)
(20)

σ2
2 = Φ′′(w)|w=0 − µ2

2 =
2λαπd

2(1−η)
0

(1 − 1/η)
(21)

It can be seen that the mean interference is the same as in the non-faded case whereas the
variance is doubled. Both statistics are still linear in the transmit probability α. For a large
number of interferers, the interference can once again be modeled to be Gaussian such that

Iµ2,σ2

2
∼ N (µ2, σ

2
2) (22)

3 Throughput Analysis

3.1 AWGN channel

The volatility of the channel is completely ignored and the transmitted signal is assumed to
arrive at the destination without any distortion. The channel access scheme is similar to slot-
ted ALOHA where each node transmits packets irrespective of other transmitting nodes. The
distance between the source node and the destination node is assumed to be R. Since there is
no fading between the transmitter and the receiver, the received power is a constant given by
Pr = KP0/R

η. The thermal noise at the receiver is taken to be a constant, denoted by σ2
n. The

interference is assumed to be Gaussian distributed as discussed previously. The probability that
the SINR is above the required threshold is given by

P (SINR > Θ) = P

(

Pr

Iµ1 ,σ2

1
+ σ2

n

> Θ

)

= P

(

Iµ1,σ2

1
<

Pr

Θ
− σ2

n

)

(23)

Also, Iµ1,σ2

1
≥ 0 since the interference power cannot be negative. Thus, the probability of

packet success is given by

P (packet success) = P

(

0 ≤ Iµ1,σ2

1
<

Pr

Θ
− σ2

n

)

= P

(

−µ1

σ1
≤ I0,1 <

Pr

Θ
− σ2

n − µ1

σ1

)

= Q

(

µ1 + σ2
n − Pr/Θ

σ1

)

− Q

(

µ1

σ1

)

, (24)

where Q(x) = 1√
2π

∫∞
x

e−x2/2dx. The per-node throughput is then given by

ζ = α(1 − α)

[

Q

(

µ1 + σ2
n − Pr/Θ

σ1

)

− Q

(

µ1

σ1

)]

. (25)



3.2 Block Rayleigh Faded Channel without CSI

The Rayleigh fading characteristics of the underlying physical channel are now taken into
account. The channel access scheme, however, remains the same as in the previous case. The
fading coefficient A is distributed as

pA(a) =
a

σ2
a

e−a2/(2σ2
a) (26)

where σ2
A = 1/2 such that E [A2] = 1. This paper considers a block faded channel where the

fading is independent from one block to the next. This implies that the received power, A2Pr,
is exponentially distributed. The mean probability that the SINR at the receiver exceeds the
threshold is given by

E [P (SINR > Θ)] = E

[

P

(

A2Pr

Iµ2,σ2

2
+ σ2

n

> Θ

)]

= E



exp



−
Θ
(

Iµ2,σ2

2
+ σ2

n

)

Pr







 , (27)

where the expectation is taken over the Gaussian distribution. Simplifying further, and keeping
in mind that Iµ2 ,σ2

2
≥ 0, the probability of packet success becomes

P (packet success) = exp

(

−Θσ2
n

Pr

)

1
√

2πσ2
2

∫ ∞

0

exp

(

−Θy

Pr

)

exp

(

−(y − µ2)
2

2σ2
2

)

dy

= exp

(

−Θ (µ2 + σ2
n)

Pr

)

1√
2π

∫ ∞

−µ2

σ2

exp

(

−Θσ2t

Pr

)

exp
(

−t2/2
)

dt

= exp

(

−Θ (µ2 + σ2
n)

Pr

)

exp

(

Θ2σ2
2

2P 2
r

)

Q

(

Θσ2

Pr
− µ2

σ2

)

(28)

The per-node throughput is then obtained by substituting back in (2).

