
Author's personal copy

Towards an end-to-end delay analysis of wireless multihop networks

Min Xie a,*, Martin Haenggi b,1
aUniversity College London Adastral Park Campus, Martlesham Heath, Suffolk IP5 3RE, United Kingdom
bDepartment of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, United States

a r t i c l e i n f o

Article history:
Received 5 June 2007
Accepted 21 April 2008
Available online 22 August 2008

Keywords:
Multihop
MAC
TDMA
ALOHA
Delay
Correlation

a b s t r a c t

In wireless multihop networks, end-to-end (e2e) delay is a critical parameter for quality of
service (QoS) guarantees. We employ discrete-time queueing theory to analyze the end-to-
end (e2e) delay of wireless multihop networks for two MAC schemes, m-phase TDMA and
slotted ALOHA. In one-dimensional (1-D) networks, due to the lack of sufficient multiplex-
ing and splitting, a space–time correlation structure exists, the nodes are spatially corre-
lated with each other, and the e2e performance cannot be analyzed as in general
two-dimensional networks by assuming all nodes independent of each other. This paper
studies an 1-D network fed with a single flow, an extreme scenario in which there is no
multiplexing and splitting. A decomposition approach is used to decouple the whole net-
work into isolated nodes. Each node is modeled as a GI/Geo/1 queueing system. First, we
derive the complete per-node delay distribution and departure characterization, account-
ing for both the queueing delay and access delay. Second, based on the departure process
approximation, we define a parameter to measure the spatial correlation and its influence
on the e2e delay variance. Our study shows that traffic burstiness of the source flow and
MAC together determines the sign of the correlation.

! 2008 Elsevier B.V. All rights reserved.

1. Introduction

With the growing demand for real-time applications
over wireless networks, increasing attention is paid to
the delay analysis of transmissions over error-prone chan-
nels. In multihop networks, like ad hoc, mesh, and multi-
hop cellular networks, the analysis is more challenging
than in single-hop networks due to the delay accumulation
at each hop. Many factors affect the end-to-end (e2e) de-
lay, including the routing algorithm, the MAC and packet
scheduling algorithm and error-prone wireless channels.
The analysis is unlikely to be tractable if all these factors
are considered together. However, if there is only a single
active path in the network, the two-dimensional (2-D)
topology (Fig. 1a) can be reduced to one-dimension (1-D)
(Fig. 1b) and routing could be ignored.

In the 1-D network, referred to as line network, there is
no inter-flow interference, and the corresponding perfor-
mance is an upper bound for general 2-D networks. On
the other hand, it is easier to approximate 2-D networks
than 1-D networks because in 2-D networks the delays
are closer to be independent while in single flow 1-D net-
works the correlation cannot be ignored. The e2e delay is
determined by the joint distribution of the successive de-
lays of a packet traversing multiple nodes. In 2-D networks,
with network-wide traffic integration, all nodes may be as-
sumed to be independent and analyzed in isolation such
that the joint distribution can be approximated in a prod-
uct-form [1]. Generally speaking, the conditions to permit
the”independence” assumption are: (i) the peak rate of
each source does not exceed 5% of the total link capacity;
and (ii) no more than 10% of the departing sources go to
the same immediate downstream link [2], i.e., large-scale
multiplexing and splitting. However, in networks with
convergecasting (i.e., information gathering towards a cen-
tral node Fig. 1a), the above conditions do not hold since
there exists a space–time correlation structure. Then it is
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difficult to derive the closed-form joint distribution. Spe-
cially, in an extreme case where all intermediate nodes
are pure relays (Fig. 1b, which is a representative of the
area closer to the base station in random networks with
convergecasting), the departure process of node i is exactly
the arrival to node iþ 1 and so forth and thus the space–
time correlation is too strong to be ignored. Such correla-
tions substantially complicate the e2e analysis.

The spatial correlation is mainly caused by the temporal
correlation of the traffic flow, to which several factors con-
tribute as well as the original traffic statistics. Here the
temporal correlation is referred to as the correlation in
two consecutive packet arrivals while the spatial correla-
tion is the dependence between the activities of two nodes.
Channel errors cause distortions to the traffic flow, which,
in turn, change the temporal correlation. Such distortions
may be further accumulated with multihop transmission
[3]. The other factor is multiple access control (MAC) that
schedules the node transmission order and may incur ac-
cess delays, which certainly change the packet arrival pat-
tern. Therefore, the study of the spatial correlation should
take into account both the traffic statistics and the distor-
tions caused by wireless channel errors and MAC.

1.1. Previous work

The throughput and single-hop delay of many MAC
schemes have been comprehensively studied in the litera-
ture [4,5]. However, little work has been carried out on
their multihop delay. Moreover, previous MAC studies usu-
ally assume that traffic is generated in a way that incurs no
queueing delay, e.g., a new node is generated to represent
the newly generated packet; or new packets are generated
only when the buffer is empty [5–7]. These models are
simplified and unrealistic. In practice, new packets may
be generated when the buffer is non-empty and thus expe-
rience a queueing delay. On the other hand, the study of
queueing networks is concerned with the queueing delay
only, ignoring the access delay [8–11].

Due to the presence of the queueing delay, queueing
models are needed. If we assume independent wireless

channel errors, the service time is geometrically distrib-
uted, and a single node can be modeled as a GI/Geo/1 sys-
tem. In the literature, the queue length distribution of
general GI/Geo/1 queues has been well studied [12]. How-
ever, to analyze multihop networks, the requirement for a
departure process characterization arises. In the literature,
only a few papers address the departure process when the
arrival process has correlation in time, e.g., [13]. Moreover,
for non-Bernoulli and non-Poisson arrivals, it is known that
the departure process is correlated with the queue length
and arrival process [14], which results in cumbersome
expressions [13,15] that prohibit a scalable e2e analysis.
Closed-form solutions for the delay of wireless regular line
networks with a single source (like Fig. 1b) are available
only if the arrival is Bernoulli [9] or the channels are er-
ror-free [11]. For other cases, approximations are needed.
[16] analyzed discrete-time tandem queueing networks
with bursty and correlated input traffic by ignoring the cor-
relation between nodes. An IEEE 802.11wireless ad hoc net-
work ismodeled as a series of independentM/G/1 systems to
obtain a delay distribution in product-form [17]. Similarly,
in [18], the e2e delay variance of a two-node tandem net-
work is derived by assuming that the two nodes are inde-
pendent. The ‘‘independence” assumption usually holds
for general network topologies with flow multiplexing.
For line networks without multiplexing, such an assump-
tionmay lead to a very pessimistic or overly optimistic per-
formance expression, especially in terms of delay variance.

1.2. Our contributions

This paper studies the e2e delay of a wireless line net-
work (Fig. 1b) fed with a single source. We consider both
the access delay and queueing delay. The e2e performance
is investigated under two simple but typical MAC schemes,
m-phase spatial TDMA [4] and slotted ALOHA. In TDMA, a
node is scheduled to transmit once in m time slots, and
nodes m hops apart may transmit simultaneously. In
ALOHA, every node independently transmits with proba-
bility pm whenever it has packets. TDMA (with nodes fully
cooperative) and ALOHA (with nodes completely indepen-
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Fig. 1. Wireless multihop networks.
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dent) represent the two extremes in terms of the level of
the node coordination and will provide upper and lower
performance bounds for other meaningful MAC schemes,
respectively. The arrival processes to every node are all re-
layed versions of the original traffic flow generated at the
source node. To explore the influence of original traffic sta-
tistics on the e2e delay, three traffic models with different
traffic burstiness and memory properties are studied, CBR
(for voice data [19] and periodic traffic in sensor networks),
correlated on–off, and Bernoulli (for bursty data).

