
Second Edition

Data
Networks

DIMITRI BERTSEKAS
Massachusetts Institute of Technology

ROBERT GALLAGER
Massachusetts Institute of Technology

PRENTICE HALL. Englewood Cliffs, New Jersey 07632

6

j
Time at the
transm iller

Window size = 3

j
Time at the
receiver

Permit
returns

Flow Control

6.1 INTRODUCTION

In most networks, there are circumstances in which the externally offered load is larger
than can be handled even with optimal routing. Then, if no measures are taken to
restrict the entrance of traffic into the network, queue sizes at bottleneck links will
grow and packet delays will increase, possibly violating maximum delay specifications.
Furthermore, as queue sizes grow indefinitely, the buffer space at some nodes may be
exhausted. When this happens, some of the packets arriving at these nodes will have
to be discarded and later retransmitted, thereby wasting communication resources. As a
result, a phenomenon similar to a highway traffic jam may occur whereby, as the offered
load increases, the actual network throughput decreases while packet delay becomes
excessive. It is thus necessary at times to prevent some of the offered traffic from
entering the network to avoid this type of congestion. This is one of the main functions
of flow control.

Flow control is also sometimes necessary between two users for speed matching,
that is, for ensuring that a fast transmitter does not overwhelm a slow receiver with more
packets than the latter can handle. Some authors reserve the term "flow control" for this

493

494 Flow Control Chap. 6

type of speed matching and use the tenn "congestion control" for regulating the packet
population within the subnetwork. We will not make this distinction in tenninology; the
type and objective of flow control being discussed will be clear from the context.

In this chapter we describe schemes currently used for flow control, explain their
advantages and limitations, and discuss potential approaches for their improvement. In
the remainder of this section we identify the principal means and objectives of flow
control. In Sections 6.2 and 6.3 we describe the currently most popular flow control
methods; window strategies and rate control schemes. In Section 6.4 we describe flow
control in some representative networks. Section 6.5 is devoted to various algorithmic
aspects of rate control schemes.

6.1.1 Means of Flow Control

Generally, a need for flow control arises whenever there is a constraint on the commu-
nication rate between two points due to limited capacity of the communication lines or
the processing hardware. Thus, a flow control scheme may be required between two
users at the transport layer, between a user and an entry point of the subnet (network
layer), between two nodes of the subnet (network layer), or between two gateways of an
interconnected network (internet layer). We will emphasize flow control issues within
the subnet, since flow control in other contexts is in most respects similar.

The tenn "session" is used somewhat loosely in this chapter to mean any communi-
cation process to which flow control is applied. Thus a session could be a virtual circuit,
a group of virtual circuits (such as all virtual circuits using the same path), or the entire
packet flow originating at one node and destined for another node. Often, flow control
is applied independently to individual sessions, but there is a strong interaction between
its effects on different sessions because the sessions share the network's resources.

Note that different sessions may have radically different service requirements.
For example, sessions transferring files may tolerate considerable delay but may re-
quire strict error control, while voice and video sessions may have strict minimum data
rate and maximum end-to-end delay requirements, but may tolerate occasional packet
losses.

There are many approaches to flow control, including the following:

1. Call blocking. Here a session is simply blocked from entering the network (its
access request is denied). Such control is needed, for example, when the session
requires a minimum guaranteed data rate that the network cannot provide due to
limited uncommitted transmission capacity. A typical situation is that of the voice
telephone network and, more generally, circuit switched networks, all of which
use flow control of this type. However, a call blocking option is also necessary in
integrated voice, video, and data networks, at least with respect to those sessions
requiring guaranteed rate. In a more general view of call blocking one may admit
a session only after a negotiation of some "service contract," for example, an
agreement on some service parameters for the session's input traffic (maximum
rate, minimum rate, maximum burst size, priority level, etc.)

Sec. 6.1 Introduction 495

2. Packet discarding. When a node with no available buffer space receives a packet,
it has no alternative but to discard the packet. More generally, however, packets
may be discarded while buffer space is still available if they belong to sessions that
are using more than their fair share of some resource, are likely to cause congestion
for higher-priority sessions, are likely to be discarded eventually along their path,
and so on. (Note that if a packet has to be discarded anyway, it might as well
be discarded as early as possible to avoid wasting additional network resources
unnecessarily.) When some of a session's packets are discarded, the session may
need to take some corrective action, depending on its service requirements. For
sessions where all packets carry essential information (e.g., file transfer sessions),
discarded packets must be retransmitted by the source after a suitable timeout;
such sessions require an acknowledgment mechanism to keep track of the pack-
ets that failed to reach their destination. On the other hand, for sessions such
as voice or video, where delayed information is useless, there is nothing to be
done about discarded packets. In such cases, packets may be assigned different
levels of priority, and the network may undertake the obligation never to discard
the highest-priority packets-these are the packets that are sufficient to support
the minimum acceptable quality of service for the session. The data rate of the
highest-priority packets (the minimum guaranteed rate) may then be negotiated
between the network and the source when the session is established. This rate
may also be adjusted in real time, depending on the congestion level in the net-
work.

3. Packet blocking. When a packet is discarded at some node, the network resources
that were used to get the packet to that node are wasted. It is thus preferable
to restrict a session's packets from entering the network if after entering they are
to be discarded. If the packets carry essential information, they must wait in a
queue outside the network; otherwise, they are discarded at the source. In the
latter case, however, the flow control scheme must honor any agreement on a
minimum guaranteed rate that the session may have negotiated when it was first
established.

4. Packet scheduling. In addition to discarding packets, a subnetwork node can ex-
ercise flow control by selectively expediting or delaying the transmission of the
packets of various sessions. For example, a node may enforce a priority service
discipline for transmitting packets of several different priorities on a given outgo-
ing link. As another example, a node may use a (possibly weighted) round-robin
scheduling strategy to ensure that various sessions can access transmission lines
in a way that is consistent both with some fairness criterion and also with the
minimum data rate required by the sessions. Finally, a node may receive infor-
mation regarding congestion farther along the paths used by some sessions, in
which case it may appropriately delay the transmission of the packets of those
sessions.

In subsequent sections we discuss specific strategies for throttling sources and for
restricting traffic access to the network.

496

6.1.2 Main Objectives of Flow Control

Flow Control Chap. 6

We look now at the main principles that guide the design of flow control algorithms.
Our focus is on two objectives. First, strike a good compromise hetween throttling
sessions (suhject to minimum data rate requirements) and keeping average delay and
huller overflow at a reasonable level. Second, maintain fairness hetween sessions in
providing the requisite qualit..... of service.

Limiting delay and buffer overflow. We mentioned earlier that for important
classes of sessions, such as voice and video, packets that are excessively delayed are
useless. For such sessions, a limited delay is essential and should be one of the chief
concerns of the flow control algorithm; for example, such sessions may be given high
priority.

For other sessions, a small average delay per packet is desirable but it may not be
crucial. For these sessions, network level flow control does not necessarily reduce delay;
it simply shifts delay from the network layer to higher layers. That is, by restricting
entrance to the subnet, flow control keeps packets waiting outside the subnet rather
than in queues inside it. In this way, however, flow control avoids wasting subnet
resources in packet retransmissions and helps prevent a disastrous traffic jam inside
the subnet. Retransmissions can occur in two ways: first, the buildup of queues causes
buffer overflow to occur and packets to be discarded; second, slow acknowledgments can
cause the source node to retransmit some packets because it thinks mistakenly that they
have been lost. Retransmissions waste network resources, effectively reduce network
throughput, and cause congestion to spread. The following example (from lGeK80])
illustrates how buffer overflow and attendant retransmissions can cause congestion.