3.3 Block Rayleigh Faded Channel with Perfect CSI at the Transmitter

In this case, a transmitting node is fully aware of the fading coefficient in the channel leading to
its intended receiver. The channel access scheme is opportunistic instead of the blind ALOHA
strategy. The transmitting node estimates the SNR at the receiver based on knowledge of the
thermal noise and transmits only if the SNR is higher than a certain threshold τ . The transmit
probability of the node depends on this threshold as

α = P (SNR > τ)

= P

(

A2Pr

σ2
n

> τ

)

= exp

(

−τσ2
n

Pr

)

(29)



Once this is determined, the packet success probability is given by

E [P (SINR > Θ |SNR > τ )] = E

[

P

(

A2Pr

Iµ2 ,σ2

2
+ σ2

n

> Θ

∣

∣

∣

∣

A2Pr

σ2
n

> τ

)]

(30)

Using the memoryless property of the exponential distribution and simplifying as before, the
probability of packet success is

P (packet success) = min

{

exp

(

Θ2σ2
2

2P 2
r

− Θ (µ2 + σ2
n) − τσ2

n

Pr

)

Q

(

Θσ2

Pr

− µ2

σ2

)

, 1

}

(31)

For very small α, the SNR threshold, τ , takes on very large values due to which the above
expression exceeds 1. Since a probability of success greater than 1 does not make sense, the
‘min’ operator is used. As before, the per-node throughput is calculated from (2).

For all three cases discussed above, the optimum transmit probability, α∗, that maximizes
the throughput is obtained by solving

dζ

dα

∣

∣

∣

∣

α∗

= 0 and
d2ζ

dα2

∣

∣

∣

∣

α∗

< 0 (32)

Closed form analytical expressions for α∗ are unwieldy and difficult to obtain without ap-
proximations. More practical solutions can be obtained from numerical methods or by simply
plotting the throughput expressions as a function of α.

4 Simulation Results

A Poisson field of 1600 network nodes is considered. The field is chosen to be a square of side
40m, so that the node density is λ = 1/m2. The path loss exponent η is varied from 3.5 to 4 in
steps of 0.1. The attempt probability of the nodes is varied from 0 to 1. R is chosen to be 1m
and d0 is taken to be 3m. The threshold SINR, Θ, is 10dB. The transmit power is 10 nW and
the thermal noise power is taken to be 5 fW.

The throughput curves for the η = 4 case are shown in Figure 1. In all three cases, the
simulation curves agree to a great extent with the analytical curves. Also shown in the figure is
the variation of the maximum throughput and the optimum transmit probability with variations
in η.

Channel η = 3.5 η = 4
model ζmax α∗ Ploss(%) ζmax α∗ Ploss(%)

AWGN 0.076 0.100 23.8 0.145 0.2 27.4
Rayleigh
w/o CSI 0.043 0.125 65.5 0.075 0.225 66.8
Rayleigh
with CSI 0.160 0.200 20.0 0.210 0.300 30.0

Table 1: Comparison of ζmax, α∗ and Ploss for different channel models
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Figure 1: (a)AWGN Channel (b) Rayleigh fading with no CSI (c) Rayleigh fading with perfect
CSI at Tx (d) Variation of throughput with α and η for the case with perfect CSI

Another parameter that characterizes the network performance is the packet loss probability
Ploss. It is defined as

Ploss =
α∗ − ζmax

α∗ (33)

The throughput curves also indicate a significant decrease in the packet loss probability for the
perfect CSI case. The results are summarized in Table 1.

5 Conculsion

A performance evaluation of random wireless ad hoc networks is presented. First and second
order statistics of the interference are used to derive closed form throughput expressions for
three different cases. The exact transmission probability that maximizes the per-node through-
put in each case is also determined. It is further observed that fading deteriorates the through-
put. Opportunistic transmission helps recover from this loss and, in fact, increases the network
throughput and the optimum transmission probability compared to the AWGN channel. The



packet loss probability for the fading channel is also comparable to the AWGN case when
there is CSI. The throughput is sensitive to two other parameters - η and d0. Increasing η
seems to affect the interference power more than the signal power leading to an increased net-
work throughput. Increasing d0 ensures that all interfering nodes are farther away; this also
increases the throughput. (It cannot, however, be increased arbitrarily keeping in mind the fact
that it affects the activity in the rest of the network.)
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