Our contributions are twofold. First, we use discrete-
time queueing theory to analyze the MAC-controlled
nodes, deriving a complete delay and departure process
characterization. Particularly, the analysis for TDMA in-
volves a GI/Geo/1 queueing model with non-integer interar-
rival times. Second, based on the single-node analysis, we
not only confirm the convergence phenomenon of the re-
layed flows, which has been proved in previous work via
entropy theory, but also reveal that the direction of conver-
gence depends on both the original traffic flow and the
MAC scheme. Moreover, based on the departure character-
ization, we define a parameter to measure the spatial cor-
relation, which determines the e2e delay variance.
Simulation results are provided to verify our analysis in
both the single node and the e2e delay variance.

The rest of the paper is organized as follows. The system
model is introduced in Section 2. In Section 3, we present
two models to derive the delay and departure process
characterization of GI/Geo/1 systems for CBR and on–off
traffic. Then we establish and analyze GI/Geo/1 systems
for single nodes in the TDMA and ALOHA networks in Sec-
tions 4 and 5, respectively. Section 6 compares the single-
node delays of TDMA and ALOHA and studies the direction
of convergence of the departure processes. Section 7 ex-
tends the analysis to the e2e delay and derive a parameter
to measure the sign of the spatial correlation. Section 8
concludes the paper.

2. System model

The line network under consideration (Fig. 1b) is com-
posed of N transmitting nodes and a sink or base station
(BS). Denote node i by ni (i ¼ 0;1;2; . . . ;N # 1) and the de-
lay experienced at ni by Di with mean Di and variance r2

i .
The probability mass function (pmf) of Di is denoted by
fdðiÞ

j g. The e2e delay is given by D ¼
PN#1

i¼0 Di with mean D
and variance r2. An FIFO discipline is used at ni. A flow
of fixed-length packets is generated at the source n0 at rate
k, and all remaining nodes are pure relays. The time is slot-
ted to the duration of one packet transmission. So the net-
work is modeled as a discrete-time tandem queueing
network. For non-Bernoulli and non-Poisson arrivals, the
departure process of a node is correlated with the queue
length and its arrival. Therefore, the Di’s are correlated,
which leads to r2–

PN#1
i¼0 r2

i ,b. If Di’s are positively (nega-
tively) correlated, then r2 > b (r2 < b). Note that previous
work, by assuming ‘‘independent” nodes and ignoring the
spatial correlation, usually assumed r2 ¼ b.

The channels are subject to independent errors (e.g.,
AWGN or block fading channels) and characterized by a

‘‘capture” model [20] with a capture probability l,
PrðSNIR P HÞ, i.e., a transmission is successful with proba-
bility l. To guarantee 100% reliability, the failed packets
will be retransmitted at each hop until received success-
fully. The number of transmission attempts to successfully
send a packet is geometrically distributed with parameter
l, denoted by Gl. Note that in practice, TDMA and ALOHA
result in different capture probabilities [21]. So, we denote
the capture probability of TDMA and ALOHA by lT and lA,
respectively.

The traffic flow to ni is characterized by the interarrival
time Ai, whose probability mass function (pmf) is akðiÞ ¼
PrfAi ¼ kg and probability generating function (pgf) is
AiðzÞ ¼

P1
k¼0akðiÞzk. The departure processes of ni (i > 0)

is characterized by interdeparture time Ti. We consider
three typical traffic models, (i) smooth CBR, where the
packet interarrival time is an integer constant r ¼ 1=k;
(ii) memoryless Bernoulli, where a packet is generated
with probability k in each time slot; (iii) bursty and corre-
lated On–off, where the arrival process is modulated by a
two-state Markov chain that alternates between ON (1)
and OFF (0) states with transition probabilities a01 and
a10. The pmf is

ak ¼
1# a10 k ¼ 1
a10ð1# a01Þk#2a01 k > 1

!
: ð1Þ

The on–off source generates a stream of correlated bursty
and silent periods both of which are geometrically distrib-
uted in length. The mean burst size is B ¼ 1=a10. The aver-
age rate is k ¼ a01=ða10 þ a01Þ. Bernoulli is a special on–off
process with a01 þ a10 ¼ 1 so that the burst and silent peri-
ods are independent.

The delay Di consists of two parts, the queueing delay
and access delay, as shown in Fig. 2. In TDMA, define m
time slots as a frame. The transmission is successful with
probability lT. So the service time is S & Gl T

and a TDMA
node can be modeled as a GI/Geo/1 system at the frame le-
vel though the interarrival time is not an integer as usual.
In this model, the access delay is hidden in the frame. In
ALOHA, a packet is successfully transmitted if and only if
the node attempts to transmit and the transmission is suc-
cessful, with probability ls ,lApm (given that the arrival
and the channel state are independent2). Both the access
delay and the failed transmission attempts can be regarded
as unsuccessful transmission attempts. Since the channel er-
rors are independent and the transmit probability pm is
fixed, the service time is S & Gls

at the slot level. So, an
ALOHA node can also be modeled as GI/Geo/1 although the
arrival process characterization is different from TDMA.

We use a decomposition approach to decompose the
tandem queueing network into single nodes in isolation
[22,23]. The e2e analysis is based on the single-node anal-
ysis, including both the node delay distribution and the
departure characterization. Since both TDMA and ALOHA
nodes can be modeled as GI/Geo/1, we start with the anal-
ysis of GI/Geo/1 systems.

2 To account for the half-duplex restriction, here lA is the conditional
capture probability given that the receiver is listening.
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3. GI/Geo/1 queueing systems

We use two models to derive the delay distribution of
GI/Geo/1 systems. The first one is a conventional queueing
model that provides the queue length distribution [9,24]
and will be used for CBR traffic with non-integer interarri-
val times. The second one is a delay model [25] that
directly tracks the evolution of the delay of the head-of-
line (HOL) packet in the queue and could be used for CBR
traffic in TDMA and on–off traffic.

3.1. Conventional queueing model for CBR traffic

In a conventional queueing model, the system state is
denoted by the queue length [9,24]. For a GI/Geo/1 system,
the pmf of the queue length is [12,26]

pk ¼
1# q k ¼ 0
qð1# cÞck#1 k > 0

!
; ð2Þ

where q is the traffic intensity, defined as the ratio of the
average arrival rate to the service rate. c is the unique
solution of z ¼ Að1# lþ lzÞ that lies in the region
ð0;1Þ. From (2), the pmf of the queue length viewed by
an arrival is in a geometric form qk ¼ ð1# cÞck (k P 0)
[27].

Eq. (2) is derived based on the condition that the inter-
arrival times are integers. However, in TDMA systems, the
system is analyzed at the frame level and packet arrivals
occur at the slot level. Then more than one packet may ar-
rive during one frame and thus the interarrival times are
no longer integer. For CBR arrivals with frame length of
m and interarrival time r slots (r > m), even though the
system is reduced to D/Geo/1 with AðzÞ ¼ zr=m, Theorem 1
shows that the pmf of the queue length is more complex
than (2) if r=m is irreducible.