Example 6,1

Consider the five-node network shown in Fig. 6.1 (a). There are two sessions, one from top
to bottom with a Poisson input rate of 0.8. and the other from left to right with a Poisson
input rate f. Assume that the central node has a large but finite buffer pool that is shared
on a first-come first-serve basis by the two sessions. If the buffer pool is full, an incoming
packet is rejected and then retransmitted by the sending node. For small f, the buffer rarely
tills up and the total throughput of the system is 0.8 + f. When f is close to unity (which is
the capacity of the rightmost link), the buffer of the central node is almost always full, while
the top and left nodes are busy most of the time retransmitting packets. Since the left node
is transmitting 10 times faster than the top node. it has a la-fold greater chance of capturing
a buffer space at the central node. so the left-to-right throughput will be roughly 10 times
larger than the top-to-boltom throughput. The left-to-right throughput will be roughly unity
(the capacity of the rightmost link). so that the total throughput will be roughly 1.1. This
is illustrated in more detail in Fig. 6.i(b). where it can be seen that the total throughput
decreases toward i.1 as the offered load f increases.

This example also illustrates how with buffer overflow. some sessions can capture
almost all the buffers and nearly prevent other sessions from using the network. To
avoid this, it is sometimes helpful to implement a hutler management scheme. In such a
scheme. packets are divided in different classes based, for example, on origin, destination,

Sec. 6.1 Introduction

Input rate
0.8

497

Input rate
f

::J
C.
.<:

'"::J 1.1::
.<:
f-
ro 0.8
0
f-

A

Limited
buffer
space '\,

High capacity
link C 10

Retransm iss ions due to
limited buffer space at
the central node start
here

B

Low capaciw
link C 1

(a)

1.8
,---,,--' "". - ------ - --

...................... 1 .\

I \ Throughput when infinite
buffer space is available
at the central node

I
I

a 1.0

Input Rate f of A to B Session

(b)

Figure 6.1 Example demonstrating throughput degradation due to retransmissions caused
by butler overflow. (a) For f approaching unity. the central node buffer is almost always
full. thereby causing retransmissions. Because the A-to-B session uses a line 10 times
faster than the C-to-D session. it has a 1O-fold greater chance of capturing a free buffer
and getting a packet accepted at the central node. As a result. the throughput of the .4-
to-B session approaches unity. while the throughput of the C-to-D session approaches
0.1. (b) Total throughput as a function of the input rate of the A-to-B session.

or number of hops traveled so far; at each node, separate buffer space is reserved for
different classes, while some buffer space is shared by all classes.

Proper buffer management can also help avoid deadlocks due to buffer overflow.
Such a deadlock can occur when two or more nodes are unable to move packets due
to unavailable space at all potential receivers. The simplest example of this is two

498 Flow Control Chap. 6

nodes A and B routing packets directly to each other as shown in Fig. 6.2(a). If all
the buffers of both A and B are full of packets destined for B and A, respectively,
then the nodes are deadlocked into continuously retransmitting the same packets with
no success, as there is no space to store the packets at the receiver. This problem can
also occur in a more complex manner whereby more than two nodes arranged in a cycle
are deadlocked because their buffers are full of packets destined for other nodes in the
cycle [see Fig. 6.2(b)]. There are simple buffer management schemes that preclude this
type of deadlock by organizing packets in priority classes and allocating extra buffers
for packets of higher priority ([RaH76] and [Gop85]). A typical choice is to assign a
level of priority to a packet equal to the number of links it has traversed in the network,
as shown in Fig. 6.3. If packets are not allowed to loop, it is then possible to show that
a deadlock of the type just described cannot occur.

We finally note that when offered load is large, limited delay and buffer overflow
can be achieved only by lowering the input to the network. Thus, there is a natural
trade-off between giving sessions free access to the network and keeping delay at a
level low enough so that retransmissions or other inefficiencies do not degrade network
performance. A somewhat oversimplified guideline is that, ideally, flow control should
not be exercised at all when network delay is below some critical level, and, under
heavy load conditions, should reject as much offered traffic as necessary to keep delay
at the critical level. Unfortunately, this is easier said than done, since neither delay nor
throughput can be represented meaningfully by single numbers in a flow control context.

Fairness. When offered traffic must be cut back, it is important to do so fairly.
The notion of fairness is complicated, however, by the presence of different session
priorities and service requirements. For example, some sessions need a minimum guar-
anteed rate and a strict upper bound on network delay. Thus, while it is appropriate
to consider simple notions of fairness within a class of "similar" sessions, the notion of

(a)

(b)

Figure 6.2 Deadlock due to buffer
overflow. In (a). all buffers of A and B
are full of packets destined for B and A.
respectively. As a result. no packet can be
accepted at either node. In (b), all buffers
of A. B. C. and D are full of packets
destined for C. D, A. and B. respectively.

Sec. 6.2 Window Flow Control 499

Bu ffer space
for packets
that have
travelled
k + , links

f-C_I_as_.s_.N_._-_'--t '\

-- Class k + ,
Class k

[

\

Class') \ Class' J
a a /-----

Buffer space
for packets
that have
travelled
k links

Figure 6.3 Organization of node memory in buffer classes to avoid dcadlock due to
buffer overflow. A packet that has traveled k links is accepted at a node only if thcre
is an available buffer of class k or lower. wherc k ranges from 0 to IV - I (where
IV is the numbcr of nodes). Assuming that packets that travel more than IV - I links
are discarded as having traveled in a loop. no deadlock occurs. Thc proof consists of
showing by induction (starting with k = IV - I) that at each node the buffers of class
k cannot fill up permanently.

fairness between classes is complex and involves the requirements of those classes. Even
within a class, there are several notions of fairness that one may wish to adopt. The
example of Fig. 6.4 illustrates some of the contradictions inherent in choosing a fairness
criterion. There are n + 1 sessions each offering I unit/sec of traffic along a sequence
of n links with capacity of 1 unit/sec. One session's traffic goes over all n links, while
the rest of the traffic goes over only one link. A maximum throughput of n units/sec
can be achieved by accepting all the traffic of the single-link sessions while shutting off
the n-link session. However, if our objective is to give equal rate to all sessions, the
resulting throughput is only (n + 1)12 units/sec. Alternatively, if our objective is to give
equal resources to all sessions, the single link sessions should get a rate of nl(n + 1)
units/sec, while the fl.-link session should get a rate of I/(n + 1) units/sec.

Generally, a compromise is required between equal access to a network resource
and throttling those sessions that are most responsible for using up that resource. Achiev-
ing the proper balance, however, is a design decision that may be hard to quantify; often
such decisions must be reached by trial and error.

n-link user
, unit/sec
\ n links each with capacity' unit/secp: • 1C:

Single link user link user Single link user
, unit/sec , unit/sec , unit/sec

Figure 6.4 Example showing that maximizing total throughput may be incompatible
with giving equal throughput to all sessions. A maximum throughput of n units/sec
can be achieved if the It-link scssion is shut off completely. Giving equal rates of 1/2
unit/sec to all sessions achieves a throughput of only (It T 1)/2 units/scc-

500

6.2 WINDOW FLOW CONTROL

Flow Control Chap. 6

In this section we describe the most frequently used class of flow control methods. In
Sections 6.2.1 to 6.2.3, the main emphasis is on flow control within the communication
subnet. Flow control outside the subnet, at the transport layer, is discussed briefly in
Section 6.2.4.

A session between a transmitter A and a receiver B is said to be window flow
controlled if there is an upper bound on the number of data units that have been trans-
mitted by A and are not yet known by A to have been received by B (see Fig. 6.5). The
upper bound (a positive integer) is called the window size or, simply, the window. The
transmitter and receiver can be, for example, two nodes of the communication subnet, a
user's machine and the entry node of the communication subnet, or the users' machines
at the opposite ends of a session. Finally, the data units in a window can be messages,
packets, or bytes, for example.

The receiver B notifies the transmitter A that it has disposed of a data unit by
sending a special message to A, which is called a permit (other names in the literature
are acknowledgment, allocate message, etc.). Upon receiving a permit, A is free to send
one more data unit to B. Thus, a permit may be viewed as a form of passport that a
data unit must obtain before entering the logical communication channel between A and
B. The number of permits in use should not exceed the window size.

Permits are either contained in special control packets, or are piggybacked on
regular data packets. They can be implemented in a number of ways; see the practical
examples of Section 6.4 and the following discussion. Note also that a window flow
control scheme for a given session may be combined with an error control scheme for
the session, where the permits also play the role of acknowledgments; see Section 2.8.2
and the descriptions of the ARPANET and the Codex network in Section 6.4.

