
Second Ed ition

Data
Networks

DIMITRI BERTSEKAS
Massachusetts Institute of Technology

ROBERT GALLAGER
Massachusetts Institute of Technology

PRENTICE HALL, Englewood Cliffs, New Jersey 07632



1 L L

Higher layer black box
communication system, ,. ,

IModule - - - - Peer processes - - - - Module I
L ... "- ,.--

Lower layer black box, :;. communication system '7I Module - - -Lower layer peer processes- -- Module I
I I

Introduction
and Layered Network
Architecture

1.1 HISTORICAL OVERVIEW

Primitive forms of data networks have a long history, including the smoke signals used
by primitive societies, and certainly including nineteenth-century telegraphy. The mes-
sages in these systems were first manually encoded into strings of essentially binary
symbols, and then manually transmitted and received. Where necessary, the messages
were manually relayed at intermediate points.

A major development, in the early 1950s, was the use of communication links
to connect central computers to remote terminals and other peripheral devices, such as
printers and remote job entry points (RIEs) (see Fig. 1.1). The number of such peripheral
devices expanded rapidly in the 1960s with the development of time-shared computer
systems and with the increasing power of central computers. With the proliferation of
remote peripheral devices, it became uneconomical to provide a separate long-distance
communication link to each peripheral. Remote multiplexers or concentrators were de-
veloped to collect all the traffic from a set of peripherals in the same area and to send
it on a single link to the central processor. Finally, to free the central processor from
handling all this communication, special processors called front ends were developed to

1



2 Introduction and Layered Network Architecture Chap. 1

Figure 1.1 Network with one central processor and a separate communication link to
each device.

control the communication to and from all the peripherals. This led to the more com-
plex structure shown in Fig. 1.2. The communication is automated in such systems, in
contrast to telegraphy, for example, but the control of the communication is centrally
exercised at the computer. While it is perfectly appropriate and widely accepted to refer
to such a system as a data network or computer communication network, it is simpler
to view it as a computer with remote peripherals. Many of the interesting problems
associated with data networks, such as the distributed control of the system, the relaying
of messages over multiple communication links, and the sharing of communication links
between many users and processes, do not arise in these centralized systems.

The ARPANET and TYMNET, introduced around 1970, were the first large-scale,
general-purpose data networks connecting geographically distributed computer systems,
users, and peripherals. Figure 1.3 shows such networks. Inside the "subnet" are a set of
nodes, various pairs of which are connected by communication links. Outside the subnet
are the various computers, data bases, terminals, and so on, that are connected via the
subnet. Messages originate at these external devices, pass into the subnet, pass from
node to node on the communication links, and finally pass out to the external recipient.
The nodes of the subnet, usually computers in their own right, serve primarily to route
the messages through the subnet. These nodes are sometimes called IMPs (interface
message processors) and sometimes called switches. In some networks (e.g., DECNET),
nodes in the subnet might be physically implemented within the external computers using
the network. It is helpful, however, to view the subnet nodes as being logically distinct
from the external computers.

It is important to observe that in Figs. 1.1 and 1.2 the computer system is the
center of the network, whereas in Fig. 1.3 the subnet (i.e., the communication part of the
network) is central. Keeping this picture of external devices around a communication



Sec. 1.1 Historical Overview 3

Central
processor

Figure 1.2 Network with one central processor but with shared communication links
to devices.

QI
Subnet

Personal
computer

Figure 1.3 General network with a subnet of communication links and nodes. External
devices are connected to the subnet via links to the subnet nodes.



4 Introduction and Layered Network Architecture Chap. 1

subnet in mind will make it easier both to understand network layering later in this
chapter and to understand the issues of distributed network control throughout the book.

The subnet shown in Fig. 1.3 contains a somewhat arbitrary placement of links
between the subnet nodes. This arbitrary placement (or arbitrary topology as it is often
called) is typical of wide area networks (i.e., networks covering more than a metropolitan
area). Local area networks (i.e., networks covering on the order of a square kilometer or
less) usually have a much more restricted topology, with the nodes typically distributed
on a bus, a ring, or a star.

Since 1970 there has been an explosive growth in the number of wide area and
local area networks. Many examples of these networks are discussed later, including as
wide area networks, the seminal ARPANET and TYMNET, and as local area networks,
Ethemets and token rings. For the moment, however, Fig. 1.3 provides a generic model
for data networks.

With the multiplicity of different data networks in existence in the 1980s, more and
more networks have been connected via gateways and bridges so as to allow users of one
network to send data to users of other networks (see Fig. 1.4). At a fundamental level,
one can regard such a network of networks as simply another network, as in Fig. 1.3,
with each gateway, bridge, and subnet node of each constituent network being a subnet
node of the overall network. From a more practical viewpoint, a network of networks is
much more complex than a single network. The problem is that each constituent subnet
has its own conventions and control algorithms (i.e., protocols) for handling data, and
the gateways and bridges must deal with this inhomogeneity. We discuss this problem
later after developing some understanding of the functioning of individual subnets.

Subnet

o rr=-=n
IL-JI

CPf7 TI,
Terminal

Figure 1.4 Network of interconnected networks. Individual wide area networks (WANs)
and local networks (LANs) are connected via bridges and gateways.



Sec. 1.1 Historical Overview 5

In the future, it is likely that data networks, the voice network, and perhaps cable
TV networks will be far more integrated than they are today. Data can be sent over the
voice network today, as explained more fully in Section 2.2, and many of the links in
data networks are leased from the voice network. Similarly, voice can be sent over data
networks. What is envisioned for the future, however, is a single integrated network,
called an integrated services digital network (ISDN), as ubiquitous as the present voice
network. In this vision, offices and homes will each have an access point into the ISDN
that will handle voice, current data applications, and new applications, all with far greater
convenience and less expense than is currently possible. ISDN is currently available in
some places, but it is not yet very convenient or inexpensive. Another possibility for
the future is called broadband ISDN. Here the links will carry far greater data rates than
ISDN and the network will carry video as well as voice and data. We discuss the pros
and cons of this in Section 2.10.

1.1.1 Technological and Economic Background

Before data networks are examined, a brief overview will be given, first, of the tech-
nological and economic factors that have led to network development, and second, of
the applications that require networks. The major driving force in the rapid advances
in computers, communication, and data networks has been solid-state technology and in
particular the development of very large scale integration (VLSI). In computers, this has
led to faster, less expensive processors; faster, larger, less expensive primary memory;
and faster, larger, less expensive bulk storage. The result has been the lowering of the
cost of computation by roughly a factor of 2 every two years. This has led to a rapid
increase in the number of cost effective applications for computers.

On the other hand, with the development of more and more powerful microproces-
sor chips, there has been a shift in cost effectiveness from large time-shared computer
facilities to small but increasingly powerful personal computers and workstations. Thus,
the primary growth in computation is in the number of computer systems rather than in
the increasing power of a small number of very large computer systems.

This evolution toward many small but powerful computers has had several effects
on data networks. First, since individual organizations use many computers, there is a
need for them to share each other's data, thus leading to the network structures of Figs.
1.3 and 104. (If, instead, the evolution had been toward a small number of ever more
powerful computer systems, the structure of Fig. 1.2 would still predominate.) Second,
since subnet nodes are small computers, the cost of a given amount of processing within
a subnet has been rapidly decreasing. Third, as workstations become more powerful,
they deal with larger blocks of data (e.g., high-resolution graphics) and the data rates
of present-day wide area data networks are insufficient to transmit such blocks with
acceptable delay.

The discussion of computational costs above neglects the cost of software. While
the art of software design has been improving, the improvement is partly counterbalanced
by the increasing cost of good software engineers. When software can be replicated,
however, the cost per unit goes down inversely with the number of replicas. Thus,



6 Introduction and Layered Network Architecture Chap. 1

even though software is a major cost of a new computer system, the increasing market
decreases its unit cost. Each advance in solid-state technology decreases cost and in-
creases the performance of computer systems; this leads to an increase in market, thus
generating decreased unit software costs, leading, in a feedback loop, to further increases
in market. Each new application, however, requires new specialized software which is
initially expensive (until a market develops) and which requires a user learning curve.
Thus, it is difficult to forecast the details of the growth of both the computer market and
the data network market.

1.1.2 Communication Technology

The communication links for wide area networks are usually leased from the facilities of
the voice telephone network. In Section 2.2 we explain how these physical links are used
to transmit a fixed-rate stream of binary digits. The rate at which a link transmits binary
digits is usually referred to as the data rate, capacity, or speed of the link, and these data
rates come in standard sizes. Early networks typically used link data rates of 2.4, 4.8, 9.6,
and 56 kilobits/sec, whereas newer networks often use 64 kilobits/sec, 1.5 megabits/sec,
and even 45 megabits/sec. There are major economies of scale associated with higher
link speeds; for example, the cost of a 1.5 megabit/sec link is about six times that of
a 64 kilobit/sec link, but the data rate is 24 times higher. This makes it economically
advantageous to concentrate network traffic on a relatively small set of high-speed links.
(This effect is seen in Fig. 1.2 with the use of multiplexers or concentrators to share
communication costs.)

One result of sharing high-speed (i.e., high data rate) communication links is that
the cost of sending data from one point to another increases less than linearly with the
geographic separation of the points. This occurs because a user with a long communi-
cation path can share one or more high-speed links with other users (thus achieving low
cost per unit data) over the bulk of the path, and use low-speed links (which have high
cost per unit data) only for local access to the high-speed links.