Theorem 1. Consider a discrete-time D/Geo/1 system with a
geometric server Gl and constant interarrival time r=m
(r > m, r;m 2 N and r=m is irreducible). The pmf of the
queue length distribution is

pk ¼
1# q k ¼ 0
Pm

j¼1
Cjck#1

j k > 0

8
><

>:
q ¼ m=rl; ð3Þ

where Cj is a normalizing constant and fcj j j ¼ 1;2; . . . ;mg
are the m roots of zm ¼ ð1# lþ lzÞr that lie inside the unit
circle.

Proof. Denote the system states at the beginning of frame
t by a two-dimensional Markov chain fQðtÞ;YðtÞg, where
QðtÞ P 0 is the queue length and YðtÞ ¼ 1;2; . . . ; r is the
number of slots to the next packet arrival. Divide the set
f1;2; . . . ; rg into two parts Y0,f1; . . . ;Dg and Y1,
fDþ 1; . . . ; rg (D,r #m), where the subscript represents
the number of packets arriving during one frame. Denote
the steady-state system probability by Qðk; yÞ :¼
limt!1PrfQðtÞ ¼ k; YðtÞ ¼ yg. The balance equations are

y 2 Y0 : Qðk; yÞ

¼
ð1# lÞQðk; yþmÞ þ lQðkþ 1; yþmÞ k > 0;
Qð0; yþmÞ þ lQð1; yþmÞ k ¼ 0;

!

y 2 Y1 : Qðk; yÞ

¼
ð1# lÞQðk# 1; y# DÞ þ lQðk; y# DÞ k > 1;
Qð0; y# DÞ þ lQð1; y# DÞ k ¼ 1:

!

ð4Þ

Define the row vector ~vk :¼ fQðk;1Þ; . . . ;Qðk; rÞg (k P 0).
For n P 1, (4) can be rewritten in a matrix form
~vkM0 þ~vkþ1M1 þ~vkþ2M2 ¼ 0, where

M0 ¼
0 ð1# lÞIm
0D 0

" #
; M1 ¼

0 lIm
ð1# lÞID 0

" #
# I;

M2 ¼
0 0m

lID 0

" #
:

This is a homogeneous vector difference equation with
constant coefficients. Its characteristic matrix polynomial
is Q ðzÞ ¼ M0 þM1zþM2z2. Using the eigenvalue method
[28], ~vk is solved as ~vk ¼ CZkU, where the diagonal matrix
Z ¼ diagðzjÞ and the matrix U ¼ ½~/j(T are composed of
the eigenvalues fzjg and eigenvectors f~/jg of Q ðzÞ in the
form of ~/Q ðzÞ ¼ 0 with ~/j ¼ f/jð1Þ;/jð2Þ; . . . ;/jðrÞg. The
eigenvalues are solved from det jQ ðzÞj ¼ 0, which leads to
zm ¼ ð1# lþ lzÞr . Then, Qðk; yÞ is

Qðk; yÞ ¼
Xm

j¼1

Cjð1# njÞckj n
#y
j

1# cj
; ð5Þ

which gives rise to the queue length probability pk ¼Pr
y¼1Qðk; yÞ as in (3). h

From (5), we derive the pmf of the queue length viewed
by an arrival and then calculate the delay distribution in
Theorem 2.
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Fig. 2. Packet transmission procedure in TDMA and ALOHA.
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Theorem 2. Consider a discrete-time D/Geo/1 system with a
geometric server Gl and constant interarrival time r=m
(r > m, r;m 2 N and r=m is irreducible). The pmf of the delay
is

dk ¼
1
q
Xm

j¼1

Cj

1# cj
) ð1# njÞnk#1

j ; k P 1; ð6Þ

where fcj j j ¼ 1;2; . . . ;mg are the m roots of zm ¼
ð1# lþ lzÞr inside the unit circle and nj ¼ c1=rj is the root
of lTx

r # xm þ 1# lT ¼ 0.

Proof. The packet delay D0 is composed of three indepen-
dent parts, the access delay DA 2 f0; . . . ;m# 1g, the wait-
ing time DW , and the service time DS. For a packet
arriving during frame t, its access delay is DAðtÞ ¼
m# YðtÞ (YðtÞ < m) and YðtÞ evolves as Yðt þ 1Þ ¼
YðtÞ þ D ¼ r # DAðtÞ 2 Y1. The probability that the packet
sees k# 1 packets in the buffer is

Qðk jDAÞ,
Qðk; r # DAÞP1

k¼1
P

y2Y1
Qðk; yÞ

¼ r
m

Xm

j¼1

Cjð1# njÞck#1
j nDA

j

1# cj
:

ð7Þ

The waiting time DW is the sum of service times DS0 & Gl
(at the frame level) of the k# 1 buffered packets. At the
slot level, the pgf is GDS0

ðzÞ ¼ lzm
1#ð1#lÞzm and the pgf of DW is

GDW ðzÞ ¼ ðGDS0
ðzÞÞk#1. The service time of the observed

packet has a pmf PrfDS ¼ kmþ 1g ¼ lð1# lÞk (k P 0)
and pgf GDS ðzÞ ¼

lz
1#ð1#lÞzm. The pgf of the delay D0 ¼ DAþ

DW þ DS is

GD0 ðzÞ ¼
X1

n¼1

Xm#1

DA¼0

GDW ðzÞGDS ðzÞpðkjDAÞzDA

¼ 1
q
Xm

j¼1

Cjð1# njÞz
njð1# cjÞð1# njzÞ

:

Inverse z-transform yields (6). h

Theorem 1 and 2 can be regarded as the analysis of gen-
eralized D/Geo/1 systems that involve with non-integer
interarrival times. The previous result (2) is a special case
of Theorem 1 with m ¼ 1.

The delay distribution of a D/Geo/1 system involves m
roots fcjjj ¼ 1;2; . . . ;mg inside the unit circle. If m > 1
(non-integer interarrival times), some roots are complex
and negative real and only numerical results are available
for large m and r. To obtain a closed-form solution, for
r < 2m, we simplify the delay distribution by ignoring
the complex and negative roots and considering only
the real positive root n1 2 ð0;1Þ. This way, (6) is reduced
to dk * ð1# n1Þnk#1

1 (k P 1), i.e., D0 & G1#n1 . However,
since n1 is the root of a high degree polynomial
lxr # xm þ 1# l, it is still difficult to calculate D0’s distri-
bution. Lemma 3 approximately expresses n1 with
ðm; r;lÞ.

Lemma 3. Given a polynomial lxr # xm þ 1# l ¼ 0 with
0 < l < 1, 0 < m=ðrlÞ < 1 and r < 2m, the real positive root
n1 in the region ð0;1Þ can be approximated
by

n1 * 1# 2ð1# qÞ
Dq ; where q ¼ m

rl < 1; D ¼ r #m < m:

ð8Þ

Proof. Based on Descartes’ Sign Rule, for the polynomial
f ðxÞ ¼ lxr # xm þ 1# l, there are exactly two real positive
roots, 1 and n1 2 ð0;1Þ. The derivative of f ðxÞ is a continu-
ous function f 0ðxÞ ¼ rlxr#1 #mxm#1. Given f ðn1Þ ¼ 0 and
f ð1Þ ¼ 0, Rolle’s Theorem states that there must be at least
one point xmin 2 ðn1;1Þ with f 0ðxminÞ ¼ 0. Since f 0ðxÞ ¼ 0
yields two solutions, x ¼ 0 with f ð0Þ ¼ 1# l > 0 and
x ¼ xmin ¼ ðm=rlÞ1=ðr#mÞ with f ðxminÞ < 0, we say xmin is
the local minimum between n1 and 1. Using two inequali-
ties, # 1#q

q < lnq 6 Dðq1
D # 1Þ [29], xmin is lower bounded by

xmin’1# ð1# qÞ=ðDqÞ. Numerical results verify that n1 is
very close to 1 (Fig. 3). Then it is reasonable to assume
an equal distance from xmin to 1 and n1, i.e.,
n1 * 2xmin # 1, which leads to (8). h