The general idea in the window strategy is that the input rate of the transmitter
is reduced when permits return slowly. Therefore, if there is congestion along the
communication path of the session, the attendant large delays of the permits cause a
natural slowdown of the transmitter's data rate. However, the window strategy has an
additional dimension, whereby the receiver may intentionally delay permits to restrict

Transmitter Receiver

A B

Total number of data units and permits <; window size WAS

Figure 6.5 Window flow control between a transmitter and a receiver consists of an
upper bound \ \'.4 [J on the number of data units and permits in transit inside the network.

Sec. 6.2 Window Flow Control 501

the transmission rate of the session. For example, the receiver may do so to avoid buffer
overflow.

In the subsequent discussion, we consider two strategies, end-fa-end and node-by-
node windowing. The first strategy refers to flow control between the entry and exit
subnet nodes of a session, while the second strategy refers to flow control between every
pair of successive nodes along a virtual circuit's path.

6.2.1 End-to-End Windows

In the most common version of end-to-end window flow control, the window size is
on-, where a and n° are some positive numbers. Each time a new batch of a data units
is received at the destination node, a permit is sent back to the source allocating a new
batch of a data units. In a variation of this scheme, the destination node will send a
new a-data unit permit upon reception of just the first of an Q-data unit batch. (See the
SNA pacing scheme description in Section 6.3.) To simplify the following exposition,
we henceforth assume that 0 = I, but our conclusions are valid regardless of the value
of a. Also, for concreteness, we talk in terms of packets, but the window maintained
may consist of other data units such as bytes.

Usually, a numbering scheme for packets and permits is used so that permits can be
associated with packets previously transmitted and loss of permits can be detected. One
possibility is to use a sliding window protocol similar to those used for data link control,
whereby a packet contains a sequence number and a request number. The latter number
can serve as one or more permits for flow control purposes (see also the discussion
in Section 2.8.2). For example, suppose that node A receives a packet from node B
with request number k. Then A knows that B has disposed of all packets sent by A
and numbered less than k, and therefore A is free to send those packets up to number
k+W - I that it has not sent yet, where VV is the window size. In such a scheme, both the
sequence number and the request number are represented modulo Tn, where Tn 2 TV+ 1.
One can show that if packet ordering is preserved between transmitter and receiver, this
representation of numbers is adequate; the proof is similar to the corresponding proof
for the goback n ARQ system. In some networks the end-to-end window scheme is
combined with an end-to-end retransmission protocol, and a packet is retransmitted if
following a suitable timeout, the corresponding permit has not returned to the source.

To simplify the subsequent presentation, the particular manner in which permits
are implemented wiIl be ignored. It will be assumed that the source node simply counts
the number of packets it has already transmitted but for which it has not yet received
back a permit, and transmits new packets only as long as x: < VV.

Figure 6.6 shows the flow of packets for the case where the round-trip delay d,
including round-trip propagation delay, packet transmission time, and permit delay is
smaller than the time required to transmit the full window of VV packets, that is,

where X is the transmission time of a single packet. Then the source is capable of
transmitting at the full speed of 1/X packets/sec, and flow control is not active. (To

502 Flow Control Chap. 6

simplify the following exposition, assume that all packets have equal transmission time
and equal round-trip delay.)

The case where flow control is active is shown in Fig. 6.7. Here

d >
and the round-trip delay d is so large that the full allocation of H' packets can be
transmitted before the first permit returns. Assuming that the source always has a packet
waiting in queue, the rate of transmission is / d packets/sec.

If the results of Figs. 6.6 and 6.7 are combined, it is seen that the maximum rate
of transmission corresponding to a round-trip delay d is given by

r = W}X'd (6. I)

Figure 6.8 illustrates the flow control mechanism; the source transmission rate is reduced
in response to congestion and the attendant large delay. Furthermore, assuming that
n- is relatively small, the window scheme reacts fast to congestion-within at most n'
packets' transmission time. This fast reaction, coupled with low overhead, is the major
advantage of window strategies over other (nonwindow) schemes.

Limitations of end-to-end windows. One drawback of end-to-end windows
is that they cannot guarantee a minimum communication rate for a session. Thus win-
dows are ihadequate for sessions that require a minimum guaranteed rate, such as voice
and video sessions. Other drawbacks of the end-to-end window strategy have to do
with window sizes. There is a basic trade-off here: One would like to make window
sizes small to limit the number of packets in the subnet, thus avoiding large delays and
congestion, and one would also like to make window sizes large to allow full-speed
transmission and maximal throughput under light-to-moderate traffic conditions. De-
termining the proper window size and adjusting that size in response to congestion is
not easy. This delay-throughput trade-off is particularly acute for high-speed networks,
where because of high propagation delay relative to packet transmission time, window
sizes should be large to allow high data rates [cf. Eq. (6. I) and Fig. 6.8]. One should re-
member, however, that the existence of a high-speed network does not necessarily make

Permit
returns

Time at the
transmitter

Window size = 3

J
Time at the
receiver

Figure 6.6 Example of full-speed
transmission with a window size H' = 3.
The round-trip delay d is less than the time
H'X required to transmit the full window
of W packets.

Sec. 6.2 Window Flow Control 503

Time at the
transm itter

Permit
returns

Window size = 3

t
Time at the
receiver

... 1
X'"cr:

c:
0

E
'"c:'".=

Figure 6.7 Example of delayed transmission with a window size = 3. The round-
trip delay d is more than the time H"X required to transmit the full window of H'
packets. As a result, window flow control becomes active, restricting the input rate to
jd.

Full speed
transm ission
rate

a WX
Round-Trip Delay d

Figure 6.8 Transmission rate versus round-trip delay in a window flow control system.
This oversimplified relationship assumes that all packets require equal transmission time
at the source and have equal round-trip packet/permit delay.

it desirable for individual sessions to transmit at the full network speed. For high-speed
networks, it is generally true that the window size of the session should be proportional
to the round-trip propagation delay for the session. However, the window size should
also be proportional to the session's maximum desired rate rather than the maximum rate
allowed by the network; cf. Eq. (6.1).

End-to-end windows may also fail to provide adequte control of packet delay.
To understand the relation between window size, delay, and throughput, suppose that
there are n actively flow controlled sessions in the network with fixed window sizes
TVj , .•• , TFn . Then the total number of packets and permits traveling in the network is

504 Flow Control Chap. 6

W" Focusing on packets (rather than pennits), we see that their number in the
network is TVi , where ;3, is a factor between 0 and 1 that depends on the relative
magnitude of return delay for the pennit and the extent to which pennits are piggybacked
on regular packets. By Little's Theorem, the average delay per packet is given by

T = L;'=13 iWi

A

where A is the throughput (total accepted input rate of sessions). As the number of
sessions increases, the throughput A is limited by the link capacities and will approach
a constant. (This constant will depend on the network, the location of sources and
destinations, and the routing algorithm.) Therefore, the delay T will roughly increase
proportionately to the number of sessions (more accurately their total window size) as
shown in Fig. 6.9. Thus, if the number of sessions can become very large, the end-to-
end window scheme may not be able to keep delay at a reasonable level and prevent
congestion.

One may consider using small window sizes as a remedy to the problem of very
large delays under high load conditions. Unfortunately, in many cases (particularly
in low- and moderate-speed networks) one would like to allow sessions to transmit at
maximum speed when there is no other interfering traffic, and this imposes a lower
bound on window sizes. Indeed, if a session is using an n-Iink path with a packet
transmission time X on each link, the round-trip packet and pennit delay will be at least
nX and considerably more if pennits are not given high priority on the return channel.
For example, if permits are piggybacked on return packets traveling on the same path
in the opposite direction, the return time will be at least nX also. So from Fig. 6.8,
we see that full-speed transmission will not be possible for that session even under light
load conditions unless the window size exceeds the number of links n on the path (see
Fig. 6.10). For this reason, recommended window sizes are typically between nand 3n.
This recommendation assumes that the transmission time on each link is much larger than
the processing and propagation delay. When the propagation delay is much larger than

o

Average delay
per packet

Throughput

Number of Actively Flow Controlled Processes

Figure 6.9 Average delay per packet
and throughput as a function of the
number of actively window flow controlled
sessions in the network. When the network
is heavily loaded. the average delay per
packet increases approximately linearly
with the number of active sessions. while
the total throughput stays approximately
constanl. (This assumes that there are no
retransmissions due to buffer overflow
and/or large permit delays. In the presence
of retransmissions. throughput may
decrease as the number of active sessions
increases.)

