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Abstract —A wireless priority queueing system is considered for use in a delay-guaranteed

sensor network, in which all sensors are transmitting towards a unique destination. In case

that all sensed data in a certain period are of the same importance, a delay-balancing scheme

is designed to satisfy the end-to-end delay bound. A simple priority scheduling is employed to

implement this scheme. This paper statistically analyzes a two-class prioritized system with a

Bounded Delay (BD) dropping strategy in a Rayleigh fading channel, modeled by a two-state

Markov chain. Since the two priority classes are correlated in queueing behavior, a decomposi-

tion approach is proposed to analyze each class separately. Specifically, an approximate channel

model is computed for the low priority (LP) flow so that it can be analyzed in the same way

as the high priority (HP) flow(s). The QoS parameters of interest include packet delay and

dropping statistics. In addition, to enable the end-to-end performance analysis, we study the

approximate characterization of the output process.

1 Introduction

In the past few years, networks of low-cost, low-power, multifunctional sensors have at-
tracted increasing attention. Different from other ad hoc wireless networks, the sensor
network has the property of light individual traffic load, dense deployment and coopera-

tive effort of sensor nodes [1]. Either conventional QoS-guaranteed policies for ad hoc
networks have to be modified or improved, or new schemes have to be proposed to meet
the QoS requirements in sensor networks.

A typical scenario occurring in sensor networks is that all sensed data are transmitted
towards a unique destination (which is also referred to as sink or fusion center, see
Fig. 1). Since the individual traffic load is light and could be accommodated by the
wireless link, the delay tolerated by the packets at the distant nodes (the left nodes in
Fig. 1) is less serious than that at the closer nodes to the sink. In other words, given
the dense deployment, the nodes next to the sink (dark shaded nodes in Fig. 1) have
to carry all the traffic of the network (sum of the relayed and local traffic), which may
be beyond the transmission capability of the link at least temporarily, thus causing
queueing delay. We refer to these nodes as critical nodes. Many sensor applications are
delay-constrained, in particular sensor-actuator loops. A delay-balancing strategy aimed
at uniformly balancing the delay is proposed so that all packets will be transmitted to
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the sink within an identical delay bound, no matter where the packet is originated. A
scheduling principle is required at least at the critical nodes to favor the relayed packets,
which have experienced a longer delay than the local traffic.

Priority scheduling can be used to balance the delay of different flow packets if the re-
layed traffic is assigned a high priority. Moreover, channel errors due to wireless transmis-
sion (e.g., fading, path loss, shadowing) are unavoidable. The resulting priority queueing
system should be analyzed using a channel model that captures the fragility of the wire-
less channel. This paper discusses the queueing performance of the prioritized critical
nodes in a wireless Rayleigh fading channel. In addition, a Bounded Delay (BD) dropping
strategy is employed, which drops the packets not sent out within the delay bound D.
The QoS parameters of interest include packet delay and dropping statistics at a single
node. The overall output process is also investigated for future multiple-node analysis.

Sink

Figure 1: A sensor network with all nodes transmit-
ting towards a unique sink. Darker nodes indicate
higher traffic load.

The literature dealing with priority
queueing systems [2–8] and wireless queue-
ing systems [9, 10] is plentiful. A general
way to characterize a pure priority queue-
ing system is to denote the system state
as the union of the queue length of each
priority class and then analyze them as a
whole. However, this approach does not
yield the accurate probability distribution
of each priority queue, particularly when
the number of priorities is large. Further-
more, the channel state should be included
into the system state, which results in an
extra dimension to the system state space.
For instance, in a single-queue system with
the Rayleigh fading channel modeled by a
simple two-state Markov chain, 2-dimensional Markov chains are required to derive the
explicit steady-state probability distribution and the related dropping probability, e.g. [9]
with {QueueLength, ChannelState}, and [10] with {HeaderPacketDelay, Channel State}.
To our knowledge, no explicit results on the priority queueing system with Rayleigh fad-
ing channel have been published.