The approximation (8) is tight when D is large and q is
close to 1, both of which also guarantee n1/1. Now that
D0 & G1#n1 , the corresponding delay mean and variance
are approximately

D0 * 1
1# n1

* Dq
2ð1# qÞ ; r2

0 * n1
ð1# n1Þ

2 ¼ D0ðD0 # 1Þ:

ð9Þ

3.2. Delay models

The delay model can be used to analyze GI/Geo/1 sys-
tems with on–off traffic and characterize the departure
process. In the delay model, the system state is denoted
by the current delay of the HOL packet [25]. For a
GI/Geo/1 system with on–off arrivals ða01; a10Þ (1), letting
D ¼ 1 and extending the result [25], Eq. (9) the delay is
D0 & G1#a, where

a ¼ 1# l
la10 þ ð1# lÞð1# a01Þ

: ð10Þ

0 0.2 0.4 0.6 0.8 1
−0.05

0

0.05

0.1

0.15

0.2

x

f(x
)

xmin

1
ξ

Fig. 3. Approximation of real positive root n1 for the polynomial
f ðxÞ ¼ lxr # xm þ 1# l with m ¼ 3; r ¼ 4;l ¼ 0:8.
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The advantage of the delay model is its capability
of characterizing the departure process, as shown in
Lemma 4.

Lemma 4. Consider a discrete-time GI/Geo/1 queueing sys-
tem with service rate l and on–off arrival with transition
probabilities ða01; a10Þ. The interdeparture time T has the pgf

GTðzÞ ¼ epBSðzÞ þ ð1# epBÞ
a01z

1# ð1# a01Þz
SðzÞ; ð11Þ

where epB ¼ 1# a01ð1#qÞ
k is the system busy probability viewed

by a departure and SðzÞ ¼ lz
1#ð1#lÞz.

Proof. Let the system state be the delay of the HOL packet
at the moment of a packet departure. The transition prob-
abilities are

Pjk ¼ lð1# lÞl#1ah;
k ¼ jþ l# h; j P 0
k ¼ l# h; j < 0

!
: ð12Þ

The absolute value of the negative state represents the sys-
tem idle time. Denote the steady-state probability by pj.
The interdeparture time T is the sum of the packet service
time S and system idle time. Upon a packet departing mo-
ment, T ¼ S# j if the system is in negative states j < 0
and T ¼ S if the system is busy with probability
epB ¼

P
j<0pj. Given independent arrival and service pro-

cesses, the pgf of the interdeparture time T is
GTðzÞ ¼ epBSðzÞ þ

P1
j¼1p#jzjSðzÞ. From (12), we obtain

p#j ¼ ð1# a01Þj#1p#1 for j P 1 and epI ¼ 1# epB ¼P
j<0pj ¼ p#1=a01. For stable systems, the average depar-

ture rate equals to the average arrival rate, i.e., the average
interdeparture time is T ¼ 1=k ¼ ða01 þ a10Þ=a01, from
which we can calculate epB and epI . Plugging these parame-
ters into GTðzÞ yields (11). h

Recall that at equilibrium, the node busy probability is
pB ¼ q. Compared to the conditional busy probability epB

upon the departure moment, epB ¼ pB only if a01 ¼ k or
a10 þ a01 ¼ 1, i.e., the arrival is Bernoulli.

Note that the second part of GTðzÞ (11) is a convolution
of two geometric distributions Gl and Ga01 . Then, the
departure processes would exhibit a state explosion
problem if it were fed into a tandem network [15].
Approximation is needed for tractable analysis. Since the
on–off model can capture both the correlation and bursti-
ness property of a traffic flow, in Lemma 5, the output pro-
cess of a GI/Geo/1 system is approximated as an on–off
process.

Lemma 5. Consider a GI/Geo/1 system with arrival rate k,
whose interdeparture time is T. The output process can be
approximated as an on–off process with transition probabil-
ities a011 ¼ PrfT ¼ 1g and a001 ¼ kð1# a011Þ=ð1# kÞ.

The proof is based on the fact that if T ¼ 1, then the
modulated state transits from ON to ON, with probability
a011. For GI/Geo/1 with on–off arrivals, we have

a011 ¼ PrfT ¼ 1g ¼ epBl ¼ l#
a01ð1# qÞ

q : ð13Þ

In the following sections, the arrival to ni (i > 0), also
known as the departure from ni#1, is approximated by an
on–off process with ðaðiÞ10; a

ðiÞ
01Þ.

4. Single-node analysis for TDMA

A TDMA node is modeled as a GI/Geo/1 systemwith ser-
vice rate l T at the frame level, at which the arrival is an
accumulated version of the original flow over m slots.
The traffic intensity is q,mk=lT < 1.

4.1. Source node: CBR traffic

In a TDMA node with CBR traffic of rate k ¼ 1=r, for
general m and r, in Theorem 2, the conventional queueing
model (Section 3.1) provides an accurate delay description,
which, however, can be solved only numerically. For
r < 2m, the delay can be approximated as a geometric
distribution with parameter approximated as in Lemma
3. The approximation (8) is tight when D ¼ r #m is large.
For small D, say D ¼ 1, which represents the heaviest
stable traffic that can be accommodated by the system,
we use the delay model to calculate the distribution in
Theorem 6.

Theorem 6. Consider a D/Geo/1 system with interarrival
time r=m and service rate lT. If r ¼ mþ 1, the pgf of the delay
D0 is

GD0 ðzÞ ¼
ð1# zmÞz

ð1# lTÞzmþ1 # zþ lT
) 1# q

q ; q ¼ m
rlT

ð14Þ

Proof. Let the system state be the delay of the HOL
packet in terms of slots. All state transitions occur at
the frame boundaries. The state transition probabilities
are

Pkj ¼
l k P 0; j ¼ k# D;
1# l k P 0; j ¼ kþm;

1 k < 0; j ¼ kþm;

8
><

>:
D ¼ r #m: ð15Þ

For r ¼ mþ 1, the steady-state probabilities for non-nega-
tive states are

pk ¼
lpkþ1 0 6 k < m# 1
lpkþ1 þ lp0 k ¼ m# 1
lpkþ1 þ ð1# lÞpk#m k P m;

8
><

>:
ð16Þ

Based on dkþ1 ¼ pk=
P

kP0pk, the pgf of the delay is

GD0 ðzÞ ¼
ðzm # 1ÞzlT

z# lT # ð1# l TÞzmþ1 d
ð0Þ
1 ; ð17Þ

which contains one unknown parameter dð0Þ
1 . Following

GD0 ð1Þ ¼ 1, we have

dð0Þ
1 ¼ 1# ðmþ 1Þð1# lTÞ

ml T
¼ 1þ 1

m
# 1
lT

: ð18Þ

Plugging (18) into (17) leads to (14). h

The delay mean and variance can be calculated through
the first two derivatives of GD0 ðzÞ at z ¼ 1 as follows:

D0 ¼ 1
2ð1# qÞ ; r2

0 ¼ 1
4ð1# qÞ2

# mþ 2
6ð1# qÞ : ð19Þ
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Note that (15) hold for all r > m. But for r > mþ 1, the pgf
contains D > 1 unknown parameters and cannot be solved
like r ¼ mþ 1. So the accurate delay description (14) is
only for r ¼ mþ 1. Comparing (9) and (19) shows that
the approximation (9) is tight when q! 1.