Sec. 6.2 Window Flow Control 505

the transmission time, as in satellite links and some high-speed networks, the appropriate
window size might be much larger. This is illustrated in the following example.

Example 6.2

Consider a transmission line with capacity of I gigabit per second (109 bits/sec) connecting
two nodes which are 50 miles apart. The round-trip propagation delay can be roughly esti-
mated as I millisecond. Assuming a packet size of 1000 bits. it is seen that a window size
of at least lOOO packets is needed to sustain full-speed transmission; it is necessary to have
lOOO packets and permits simultaneously propagating along the transmission line to "keep
the pipeline full," with permits returning fast enough to allow unimpeded transmission of
new packets. By extrapolation it is seen that Atlantic coast to Pacific coast end-to-end trans-
mission over a distance of. say. 3000 miles requires a window size of at least 60.000 packets!
Fortunately, for most sessions, such unimpeded transmission is neither required nor desirable.

Example 6.2 shows that windows should be used with care when high-speed trans-
mission over a large distance is involved; they require excessive memory and they re-
spond to congestion relatively slowly when the round-trip delay time is very long relative
to the packet transmission time. For networks with relatively small propagation delays,
end-to-end window flow control may be workable, particularly if there is no requirement
for a minimum guaranteed rate. However, to achieve a good trade-off between delay and
throughput, dynamic window adjustment is necessary. Under light load conditions, win-
dows should be large and allow unimpeded transmission, while under heavy load condi-
tions, windows should shrink somewhat, thereby not allowing delay to become excessive.
This is not easy to do systematically, but some possibilities are examined in Section 6.2.5.

End-to-end windows can also perform poorly with respect to fairness. It was argued
earlier that when propagation delay is relatively small, the proper window size of a session
should be proportional to the number of links on its path. This means that at a heavily
loaded link, long-path sessions can have many more packets awaiting transmission than
short-path sessions, thereby obtaining a proportionately larger throughput. A typical
situation is illustrated in Fig. 6.11. Here the windows of all sessions accumulate at the
heavily loaded link. If packets are transmitted in the order of their arrival, the rate of
transmission obtained by each session is roughly proportional to its window size, and
this favors the long-path sessions.

--- -----G""""IIII' -0'111111111111 -0'"""1"111 -0--
IPermit I IPermit I IPermit I--- --- ---

Figure 6.10 The window size must be at least equal to the number of links on the path
to achieve full-speed transmission. (Assuming equal transmission time on each link.
a packet should be transmitted at each link along the path simultaneously to achieve
nonstop transmission.) If peffi1it delay is comparable to the forward delay. the window
size should be doubled. If the propagation delay is not negligible. an even larger window
size is needed.

506 Flow Control Chap. 6

The fairness properties of end-to-end windows can be improved if flow-controlled
sessions of the same priority class are served via a weighted round-robin scheme at each
transmission queue. Such a scheme should take into account the priorities as well as the
minimum guaranteed rate of different sessions. Using a round-robin scheme is conceptu-
ally straightforward when each session is a virtual circuit, but not in a datagram network,
where it may not be possible to associate packets with particular flow-controlled sessions.

6.2.2 Node-by-Node Windows for Virtual Circuits

In this strategy, there is a separate window for every virtual circuit and pair of adjacent
nodes along the path of the virtual circuit. Much of the discussion on end-to-end windows
applies to this scheme as well. Since the path along which flow control is exercised is
effectively one link long, the size of a window measured in packets is typically two or
three for moderate-speed terrestrial links. For high-speed networks, the required window
size might be much larger, thereby making the node-by-node strategy less attractive.
For this reason, the following discussion assumes that a window size of about two is a
reasonable choice.

Let us focus on a pair of successive nodes along a virtual circuit's path; we refer
to them as the transmitter and the receiver. The main idea in the node-by-node scheme
is that the receiver can avoid the accumulation of a large number of packets into its
memory by slowing down the rate at which it returns permits to the transmitter. In the
most common strategy, the receiver maintains a W -packet buffer for each virtual circuit
and returns a permit to the transmitter as soon as it releases a packet from its W -packet
buffer. A packet is considered to be released from the W -packet buffer once it is either
delivered to a user outside the subnet or is entered in the data link control (DLC) unit
leading to the subsequent node on the virtual circuit's path.

Consider now the interaction of the windows along three successive nodes (i -1, i,
and i + 1) on a virtual circuit's path. Suppose that the W -packet buffer of nodei is full.
Then node i will send a permit to nodei - 1 once it delivers an extra packet to the DLC of
the (i, i+ 1) link, which in tum will occur once a permit sent by node (i+ 1) is received at
node i. Thus, there is coupling of successive windows along the path of a virtual circuit.
In particular, suppose that congestion develops at some link. Then the W -packet window

Long path

() ()
Heavily loaded link

I
Short path
session

Figure 6.11 End-to-end windows discriminate in favor of long-path sessions. It is nec-
essary to give a large window to a long-path session to achieve full-speed transmission.
Therefore. a long-path session will typically have more packets waiting at a heavily
loaded link than will a short-path session, and will receive proportionally larger service
(assuming that packets are transmitted on a first-come first-serve basis).

Sec. 6.2 Window Flow Control 507

at the start node of the congested link will fill up for each virtual circuit crossing the link.
As a result, the W -packet windows of nodes lying upstream of the congested link will pro-
gressively fill up, including the windows of the origin nodes of the virtual circuits crossing
the congested link. At that time, these virtual circuits will be actively flow controlled.
The phenomenon whereby windows progressively fill up from the point of congestion
toward the virtual circuit origins is known as hackpressure and is illustrated in Fig. 6.12.

One attractive aspect of node-by-node windows can be seen from Fig. 6.12. In
the worst case, where congestion develops on the last link (say, the nth) of a virtual
circuit's path, the total number of packets inside the network for the virtual circuit will
be approximately n If the virtual circuit were flow controlled via an end-to-end
window, the total number of packets inside the network would be roughly comparable.
(This assumes a window size of W = 2 in the node-by-node case, and of W 2n in
the end-to-end case based on the rule of thumb of using a window size that is twice
the number of links of the path between transmitter and receiver.) The important point,
however, is that these packets will be uniformly distributed along the virtual circuit's path
in the node-by-node case, but will be concentrated at the congested link in the end-to-end
case. Because of this the amount of memory required at each node to prevent buffer
overflow may be much smaller for node-by-node windows than for end-to-end windows.

Distributing the packets of a virtual circuit uniformly along its path also alleviates
the fairness problem, whereby large window sessions monopolize a congested link at
the expense of small window sessions (cf. Fig. 6.11). This is particularly true when the
window sizes of all virtual circuits are roughly equal as, for example, when the circuits
involve only low-speed terrestrial links. A fairness problem, however, may still arise
when satellite links (or other links with relatively large propagation delay) are involved.
For such links, it is necessary to choose a large window size to achieve unimpeded
transmission when traffic is light because of the large propagation delay. The difficulty
arises at a node serving both virtual circuits with large window size that come over a
satellite link and virtual circuits with small window size that come over a terrestrial link
(see Fig. 6.13). If these circuits leave the node along the same transmission line, a fairness
problem may develop when this line gets heavily loaded. A reasonable way to address
this difficulty is to schedule transmissions of packets from different virtual circuits on a
weighted round-robin basis (with the weights accounting for different priority classes).

Congested
link
I

Destination

Figure 6.12 Backpressure effect in node-by-node flow control. Each node along a
virtual circuit's path can store no more than IF packets for that virtual circuit. The
window storage space of each successive node lying upstream of the congested link fills
up. Eventually. the window of the origin node jj lis, at which time transmission stops.