Our contribution is a decomposition approach which leads to a tractable model and
approximate characterization of both the priority queues and the output process. Unlike
the approaches used in wired prioritized systems, which analyze all queues jointly, our
approach decouples the low priority (LP) queue from the high priority (HP) queue so that
they can be analyzed separately and previous results on the single wireless queue [9, 10]
can be directly applied. Specifically, a virtual channel model is constructed for the LP
queue which combines the impact of the HP queue and the real wireless channel. The
output process is approximately characterized so that it possesses the same statistics
as the input process. This approximation permits a future end-to-end (multiple node)
analysis. Furthermore, this approach can be easily generalized to the multiple-queue
(> 2) system in an iterative way.
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Figure 2: Decomposition of the two-queue system into two single-queue systems

2 System Model

We consider a wireless link subject to bursty errors with time divided into equal-sized
slots. In a slot, at most one packet can be transmitted, and each transmission may incur
errors. The feedback is assumed to be error-free and available before the next packet
transmission. A failed packet will be retransmitted immediately until either it is sent out
successfully or its delay exceeds the delay bound D.

For bursty channel errors, a correlated error model is desired for an accurate assess-
ment of performance. [11] and [12] have pointed out that independent channel models
cannot accurately capture the system statistics. On the other hand, Wang and Chang [13]
showed that a first-order Markov model is sufficient for packet level transmission in a
Rayleigh fading channel. Therefore, we choose a two-state Markov chain to model the
wireless channel. Let 0 and 1 denote “good” and “bad” transmission states in a given
slot, respectively, and

P =

[

p00 p01

p10 p11

]

(1)

be the transition matrix for the error process, where p00 +p01 = 1 and p10 +p11 = 1. The
average packet error rate is ε = p01/(p10 + p01).

Channel state transitions and packet arrivals occur at the end and the beginning of
each slot, respectively. The arrival process is independent of the transmission errors. Both
traffic flows (relayed flow indexed by 1 and the local flow 2) generate packets according to
a Bernoulli process, i.e., at each slot, the flow i has a packet arriving with a probability
λi (i = 1, 2). Usually, we find λ1 � λ2 at the critical nodes. The HP packet will be
transmitted immediately if its queue is empty, while the LP packet has to wait until the
HP queue is empty. In each queue, the packets are served in a FIFO manner.

With these assumptions, the HP queue is exclusively served by the channel and in-
dependent of the LP queue, while the LP queue is served only when the HP queue does
not occupy the channel. The wired and continuous counterpart on this queueing system
is given in [14] using fluid flow models. Following a similar principle, we decouple our
discrete wireless priority queueing system.

3 Decomposition Approach

In Fig. 2, the arrival process and the output process are denoted by ai(t) and di(t),
respectively. The channel rate c(t) is modulated by a two-state Markov chain (1). The
system output process d(t) is the sum of the two individual output processes, d(t) =
d1(t) + d2(t). As discussed in Section 2, the HP queue can be analyzed as a single-queue
system with a channel rate c(t), and the LP queue is served by the remaining service
v(t) = c(t)− d1(t). Note that if we let the state space of the output process be {0, 1} (to
be consistent with the state space of the channel) in which 1 represent a packet departing
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Figure 3: Sample path of the two-priority system

the system , and 0 otherwise, then the service rate of the LP queue is

v(t) = (c(t) − d1(t)) mod 2 = c(t) + d1(t). note that c(t)d1(t) ≡ 0. (2)

The mod 2 operation ensures that the state space of v(t) is {0, 1}. Fig. 3 shows a sample
path of each process. Since v(t) has the same state space as the original wireless channel
c(t), and the LP packet is transmitted successfully only when v(t) = 0 (see Fig. 3), we
call v(t) the rate of a virtual channel for the LP queue. These decoupled single-queue
systems (in Fig. 2) with a BD policy can be analyzed using the approach introduced
in [10].

Our objective is to characterize the virtual channel. As shown in (2) and Fig. 3,
v(t) = 0 if c(t) = 0 and d1(t) = 0, i.e., when the channel is good and no HP packet
departs. d1(t) is unknown, but from c(t)d1(t) ≡ 0 we conclude that d1(t) is correlated to
c(t) and can be derived from the HP system.