The departure process of this D/Geo/1 system is studied
at the frame level since all packet depart at the boundary of
frames. Lemma 7 proves that for m < r < 2m, the depar-
ture is an on–off process.

Lemma 7. Consider a D/Geo/1 system with service rate lT
and interarrival time r=m (m < r < 2m). Then the departure
process is an on–off process with transition probabilities
að1Þ01 ¼ l T and að1Þ10 ¼ DlT=m, where D ¼ r #m.

Proof. The proof is similar to Lemma 4. The difference is
that upon a packet departing moment, if the queue is
empty, which happens with probability epI ¼ 1# epB, the
interdeparture time is T0 ¼ 1þ S since the system idle time
is one frame for r < 2m. Besides, epI and epB can be directly
deduced from the stability condition T0 ¼ r=m as
epBlT ¼ 1# DlT

m . The pgf GT0 ðzÞ ¼ epBSðzÞ þ ð1# epBÞzSðzÞ
gives rise to a closed-form pmf ft0ðkÞjk P 1g of T0:

t0ðkÞ ¼
1# DlT

m k ¼ 1

ðlTð1# lTÞ
k#2Þ DlT

m k > 1

(

; ð20Þ

which corresponds to an on–off process (1) with transition
probabilities að1Þ10 ¼ 1# epBl T ¼ DlT=m and að1Þ

01 ¼ lT. h

If r > 2m, the system idle time may exceed one
frame, and the departure process is more complex than
an on–off process. For a tractable e2e analysis, we approx-
imate the departure process as an on–off process with
transition probabilities fað1Þ

01 ; a
ð1Þ
10 g derived from (15) as

follows:

að1Þ11 ¼PrfDðtþ1ÞP0;Sðtþ1Þ¼1jDðtÞP0;SðtÞ¼1g

¼lT
P1

k¼DpkP
lP0pl

¼
lT q#

PD#1
k¼0pk

$ %

q ¼l T#
1#q
q ¼1#DlT

m
:

ð21Þ

The numerator excludes states 0 through D# 1 since these
states transit to negative states after a successful transmis-
sion. Besides, from (15), we obtain

PD#1
k¼0pk ¼ pI

lT
¼ 1#q

lT
.

Then, based on að1Þ01 =ða
ð1Þ
01 þ að1Þ

10 Þ ¼ m=r, we have að1Þ10 ¼
DlT=m and að2Þ01 ¼ lT, consistent with the result given in
Theorem 7.

4.2. Source node: on–off traffic

For bursty on–off traffic, due to arrival accumulation,
there may be multiple arrivals during one frame, constitut-
ing a batch arrival process. In Theorem 8, we use the delay
model (Section 3.2) to analyze this GI/Geo/1 system with
batch arrivals.

Theorem 8. Consider a GI/Geo/1 system with service rate
is lT and batch arrivals, which are generated by an on–off
source ða01; a10Þ in m time slots. Then, the pgf of the delay
D0 is

GD0 ðzÞ ¼
ð1# qÞH0ðzÞ=q

1# lTð1# a01
k Þzm#1 # ð1# lTÞzm # H0ðzÞ

;

q ¼ mk=lT; ð22Þ

where H0ðzÞ ¼ ða01ð1# zmÞÞ=ð1# zÞ.

Proof. Let the system state be the delay of the HOL packet
in terms of slot while all transitions occur at the frame
boundaries. The transition probabilities are:

Plj ¼
lTak; j ¼ lþm# k; l P 0
1# lT; j ¼ lþm; l P 0
1; j ¼ lþm; l < 0:

8
><

>:
ð23Þ

The steady-state probabilities fpkg are derived from the
balance equations

pk ¼

pk#m þ lT
P1

j¼0
ajþm#kpj; 0 6 k < m

ð1# lTÞpk#m þ lT
P1

j¼k#mþ1
ajþm#kpj; k P m

lT
1#am00

P1

j¼0
ajþm#kpj; k < 0

8
>>>>>>>><

>>>>>>>>:

;

ð24Þ

which leads to pk ¼ ajkj00p0 for k < 0 with p0 ¼ lTam
1#am00P1

j¼0a
j
00pj. Since the delay distribution fdð0Þ

k jk P 1g in-
volves only the non-negative states fpkjk P 0g, the pgf
GD0 ðzÞ can be calculated by multiplying both sides of (24)
by zk for k P 0 and plugging pk ¼ ajkj00p0. The obtained pgf
contains only one unknown parameter dð0Þ

1 , which is de-
duced from GD0 ð1Þ ¼ 1 as dð0Þ

1 ¼ a01
1#a01

) 1#qq and then leads
to (22). h

Differentiating GD0 ðzÞ gives rise to the mean and vari-
ance as follows:

D0 ¼ 1
1# q

q# k
a01

# q#m# 3
2

& '
; ð25Þ

r2
0 ¼ 1

ð1# qÞ2
m2 # 1
12

þ ðm# 1Þðm# 2Þq
6

&

#ð1# l TÞq2 þ ðm# 2Þqþ k
a01

þ ðq# kÞ2

a201

!
:

The pmf fdð0Þ
k jk P 1g can be derived from GD0 ðzÞ using the

inverse z-transform. The departure process is characterized
in Lemma 9.

Lemma 9. Consider a GI/Geo/1 system with service time
S & GlT

and batch arrivals, which is generated by an on–off
source ða01; a10Þ in a frame of m time slots. Then, the
interdeparture time T0 has the pgf

GT0 ðzÞ ¼ epB þ ð1# epBÞ
ð1# am00Þz
1# am00z

& '
SðzÞ;

epB ¼ 1# ð1# am00Þð1# qÞ
mk

: ð26Þ

The proof is similar to Lemma 4 except for replacing l in
(12) by km. The system idle probability viewed by a depar-
ture is epI ¼

P#1
k¼#1pk ¼ a00p0

1#a00
. The interdeparture time T0 in-

volves only the negative states,
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GT0 ðzÞ ¼ epBSðzÞ þ SðzÞ
X#1

k¼#1

zjkj
X#km

j¼1#ðkþ1Þm

pk

¼ epB þ
ð1# am00Þz
1# am00z

) a00p0

1# a00

& '
SðzÞ: ð27Þ

Plugging in epI ¼ 1# epB ¼ a00p0
1#a00

and deducing epB from the
stability condition lead to (26). Note that the difference be-
tween batched on–off arrivals (26) and non-batched on–off
arrivals (11) lies in a00 replaced by am

00 and k replaced by
mk. At the frame level, am00 is the probability that no packet
arrives during one frame and mk is the average arrival rate,
as the same as a00 and k at the slot level. In other words,
TDMA results in arrival accumulation but does not change
the departure process characterization.