Estimating the cost of transmission facilities is highly specialized and complex.
The cost of a communication link depends on whether one owns the facility or leases
it; with leasing, the cost depends on the current competitive and regulatory situation.
The details of communication cost will be ignored in what follows, but there are several
overall effects of these costs that are important.

First, for wide area data networks, cost has until recently been dominated by
transmission costs. Thus, it has been desirable to use the communication links efficiently,
perhaps at added computational costs. As will be shown in Section 1.3, the sporadic
nature of most data communication, along with the high cost of idle communication
links, led to the development of packet data networks.

Second, because of the gradual maturing of optical fiber technology, transmission
costs, particularly for high data rate links, are dropping at an accelerating rate which is
expected to continue well into the future. The capacity of a single optical fiber using
today's technology is 109 to 1010 bits/sec, and in the future this could rise to 1014 or
more. In contrast, all the voice and data traffic in the United States amounts to about



Sec. 1.1 Historical Overview 7

1012 bits/sec. Optical fiber is becoming widespread in use and is expected to be the
dominant mode of transmission in the future. One consequence of this is that network
costs are not expected to be dominated by transmission costs in the future. Another
consequence is that network link capacities will increase dramatically; as discussed later,
this will change the nature of network applications.

Third, for local area networks, the cost of a network has never been dominated by
transmission costs. Coaxial cable and even a twisted pair of wires can achieve relatively
high-speed communication at modest cost in a small geographic area. The use of such me-
dia and the desire to avoid relatively expensive switching have led to a local area network
technology in which many nodes share a common high-speed communication medium
on a shared multiaccess basis. This type of network structure is discussed in Chapter 4.

1.1.3 Applications of Data Networks

With the proliferation of computers referred to above, it is not difficult to imagine a
growing need for data communication. A brief description of several applications requir-
ing communication will help in understanding the basic problems that arise with data
networks.

First, there are many applications centered on remote accessing of central storage
facilities and of data bases. One common example is that of a local area network
in which a number of workstations without disk storage use one or more common file
servers to access files. Other examples are the information services and financial services
available to personal computer users. More sophisticated examples, requiring many
interactions between the remote site and the data base and its associated programs,
include remote computerized medical diagnoses and remote computer-aided education.
In some of these examples, there is a cost trade-off between maintaining the data base
wherever it might be required and the communication cost of remotely accessing it as
required. In other examples, in which the data base is rapidly changing, there is no
alternative to communication between the remote sites and the central data base.

Next, there are many applications involving the remote updating of data bases,
perhaps in addition to accessing the data. Airline reservation systems, automatic teller
machines, inventory control systems, automated order entry systems, and word pro-
cessing with a set of geographically distributed authors provide a number of examples.
Weather tracking systems and military early warning systems are larger-scale examples.
In general, for applications of this type, there are many geographically separated points
at which data enter the system and often many geographically separated points at which
outputs are required. Whether the inputs are processed and stored at one point (as in
Figs. 1.1 and 1.2) or processed and stored at many points (as in Fig. 1.3), there is a need
for a network to collect the inputs and disseminate the outputs. In any data base with
multiple users there is a problem maintaining consistency (e.g., two users of an airline
reservation system might sell the same seat on some flight). In geographically distributed
systems these problems are particularly acute because of the networking delays.

The communication requirements for accessing files and data bases have been
increasing rapidly in recent years. Part of the reason for this is just the natural growth



8 Introduction and Layered Network Architecture Chap. 1

of an expanding field. Another reason is that workstations are increasingly graphics
oriented, and transmitting a high-resolution image requires millions of bits. Another
somewhat related reason is that the link capacities available in local area networks have
been much larger than those in wide area networks. As workstation users get used to
sending images and large files over local area nets, they expect to do the same over
wide area networks. Thus the need for increased link capacity for wide area networks is
particularly pressing.

Another popular application is electronic mail between the human users of a net-
work. Such mail can be printed, read, filed, forwarded to other individuals, perhaps with
added comments, or read by the addressee at different locations. It is clear that such a
service has many advantages over postal mail in terms of delivery speed and flexibility.

In comparison with facsimile, which has become very popular in recent years, elec-
tronic mail is more economical, has the flexibility advantages above, and is in principle
more convenient for data already stored in a computer. Facsimile is far more convenient
for data in hard-copy form (since the hard copy is fed directly into the facsimile machine).
It appears clear, however, that the recent popularity of facsimile is due to the fact that it
is relatively hassle-free, especially for the occasional or uninitiated user. Unfortunately,
electronic mail, and more generally computer communication, despite all the cant about
user friendliness, is full of hassles and pitfalls for the occasional or uninitiated user.

There is a similar comparison of electronic mail with voice telephone service. Voice
service, in conjunction with an answering machine or voice mail service, in principle
has most of the flexibility of electronic mail except for the ability to print a perma-
nent record of a message. Voice, of course, has the additional advantage of immediate
two-way interaction and of nonlinguistic communication via inflection and tone. Voice
communication is more expensive, but requires only a telephone rather than a telephone
plus computer.

As a final application, one might want to use a remote computer system for some
computational task. This could happen as a means of load sharing if the local computer
is overutilized. It could also arise if there is no local computer, if the local computer is
inoperational, or the remote computer is better suited to the given task. Important special
cases of the latter are very large problems that require supercomputers. These problems
frequently require massive amounts of communication, particularly when the output is in
high resolution graphic form. Present-day networks, with their limited link speeds, are
often inadequate for these tasks. There are also "real-time" computational tasks in which
the computer system must respond to inputs within some maximum delay. If such a task
is too large for the local computer, it might be handled by a remote supercomputer or by
a number of remote computers working together. Present-day networks are also often
inadequate for the communication needs of these tasks.

It will be noted that all the applications above could be satisfied by a network
with centralized computer facilities as in Fig. 1.1 or 1.2. To see this, simply visualize
moving all the large computers, data bases, and subnet nodes in the network of Fig. 1.3 to
one centralized location, maintaining links between all the nodes previously connected.
The central facilities would then be connected by short communication lines rather than
long, but aside from some changes in propagation delays, the overall network would be



Sec. 1.2 Messages and Switching 9

unchanged. Such a geographically centralized but logically distributed structure would
both allow for shared memory between the computers and for centralized repair. Why,
then, are data networks with geographically distributed computational and data base
facilities growing so quickly in importance? One major reason is the cost and delay of
communication. With distributed computers, many computational tasks can be handled
locally. Even for remote tasks, communication costs can often be reduced significantly
by some local processing. Another reason is that organizations often acquire computers
for local automation tasks, and only after this local automation takes place does the
need for remote interactions arise. Finally, organizations often wish to have control of
their own computer systems rather than be overly dependent on the pricing policies,
software changes, and potential security violations of a computer utility shared with
many organizations.

Another advantage often claimed for a network with distributed computational
facilities is increased reliability. For the centralized system in Fig. 1.2 there is some
truth to this claim, since the failure of a communication link could isolate a set of
sites from all access to computation. For the geographically centralized but logically
distributed network, especially if there are several disjoint paths between each pair of
sites, the failure of a communication link is less critical and the question of reliability
becomes more complex. If all the large computers and data bases in a network were
centralized, the network could be destroyed by a catastrophe at the central site. Aside
from this possibility, however, a central site can be more carefully protected and repairs
can be made more quickly and easily than with distributed computational sites. Other than
these effects, there appears to be no reason why geographically distributed computational
facilities are inherently more or less reliable than geographically centralized (but logically
distributed) facilities. At any rate, the main focus in what follows will be on networks
as in Figs. 1.3 and lA, where the communication subnet is properly viewed as the center
of the entire network.

1.2 MESSAGES AND SWITCHING

1.2.1 Messages and Packets

A message in a data network corresponds roughly to the everyday English usage of the
word. For example, in an airline reservation system, we would regard a request for a
reservation, including date, flight number, passenger names, and so on, as a message.
In an electronic mail system, a message would be a single document from one user
to another. If that same document is then forwarded to several other users, we would
sometimes want to regard this forwarding as several new messages and sometimes as
forwarding of the same message, depending on the context. In a file transfer system, a
message would usually be regarded as a file. In an image transmission system (i.e., pic-
tures, figures, diagrams, etc.), we would regard a message as an image. In an application
requiring interactive communication between two or more users, a message would be
one unit of communication from one user to another. Thus, in an interactive transaction,



10 Introduction and Layered Network Architecture Chap. 1

user I might send a message to user 2, user 2 might reply with a message to I, who
might then send another message to 2, and so forth until the completion of the overall
transaction. The important characteristic of a message is that from the standpoint of the
network users, it is a single unit of communication. If a recipient receives only part of
a message, it is usually worthless.

It is sometimes necessary to make a distinction between a message and the rep-
resentation of the message. Both in a subnet and in a computer, a message is usually
represented as a string of binary symbols, 0 or 1. For brevity, a binary symbol will be
referred to as a bit. When a message goes from sender to recipient, there can be several
transformations on the string of bits used to represent the message. Such transformations
are sometimes desirable for the sake of data compression and sometimes for the sake of
facilitating the communication of the message through the network. A brief description
of these two purposes follows.

The purpose of data compression is to reduce the length of the bit string representing
the message. From the standpoint of information theory, a message is regarded as one
of a collection of possible messages, with a probability distribution on the likelihood of
different messages. Such probabilities can only be crudely estimated, either a priori or
adaptively. The idea, then, is to assign shorter bit strings to more probable messages
and longer bit strings to less probable messages, thus reducing the expected length of the
representation. For example, with text, one can represent common letters in the alphabet
(or common words in the dictionary) with a small number of bits and represent unusual
letters or words with more bits. As another example, in an airline reservation system, the
common messages have a very tightly constrained format (date, flight number, names,
etc.) and thus can be very compactly represented, with longer strings for unusual types
of situations. Data compression will be discussed more in Chapter 2 in the context of
compressing control overhead. Data compression will not be treated in general here,
since this topic is separable from that of data networks, and is properly studied in its
own right, with applications both to storage and point-to-point communication.