508 Flow Control Chap. 6

Terrestria I

/Iink

Terrestrial
link

... @:::
0@:::o /B

Satellite
link

Figure 6.13 Potential fairness problem at a node serving virtual circuits that come over
a satellite link (large window) and virtual circuits that come over a terrestrial link (small
window). If virtual circuits are served on a first-come first-serve basis, the virtual circuits
with large windows will receive better service on a subsequent transmission line. This
problem can be alleviated by serving virtual circuits via a round-robin scheme.

6.2.3 The Isarithmic Method

The isarithmic method may be viewed as a version of window flow control whereby
there is a single global window for the entire network. The idea here is to limit the total
number of packets in the network by having a fixed number of permits circulating in the
subnet. A packet enters the subnet after capturing one of these permits. It then releases
the permit at its destination node. The total number of packets in the network is thus
limited by the number of permits. This has the desirable effect of placing an upper bound
on average packet delay that is independent of the number of sessions in the network.
Unfortunately, the issues of fairness and congestion within the network depend on how
the permits are distributed, which is not addressed by the isarithmic approach. There are
no known sensible algorithms to control the location of the permits, and this is the main
difficulty in making the scheme practical. There is also another difficulty, namely that
permits can be destroyed through various malfunctions and there may be no easy way
to keep track of how many permits are circulating in the network.

6.2.4 Window Flow Control at Higher Layers

Much of what has been described so far about window strategies is applicable to higher
layer flow control of a session, possibly communicating across several interconnected

Sec. 6.2 Window Flow Control 509

subnetworks. Figure 6.14 illustrates a typical situation involving a single subnetwork. A
user sends data out of machine 11 to an entry node N 11 of the subnet, which is forwarded
to the exit node N B and is then delivered to machine B. There is (network layer) flow
control between the entry and exit nodes N A and N B (either end-to-end or node-by-
node involving a sequence of nodes). There is also (network layer) window flow control
between machine A and entry node NA, which keeps machine A from swamping node
NA with more data than the latter can handle. Similarly, there is window flow control
between exit node N B and machine B, which keeps N B from overwhelming B with
too much data. Putting the pieces together we see that there is a network layer flow
control system extending from machine A to machine B, which operates much like the
node-by-node window flow control system of Section 6.2.2. In essence, we have a three-
link path where the subnet between nodes NA and N B is viewed conceptually as the
middle link.

It would appear that the system just described would be sufficient for flow control
purposes, and in many cases it is. For example, it is the only one provided in the TYM-
NET and the Codex network described later on a virtual circuit basis. There may be a
need, however, for additional flow control at the transport layer, whereby the input traffic
rate of a user at machine A is controlled directly by the receiver at machine B. One
reason is that the network layer window flow control from machine A to node N A may
apply collectively to multiple user-pair sessions. These sessions could, for a variety of
reasons, be multiplexed into a single traffic stream but have different individual flow con-
trol needs. For example, in SNA there is a transport layer flow control algorithm, which
is the same as the one used in the network layer except that it is applied separately for
each session rather than to a group of sessions. (See the description given in Section 6.4).

Machine A

Transport layer flow control
------ ------- - ----------_.:..-

Machine B

Network layer
flow control Network layer flow control

Network layer
flow control

Figure 6.14 User-to-user flow control. A user sends data from machine A to a user
in machine IJ via the subnet using the entry and exit nodes SA and S IJ. There is
a conceptual node-by-node network layer flow control system along the connection A-
NA-S IJ-B. There may also be direct user-to-user flow control at the transport layer
or the internet sublaycr. particularly if several uscrs with different flow control needs are
collectively flow controlled within the subnetwork.

510 Flow Control Chap. 6

In the case where several networks are interconnected with gateways, it may be
useful to have windows for the gateway-to-gateway traffic of sessions that span sev-
eral networks. If we take a higher-level view of the interconnected network where the
gateways correspond to nodes and the networks correspond to links (Section 5.1.3), this
amounts to using node-by-node windows for flow control in the internet sublayer. The
gateway windows serve the purpose of distributing the total window of the internetwork
sessions, thereby alleviating a potential congestion problem at a few gateways. However,
the gateway-to-gateway windows may apply to multiple transport layer sessions, thereby
necessitating transport layer flow control for each individual session.

6.2.5 Dynamic Window Size Adjustment

We mentioned earlier that it is necessary to adjust end-to-end windows dynamically,
decreasing their size when congestion sets in. The most common way of doing this is
through feedback from the point of congestion to the appropriate packet sources.

There are several ways by which this feedback can be obtained. One possibility
is for nodes that sense congestion to send a special packet, sometimes called a choke
packet, to the relevant sources. Sources that receive such a packet must reduce their
windows. The sources can then attempt to increase their windows gradually following
a suitable timeout. The method by which this is done is usually ad hoc in practice, and
is arrived at by trial and error or simulation. The circumstances that will trigger the
generation of choke packets may vary: for example, buffer space shortage or excessive
queue length.

It is also possible to adjust window sizes by keeping track of permit delay or
packet retransmissions. If permits are greatly delayed or if several retransmissions occur
at a given source within a short period of time, this is likely to mean that packets are
being excessively delayed or are getting lost due to buffer overflow. The source then
reduces the relevant window sizes, and subsequently attempts to increase them gradually
following a timeout.

Still another way to obtain feedback is to collect congestion information on regular
packets as they traverse their route from origin to destination. This congestion informa-
tion can be used by the destination to adjust the window size by withholding the return
of some permits. A scheme of this type is used in SNA and is described in Section 6.4.

6.3 RATE CONTROL SCHEMES

We mentioned earlier that window flow control is not very well suited for high-speed
sessions in high-speed wide area networks because the propagation delays are relatively
large, thus necessitating large window sizes. An even more important reason is that
windows do not regulate end-to-end packet delays well and do not guarantee a minimum
data rate. Voice, video, and an increasing variety of data sessions require upper bounds
on delay and lower bounds on iate. High-speed wide area networks increasingly carry
such traffic, and many lower-speed networks also carry such traffic, making windows
inappropriate.

Sec. 6.3 Rate Control Schemes 511

An alternative form of flow control is based on giving each session a guaranteed
data rate, which is commensurate to its needs. This rate should lie within certain limits
that depend on the session type. For example, for a voice session, the rate should lie
between the minimum needed for language intelligibility and a maximum beyond which
the quality of voice cannot be further improved.

The main considerations in setting input session rates are:

1. Delay-throughput trade-off. Increasing throughput by setting the rates too high
runs the risk of buffer overflow and excessive delay.

2. Fairness. If session rates must be reduced to accommodate some new sessions, the
rate reduction must be done fairly, while obeying the minimum rate requirement
of each session.

We will discuss various rate adjustment schemes focusing on these considerations in
Section 6.5.

Given an algorithm that generates desired rates for various sessions, the question of
implementing these rates arises. A strict implementation of a session rate of r packets/sec
would be to admit 1 packet each 1/r seconds. This, however, amounts to a form of
time-division multiplexing and tends to introduce large delays when the offered load of
the sessions is bursty. A more appropriate implementation is to admit as many as W
packets (W > I) every W Ir seconds. This allows a burst of as many as W packets into
the network without delay, and is better suited for a dynamically changing load. There
are several variations of this scheme. The following possibility is patterned after window
flow control.

An allocation of packets (a window) is given to each session, and a count x
of the unused portion of this allocation is kept at the session origin. Packets from the
session are admitted into the network as long as x > O. Each time a packet is admitted,
the count is decremented by I, and W I r seconds later (r is the rate assigned to the
session), the count is incremented by I as shown in Fig. 6.15. This scheme, called time
window flow control, is very similar to window flow control with window size W except
that the count is incremented W Ir seconds after admitting a packet instead of after a
round-trip delay when the corresponding permit returns.

A related method that regulates the burstiness of the transmitted traffic somewhat
better is the so-called leaky bucket scheme. Here the count is incremented periodically,
every II r seconds, up to a maximum of packets. Another way to view this scheme is
to imagine that for each session, there is a queue of packets without a permit and a bucket
of permits at the session's source. The packet at the head of the packet queue obtains a
permit once one is available in the permit bucket and then joins the set of packets with
permits waiting to be transmitted (see Fig. 6.16). Permits are generated at the desired
input rate r of the session (one permit each IIr seconds) as long as the number in the
permit bucket does not exceed a certain threshold W. The leaky bucket scheme is used
in PARIS, an experimental high-speed network developed by IBM ([CiG88]; see Section
6.4). A variation, implemented in the ARPANET, is to allocate W > 1 permits initially
to a session and subsequently restore the count back to vV every Ir seconds, whether
or not the session used any part of the allocation.