For tractable analysis, the departure process (27) is sim-
plified to an on–off process with transition probabilities
að1Þ10 and að1Þ

01 calculated from (24) based on the principle
in (21), i.e.,

að1Þ11 ¼ 1# að1Þ10 ¼
lT

P1
k¼0pk

Pmþk
j¼1 aj

q ¼ lT # ð1# am00Þ
1# q
q ;

ð28Þ

and að1Þ
01 ¼ mkað1Þ

10 =ð1#mkÞ.
The analysis for Bernoulli traffic is obtained by simply

plugging a01 þ a10 ¼ 1 into the on–off analysis. Since TDMA
changes the characteristic value of the output process,
which implies að1Þ01 þ að1Þ10–1, the departure process is no
longer Bernoulli while conventionally, a Bernoulli arrival
guarantees the same Bernoulli departure as the arrival
[12,14]. In other words, TDMA regulation produces a bat-
ched MMBP arrival process at the frame level, destroys
the memoryless property, and makes the departure differ-
ent from the arrival.

For all three traffic models, the output from the source
node n0 is approximated as an on–off process with transi-
tion probabilities ðað1Þ

01 ; a
ð1Þ
01 Þ. So the analysis of the relay

nodes is identical for all traffic models.

4.3. Relay nodes

The arrival process to the first relay node n1 is an on–off
ðað1Þ

01 ; a
ð1Þ
01 Þ. So n1 is modeled as a GI/Geo/1 system, whose

delay distribution is geometric with parameter a (10). At
the frame level, the pmf dð1Þ

kmþ1 ¼ ð1# aÞak (k P 0) leads
to mean and variance as follows:

D1 ¼ 1þ ma
1# a ¼ 1þme; r2

1 ¼ m2a
ð1# aÞ2

¼ m2eð1þ eÞ;

ð29Þ

where e, q
1#q )

1#l
að1Þ01

. The departure process of such a GI/Geo/1

system can be approximated as another on–off process
with ðað2Þ

01 ; a
ð2Þ
01 Þ calculated as in (13) by replacing k with

mk. The remaining relay nodes are analyzed in the same
way by iteratively calculating ðaðiþ1Þ

01 ; aðiþ1Þ
01 Þ from ðaðiÞ01; a

ðiÞ
01Þ.

5. Single-node analysis for ALOHA

m-Phase TDMA achieves a high throughput but incurs a
substantial amount of overhead to establish the frame

structure and requires a complete cooperation between
all nodes involved. Moreover, in networks with multi-
directional flows, TDMA favors the flows that have the
same direction as the TDMA order while the flows in the
opposite directions would experience much longer delays.
In wireless networks, slotted ALOHAmay be more practical
since every node operates in a completely independent
way. Besides, ALOHA is insensitive to a flows’ direction.
The disadvantage of ALOHA is its random and independent
transmission pattern that generally results in poor perfor-
mance unless the traffic load is light. This section analyzes
ALOHA nodes as GI/Geo/1 systems at the slot level, in
which all interarrival times are integer. The conventional
queueing model (Section 3.1) is used for the delay analysis.
Note that the service rate is defined as ls ¼ lApm and the
traffic intensity is q ¼ k=ls.

For CBR traffic, the source node n0 is a D/Geo/1 system
with an interarrival time r, corresponding to the case of
m ¼ 1 in Theorem 2. Therefore, inside the unit circle, there
is a unique root n of the polynomial lsy

r # yþ 1# ls.
Based on Theorem 2, the delay is D0 & G1#n. However, if r
is large, lsy

r # yþ 1# ls ¼ 0 can be solved only numeri-
cally. Using a similar approach as in Lemma 3, we approx-
imate n as follows:

n * 1# 2ð1# qÞ
ðr # 1Þq : ð30Þ

The mean and variance of D0 are

D0 ¼ 1
1# n

* ðr # 1Þq
2ð1# qÞ ; r2

0 ¼ n

ð1# nÞ2

* ðr # 1Þq
2ð1# qÞ

ðr # 1Þq
2ð1# qÞ # 1

& '
: ð31Þ

For the departure process, we use the delay model to de-
rive the interdeparture time distribution in Lemma 10.

Lemma 10. Consider a D/Geo/1 queueing system with inter-
arrival time r 2 N and service rate ls. Then, the departure
process can be approximated as on–off with transition
probabilities að1Þ01 ¼ ð1# lsÞ=ððr # 1ÞnÞ and að1Þ10 ¼ ð1# lsÞ=n,
where n is the unique root of lsy

r # yþ 1# ls ¼ 0 in the
region ð0;1Þ.

As a special case of m ¼ 1 in Theorem 6, plugging m ¼ 1
into the transition probabilities (15) and applying the de-
lay’s pmf dk ¼ ð1# nÞnk#1 (k P 1) and dkþ1 ¼ pk=ð1# qÞ to
(21), we have

að1Þ11 ¼
ls

P1
k¼r#1pkP
jP0pj

¼
ls q#

Pr#2
k¼0pk

$ %

q ¼l sn
r#1 ¼ 1#

1#ls

n
;

ð32Þ
where the last part is obtained from lsn

r # nþ 1# l s ¼ 0.
Then að1Þ10 ¼ 1# að1Þ

11 and að1Þ
01 ¼ að1Þ10 k=ð1# kÞ. Then, the analy-

sis of relay nodes follows the principle for GI/Geo/1 sys-
tems with on–off arrivals (Section 4.3).

For on–off traffic, the delay is D0 & G1#a (10). The depar-
ture process is approximated as an on–off process as in
(13). Like in TDMA, all the departure processes of the
source node n0 are approximated as on–off so that all the
relay nodes are analyzed in the same way as in TDMA
(Section 4.3).
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6. Comparison of TDMA and ALOHA nodes

Sections 4 and 5 present the analysis of single nodes in
TDMA and ALOHA, respectively, considering three traffic
models, CBR, on–off and Bernoulli. For the on–off process,
the correlation and burstiness can be characterized through
the burst size B ¼ 1=a10. Using the burst size Br ¼ 1=ð1# kÞ
of the Bernoulli process as a reference, an on–off process
with longer (shorter) burst size than Br is referred to as hea-
vy (light). For instance, let a10 ¼ ð1# kÞ=2 for heavy on–off
and a10 ¼ 1# k=2 for light on–off.

For the source node, the ratio of the delay means D0 for
on–off and CBR is

gTDMA ¼D0; on#off

D0;cbr
¼ 2

B
Br

)m# lT

lT
# q

& '
#mþ 3 > 1 ð33Þ

gALOHA ¼D0; on#off

D0;cbr
¼ ð1# nÞ 1þ 1

1# q ) 1# ls

ls
) B
Br

& '
> 1;

ð34Þ
where n is the unique root of lsy

r # yþ 1# ls in the region
ð0;1Þ. In both TDMA and ALOHA, CBR traffic (with burst
size B ¼ 1) always causes the smallest delay. For on–off
traffic, the longer the burst size B, the longer the delay
(mean) and delay jitter (variance).

For relay nodes, the delays are approximated as geo-
metric distribution. Let pm ¼ 1=m, the ratio of the delay
means Di (i 6 1) for TDMA and ALOHA is

g ¼ Di;TDMA

Di;ALOHA
¼ 1# lðm# 1Þ

mð1# kÞ
< 1: ð35Þ

Obviously, TDMA outperforms ALOHA in the delay. As a
matter of fact, from the perspective of traffic shaping,
TDMA acts as a leaky bucket regulator, while ALOHA be-
haves like a Bernoulli regulator. So TDMA-regulated traffic
is smoother than ALOHA-regulated traffic and thus causes
smaller delays.

The arrivals to relays are approximated as on–off. Sim-
ulation results are provided to justify such an on–off

approximation. In simulations, we assume the same rate
k for all flows and the same success probability l ¼ lT ¼
lA for all channels. Moreover, we set the ALOHA transmit
probability as pm ¼ 1=m such that TDMA and ALOHA have
the average number of transmission opportunities. Delays
are measured in the number of time slots that the packet
stays in the system.