Transforming message representations to facilitate communication, on the other
hand, is a central topic for data networks. In subsequent chapters, there are many
examples in which various kinds of control overhead must be added to messages to
ensure reliable communication, to route the message to the correct destination, to control
congestion, and so on. It will also be shown that transmitting very long messages as
units in a subnet is harmful in several ways, including delay, buffer management, and
congestion control. Thus, messages represented by long strings of bits are usually broken
into shorter bit strings called packets. These packets can then be transmitted through the
subnet as individual entities and reassembled into messages at the destination.

The purpose of a subnet, then, is to receive packets at the nodes from sites outside
the subnet, then transmit these packets over some path of communication links and
other nodes, and finally deliver them to the destination sites. The subnet must somehow
obtain information about where the packet is going, but the meaning of the corresponding
message is of no concern within the subnet. To the subnet, a packet is simply a string
of bits that must be sent through the subnet reliably and quickly. We return to this issue
in Section 1.3.



Sec. 1.2 Messages and Switching 11

1.2.2 Sessions

Messages between two users usually occur as a sequence in some larger transaction;
such a message sequence (or, equivalently, the larger transaction) is called a session.
For example, updating a data base usually requires an interchange of several messages.
Writing a program at a terminal for a remote computer usually requires many messages
over a considerable time period. Typically, a setup procedure (similar to setting up a call
in a voice network) is required to initiate a session between two users, and in this case
a session is frequently called a connection. In other networks, no such setup is required
and each message is treated independently; this is called a connectionless service. The
reasons for these alternatives are discussed later.

From the standpoint of network users, the messages within a session are typically
triggered by particular events. From the standpoint of the subnet, however, these message
initiation times are somewhat arbitrary and unpredictable. It is often reasonable, for
subnet purposes, to model the sequence of times at which messages or packets arrive
for a given session as a random process. For simplicity, these arrivals will usually be
modeled as occurring at random points in time, independently of each other and of the
arrivals for other sessions. This type of arrival process is called a Poisson process and
is defined and discussed in Section 3.3. This model is not entirely realistic for many
types of sessions and ignores the interaction between the messages flowing in the two
directions for a session. However, such simple models provide insight into the major
trade-offs involved in network design, and these trade-offs are often obscured in more
realistic and complex models.

Sometimes it will be more convenient to model message arrivals within a ses-
sion by an on/off flow model. In such a model, a message is characterized by a se-
quence of bits flowing into the subnet at a given rate. Successive message arrivals are
separated by random durations in which no flow enters the network. Such a model
is appropriate, for example, for voice sessions and for real-time monitoring types of
applications. When voice is digitized (see Section 2.2), there is no need to trans-
mit when the voice is silent, so these silence periods correspond to the gaps in an
on/off flow model. One might think that there is little fundamental difference between
a model using point arrivals for messages and a model using on/off flow. The out-
put from point message arrivals, followed by an access line of fixed rate, looks very
much like an on/off flow (except for the possibilitity that one message might arrive
while another is still being sent on the access line). The major difference between
these models, however, is in the question of delay. For sessions naturally modeled
by point message arrivals (e.g., data base queries), one is usually interested in delay
from message arrival to the delivery of the entire message (since the recipient will
process the entire message as a unit). For sessions naturally modeled by flow (such
as digitized voice), the concept of a message is somewhat artificial and one is usu-
ally interested in the delay experienced by the individual bits within the flow. It ap-
pears that the on/off flow model is growing in importance and is particularly appro-
priate for ISDN and broadband ISDN networks. Part of the reason for this growth
is the prevalence of voice in ISDN and voice and video in broadband ISDN. An-



12 Introduction and Layered Network Architecture Chap. 1

other reason, which will be more clear later, is that very long messages, which will
be prevalent with ISDN. are probably better treated in the subnet as flows than as point
arrivals.

To put this question of modeling message arrivals for a session in a more pragmatic
way, note that networks, particularly wide area networks built around a subnet as in
Fig. 1.3, generally handle multiple applications. Since the design and implementation of
a subnet is a time-consuming process, and since applications are rapidly changing and
expanding, subnets must be designed to handle a wide variety of applications, some of
which are unknown and most of which are subject to change. Any complex model of
message arrivals for sessions is likely to be invalid by the time the network is used. This
point of view, that subnets must be designed to work independently of the fine details
of applications, is discussed further in Section 1.3.

At this point we have a conceptual view, or model, of the function of a subnet.
It will provide communication for a slowly varying set of sessions; within each session,
messages of some random length distribution arrive at random times according to some
random process. Since we will largely ignore the interaction between the two directions
of message flow for a session, we shall usually model a two-way session as two one-way
sessions, one corresponding to the message flow in one direction and the other in the
opposite direction. In what follows we use the word session for such one-way sessions.
In matters such as session initiation and end-to-end acknowledgment, distinctions are
made between two-way and one-way sessions.

In principle a session could involve messages between more than two users. For
example, one user could broadcast a sequence of messages to each of some set of other
users, or the messages of each user in the set could be broadcast to each of the other
users. Such sessions might become important in the future, especially for broadband
ISDN, with applications such as video conferencing and television broadcast. We will
not discuss such applications in any detail, but instead will simply model multiuser
sessions as a multiplicity of one-way two-user sessions.

Although the detailed characteristics of different kinds of applications will not be
examined, there are some gross characteristics of sessions that must be kept in mind.
The most important are listed:

1. Message arriml rate and mriahility of arrimls. Typical arrival rates for sessions
vary from zero to more than enough to saturate the network. Simple models for
the variability of arrivals include Poisson arrivals, deterministic arrivals (i.e., a
fixed time interval from each message to the next message), and uniformly dis-
tributed arrivals (i.e., the time interval between successive messages has a uniform
probability density between some minimum and maximum interval).

2. Session holding time. Sometimes (as with electronic mail) a session is initiated for
a single message. Other sessions last for a working day or even permanently.

3. Expected message length and length distrihution. Typical message lengths vary
roughly from a few bits to 109 bits, with file transfer applications at the high end and
interactive sessions from a terminal to a computer at the low end. Simple models for
length distribution include an exponentially decaying probability density, a uniform



Sec. 1.2 Messages and Switching 13

probability density between some minimum and maximum, and fixed length. As
mentioned above, long messages are becoming much more common because of
graphics and long file transfers.

4. Allowable delay. The allowable expected delay varies from about 10 msec for some
real-time control applications to 1 sec or less for interactive terminal to computer
applications, to several minutes or more for some file transfer applications. In other
applications, there is a maximum allowable delay (in contrast to expected delay).
For example, with packetized voice, fixed-length segments of the incoming voice
waveform are encoded into packets at the source. At the destination, these packets
must be reconverted into waveform segments with some fixed overall delay; any
packet not received by this time is simply discarded. As described above, delay is
sometimes of interest on a message basis and sometimes, in the flow model, on a
bit basis.

5. Reliability. For some applications, all messages must be delivered error-free. For
example, in banking applications, in transmission of computer programs, or in
file transfers, a single bit error in a message can have serious consequences. In
other applications, such as electronic mail, all messages must be delivered, but an
occasional bit error in a message can usually be visually corrected by the reader.
Finally, in other applications, both occasional bit errors and occasional loss of entire
packets or messages are allowable. For example, in distributed sensor systems,
messages are sometimes noisy when transmitted, and occasional lost messages are
soon replaced with more up-to-date messages. For packetized voice, the occasional
loss (or late delivery) of a packet or an occasional bit error simply increases the
noisiness of the received voice signal. It should be noted, however, that the use of
data compression for packetized voice and other applications greatly increases the
need for error-free communication.

6. Message and packet ordering. The packets within a message must either be main-
tained in the correct order going through the network or restored to the correct order
at some point. For many applications (such as updating data bases), messages must
also be delivered in the correct order, whereas for other applications, message order
is unimportant. The question of where to handle reliability and message ordering
(i.e., at the external sites or within the subnet or both) is an important design issue.
This is discussed in Section 2.8.

In keeping all these characteristics in mind, it is often helpful to focus on four
types of applications which lie somewhat at the extreme points and which do not interact
very well together in subnets. One is interactive terminal to computer sessions, in which
messages are short, the message rate is low, the delay requirement is moderately stringent,
and the need for reliability is high. Another is file transfer sessions, in which the messages
are very long, the message arrival rate is typically low, the delay requirement is very
relaxed, and the need for reliability is very high. The third is high-resolution graphics,
in which the messages are again long, sometimes up to 109 bits, the delay requirement
is stringent, and the arrival rate is low. The fourth is packetized voice. Here the concept
of a message is not very useful, but the packets are short, the packet arrival rate is high,



14 Introduction and Layered Network Architecture Chap. 1

the maximum delay requirement is stringent, and the need for reliability is rather low. A
network that can handle all these applications together will probably not have too much
difficulty with the other applications of interest.

1.2.3 Circuit Switching and Store-and-Forward Switching

There are two general approaches, known as circuit switching and store-and-forward
switching, that can be used within a subnet to transmit the traffic for the various sessions.
A brief overview will be given of the circuit switching approach, followed by the reason
why this approach leads to inefficient utilization of the communication channels for many
types of sessions. Next, an overview of the store-and-forward approach will be given,
showing how it overcomes the above inefficiency.