3.1 A Single Wireless Queue with a BD Strategy

[10] has developed a model to describe the BD dropping system, in which a two-
dimensional Markov chain with state space {(i, j)| − ∞ < i ≤ D, j = 0, 1} is used,
where D is the maximum tolerable packet delay. The first entry i keeps track of the
packet delay, and the second models the error process. When i < 0 (negative delay),
the queue is empty and |i| represents the remaining time before a packet arrives at the
empty queue.

In the HP system, let X(n) denote the system state at time n and D1 the HP delay
bound. Define P(i,j),(k,l) as the one-step system transition probability

P(i,j),(k,l) = Pr{X(n + 1) = (k, l) | X(n) = (i, j)}

=























pjl i < 0, k = i + 1
ai−k+1

1 p0l 0 ≤ i ≤ D1, k ≤ i, j = 0
p1l 0 ≤ i < D1, k = i + 1, j = 1

aD1−k+1
1 p1l i = D1, k ≤ D1, j = 1

0 otherwise,

(3)



where

at
1 := λ1(1 − λ1)

t−1 ; ( note that

∞
∑

t=1

at
1 = 1 ). (4)

The resulting Markov chain is of infinite length. The steady-state probabilities π(i, j)
are solved by using the balance equations of the Markov chain,

π(i, j) =


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
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






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





p10
ω xD1−iπ(D1, 1) i > 0, j = 0

(1 − λ1)
D1−i

[

1 +
p10(1 − ω)D1−i

(1 − ω)ωD1−i

]

π(D1, 1) i ≥ 0, j = 1

p10
p01

xD1π(D1, 1) i = 0, j = 0

(1 − λ1)
−i p10

p01
xD1π(D1, 1) i < 0, j = 0

(1 − λ1)
D1−i(1 + p10ωD1

)π(D1, 1) i < 0, j = 1,

(5)

where














ω = 1 − λ1(1 − p01) − p10(1 − λ1)

x = 1 − λ1
ω

ωD1
= 1 − ωD1

ωD1(1 − ω)
.

Note that the first three expressions in (5) have been derived in [10], and the last two
equations are obtained after we apply the condition of infinite interarrival time (A1 = ∞)
to {π(i, j) | i < 0}.

The probability π(D1, 1) is calculated by using

D1
∑

i=−∞

1
∑

j=0

π(i, j) = 1 ; therefore π(D1, 1) =
1

ksum

, (6)

where

ksum =
p10x

D1

p01λ1
+ (1 + p10ωD1

)
(1 − λ1)

D1+1

λ1
+

[

1 − (1 − λ1)
D1+1

]

(1 − ω − p10)

λ1(1 − ω)

+
p10(1 − xD1)

ω(1 − x)
+

p10(1 − xD1+1)

(1 − ω)(1 − x)
. (7)

3.2 Characterization of the Virtual Channel v(t)

We find that as i < 0 (⇔ d1(t) = 0) and j = 0 (⇔ c(t) = 0), there is no packet in
the HP queue (thus no packet departure) and the channel is good, which corresponds to
v(t) = 0; the remaining states correspond to v(t) = 1. Since the virtual channel cares
only about the transition between 0 and 1, not how the HP system evolves, it is sensible
to divide the HP state space into two subsets I and B, defined as I = {(i, j) | i < 0 and
j = 0}, B = IC . The subset I and B correspond to 0 and 1 of v(t), respectively. Now,
we compute the transition probabilities between these two subsets. (Note that we use ∼,
as in p̃10 and ε̃, to denote the parameters associated with the virtual channel v(t)).



p̃01 = Pr{X(n + 1) ∈ B|X(n) ∈ I} =
Pr{X(n + 1) ∈ B, X(n) ∈ I}

Pr{X(n) ∈ I}

=

∑

i<0

π(i, 0)
(

D1
∑

k=−∞

P(i,0),(k,1) +

D1
∑

k=0

P(i,0),(k,0)

)

∑

i<0

π(i, 0)

= p01 +
π(−1, 0)