Figs. 4 and 5 compare the simulated per-node delay
mean and variance with our analysis. As the number of
nodes increases, the simulated per-node delay mean and
variance converge to the analytical results Di and r2

i . In
other words, our analysis (the dash-dotted lines in Figs. 4
and 5) represents the limiting delay performance.

Traffic burstiness affects the delay performance as usual
but its influence becomes trivial as the number of nodes in-
creases, e.g., for TDMA, the Di’s (i P 5) are almost identical
for all four traffic flows (Fig. 4a). The reason is that the de-
lays spatially converge to the same value regardless of the
original traffic burstiness. This convergence phenomenon
appears in our analysis with respect to the transition prob-
abilities ðaðiÞ

01; a
ðiÞ
10Þ. As shown in Fig. 6, the approximate on–

off processes converge in such a way that aðiÞ01 ! mk for
TDMA and aðiÞ01 ! k for ALOHA. Note that an on–off flow
with a01 equal to the arrival rate is reduced to Bernoulli.
In other words, our analysis reveals that the arrivals to re-
lays converge to Bernoulli at the frame level for TDMA and
at slot level for ALOHA. More importantly, simulation re-
sults confirm that the convergence value of delay mean
and variance in Figs. 4 and 5 are indeed the mean and var-
iance of a Geo/Geo/1 system with Bernoulli arrivals. For
traffic flows with lighter burstiness than the eigentraffic
process, our analysis provides upper bounds on the delay
and vice verse.

In [30], entropy theory was used to prove that passing
an arbitrary arrival process through a series of independent
and identically distributed GI/Geo/1 queues will generate
an invariant Bernoulli distribution, i.e., the flows to relays
converge to Bernoulli. We denote this Bernoulli process
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Fig. 4. The mean Di and variance r2
i of single-node delays Di at ni in TDMA networks with with m ¼ 3; k ¼ 0:25;lT ¼ 0:8;N ¼ 15. For light on–off,

a01 ¼ 0:292; a10 ¼ 0:875; for heavy on–off, a01 ¼ 0:125; a10 ¼ 0:375. The heavy on–off flow causes a delay variance r2
0 ¼ 5176 at n0. The dash-dotted lines

represent analytical results while the solid lines are for simulation results.
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as an ‘‘eigentraffic” process or ‘‘eigenprocess” since it rep-
resents the ‘‘eigenvalue” towards which the arrival traffic
properties are tending to transform [31].

In this paper, using queueing theory, our analysis shows
not only the convergence phenomenon but also the direc-
tion of convergence. In Figs. 4–6, the departure processes
converge to the Bernoulli eigenprocess from different
directions, in accordance with the relative burstiness of
the eigentraffic process. For instance, CBR and heavy on–
off have different burstiness and therefore converge to
the Bernoulli eigenprocess from opposite directions. More
importantly, MAC plays an important role in determining
the direction of convergence. In TDMA, the accumulated
versions of both on–off and Bernoulli sources are more
bursty than the Bernoulli eigenprocess and hence converge
from the same direction. On the other hand, in ALOHA,
without arrival accumulation, heavy and light on–off con-

verge from opposite directions because of their different
burstiness compared to the Bernoulli eigenprocess.

The dependence of the direction of convergence on traf-
fic burstiness can be explained from the viewpoint of traffic.
Regard the geometric server as a Bernoulli regulator that
regulates the traffic flows by randomly inserting ‘‘holes”
into the arrival flows [32]. The insertion limits the maxi-
mum burstiness that the traffic flow can sustain as it tra-
verses through the network. In the multihop network,
after hop-by-hop regulation, the flow is turned into
Bernoulli that possesses the ‘‘natural” level of burstiness
favored by the network under a given traffic load. As such,
a heavy bursty flow will converge with the burstiness
decreasingwhile a smoothflowwill convergewith theburs-
tiness increasing. Notice that here the traffic burstiness is
the one after MAC regulation. In other words, the direction
of convergence is burstiness- and MAC-dependent [33].

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
20

30

40

50

60

70

80

90

100

i

D
i (m

ea
n)

 

 

Heavy on−off
Bernoulli
Light on−off
CBR

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

i

σ i2

 

 

Heavy on−off
Bernoulli
Light on−off
CBR

Fig. 5. The mean Di and variance r2
i of single-node delays Di at ni in ALOHA networks with with pm ¼ 1=3; k ¼ 0:25;lA ¼ 0:8;N ¼ 15. For light on–off,

a01 ¼ 0:292; a10 ¼ 0:875; for heavy on–off, a01 ¼ 0:125; a10 ¼ 0:375. The dash-dotted lines represent analytical results while the solid lines are for
simulation results.

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.65

0.7

0.75

0.8

ni

a 01(i)

TDMA: m=3, =0.25,∝T=0.8,N=15

CBR
Heavy on−off
Light on−off
Bernoulli

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.245

0.25

0.255

0.26

ni

a 01(i)

ALOHA: pm=1/3, =0.25,∝A=0.8,N=15

CBR
Heavy on−off
Light on−off
Bernoulli

Fig. 6. The convergence of the analytical aðiÞ01 tomk and k in TDMA and ALOHA networks, respectively, withm ¼ 3;pm ¼ 1=3; k ¼ 0:25;lT ¼ lA ¼ 0:8;N ¼ 15.
For light on–off, a01 ¼ 0:292; a10 ¼ 0:875; for heavy on–off, a01 ¼ 0:125; a10 ¼ 0:375.

858 M. Xie, M. Haenggi / Ad Hoc Networks 7 (2009) 849–861



Author's personal copy

The rate at which the flows converge to the Bernoulli
eigenprocess depends on the relative burst size B=Br and
the channel quality l. Generally, heavy burstiness results
in fast convergence (Figs. 4 and 5). A good channel is able
to maintain the original traffic statistics, and it takes a very
long path for the flows to converge to the eigenprocess. In
contrast, a bad channel causes multiple retransmissions
and the interdeparture time is mainly determined by the
geometric service time. Then, the arrivals converge to the
Bernoulli eigenprocess very quickly.

7. End-to-end delay in multihop networks

Our analysis shows that the arrival processes to relays
converge to the Bernoulli eigenprocess. However, these ar-
rival processes are not independent and cause correlations
in the delays Di’s. The accurate calculation of the e2e delay
variance r2 should take into account the correlations,
which makes the analysis intractable as the number of
nodes N grows. In this section, we first study the correla-
tion between neighboring nodes and then proceed to the
e2e correlation based on the direction of convergence.