For the circuit switching approach, when a session s is initiated, it is allocated a
given transmission rate T s in bits per second (this could be different in the two direc-
tions of a two-way session, but we focus on a one-way session here). A path is then
created from the transmitting site through the subnet and to the destination site. Each
communication link on this path then allocates a portion Ts of its total transmission ca-
pacity in the given direction for that session. This allocation of transmission rates to
different sessions on a communication link is usually done by time-division multiplexing
(TOM) or frequency-division multiplexing (FOM), but the details of that are explained
in Section 2.1. What is important is that the sum of the rates for all the sessions using
a link cannot exceed the total capacity of the link. Thus, if a communication link is
fully allocated to existing sessions, a new session cannot use that link. If no path can
be found using links with at least T s bits/sec of unused rate, the new session must be
rejected (i.e., given a busy signal). The other important point is that once the session has
been successfully initiated, it has a guaranteed transmission rate T s through the network.
The nodes then simply take the incoming bit stream for a given session off the incoming
link and switch it to the allocated portion of the outgoing link. This type of switching is
quite similar to the well-developed technology for switching in the telephone network.
In the telephone network, however, each session is allocated the same transmission rate,
whereas in a data network, the required transmission rates are different and vary over a
wide range.

Circuit switching is rarely used for data networks. In the past, the reason for this
has had nothing to do with the potential complexity of the switching, but rather, as we
now explain, has been because of very inefficient use of the links. Typical data sessions
tend to have short bursts of high activity followed by lengthy inactive periods; circuit
switching wastes the allocated rate during these inactive periods. For a more quantitative
view, let'\ be the message arrival rate for a given session s. More precisely, 1/,\ is the
expected interarrival time between messages of s. Let X be the expected transmission
time of a message over a given link in the path; that is, if I is the expected length (in
bits) of messages from s, and Ts is the bit rate allocated to s, then X = I/T s . Figure 1.5
illustrates these arrivals and transmission times.

Note from the figure that the fraction of time in which session s's portion of the
link is actually transmitting messages is rather small; that portion of the link is otherwise



Sec. 1.2 Messages and Switching

Arrival
E(t;) = l/A

15

1-+----t,---++---t2--.-/----t3----I--!

Delivery E(X;) =X

Figure 1.5 Link utilization. The expected transmission time of a message is X. The
expected interarrival period is 1/A. Thus, the link is used at most AX of the time.

idle. It is intuitively plausible, since 1/A is the expected interarrival time and X is the
expected busy time between arrivals, that the ratio of X to 1/A (i.e., AX) is the fraction
of time in which the portion of the link allocated to 8 is busy. This argument is made
precise in Chapter 3. Our conclusion then is that if AX « 1, session 8'S portion of the
link is idle most of the time (i.e., inefficiently utilized).

To complete our argument about the inefficiency of circuit switching for data net-
works, we must relate X to the allowable expected delay T from message arrival at the
source to delivery at the destination. Since X is the expected time until the last bit of
the message has been sent on the first link, we must have X +P ::; T, where P is the
propagation delay through the network. Thus AX < AT. If AT « 1 (i.e., the allowable
delay is small relative to the message interarrival rate), the utilization AX for the session
is correspondingly small. In summary, the bit rate T" allocated to a session must be large
enough to allow message transmission within the required delay, and when AT « 1,
this implies inefficient utilization of the link. Sessions for which AT « 1 are usually
referred to as bursty sessions.

For many of the interactive terminal sessions carried by data networks, AT is on
the order of 0.01 or less. Thus, with circuit switching, that fraction of a link allocated to
such sessions is utilized at most 1% of the time. The conclusion we draw from this is that
if link costs are a dominant part of the cost of a network and if bursty sessions require
a dominant fraction of link capacity using circuit switching, then circuit switching is an
unattractive choice for data networks. Up to the present, both the assumptions above
have been valid, and for this reason, data networks have not used circuit switching.
The argument above has ignored propagation delays, switching delays in the nodes, and
queueing delays. (Queueing delay arises when a message from session 8 arrives while
another message from 8 is in transmission.) Since these delays must be added to the link
transmission time X in meeting the delay requirement T, X must often be substantially
smaller than T, making circuit switching even more inefficient. While propagation and
switching delays are often negligible, queueing delay is not, as shown in Chapter 3,
particularly when AT is close to or exceeds 1.

In the future, it appears that link costs will become less important in the overall cost
of a network. Also, with optical fiber, the marginal cost of link capacity is quite small,
so that the wasted capacity of circuit switching will become less important. Finally, it
appears that bursty interactive terminal traffic will grow considerably more slowly than



16 Introduction and Layered Network Architecture Chap. 1

link capacities in the future (the reason for this is discussed later). Thus circuit switch-
ing is a feasible possibility (although not necessarily the best possibility) for networks
of the future. Part of the issue here is that as link speeds increase, node processing
speed must also increase, putting a premium on simple processing within the subnet.
It is not yet clear whether circuit switching or store-and-forward allows simpler subnet
processing at high link speeds, but store-and-forward techniques are currently receiving
more attention.

In the store-and-forward approach to subnet design, each session is initiated without
necessarily making any reserved allocation of transmission rate for the session. Similarly,
there is no conventional multiplexing of the communication links. Rather, one packet
or message at a time is transmitted on a communication link, using the full transmission
rate of the link. The link is shared between the different sessions using that link, but the
sharing is done on an as needed basis (i.e., demand basis) rather than a fixed allocation
basis. Thus, when a packet or message arrives at a switching node on its path to the
destination site, it waits in a queue for its tum to be transmitted on the next link in its
path.

Store-and-forward switching has the advantage over circuit switching that each
communication link is fully utilized whenever it has any traffic to send. In Chapter 3,
when queueing is studied, it will be shown that using communication links on a demand
basis often markedly decreases the delay in the network relative to the circuit switching
approach. Store-and-forward switching, however, has the disadvantage that the queueing
delays in the nodes are hard to control. The packets queued at a node come from inputs at
many different sites, and thus there is a need for control mechanisms to slow down those
inputs when the queueing delay is excessive, or even worse, when the buffering capacity
at the node is about to be exceeded. There is a feedback delay associated with any such
control mechanism. First, the overloaded node must somehow send the offending inputs
some control information (through the links of the network) telling them to slow down.
Second, a considerable number of packets might already be in the subnet heading for the
given node. This is the general topic of flow control and is discussed in Chapter 6. The
reader should be aware, however, that this problem is caused by the store-and-forward
approach and is largely nonexistent in the circuit switching approach.

There is a considerable taxonomy associated with store-and-forward switching.
Message switching is store-and-forward switching in which messages are sent as unit
entities rather than being segmented into packets. If message switching were to be
used, there would have to be a maximum message size, which essentially would mean
that the user would have to packetize messages rather than having packetization done
elsewhere. Packet switching is store-and-forward switching in which messages are broken
into packets, and from the discussion above, we see that store-and-forward switching and
packet switching are essentially synonymous. Virtual circuit routing is store-and-forward
switching in which a particular path is set up when a session is initiated and maintained
during the life of the session. This is like circuit switching in the sense of using a fixed
path, but it is virtual in the sense that the capacity of each link is shared by the sessions
using that link on a demand basis rather than by fixed allocations. Dynamic routing (or
datagram routing) is store-and-forward switching in which each packet finds its own path



Sec. 1.3 Layering 17

through the network according to the current infonnation available at the nodes visited.
Virtual circuit routing is generally used in practice, although there are many interesting
intennediate positions between virtual circuit routing and dynamic routing. The general
issue of routing is treated in Chapter 5.

1.3 LAYERING

Layering, or layered architecture, is a fonn of hierarchical modularity that is central
to data network design. The concept of modularity (although perhaps not the name)
is as old as engineering. In what follows, the word module is used to refer either to
a device or to a process within some computer system. What is important is that the
module perfonns a given function in support of the overall function of the system. Such
a function is often called the service provided by the module. The designers of a module
will be intensely aware of the internal details and operation of that module. Someone
who uses that module as a component in a larger system, however, will treat the module
as a "black box." That is, the user will be uninterested in the internal workings of the
module and will be concerned only with the inputs, the outputs, and, most important,
the functional relation of outputs to inputs (i.e., the service provided). Thus, a black box
is a module viewed in tenns of its input-output description. It can be used with other
black boxes to construct a more complex module, which again will be viewed at higher
levels as a bigger black box.

This approach to design leads naturally to a hierarchy of modules in which a
module appears as a black box at one layer of the hierarchy, but appears as a system
of lower-layer black boxes at the next lower layer of the hierarchy (see Fig. 1.6). At
the overall system level (i.e., at the highest layer of the hierarchy), one sees a small
collection of top-layer modules, each viewed as black boxes providing some clear-cut
service. At the next layer down, each top-layer module is viewed as a subsystem of
lower-layer black boxes, and so forth, down to the lowest layer of the hierarchy. As
shown in Fig. 1.6, each layer might contain not only black boxes made up of lower-layer
modules but also simple modules that do not require division into yet simpler modules.

As an example of this hierarchical viewpoint, a computer system could be viewed
as a set of processor modules, a set of memory modules, and a bus module. A processor
module could, in tum, be viewed as a control unit, an arithmetic unit, an instruction
fetching unit, and an input-output unit. Similarly, the arithmetic unit could be broken
into adders, accumulators, and so on.