∑

i<0

π(i, 0)
(1 − p01) = p01 + λ1(1 − p01); (8)

p̃10 = Pr{X(n + 1) ∈ I|X(n) ∈ B} =
Pr{X(n + 1) ∈ I, X(n) ∈ B}

Pr{X(n) ∈ B}

=

D1
∑

i=−∞

∑

k<0

π(i, 1)P(i,1),(k,0) +

D1
∑

i=0

∑

k<0

π(i, 0)P(i,0),(k,0)

D1
∑

i=−∞

π(i, 1) +

D1
∑

i=0

π(i, 0)

=
k10

k1

, (9)

where

k10 = p10(1 − λ1)
D1+1

[

(1 − p01 − p10)ωD1
+

1 + p10ωD1

λ1
+

1 − p01

p01ω
D1

]

π(D1, 1)

k1 = 1 −
p10

p01

1 − λ1

λ1

xD1π(D1, 1).

p̃01 in (8) is consistent with our intuition. There is a transition from v = 0 to v = 1 if
either the channel becomes bad (i.e., j : 0 → 1 with probability p01) or a packet arrives
but the channel remains good (i.e., i : −1 → 0, j = 0 with probability λ1p00).

Furthermore, the average error rate ε̃ is obtained in a straightforward way:

ε̃ =
p̃01

p̃01 + p̃10

= 1 −
p10

p01

1 − λ1

λ1

xD1π(D1, 1) =

D1
∑

i=0

π(i, 0) +

D1
∑

i=−∞

π(i, 1) = Pr{X ∈ B}.

(10)
The computed error rate ε̃ is identical to the sum probability of all bad states in

B, which proves that our approach of state aggregation is reasonable. In summary, we
aggregate all the good states of the HP queueing system into one state 0 of the virtual
channel v(t) and all the bad states into 1. Thus we have another two-state Markov model
{p̃ij|i, j = 0, 1} for v(t).

3.3 The Two-Priority Queueing System

For a two-priority queueing system, using the above decomposition approach, we obtain
two single-queue systems, whose channel processes are c(t) and v(t), modulated by two-
state Markov chains with transition probabilities {pij | i, j = 0, 1} and {p̃ij | i, j = 0, 1},
respectively. Each class has its own delay bound Dk (k = 1, 2). A reasonable assumption



is that D2 > D1 because the locally generated packets can tolerate a longer delay than
the relayed packets if they have the same end-to-end delay constraint.

Naturally, the packet delay d
(k)
j and packet loss probability p

(k)
L for queue k are cal-

culated as in the single-queue system (given in [10]):

d
(k)
j =

π(k)(j, 0)
Dk
∑

i=0

π(k)(i, 0)

and p
(k)
L =

π(k)(Dk, 1)

λk

, (11)

where π(1)(i, j) = π(i, j) in (5), and π(2)(i, j) is calculated in the same way as in (5), but
with different parameters λ2 and {p̃ij|i, j = 0, 1} given by (8) and (9).

With this decomposed system, it is not difficult to approximate the output process
d(t). The arrival processes are assumed to be Bernoulli (the interarrival time is geo-
metrically distributed and memoryless). However, due to the correlations in the channel
errors and the two queues, the output process does not preserve this memoryless prop-
erty. In order to carry out the end-to-end analysis, it is desired that the output process
has the same probabilistic properties as the input process. A natural idea is to introduce
some approximations and make the output process memoryless. The key in the Bernoulli
process is the probability λ of an event occurring. In terms of the output process, the
wanted probability is the average departure probability.

As pointed out before, the output process d(t) is the sum of two individual processes

d1(t) and d2(t). Denote the departure probability of queue k by p
(k)
d . By means of the

decomposition principle, the overall departure probability is:

pd = p
(1)
d + p

(2)
d (1 − ε̃). (12)

Similar to the calculation of ε̃, the p
(k)
d can be calculated by dividing the system space

into two subsets. For instance, in the HP system, a packet departs when i ≥ 0 and j = 0.
Consequently, we denote the subset D = {(i, j) | i ≥ 0 and j = 0} as the set of all
states in which a packet departure occurs, and N = DC is the set of remaining states.
Therefore, the departure probability for the HP queue is given by the equation

p
(1)
d = Pr{X ∈ D} =

D1
∑

i=0

π(i, 0) =
p10

p01

xD1

(

1 +
p01

ω

1 − xD1

1 − x

)

π(D1, 1). (13)

p
(2)
d is computed in the same way with the parameters and probabilities of the LP queue.