512

Time at the
transmitter

Flow Control

Time at the
receiver

W = 3

Chap. 6

Figure 6.15 Time window flow control with IV = 3. The count of packet allocation
is decremented when a packet is transmitted and incremented H'lr seconds later.

Queue of packets
without a permit

Arriving - __ILIII--tpackets
l-----.- Queue of packets

with a permit

Permit queue (limited space W)

tArriving permits at a rate of one
per 1/r sec (turned away if there
is no space in the permit queue)

Figure 6.16 Leaky bucket scheme. To join the transmission queue, a packet must get a
permit from the permit queue. A new permit is generated every IIr seconds, where r is
the desired input rate, as long as the number of permits does not exceed a given threshold.

The leaky bucket scheme does not necessarily preclude buffer overflow and does
not guarantee an upper bound on packet delay in the absence of additional mechanisms
to choose and implement the session rates inside the network; for some insight into
the nature of such mechanisms, see Problem 6.19. However, with proper choice of
the bucket parameters, buffer overflow and maximum packet delay can be reduced. In
particular, the bucket size is an important parameter for the performance of the leaky
bucket scheme. If n' is small, bursty traffic is delayed waiting for permits to become
available (W = I resembles time-division multiplexing). If W is too large, long bursts
of packets will be allowed into the network; these bursts may accumulate at a congested
node downstream and cause buffer overflow.

The preceding discussion leads to the idea of dynamic adjustment of the bucket
size. In particular, a congested node may send a special control message to the cor-

Sec. 6.3 Rate Control Schemes 513

responding sources instructing them to shrink their bucket sizes. This is similar to the
choke packet discussed in connection with dynamic adjustment of window sizes. The
dynamic adjustment of bucket sizes may be combined with the dynamic adjustment of
permit rates and merged into a single algorithm. Note, however, that in high-speed net-
works, the effectiveness of the feedback control messages from the congested nodes may
be diminished because of relatively large propagation delays. Therefore, some predictive
mechanism may be needed to issue control messages before congestion sets in.

Queueing analysis of the leaky bucket scheme. To provide some insight
into the behavior of the leaky bucket scheme of Fig. 6.16, we give a queueing analysis.
One should be very careful in drawing quantitative conclusions from this analysis, since
some data sessions are much more bursty than is reflected in the following assumption
of Poisson packet arrivals.

Let us assume the following:

1. Packets arrive according to a Poisson process with rate A.
2. A permit arrives every 1/r seconds, but if the permit pool contains W permits, the
arriving permit is discarded.

We view this system as a discrete-time Markov chain with states a. I (For an alterna-
tive formulation, see Problem 3.13.) The states i = a.I. lr correspond to W -i per-
mits available and no packets without pennits waiting. The states i = W! I, H" +2, ... ,
correspond to i-IV packets without permits waiting and no permits available. The state
transitions occur at the times a. 1/ r. 2/ r. ... , just after a permit arrival. Let us consider
the probabilities of k packet arrivals in 1/1' seconds,

C->-j'(A/r)'
Ok = k!

It can be seen that the transition probabilities of the chain are

and for j 2: I,

p, _ {Oi+1.(li -
°o+o!.

if i 2: I
if i = a

p. = {Oi-j+l. ifj -s: i-I
JI a. otherwise

(see Fig. 6.17). The global balance equations yield

Po = (lOP I + (00 + (ll)Po

i+1

Pi = L 0i-j+IPj" i> I
j=O

These equations can be solved recursively. In particular, we have

514 Flow Control Chap. 6

so by using the equation PI = (1 - ao - a 1)Polao, we obtain

P2 = Po ((1 - ao - al)(1 - al) _ (2)
ao ao

Similarly, we may use the global balance equation for P2, and the computed expressions
for PI and P2, to express P3 in terms of Po, and so on.

The steady-state probabilities can now be obtained by noting that

r-A
Po=--

rao

To see this, note that the permit generation rate averaged over all states is (1 - poao)r,
while the packet arrival rate is A. Equating the two rates, we obtain Po = (r - A)/(rao).
The system is stable, that is, the packet queue stays bounded, if A < r. The average
delay for a packet to obtain a permit is

I x 1 x
T = - LPj max{O,j - TV} = - L PJ(j - TV)

r r
j=O j=W+l

To obtain a closed-form expression for the average delay needed by a packet to get
a permit and also to obtain a better model of the practical system, we modify the leaky
bucket model slightly so that permits are generated on a per bit basis; this approximates
the real situation where messages are broken up into small packets upon arrival at the
source node. In particular, we assume that:

1. Credit for admission into the network is generated at a rate r bits/sec for transmis-
sion and the size of the bucket (i.e., the maximum credit that can be saved) is TV
bits.

2. Messages arrive according to a Poisson process with rate A, and the storage space
for messages is infinite. Message lengths are independent and exponentially dis-
tributed with mean L bits.

Let J-1 = r I L, so that II J-1 is the mean time to transmit a message at the credit rate
r. Also let C = vV IT be the time over which credit can be saved up. The state of the
system can be described by the number of bits in the queue and the available amount
of credit. At time t, let X(t) be either the number of bits in the queue (if the queue is

Figure 6.17 Transition probabilities of a discrete Markov chain model for the leaky
bucket scheme. Here Q, is the probability of k packet arrivals in l/r seconds. Note
that this Markov chain is also the Markov chain for a slotted service AI/D / I queue.

Sec. 6.4 Overview of Flow Control in Practice 515

nonempty) or minus the available credit. Thus, whenever a message consisting of x bits
arrives, X(t) increases by :r: [one of three things happens: the credit decreases by 1:; the
queue increases by :r; the credit decreases to 0 and the queue increases to X(t) + x (this
happens if XU) < 0 and XU) +J' > 0)].

Letting Y(t) = X(t) + C, it can be seen that Y(t) is the unfinished work in
a fictitious JI/ JI / I queue with arrival rate ,\ messages/sec and service rate II. An
incoming bit is transmitted immediately if the size of the fictitious queue ahead of it is
less than C and is transmitted C seconds earlier than in the fictitious queue otherwise.
Focusing on the last bits of messages, we see that if T; is the system delay in the
fictitious queue for the i th message, max{O. T; - C} is the delay in the real queue. Using
the theory of Section 3.3, it can be verified [a proof is outlined in Exercise 3.11(b)] that
the steady-state distribution of the system time T; at the fictitious queue is

P{T; 2: T} = e-TIP-AI

Thus letting T[= max{O, T; - C} be the delay of the i th packet in the real queue, we
obtain

if T:S: 0
if T > 0

From this equation, the average delay of a packet in the real queue can be calculated as

I x I
T = P{T: 2: T} dT = __ e-CIII-A}

. () 11 - ,\

The preceding analysis can be generalized for the case where the packet lengths
are independent but not exponentially distributed. In this case, the fictitious queue be-
comes an !II / G / I queue, and its system delay distribution can be estimated by using an
exponential upper bound due to Kingman: see [Kle76], p. 45.

We finally note that the leaky bucket parameters affect not only the average packet
delay to enter the network, which we have just analyzed. They also affect substantially
the packet delay after the packet has entered the network. The relationship between this
delay, the leaky bucket parameters, and the method for implementing the corresponding
session rates at the network links is not well understood at present. For some interesting
recent analyses and proposals see [Cru91a], [Cru9IbJ, [PaG91a], [PaG9IbJ, [Sas91J, and
Problem 6.19.

6.4 OVERVIEW OF FLOW CONTROL IN PRACTICE

In this section we discuss the flow control schemes of several existing networks.