In most cases, a user of a black box does not need to know the detailed response
of outputs to inputs. For example, precisely when an output changes in response to
an input is not important as long as the output has changed by the time it is to be
used. Thus, modules (i.e., black boxes) can be specified in tenns of tolerances rather
than exact descriptions. This leads to standardized modules, which leads, in tum, to the
possibility of using many identical, previously designed (i.e., off-the-shelf) modules in
the same system. In addition, such standardized modules can easily be replaced with
new, functionally equivalent modules that are cheaper or more reliable.



18 Introduction and Layered Network Architecture

High level module

Chap. 1

Lower level
black box

D
Simple module

Black box

Lower
level
black
box

Black box

Black box

Figure 1.6 Hierarchy of nested black boxes. Each black box (except that at the lowest
level) contains black boxes at a lower level, plus perhaps other modules.

All of these advantages of modularity (i.e., simplicity of design; understandability;
and standard, interchangeable, widely available modules) provide the motivation for
a layered architecture in data networks. A layered architecture can be regarded as a
hierarchy of nested modules or black boxes, as described above. Each given layer in
the hierarchy regards the next lower layer as one or more black boxes which provide a
specified service to the given higher layer.

What is unusual about the layered architecture for data networks is that the black
boxes at the various layers are in fact distributed black boxes. The bottom layer of the
hierarchy consists of the physical communication links, and at each higher layer, each
black box consists of a lower-layer black box communication system plus a set of simple
modules, one at each end of the lower-layer communication system. The simple modules
associated with a black box at a given layer are called peer processes or peer modules
(see Fig. 1.7).

In the simplest case, a black box consists of two peer processes, one at each of
two nodes, and a lower-layer black box communication system connecting the two peer
processes. One process communicates with its peer at the other node by placing a message



Sec. 1.3 Layering

/)..

Higher layer black box
communication system

'7 '7

Module f-.o----- Peer processes - - - - _ Module

• •
Lower layer black box, 7 communication system , '7

Module - - - Lower layer peer processes- - - Module

Figure 1.7 Peer processes within a black box communication system. The peer pro-
cesses communicate through a lower-layer black box communication system that itself
contains lower-layer peer processes.

19

into the lower-layer black box communication system. This lower-layer black box, as
illustrated in Fig. 1.7, might in fact consist of two lower-layer peer processes, one at
each of the two nodes, connected by a yet lower-layer black box communication system.
As a familiar example, consider two heads of state who have no common language for
communication. One head of state can then send a message to the peer head of state by
a local translator, who communicates in a common language to a peer translator, who
then delivers the message in the language of the peer head of state.

Note that there are two quite separate aspects to the communication between a
module, say at layer n, and its layer n peer at another node. The first is the protocol (or
distributed algorithm) that the peer modules use in exchanging messages or bit strings
so as to provide the required functions or service to the next higher layer. The second
is the specification of the precise interface between the layer n module at one node
and the layer n - I module at the same node through which the messages above are
actually exchanged. The first aspect above is more important (and more interesting) for
a conceptual understanding of the operation of a layered architecture, but the second is
also vital in the actual design and standardization of the system. In terms of the previous
example of communication between heads of state, the first aspect has to do with the
negotiation between the heads of state, whereas the second has to do with each head of
state ensuring that the translator can actually translate the messages faithfully.

Figure 1.8 illustrates such a layered architecture. The layers are those of the
reference model of open systems interconnection (051) developed as an international
standard for data networks by the International Standards Organization (ISO). Many
existing networks, including SNA, DECNET, ARPANET, and TYMNET, have somewhat



20

Virtual link for

reliable packets

Virtual bit pipe

Introduction and Layered Network Architecture

Virtual network service

Virtual session

Virtual link for end to end messages

Virtual link for end to end packets

Chap. 1

External
site

Physical link
Subnet
node

Subnet
node

External
site

Figure 1.8 Seven-layer OSI network architecture. Each layer presents a virtual communication
link with given properties to the next-higher layer.

different layers than this proposed standard. However, the OSI layers have a relatively
clean structure that helps in understanding the concept of layering. Some of the variations
used by these other networks are discussed later.

1.3.1 The Physical Layer

The function of the physical layer is to provide a virtual link for transmitting a sequence
of bits between any pair of nodes (or any node and external site) joined by a physical
communication channel. Such a virtual link is called a virtual bit pipe. To achieve
this function, there is a physical interface module on each side of the communication
channel whose function is to map the incoming bits from the next higher layer [i.e.,
the data link control (DLC) layer] into signals appropriate for the channel, and at the
receiving end, to map the signals back into bits. The physical interface module that



Sec. 1.3 Layering 21

perfonns these mapping functions is often called a modem (digital data modulator and
demodulator). The tenn modem is used broadly here to refer to any module that perfonns
the function above, whether or not modulation is involved; for example, if the physical
communication channel is a digital link (see Section 2.2), there is nothing for the modem
to do other than interface with the DLC module.

Modems and communication channels are discussed in Section 2.2. The modem
designer must be aware of the detailed characteristics of the communication channel (and
different modems must be designed for different types of channels). To the higher layers,
however, the black box fonned by the modem-ehannel-modem combination appears as
a bit pipe with the complexities of the physical channel hidden. Even viewed as a bit
pipe, however, there are a few issues that must be discussed.

The first issue has to do with the timing of the bit sequence entering the bit pipe.
There are three common situations. The first is that of a synchronous bit pipe where
bits are transmitted and received at regular intervals (i.e., I bit per t second interval
for some t). The higher-layer DLC module must supply bits at this synchronous rate
whether or not it has any real data to send. The second situation is that of an intermittent
synchronous bit pipe where the DLC module supplies bits at a synchronous rate when it
has data to send and stops sending bits when there are no data to send. The third situation
is that of asynchronous characters, usually used with personal computers and low-speed
tenninals. Here, keyboard characters and various control characters are mapped into
fixed-length bit strings (usually, eight-bit strings according to a standard mapping from
characters to bit strings known as ASCII code), and the individual character bit strings
are transmitted asynchronously as they are generated.

The next issue is that of the interface between the DLC module and the modem.
One would think that not many problems should exist in delivering a string of bits from
one module to another, especially if they are physically close. Unfortunately, there are
a number of annoying details about such an interface. For example, the module on one
end of the interface might be temporarily inoperable, and when both become operable,
some initialization is required to start the flow of bits. Also, for synchronous operation,
one side or the other must provide timing. To make matters worse, many different
manufacturers provide the modules on either end, so there is a need for standardizing the
interface. In fact, there are many such standards, so many that one applauds the effort
but questions the success. Two of the better known are RS-232-C and the physical layer
of X.21.

The RS-232-C interface approaches the problem by providing a separate wire be-
tween the two modules for each type of control signal that might be required. These
wires from the modules are joined in a standard 25-pin connector (although usually many
fewer wires are required). In communication jargon, the interface is between a DCE (data
communication equipment), which is the modem in this case, and a DTE (data tenninal
equipment), which is the DLC layer and higher layers in this case.

As an example of the interface use, suppose that the DTE wants to start sending
data (either on initialization or with a new data sequence in intennittent synchronous
transmission). The DTE then sends a signal to the DCE on a "request-to-send" wire.
The DCE replies with a signal on the "clear-to-send" wire. The DCE also sends a signal



22 Introduction and Layered Network Architecture Chap. 1

on the "DCE-ready" wire whenever it is operational and a signal on the "carrier detect"
wire whenever it appears that the opposite modem and channel are operational. If the
DTE receives all these signals (which are just level voltages), it starts to send data over
the interface on the DTE-to-DCE data wire.

This interchange is a very simple example of a protocol or distributed algorithm.
Each module performs operations based both on its own state and on the information
received from the other module. Many less trivial protocols are developed in subsequent
chapters. There are many other details in RS-232-C operation but no other new concepts.

It is sometimes helpful when focusing on the interface between the DLC module
and the modem to view the wires between the modules as a physical channel and to
view the DLC and modem as peer processes executing the interface protocol. To avoid
confusion between the DLC module's major function as a peer process with the opposite
DLC module and its lower-level function of interfacing with the modem, an extra dummy
module is sometimes created (see Fig. 1.9) which exercises the interface protocol with
the modem.

The X.2I physical layer interface is similar in function to RS-232-C, but it uses
a smaller set of wires (eight wires are used, although there is a I5-pin connector) and
is intended as an interface to a digital communication link. The idea is to avoid using
a separate wire for each possible signal by doubling up on the use of wires by digital
logic in the modules. The X.2I physical layer is used as the physical layer for the X.25
protocol, which is discussed in Chapter 2.

It should be clear from the above that there is a great conceptual advantage in
removing the question of modem and modem interfaces from the higher-level aspects
of networks. Note that this has already been done, in essence, in previous sections in
referring to the number of bits per second that could be transmitted over communication
links. It should also be noted, however, that modems cannot be totally segregated from
network issues. For example, is it better to have a modem that transmits R bits/sec with
an error rate of 10-6 or a modem that transmits 2R bits/sec with an error rate of 1O-4?
This cannot be answered without some knowledge of how errors are eliminated at higher

Frames Virtual synchronous unreliable bit pipe

Interface wires Communication link Interface wires

Figure 1.9 Layering with the interface between the DLe and the modem viewed as an
interface over a physical medium consisting of a set of wires.



Sec. 1.3 Layering 23

layers of the architecture. Conversely, decisions on how and where to eliminate errors
at higher layers should depend on the error rate and error characteristics at the physical
layer.