4 Numerical Results

In this section, we present some example results obtained based on the analysis described
above. Since the focus is on the critical nodes, the exported traffic load λ1 is assumed
to be heavy, and λ2 � λ1. As mentioned in Section 3.3, D2 > D1. Specifically, we set
D2 = 10D1. We first display the impact of the delay bound on the packet loss probability.
The arrival rates are λ1 = 0.8 and λ2 = 0.08, respectively; the mean burst error length
is 1

p10

= 10, and the average error rate ε = 10−2. This setting implies a heavy traffic
load and highly correlated errors, which is the worst case system. Fig. 4 exhibits the
dropping probabilities pL of the two queues. Besides the part where the delay bound
is very small (D1 ≤ 4 which is not practical — in fact, we usually have D1 ≥ 10), the
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packet loss probability of the local traffic is much smaller than that of the relayed traffic
(can be ignored when D1 ≥ 20). This is consistent with our expectation. Even though
the relayed traffic exclusively occupies the channel, most local packets are still sent out
successfully, with a fairly small loss. Therefore, the delay-balancing scheme improves the
delay of the long-path packets at a small price on the short-path packets. Moreover, as
proved by [10], the packet loss probability (log scale) is linear to the delay bound.

Next, we investigate the impact of the channel. First consider the channel error rate
ε. The delay bounds are fixed at D1 = 10 and D2 = 100, and other parameters remain
unchanged. Fig. 5 displays the two queues’ packet loss probability versus the channel
error rate ε. The HP queue is like a single queue with a server c(t), and its p

(1)
L (log

scale) is near-linear to log(ε) (which is identical to the result of [10]). On the other
hand, for LP packets, when ε is small (< 10−3), the packet loss probability is almost

independent of ε. Even as ε increases (to 10−2), the change of p
(2)
L is still very small.

p10 is another channel parameter considered. Fig. 6(a) shows that, like ε, p10 does not

play a significant role in p
(2)
L . Fig. 6(b) shows how the error rate ε̃ of the virtual channel

changes with p10. No apparent change in ε̃ happens when the channel error correlation
decreases (p10 increases). That explains why p

(2)
L does not greatly change with p10.
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The last one is the arrival rate λi. Fig. 7(a) and Fig. 7(b) show the influence of λi

given that λ1 + λ2 = 0.9. The virtual channel error rate ε̃ linearly increases with λ1,
which results in the increase of the LP queue’s packet loss probability p

(2)
L (Fig. 7(a)).

In summary, the LP queue’s performance is determined by the virtual channel, which,
in turn, is a combination of the HP queue and the real channel. Our numerical results
show that the HP flow is more important for the LP queue than the channel c(t). This
is reasonable, since the channel is good on average (given the assumption of small error
rate ε), and the bad period of the virtual channel is highly possibly caused by the arrival
of HP packets. Therefore, small changes in the arrival rate of the HP flow will lead to a
bigger improvement of the LP packet loss probability, compared to the channel statistics.

5 Conclusions and Future Work

A decomposition approach is proposed to solve the queueing problems in a priority queue-
ing system with correlated channel errors and real-time traffic. Closed-form solutions for
each queue’s delay distribution and dropping probability are provided by partitioning
the HP system state space into two subsets and aggregating all the states in a subset to
achieve a two-state Markov model for the LP queue. The numerical results give some
insights on the design of the system. When the wireless channel is not bad on average
(small error rate), which is reasonable in practice, the queueing performance of low pri-
orities is mainly determined by that of the high priorities, rather than the channel itself.
Moreover, if the delay bounds are chosen appropriately (e.g. D2 = 10D1) and the LP
traffic load is light, the loss rate in the LP packets is small.

This approach can be easily generalized to a k-priority system (k > 2) in an iterative
way by constructing a virtual channel for each lower priority class i (i > 1). Our future
work includes the extensions from two aspects. First, extend from the single-node case
to the multiple-node case; Second, extend from the simple Bernoulli arrival process to
more general arrival processes.
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