The correlation between ni and niþ1 can be reflected
through the queueing activities of ni and niþ1 when a pack-
et departs from ni and arrives at niþ1. The interdeparture
time Ti depends on the node backlog state and the idle
period upon a packet departing moment, i.e., epB and epI .
Denote h ¼ ePB # PB. Previous work proved that for
memoryless Bernoulli traffic, not only h ¼ 0, but also there
is no spatial correlation. On the other hand, for temporally
correlated traffic like on–off and CBR, the spatial correla-
tion exists and h–0. Naturally, h could be used to evaluate
the spatial correlation. Between ni and niþ1, if h > 0, upon
the departure moment, ni is more backlogged than usual,
which will lead to increasing queueing delays at ni. Mean-
while, because of the non-zero idle period, the packets de-
part a backlogged ni in a more bursty manner than
departing an idle ni. Based on queueing theory, a bursty
flow results in a longer delay in niþ1 than a smooth flow.
Therefore, h > 0 indicates an increase in both Di and Diþ1,
i.e., Di and Diþ1 are positively correlated. Similarly, if
h < 0, ni is less backlogged at the packet departure moment
than usual and Di and Diþ1 are negatively correlated. To
start with, we calculate h for n0 and n1 with epB. For TDMA,

h ¼

# ðr#mÞð1#qÞ
m < 0; for CBR;

ð1# qÞmk#ð1#am00Þ
mk > 0; for on—off;

ð1# qÞmk#ð1#kmÞ
mk > 0; for Bernoulli:

8
>><

>>:
ð36Þ

In contrast to conventional queueing theory, even if the ori-
ginal flow is Bernoulli, spatial correlation exists and h–0
since TDMA, as a deterministic regulator, destroys the
memoryless property of the Bernoulli source. For ALOHA,

h ¼

# 1#rlnr#1

rl < 0; for CBR;

ð1# qÞð1# a01 # a10Þ < 0; for light on—off;
ð1# qÞð1# a01 # a10Þ > 0; for heavy on—off ;
0; for Bernoulli;

8
>>>><

>>>>:

ð37Þ

where n 2 ð0;1Þ is the root of f ðxÞ ¼ lsx
r # xþ 1# ls.

f 0ðnÞ ¼ lrnr#1 # 1 < 0, leading to h < 0. As a Bernoulli reg-
ulator, ALOHA does not change the temporal correlation
property and hence h ¼ 0 for Bernoulli.

Like the direction of convergence, Bernoulli and light
on–off traffic flows cause different h in TDMA and ALOHA
while heavy on–off (resp. CBR) is always more (resp. less)
bursty than the Bernoulli eigenprocess and thus has con-
sistent h > 0 (resp. h < 0). Therefore, h and the correspond-
ing spatial correlation depend on the MAC-regulated traffic
burstiness.

Similar correlations exist in ðniþ1;niþ2Þ, ðni#1;niÞ, and so
on. As a result, ni is correlated with all nj’s. To determine
the e2e correlation, recall that in Section 6, we reveal that
if the source flow is more bursty than the Bernoulli eigen-
process, then the relayed flows will converge with the
burstiness decreasing, i.e., all the relayed flows are more
or equally bursty than the Bernoulli eigenprocess. Then,
all the neighboring nodes are positively correlated with
h > 0. This correlation will extend to nodes more than
one hop away, say ni and niþ2, and so on so forth. Overall,
the e2e correlation is positive as well and vice verse. As a
result, the sign of the correlation between ni and niþ1 can
be used as the sign of the e2e correlation.

Though we have derived the sign of the correlation, it is
still difficult to explicitly derive covðDi;DjÞ, especially if
jj# ij > 1. Even in a simple tandem system of two D/M/1
nodes, the calculation involves of partitioning the state
space into four parts and solving them individually [34].
Instead, we use simulation to explore the degree of the
e2e correlation.

The e2e correlation is evaluated by the difference be-
tween r2 and b ¼

PN#1
i¼0 r2

i . In Fig. 7, the solid lines are for
the simulated delay variance r2 and the dash-dotted lines
represent b, the variance as if the nodes were spatially
uncorrelated as assumed in the previous works. Obviously,
r2 ¼ b occurs only when the arrival process is Bernoulli in
the established GI/Geo/1 model, e.g., Bernoulli in ALOHA,
Fig. 7b. Otherwise, a gap exists between r2 and b. Some-
times, this gap is too large to ignore the spatial correlation,
e.g., for heavy on–off.

Consistent with our analysis, if the source flow is more
bursty (smooth) than the limiting Bernoulli eigenprocess,
then h > 0ð< 0Þ and the correlation is positive (negative).
For example, in TDMA, CBR results in h < 0 and negative
correlation, which is confirmed by r2 < b in Fig. 7a. Simi-
larly, all other three flows cause h > 0, meaning a positive
correlation supported by r2 > b. In ALOHA, both CBR and
light on–off are less bursty than the Bernoulli eigenprocess
giving h < 0 and hence r2 < b as expected. The only flow
with a heavier burstiness is heavy on–off that has r2 > b
to give h > 0. Therefore, the sign of h is sufficient to indi-
cate the sign of the e2e correlation. Remarkably, unlike
[35], our results have revealed that with MAC, on–off, as
a special MMBP flow, could give rise to both positive and
negative correlations.

Smooth traffic causes not only a small per-node delay,
but also a negative correlation and a decreased e2e delay
variance compared to the uncorrelated case. In contrast,
bursty traffic incurs both large per-node delays and a
positive e2e correlation. That is why a huge gap in r2 exists
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between CBR and heavy on–off in Fig. 7, e.g., in TDMA,
r2

heavy on—off * 14r2
CBR and in ALOHA, r2

heavy on—off * 11r2
CBR.

For delay-sensitive applications, the heavy bursty flow
should be regulated before entering the network.

Though h itself is not sufficient to determine the degree
of the e2e correlation, it still provides an insight. To show
this, we define g ¼ r2=b. If g! 1, then the correlation
coefficient decreases to zero. Simulation results show that
for bursty traffic, g is non-increasing while for smooth traf-
fic, g is non-decreasing. A similar relationship can be found
in the analytical quantity h0 ¼ @h

@l where h0 is decreasing and
increasing with l for bursty and smooth traffic, respec-
tively. More importantly, the separation between h0 for dif-
ferent traffic models is consistent to that between g,
showing a great potential of analyzing the e2e delay corre-
lation degree by h0.

It is interesting to observe that even with the correla-
tions, the e2e delay variance is almost linear with the num-
ber of nodes (Fig. 7). Then it is reasonable to assume that
the impact of the correlations is uniform in a line network
and a product-form joint distribution of all Di’s could be
possible. Moreover, a huge g, say g > 2, implies that strong
correlations exist not only between neighboring nodes, but
also between nodes that are more than one hop away
(Fig. 7a for heavy on–off). In this case, the assumption used
in previous work that the correlation mainly exists be-
tween neighboring nodes does not hold.

8. Conclusions

This paper uses queueing theory to analyze the delay
performance of two MAC schemes, TDMA and ALOHA, in
a wireless line network. The queueing models are estab-
lished in such a way that the service time is geometric
and the access delay is incorporated into the service pro-
cess for both TDMA and ALOHA. Both delay and departure
process of each node are analyzed. For a tractable analysis,

we approximate the departure process of each node by a
correlated and bursty on–off process, which is verified to
be accurate as the number of nodes increases. We confirm
the convergence behavior discussed in [30]. More impor-
tantly, we reveal that although all relayed flows converge
to the same Bernoulli eigenprocess, they converge from
different directions depending on the original traffic burs-
tiness and the underlying MAC.

The departure process characterization gives rise to a
parameter h that can be used to measure the degree of
the e2e spatial correlation. h is consistent with the direc-
tion of convergence, depending on both MAC and traffic
burstiness. Generally, smooth traffic results in a smaller
per-node delay and negative correlation, which leads to
much smaller e2e delay variance. In contrast, bursty traffic
causes a positive correlation and large e2e delay variance.
TDMA, as a deterministic regulator, outperforms ALOHA,
which acts as a random regulator. Therefore, a MAC
scheme should be designed together with a traffic regula-
tor to optimize the e2e delay performance.
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