1.3.2 The Data Link Control Layer

The second layer in Fig. 1.8 is the data link control (DLC) layer. Each point-to-point
communication link (i.e., the two-way virtual bit pipe provided by layer I) has data link
control modules (as peer processes) at each end of the link. The customary purpose of
data link control is to convert the unreliable bit pipe at layer I into a higher-level, virtual
communication link for sending packets asynchronously but error-free in both directions
over the link. From the standpoint of the OLC layer, a packet is simply a string of bits
that comes from the next higher layer.

The communication at this layer is asynchronous in two ways. First, there is a
variable delay between the entrance of a packet into the OLC module at one end of the
link and its exit from the other end. This variability is due both to the need to correct the
errors that occur at the physical layer and to the variable length of the packets. Second,
the time between subsequent entries of packets into the OLC module at one end of the
link is also variable. The latter variability is caused both because higher layers might
have no packets to send at a given time and also because the OLC is unable to accept
new packets when too many old packets are being retransmitted due to transmission
errors.

Data link control is discussed in detail in Chapter 2. In essence, the sending OLC
module places some overhead control bits called a header at the beginning of each packet
and some more overhead bits called a trailer at the end of each packet, resulting in a
longer string of bits called aframe. Some of these overhead bits determine if errors have
occurred in the transmitted frames, some request retransmissions when errors occur, and
some delineate the beginning and ending of frames. The algorithms (or protocols) for
accomplishing these tasks are distributed between the peer OLC modules at the two ends
of each link and are somewhat complex because the control bits themselves are subject
to transmission errors.

The OLC layers in some networks do not retransmit packets in the presence of
errors. In these networks, packets in error are simply dropped and retransmission is
attempted on an end-to-end basis at the transport layer. The relative merits of this are
discussed in Section 2.8.2. Typically, the OLC layer ensures that packets leave the
receiving OLC in the same order in which they enter the transmitting OLC, but not all
data link control strategies ensure this feature; the relative merits of ordering are also
discussed in Section 2.8.2.

Our previous description of the physical layer and OLC was based on point-to-
point communication links for which the received waveform at one end of the link is a
noisy replica of the signal transmitted at the other end. In some networks, particularly
local area networks, some or all of the communication takes place over multiaccess
links. For these links, the signal received at one node is a function of the signals from
a multiplicity of transmitting nodes, and the signal transmitted from one node might be



24 Introduction and Layered Network Architecture Chap. 1

heard at a multiplicity of other nodes. This situation arises in satellite communication,
radio communication, and communication over cables, optical fibers, and telephone lines
with multiple taps. Multiaccess communication is treated in Chapter 4.

The MAC sublayer The appropriate layers for multiaccess communication are
somewhat different from those in networks of point-to-point links. There is still the
need for a DLC layer to provide a virtual error-free packet link to higher layers, and
there is still the need for a physical layer to provide a bit pipe. However, there is also
a need for an intermediate layer to manage the multiaccess link so that frames can be
sent by each node without constant interference from the other nodes. This is called
medium access control (MAC). It is usually considered as the lower sublayer of layer
2 with the conventional DLC considered as the higher sublayer. Figure 1.10 illustrates
the relationship between these layers. The service provided by the MAC to the DLC is
that of an intermittent synchronous bit pipe. The function of the MAC sublayer is to
allocate the multiaccess channel so that each node can successfully transmit its frames
without undue interference from the other nodes; see Chapter 4 for various ways of
accomplishing this function.

Figure 1.10 Layering for a multiaccess
channel. The physical medium is accessed
by all three users, each of whom hears the
transmitted signals of the others. The DLC
sublayer sees virtual point-to-point bit
pipes below it. The MAC sublayer sees
a multiaccess bit pipe, and the modems
access the actual channel.

",...--'-----, "\.
"\.

"""\.
Virtual bit pipe "\.

/
/

/
/

/
/

/



Sec. 1.3 Layering 25

1.3.3 The Network Layer

The third layer in Fig. 1.8 is the network layer. There is one network layer process
associated with each node and with each external site of the network. All these processes
are peer processes and all work together in implementing routing and flow control for the
network. When a frame enters a node or site from a communication link, the bits in that
frame pass through the physical layer to the DLC layer. The DLC layer determines where
the frame begins and ends, and if the frame is accepted as correct, the DLC strips off the
DLC header and trailer from the frame and passes the resulting packet up to the network
layer module (see Fig. 1.11). A packet consists of two parts, a packet header followed by
the packet body (and thus a frame at the DLC layer contains first the DLC header, next
the packet header, next the packet body, and then the DLC trailer). The network layer
module uses the packet header of an incoming packet, along with stored information at
the module, to accomplish its routing and flow control functions. Part of the principle
of layering is that the DLC layer does not look at the packet header or packet body in
performing its service function, which is to deliver the packet reliably to the network
layer at the next node. Similarly, the network layer does not use any of the information
in the DLC header or trailer in performing its functions of routing and flow control. The
reason for this separation is to allow improvements, modifications, and replacements in
the internal operation of one layer without forcing the other to be modified.

Newly generated messages from users at an external site are processed by the
higher layers, broken into packet-sized pieces if need be, and passed down from the
transport layer module to the network module. These packet-sized pieces constitute the
packet body at the network layer. The transport layer also provides additional information
about how to handle the packet (such as where the packet is supposed to go), but this
information is passed to the network layer as a set of parameters in accordance with the
interfacing protocol between transport and network layer. The network layer module uses

Transport
layer

Network
layer

Figure 1.11 The network layer at a node
or site can receive packets from a OLe
layer for each incoming link and (in the
case of a site) from the transport layer. It
can send these packets out to the same set
of modules.



26 Introduction and Layered Network Architecture Chap. 1

these parameters, along with its own stored information, to generate the packet header
in accordance with the protocol between peer network layer modules.

Along with the transit packets arriving at the network layer module from the lower
layer, and the new packets arriving from the higher layer, the network layer can generate
its own control packets. These control packets might be specific to a given session,
dealing with initiating or tearing down the session, or might have a global function,
informing other nodes of link congestion, link failures, and so on.

For networks using virtual circuit routing (i.e., in which the route for a session
is fixed over the life of the session), the routing function at the network layer module
consists of two parts. The first is to select a route when the virtual circuit is being
initiated, and the second is to ensure that each packet of the session follows the assigned
route. The selection of a route could be carried out in a distributed way by all the
nodes, or could be carried out by the source node or by some central node entrusted
with this task. No matter how the job is allocated between the different nodes, however,
there is need for considerable communication, via network control packets, concerning
the operating characteristics and level of traffic and delay throughout the network. This
subject is treated in considerable depth in Chapter 5. Ensuring that each packet follows
the assigned route is accomplished by placing enough information in the packet header
for the network layer module at each node of the route to be able to forward the packet
on the correct outgoing link (or to pass the packet body up to the transport layer when
the destination is reached). Ways of doing this are discussed in Section 2.8.

Datagram networks, on the other hand, do not have a connection phase in which a
route for a session is determined. Rather, each packet is routed individually. This appears
to be a very natural and simple approach, but as Chapter 5 shows, the dynamics of the
traffic patterns in a network and the lack of timely knowledge about those patterns at the
nodes make this much more difficult than one would think. Most wide area networks
use virtual circuits for this reason.

It is necessary here to make a distinction between virtual circuit or datagram oper-
ation at the network layer and virtual circuit or datagram service. The discussion above
concerned the operation of the network layer; the user of the network layer (usually
the transport layer) is concerned only with the service offered. Since successive pack-
ets of a session, using datagram operation, might travel on different routes, they might
appear at the destination out of order. Thus (assuming that the network layer module
at the destination does not reorder the packets), the service offered by such a network
layer allows packets to get out of order. Typically, with datagram operation, packets are
sometimes dropped also. As a result, datagram service is usually taken to mean that the
network layer can deliver packets out of order, can occasionally fail to deliver packets,
and requires no connection phase at the initiation of a session. Conversely, virtual circuit
service is taken to mean that all packets are delivered once, only once, and in order, but
that a connection phase is required on session initiation. We will often use the term
connectionless service in place of datagram service and connection-oriented service in
place of virtual circuit service. We shall see that the difference between connectionless
and connection-oriented service has as much to do with quality of service, flow control,
and error recovery as it does with routing.



Sec. 1.3 Layering 27

The other major function of the network layer, along with routing, is flow control, or
congestion control. Some authors make a distinction between flow control and congestion
control, viewing the first as avoiding sending data faster than the final destination can
absorb it, and the second as avoiding congestion within the subnet. Actually, if the
destination cannot absorb packets as fast as they are sent, those packets will remain in
the subnet and cause congestion there. Similarly, if a link in the subnet is congested (i.e.,
many packets are buffered in an adjacent node waiting for transmission on the link), then
there are a number of mechanisms that cause the congestion to spread. Thus congestion
is a global issue that involves both the subnet and the external sites, and at least at a
conceptual level, it is preferable to treat it as a single problem.

Fundamentally, congestion occurs when the users of the network collectively de-
mand more resources than the network (including the destination sites) has to offer. Good
routing can help to alleviate this problem by spreading the sessions out over the avail-
able subnet resources. Good buffer management at the nodes can also help. Ultimately,
however, the network layer must be able to control the flow of packets into the network,
and this is what is meant by flow control (and why we use the term flow control in place
of congestion control).

The control of packet flow into the network must be done in such a way as to
prevent congestion and also to provide equitable service to the various sessions. Note
that with connection-oriented service, it is possible for a session to negotiate its require-
ments from the network as a compromise between user desires and network utilization.
Thus in some sense the network can guarantee the service as negotiated. With con-
nectionless service, there is no such opportunity for negotiation, and equitable service
between users does not have much meaning. This is another reason for the preva-
lence of connection-oriented service in wide area networks. In Chapter 6 we develop
various distributed algorithms for performing the flow control function. As with rout-
ing, flow control requires considerable exchange of information between the nodes.
Some of this exchange occurs through the packet headers, and some through control
packets.