Flow control in the ARPANET. Flow control in the ARPANET is based in
part on end-to-end windows. The entire packet stream of each pair of machines (known
as hosts) connected to the subnet is viewed as a "session" flowing on a logical pipe. For
each such pipe there is a window of eight messages between the corresponding origin
and destination subnet nodes. Each message consists of one or more packets up to a

516 Flow Control Chap. 6

maximum of eight. A transmitted message carries a number indicating its position in the
corresponding window. Upon disposing of a message, the destination node sends back
a special control packet (pennit) to the origin, which in the ARPANET is called RFNM
(ready for next message). The RFNM is also used as an end-to-end acknowledgment for
error control purposes. Upon reception of an RFNM the origin node frees up a space in
the corresponding window and is allowed to transmit an extra message. If an RFNM is
not received after a specified time-out, the origin node sends a control packet asking the
destination node whether the corresponding message was received. This protects against
loss of an RFNM, and provides a mechanism for retransmission of lost messages.

There is an additional mechanism within the subnet for multipacket messages that
ensures that there is enough memory space to reassemble these messages at their desti-
nation. (Packets in the ARPANET may arrive out of order at their destination.) Each
multipacket message must reserve enough buffer space for reassembly at the receiver
before it gets transmitted. This is done via a reservation message called REQALL (re-
quest for allocation) that is sent by the origin to the destination node. The reservation is
granted when the destination node sends an ALL (allocate) message to the origin. When
a long file is sent through the network, there is a long sequence of multipacket messages
that must be transmitted. It would then be wasteful to obtain a separate reservation for
each message. To resolve this problem, ALL messages are piggybacked on the returning
RFNMs of multipacket messages, so that there is no reservation delay for messages after
the first one in a file. If the reserved buffer space is not used by the origin node within a
given timeout, it is returned to the destination via a special message. Single-packet mes-
sages do not need a reservation before getting transmitted. If, however. such a message
finds the destination's buffers full, it is discarded and a copy is eventually retransmitted
by the origin node after obtaining an explicit buffer reservation.

A number of improvements to the ARPANET scheme were implemented in late
1986 [MaI86]. First, the window size can be configured up to a maximum of 127;
this allows efficient operation in the case where satellite links are used. Second, there
can be multiple independent connections (up to 256) between two hosts, each with an
independent window; this provides some flexibility in accommodating classes of traffic
with different priorities and/or throughput needs. Third, an effort is made to improve the
fairness properties of the current algorithm through a scheme that tries to allocate the
available buffer space at each node fairly among all hosts. Finally, the reservation scheme
for multipacket messages described above has been eliminated. Instead, the destination
node simply reserves space for a multipacket message upon receiving the first packet of
the message. If space is not available, the packet is discarded and is retransmitted after
a time-out by the origin node.

The ARPANET flow control was supplemented by a rate adjustment scheme in
1989. Each node calculates an upper bound on flow rate for the origin-destination pairs
routing traffic through it (the origin and the destination are subnetwork packet switches).
This upper bound. also called a ration, is modified depending on the utilization of various
critical resources of the node (processing power, transmission capacity of incident links,
buffer space, etc.). The ration is adjusted up or down as the actual utilization of critical
resources falls below or rises above a certain target utilization. The node rations are

Sec. 6.4 Overview of Flow Control in Practice 517

broadcast to the entire network along with the routing update messages. Each origin
then sets its flow rate to each destination to the minimum of the rations of the nodes
traversed by the current route to the destination (these nodes become known to the origin
through the shortest path routing algorithm). The rates are implemented by using a leaky
bucket scheme as discussed in Section 6.3.

Flow control in the TYMNET. Flow control in the TYMNET is exercised
separately for each virtual circuit via a sequence of node-by-node windows. There is
one such window per virtual circuit and link on the path of the virtual circuit. Each
window is measured in bytes, and its size varies with the expected peak data rate (or
throughput class) of the virtual circuit. Flow control is activated via the backpressure
effect discussed in Section 6.2.2. Fairness is enhanced by serving virtual circuits on a
link via a round-robin scheme. This is accomplished by combining groups of bytes from
several virtual circuits into data link control frames. The maximum number of bytes for
each virtual circuit in a frame depends on the level of congestion on the link and the
priority class of the virtual circuit. Flow control permits are piggybacked on data frames,
and are highly encoded so that they do not require much bandwidth.

Flow control in SNA. We recall from Section 5.1.2 that the counterpart in SNA
of the OSI architecture network layer is called the path control layer, and that it includes
a flow control function called virtual route control. The corresponding algorithm. known
as the virtual route pacing scheme, is based on an end-to-end window for each virtual
circuit (or virtual route in SNA terminology). An interesting aspect of this scheme
is that the window size (measured in packets) is dynamically adjusted depending on
traflic conditions. The minimum window size is usually equal to the number of links
on the path, and the maximum window size is three times as large. Each packet header
contains two bits that are set to zero at the source. An intermediate node on the path
that is "moderately congested" sets the first bit to I. If the node is "badly congested," it
sets both bits to 1. Otherwise, it does not change the bits. Upon arrival of the packet.
the destination looks at the bits and increments the window size for no congestion,
decrements the window size for moderate congestion, or sets the window size to the
minimum for bad congestion.

Actually, the SNA scheme is a little different from the end-to-end window scheme
focused on so far. In the main scheme discussed in Section 6.2.1, the window size is
(} TC, and returning permits result in allocations of n packets each. We concentrated on
the case where (} = 1. In SNA, however, W = 1 and (} (rather than W) is adjusted
between the minimum and maximum window size referred to earlier. Furthermore, the
destination node can send a new n-packet allocation message (permit) upon reception
of the first packet in an o-packet batch. Thus, full-speed transmission under light load
conditions can be maintained even though TC = 1.

In addition to virtual route controL SNA provides transport layer flow control
on a session-by-session basis, which is known as session level pacing. This becomes
necessary because a virtual route in SNA may contain several sessions that may have
different flow control needs. The main idea here is to prevent the transmitting end of a
session from sending data more quickly than the receiving end can process. Session-level

518 Flow Control Chap. 6

pacing is basically a window scheme whereby the transmitting end can introduce a new
packet into the subnet upon receiving a permit (called a pacing response in SNA) from
the other end. An interesting twist is that pacing responses can be delayed at the node
through which the transmitting end of the session accesses the subnet. This provides the
subnet with the means to control the rate at which it accepts data from external users.

Flow control in a Codex network. In one of the Codex networks, there is an
end-to-end window associated with each virtual circuit. The window size is measured
in bytes and is proportional to the number of links on the virtual circuit path and a
nominal data rate for the virtual circuit. Returning permits are combined with end-to-end
acknowledgments used for error control purposes, so the window scheme does not require
additional communication overhead. Data link control (DLC) frames on each link are
formed by concatenating groups of bytes from several virtual circuits that have traffic in
queue. There is a maximum group size for each virtual circuit. Virtual circuits are served
on a round-robin basis and this provides a natural mechanism for maintaining fairness.

There is also a rate control mechanism in the Codex network that is unrelated to
the window scheme but plays a complementary role. The idea is to match the trans-
mission rate of a virtual circuit along its incoming and outgoing links at each node on
its path under heavy-load conditions. Without going into details (see [HSS86l), this is
accomplished by adjusting the maximum number of bytes that a virtual circuit can insert
in a DLC frame. As an example, suppose that a virtual circuit is slowed down on a
given link due to heavy load. Then the start node of that link sends a special message to
the preceding node along the virtual circuit's path, which proceeds to reduce the max-
imum number of bytes that a DLC frame can carry for this virtual circuit. One effect
of this scheme is that when congestion develops downstream, the end-to-end window of
a virtual circuit will not pile up entirely at the point of congestion, but rather will be
spread more or less evenly along the virtual circuit path starting from the source node
and ending at the point of congestion. This, combined with large memory space at the
nodes, tends to make buffer overflow unlikely.

Flow control in the PARIS network. PARIS is an experimental high-speed
packet switching system for integrated voice, video, and data communications. (PARIS
is an acronym for Packetized Automatic Routing Integrated System.) PARIS uses virtual
circuits and simple error control to expedite packet processing at the nodes, and achieve
high packet throughput. Routes are calculated with an adaptive shortest path routing
algorithm similar to the SPF algorithm of the ARPANET. Each link length is based on a
measure of the load carried by the link, and is broadcast from time to time through the
network using a spanning tree. Source routing is used; each packet carries the sequence
of identities of the nodes that it has yet to cross.