One might hope that the high link capacities that will be available in the future
will make it possible to operate networks economically with low utilization, thus making
flow control unnecessary. Unfortunately, this view appears overly simplistic. As link
capacities increase, access rates into networks will also increase. Thus, even if the
aggregate requirements for network service are small relative to the available capacity,
a single malfunctioning user could dump enough data into the network quickly to cause
serious congestion; if the network plays no regulatory role, this could easily lead to very
chaotic service for other users.

The discussion of routing and flow control above has been oriented primarily toward
wide area networks. Most local area networks can be viewed as using a single multiaccess
channel for communication, and consequently any node is capable of receiving any
packet. Thus routing is not a major problem for local area networks. There is a possibility
of congestion in local area networks, but this must be dealt with in the MAC sublayer.
Thus, in a sense, the major functions of the network layer are accomplished in the MAC
sublayer, and the network layer is not of great importance in local area networks. For



28 Introduction and Layered Network Architecture Chap. 1

this reason, the arguments for virtual circuit operation and connection oriented service
in the network layer do not apply to local area networks, and connectionless service is
common there.

The network layer is conceptually the most complex of the layered hierarchy since
all the peer processes at this layer must work together. For the lower layers (except for
the MAC sublayer for multiaccess), the peer processes are paired, one at each side of a
communication link. For the higher layers, the peer processes are again paired, one at
each end of a session. Thus, the network layer and the MAC sublayer are the only layers
in which the overall algorithms are distributed between many geographically separated
processes.

Acquiring the ability to design and understand such distributed algorithms is one
of the basic objectives of this book. Chapter 2 covers the simpler forms of distributed
algorithms involving just two peer processes at opposite ends of a link. In Chapter 4 we
treat distributed algorithms involving many peer processes in the context of the MAC
sublayer, and Chapters 5 and 6 deal with distributed algorithms involving many peer
processes at the network layer.

When the network layer and lower layers at all nodes and sites are regarded as
one black box, a packet entering the network layer from the next higher layer at a site
reappears at some later time at the interface between the network layer and the next
higher layer at the destination site. Thus, the network layer appears as a virtual, packet-
carrying, end-to-end link from origin site to destination site. Depending on the design
of the network layer, this virtual link might be reliable, delivering every packet, once
and only once, without errors, or might be unreliable, failing to deliver some packets
and delivering some packets with errors. The higher layers then might have to recover
from these errors. The network layer might also deliver all packets for each session in
order or might deliver them out of order. The relative merits of these alternatives are
discussed further in Section 2.8.

The internet sublayer Despite all efforts at standardization, different networks
use different algorithms for routing and flow control at the network layer. We have
seen some of the reasons for this variety in our discussion of wide area versus local
area networks. Since these network layer algorithms are distributed and require close
coordination between the various nodes, it is not surprising that one cannot simply connect
different subnetworks together. The accepted solution to this problem is to create a new
sublayer called the internet suhlayer. This is usually regarded as being the top part of
the network layer. Several subnets can be combined by creating special nodes called
gateways between them. A gateway connecting two subnets will interface with each
subnet through a network layer module appropriate for that subnet. From the standpoint
of the subnet, then, a gateway looks like an external site.

Each gateway will have an internet sublayer module sitting on top of the network
layer modules for the individual subnets. When a packet arrives at a gateway from one
subnet, the corresponding network layer module passes the packet body and subsidiary
information about the packet to the internet module (which thus acts like a transport layer
module to the network layer module). This packet body and subsidiary information is



Sec. 1.3 Layering 29

then passed down to the other network layer module for forwarding on through the other
subnet.

The internet modules also must play a role in routing and flow control. There
is not a great deal of understanding in the field yet as to the appropriate ways for the
internet sublayer and the various network layers to work together on routing and flow
control. From a practical standpoint, the problem is exacerbated by the fact that the
network layers for the subnets are usually in place, designed without the intention of
later being used in a network of networks. Thus the internet layer must of necessity be
somewhat ad hoc.

When combining local area networks, where routing and flow control are exercised
at the MAC sublayer, it is often possible to replace the gateway between subnets with a
bridge. Bridges interface different subnets at the DLC layer rather than at the network
layer; for local area networks, this is possible because the routing and flow control are
done in the MAC sublayer. In Chapter 5 we discuss gateways and bridges in greater
detail, particularly with respect to routing.

1.3.4 The Transport Layer

The fourth layer in Fig. 1.8 is the transport layer. Here, for each virtual end-to-end link
provided by the network layer (or internet sublayer), there is a pair of peer processes, one
at each end of the virtual end-to-end link. The transport layer has a number of functions,
not all of which are necessarily required in any given network.

First, the transport layer breaks messages into packets at the transmitting end and
reassembles packets into messages at the receiving end. This reassembly function is
relatively simple if the transport layer process has plenty of buffer space available, but
can be quite tricky if there is limited buffer space that must be shared between many
virtual end-to-end links. If the network layer delivers packets out of order, this reassembly
problem becomes even more difficult.

Second, the transport layer might multiplex several low-rate sessions, all from the
same source site and all going to the same destination site, into one session at the network
layer. Since the subnet sees only one session in this case, the number of sessions in the
subnet and the attendant overhead is reduced. Often this is carried to the extreme in which
all sessions with a common source site and common destination site are multiplexed into
the same session. In this case, the addressing at the network layer need only specify the
source and destination sites; the process within the source site and destination site are
then specified in a transport layer header.

Third, the transport layer might split one high-rate session into multiple sessions
at the network layer. This might be desirable if the flow control at the network layer
is incapable of providing higher-rate service to some sessions than others, but clearly a
better solution to this problem would be for the network layer to adjust the rate to the
session requirement.

Fourth, if the network layer is unreliable, the transport layer might be required to
achieve reliable end-to-end communication for those sessions requiring it. Even when the
network layer is designed to provide reliable communication, the transport layer has to be



30 Introduction and Layered Network Architecture Chap. 1

involved when one or the other end site fails or when the network becomes disconnected
due to communication link failures. These failure issues are discussed further in Section
2.8 and in Chapters 5 and 6.

Fifth, end-to-end flow control is often done at the transport layer. There is little
difference between end-to-end flow control at the transport layer and network layer (or
internet sublayer if it exists). End-to-end flow control at the transport layer is common
in practice but makes an integrated approach to avoiding congestion somewhat difficult.
This is discussed further in Section 2.9.4 and in Chapter 6.

A header is usually required at the transport layer; this transport header, combined
with the data being transported, serves as the packet body passed on to the network layer.
Thus the actual body of data is encapsulated in a sequence of headers with the lowest
layers on the outside (see Fig. 1.12). At the destination, these layer headers are peeled
off in passing up through the various layers. In ISO terminology, the body of data shown
in the figure is referred to as a transport service data unit (T-SDU). This data unit, along
with the transport header, is referred to as a transport protocol data unit (T-PDU). This
unit is also the body of the packet at the network layer, which is sometimes referred to
as a network service data unit (N-SDU). Similarly, the packet body plus packet header
is referred to as a network protocol data unit (N-PDU). Similarly, each layer in the
hierarchy has an SDU, as the unit coming in from the higher layer, and a PDU as the
unit going down to the next-lower layer. It is difficult to know where to take a stand
against acronymitis in the network field, but we will continue to use the more descriptive
terminology of messages, packets, and frames.

1.3.5 The Session Layer

The session layer is the next layer above the transport layer in the OSI hierarchy of
Fig. 1.8. One function of the session layer is akin to the directory assistance service
in the telephone network. That is, if a user wants an available service in the network

Host Host

DLC

Network layer

OLC

Figure 1.12 Illustration of various headers on a frame. Note that each layer looks only
at its own header.



Sec. 1.3 Layering 31

but does not know where to access that service, this layer provides the transport layer
with the information needed to establish the session. For example, this layer would be
an appropriate place to achieve load sharing between many processors that are sharing
computational tasks within a network.

The session layer also deals with access rights in setting up sessions. For example,
if a corporation uses a public network to exchange records between branch offices, those
records should not be accessible to unauthorized users. Similarly, when a user accesses
a service, the session layer helps deal with the question of who pays for the service.

In essence, the session layer handles the interactions between the two end points
in setting up a session, whereas the network layer handles the subnet aspects of setting
up a session. The way that session initiation is divided between session layer, transport
layer, and network layer varies from network to network, and many networks do not
have these three layers as separate entities.

1.3.6 The Presentation Layer

The major functions of the presentation layer are data encryption, data compression, and
code conversion. The need for encryption in military organizations is obvious, but in
addition, corporations and individual users often must send messages that should only
be read by the intended recipient. Although data networks should be designed to prevent
messages from getting to the wrong recipients, one must expect occasional malfunctions
both at the external sites and within the subnet; this leads to the need for encryption of
critical messages.

The desirability of data compression in reducing the number of bits to be com-
municated has already been mentioned. This function could be performed at any of the
layers, but there is some advantage in compressing the data for each session separately,
in the sense that different sessions have different types of redundancy in their messages.
In particular, data compression must be done (if at all) before encryption, since encrypted
data will not have any easily detectable redundancy.

Finally, code conversion is sometimes necessary because of incompatible terminals,
printers, graphics terminals, file systems, and so on. For example, some terminals use
the ASCII code to represent characters as 8-bit bytes, whereas other terminals use the
EBCDIC code. Messages using one code must be converted to the other code to be
readable by a terminal using the other code.

1.3.7 The Application Layer

The application layer is simply what is left over after the other layers have performed their
functions. Each application requires its own software (i.e., peer processes) to perform
the desired application. The lower layers perform those parts of the overall task that are
required for many different applications, while the application layer does that part of the
task specific to the particular application.

At this point, the merits of a layered approach should be clear, but there is some
question about which functions should be performed at each layer. Many networks omit



32 Introduction and Layered Network Architecture Chap. 1

the session and presentation layers, and as we have seen, the lower layers are now divided
into sublayers. An even more serious issue is that in an effort to achieve agreement on
the standards, a number of alternatives have been introduced which allow major functions
to be either performed or not at various layers. For example, error recovery is sometimes
done at the DLC layer and sometimes not, and because of this, the higher layers cannot
necessarily count on reliable packet transfer. Thus, even within the class of networks
that conform to the OSI reference model, there is considerable variation in the services
offered by the various layers. Many of the existing networks described later do not
conform to the OSI reference model, and thus introduce even more variation in layer
services. Broadband ISDN networks, for example, do routing and flow control at the
physical layer (in a desire to simplify switch design), thus making the network look like
an end-to-end bit pipe from the origin to destination.

Even with all these problems, there is a strong desire for standardization of the
interfaces and functions provided by each layer, even if the standard is slightly inap-
propriate. This desire is particularly strong for international networks and particularly
strong among smaller equipment manufacturers who must design equipment to operate
correctly with other manufacturers' equipment. On the other hand, standardization is an
impediment to innovation, and this impediment is particularly important in a new field,
such as data networks, that is not yet well understood. Fortunately, there is a constant
evolution of network standards. For example, the asynchronous transfer node (ATM)
protocol of broadband ISDN circumvents the ISO network layer standard by performing
the function of the network layer at the physical layer (see Section 2.10).

One particular difficulty with the seven layers is that each message must pass
through seven processes before even entering the subnet, and all of this might generate
considerable delay. This text neither argues for this particular set of layers nor proposes
another set. Rather, the objective is to create an increased level of understanding of the
functions that must be accomplished, with the hope that this will contribute to standard-
ization. The existing networks examined in subsequent chapters do not, in fact, have
layers that quite correspond to the OSI layers.

1.4 A SIMPLE DISTRIBUTED ALGORITHM PROBLEM

All of the layers discussed in Section 1.3 have much m common. All contain peer
processes, one at each of two or more geographically separated points, and the peer
processes communicate via the communication facility provided by the next lower layer.
The peer processes in a given layer have a common objective (i.e., task or function) to
be performed jointly, and that objective is achieved by some combination of processing
and interchanging information. The algorithm to achieve the objective is a distributed
algorithm or a protocol. The distributed algorithm is broken down into a set of local
algorithms, one of which is performed by each peer process. The local algorithm per-
formed by one process in a set of peers consists of carrying out various operations on
the available data, and at various points in the algorithm, either sending data to one or
more other peer processes or reading (or waiting for) data sent by another peer process.



Sec. 1.4 A Simple Distributed Algorithm Problem 33

In the simplest distributed algorithm, the order in which operations are carried
out by the various local algorithms is completely determined. For example, one local
algorithm might perform several operations and then reliably send some data to the other
local algorithm, which then carries out some operations and returns some data. Only one
local algorithm operates at a time and the distributed algorithm is similar to a centralized
algorithm that performs all operations sequentially at one location.

In more complex cases, several local algorithms might operate concurrently, but
each still waits at predetermined points in the local algorithm for predetermined messages
from specific other local algorithms. In this case, the overall distributed algorithm still
operates in a deterministic fashion (given the input data to the peer processes), but the
lockstep ordering of operations between different local algorithms is removed.

In the most complex case (which is of most interest), the order in which a local al-
gorithm performs its operations depends on the order in which data arrive (either from the
next higher layer or from a peer process). Also, if the underlying communication facility
is unreliable, data sent by a peer process might never arrive or might arrive with errors.

Most people are very familiar with the situation above, since people must often
perform tasks requiring interacting with others, often with unreliable communication. In
these situations, however, people deal with problems as they arise rather than thinking
through all possible eventualities ahead of time, as must be done with a distributed
algorithm.

To gain some familiarity with distributed algorithms, a very simple problem is
presented, involving unreliable communication, which in fact has no solution. Analogous
situations arise frequently in the study of data networks, so it is well to understand such
a problem in its simplest context.

There are three armies, two colored magenta and one lavender. The lavender army
separates the two magenta armies, and if the magenta armies can attack simultaneously,
they win, but if they attack separately, the lavender army wins. The only communication
between the magenta armies is by sending messengers through the lavender army lines,
but there is a possibility that any such messenger will be captured, causing the message
to go undelivered (see Fig. 1.13). The magenta armies would like to synchronize their
attack at some given time, but each is unwilling to attack unless assured with certainty
that the other will also attack. Thus, the first army might send a message saying, "Let's
attack on Saturday at noon; please acknowledge if you agree."

The second army, hearing such a message, might send a return message saying,
"We agree; send an acknowledgment if you receive our message." It is not hard to see
that this strategy leads to an infinite sequence of messages, with the last army to send a
message being unwilling to attack until obtaining a commitment from the other side.

What is more surprising is that no strategy exists for allowing the two armies to
synchronize. To see this, assume that each army is initially in state 0 and stays in this
state if it receives no messages. If an army commits itself to attack, it goes to state I, but
it will not go to state I unless it is certain that the other army will go to state 1. We also
assume that an army can change state only at the time that it receives a message (this
assumption in essence prevents side information other than messages from synchronizing
the armies). Now consider any ordering in which the two armies receive messages. The



34 Introduction and Layered Network Architecture Chap. 1

Magenta
army 1

Lavender army

Magenta
army 2

Figure 1.13 A messenger carries a message through enemy lines from magenta army
1 to magenta army 2. If the messenger is caught, the message is undelivered. Magenta
army 1 is unaware of capture and magenta army 2 is unaware of existence of message.

first army to receive a message cannot go to state 1, since it has no assurance that any
message will be received by the other army. The second army to receive a message also
cannot go to state 1 since it is not assured that the other side will receive subsequent
messages, and even if it knows that the other side received a first message, it knows that
the other side is not currently in state 1. Proceeding in this way (or more formally by
induction), neither army can ever go to state 1.

What is surprising about this argument is the difficulty in convincing oneself that
it is correct. The difficulty does not lie with the induction argument, but rather with the
question of whether the model fairly represents the situation described. It appears that
the problem is that we are not used to dealing with distributed questions in a precise way;
classical engineering problems do not deal with situations in which distributed decisions
based on distributed information must be made.

If the conditions above are relaxed somewhat so as to require only a high probability
of simultaneous attack, the problem can be solved. The first army simply decides to attack
at a certain time and sends many messengers simultaneously to the other side. The first
army is then assured with high probability that the second army will get the message,
and the second army is assured that the first army will attack.

Fortunately, most of the problems of communication between peer processes that
are experienced in data networks do not require this simultaneous agreement. Typically,
what is required is for one process to enter a given state with the assurance that the peer
process will eventually enter a corresponding state. The first process might be required
to wait for a confirmation of this eventuality, but the deadlock situation of the three-army
problem, in which neither process can act until after the other has acted, is avoided.



Chap. 1 Problems

NOTES AND SUGGESTED READING

35

The introductory textbooks by Tanenbaum [Tan88], Stallings [Sta8S], and Schwartz
[Sch87] provide alternative treatments of the material in this chapter. Tanenbaum's text
is highly readable and contains several chapters on the higher levels of the OS1 archi-
tecture. Stalling's text contains a wealth of practical detail on current network practice.
Schwartz's text also includes several chapters on circuit switching. Some perspectives
on the historical evolution of data networks are given in [Gre84].

New developments in technology and applications are critically important in both
network design and use. There are frequent articles in the IEEE Spectrum, IEEE Com-
munications Magazine, and IEEE Computer that monitor these new developments. Sil-
icon Dreams: Information, Man and Machine by Lucky [Luc90] provides an excellent
overview of these areas. A good reference on layered architecture is [Gre82], and some
interesting commentary on future standardization of layers is given in [Gre86].

PROBLEMS

1.1. A high quality image requires a spatial resolution of about 0.002 inch, which means that
about 500 pixels (i.e. samples) per inch are needed in a digital representation. Assuming
24 bits per pixel for a color image of size 8.5 by 11 inches, find the total number of bits
required for such an image representation.

1.2. (a) Suppose a city of one million inhabitants builds a data network. Suppose that each
inhabitant, during the busiest hour of the day, is involved in an average of 4 transactions
per hour that use this network (such as withdrawing money from a cash machine, buying
some item in a store and thus generating an inventory control message, etc.). Suppose
that each transaction, on the average, causes 4 packets of 1000 bits each to be sent.
What is the aggregate average number of bits per second carried by the network? How
many 64 kbit/sec voice telephone links are required to carry this traffic assuming that
each packet travels over an average of 3 links?

(b) Suppose that the inhabitants use their telephones an average of 10% of the time during
the busy hour. How many voice telephone links are required for this, assuming that all
calls are within the city and travel over an average of three links?

1.3. Suppose packets can get dropped or arbitrarily delayed inside a packet network. Suppose
two users are communicating in a session and want to terminate the session. We would
like a protocol that exchanges packets in such a way that both users know that they can
terminate with the knowledge that no further packets will arrive from the other user. Can
such a protocol be designed? What is the relation between this problem and the three-army
problem of Section 1.10?


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37