Flow control is based on the leaky bucket scheme described in Section 6.3. A
session requesting access to the network must provide the corresponding entry node
with some information regarding its characteristics, such as average rate, peak rate,
and average burst size. The entry node translates this information into an "'equivalent
capacity," which is a measure of bandwidth required by the session at each link along
its path. The entry node then does a routing calculation to obtain a shortest path among

Sec. 6.5 Rate Adjustment Algorithms 519

the paths that can accommodate the session. If no suitable path is found, the session is
rejected. Otherwise the session is accepted and its leaky bucket parameters are determined
based on its requirements and the current load of its path. The session may transmit
more packets than the ones permitted by its leaky bucket. However, these extra packets
are tagged as "red" and the network may discard them much more readily than other
packets, which are called "green" and are given preferential access to buffer space. Even
though the order of transmission of red and green packets is preserved, the algorithm
is operated so that red packets have minimal effect on the loss rate of green packets.
The leaky bucket parameters are kept constant during the lifetime of a session. It was
found that dynamic adjustment of these parameters was of limited use because congestion
information was largely outdated due to the high network speed and the relatively large
propagation delays. We refer to [CiG88] and [CGK90] for further details.

Flow control in X.25. As discussed in Section 2.8.3. flow control at the X.25
packet level is implemented by means of a separate window for each virtual circuit. The
default window size is 2, but it may be set as high as 7 or 127. Flow control is exercised
in both directions [i.e., from the user's machine (DTE) to the entry point of the network
(DCE), and also from DCE to DTE]. The implementation of the window strategy is
reminiscent of DLC protocols. Each data packet contains a three-bit sequence number
and a three-bit request number. (If the window size is 127, these numbers are seven bits
long.) The sequence number gives the position of the packet within the sender's window,
while the request number is the number of the next packet expected to be received by
the sender. Thus, the request number plays the role of a permit allowing the receiver to
advance the corresponding window.

There is also a provision in X.25 for flow control between two DTEs communicat-
ing through the subnet. The X.25 packet format contains a special bit (called the D bit)
that determines whether the piggyback number of a packet received by a DTE relates to
the directly attached DCE (D = 0) or the remote DTE (D = I). In the latter case, the
request number serves as a permit for the advancement of a window maintained for flow
control purposes between the two DTEs.

6.5 RATE ADJUSTMENT ALGORITHMS

In this section we look at two systematic formulations of the flow control problem
to obtain algorithms for input rate adjustment. In the first approach (Section 6.5.1) we
formulate an optimization problem that mathematically expresses the objective of striking
a proper balance between maintaining high throughput and keeping average delay per
packet at a reasonable level. In the second approach (Section 6.5.2) we emphasize
fairness while maintaining average delay per packet at an acceptable level.

6.5.1 Combined Optimal Routing and Flow Control

We consider the possibility of combining routing and end-to-end flow control within the
subnet by adjusting optimally hoth the routing variables and the origin-destination (OD)

520 Flow Control Chap. 6

pair mput rates. A special case arises when routing is fixed and the only variables to be
adjusted are the input rates-a problem of pure flow control.

We adopt a flow model similar to the one discussed in the context of optimal routing
in Section 5.4. and we denote by 7'11" the input rate of an OD pairu'. We first formulate a
problem of adjusting routing variables together with the inputs 7'", so as to minimize some
"reasonable" cost function. We subsequently show that rhis prohlem is marhemarically
equi1'Glenr ro rhe oprimal rouring prohlem examined in Chaprer 5 (in which r'l" is fixed),
and therefore the optimality conditions and algorithms given there are applicable.

If we minimize the cost function LIi.j) Dij(Fij) of the routing problem with re-
spect to both the path flows {.r p } and the inputs {r",}, we unhappily find that the optimal
solution is .1'1' = 0 &TId 1'tL' = 0 for all p and 1/'. This indicates that the cost function
should include a penalty for inputs T", becoming too small and leads to the problem

minimize L Dij(F,j) + L e,,·(7'H·)
Ii.)) II"E!!'

subject to L xl' = I'u"

pEP",

for all 1/' E n°

for all PEP"" W E H'

(6.2)

o <::: I"u' <::: 'F,Fo for all 11' E Tl'

Here the minimization is to be carried out jointly with respect to {.I'p} and {I"u'}. The
given values 1'11" represent the desired input by OD pair v' (i.e., the offered load for v'.
defined as the input for 11' that would result if no flow control were exercised). As before,
Fij is the total flow on link (i. j) (i.e., the sum of all path flows traversing the link). The
functions e U' are of the form shown in Fig. 6.18 and provide a penalty for throttling the
inputs 1"11"' They are monotonically decreasing on the set of positive numbers (0, x), and
tend to x as I"u, tends to zero. We assume that their first and second derivatives, r<" and
e;;" exist on (0. x) and are strictly negative and positive, respectively. An interesting
class of functions c" is specified by the following formula for their first derivative:

()

h"
I all'
c",(I"u') = --.-- .

Til'
for O'L' and b", given positive constants (6.3)

As explained later in this section, the parameters (I", and bu' influence the optimal mag-

Input Rate r w

Figure 6.18 Typical form of penalty function for throttling the input rate r".

Sec. 6.5 Rate Adjustment Algorithms 521

nitude of input r U' and the priority of 00 pair 11', respectively. The functions Dij are
defined and are monotonically increasing with positive second derivative in an interval
[0. GiJ), where G ij is either finite, representing link capacity, or is equal to 00.

The value of the preceding formulation is enhanced if we adopt a broader view of
wand consider it as a class of sessions sharing the same set ofpaths Pw . This allows dif-
ferent priorities (i.e., different functions ell') for different classes of sessions even if they
share the same paths. A problem where PI1' consists of a single path for each w can also be
considered. This is a problem of pure flow control, namely, choosing the optimal fraction
of the desired input flow of each session class that should be allowed into the network.

We now show that the combined routing and flow control problem of Eq. (6.2) is
mathematically equivalent to a routing problem of the type considered in Section 5.4.
Let us introduce a new variable :till' for each w E via the equation

:till' = Tw - r u · (6.4)

We may view :tiw as the overflow (the portion of Til' blocked out of the network), and
consider it as a flow on an overflow link directly connecting the origin and destination
nodes of w as shown in Fig. 6.19. If we define a new function E u by

(6.5)

the combined routing and flow control problem of Eq. (6.2) becomes, In view of the
definition lite = 1\. - I'll"

minimize L DiJ(FiJ) + L E,,;(yw)
li.j) u'EW

subject to L :rp + :ti". = TIL"
pEJ>w

.rp 2': O.

:till' 2': O.

for all w E lV

for all p EP,c, w E W

for all 'W E W

(6.6)

r w -_--{

Origin node
of 00 pair w

Xp ,------ ------
xP2

------ ------
Xpn

Overflow link

Destination node
of 00 pair w

Figure 6.19 Mathematical equivalence of the flow control problem with an optimal
routing problem based on the introduction of an artificial overflow link for each OD pair
IC. The overflow link carries the rejected traftic (i.e .. the difference between desired and
accepted input flow. r U' - I'u')' The cost of the overflow link is obtained from the cost
f". for throttling the input by a change of variable.

522 Flow Control

rw Overflow Traffic Vw

Figure 6.20 Cost function for the overflow link, The cost E u (YlI' 1for overflow traffic
Yu' equals the cost ew(rwl for input traffic r w = I'll' - Yw,

Chap, 6

The form of the function Ell' of Eq. (6.5) is shown in Fig. 6.20. If ewCrw) ----+ oc
as ru , ----+ 0 (i,e., there is "infinite penalty" for completely shutting off the class of
sessions w), then Ew(yu,) ----+ oc as the overflow Yw approaches its maximum value-the
maximum input I'll" Thus, Ell' may be viewed as a "delay" function for the overflow
link, and I'u' may be viewed as the "capacity" of the link,

It is now clear that the problem of Eq. (6.6) is of the optimal routing type considered
in Section 5.4, and that the algorithms and optimality conditions given in Sections 5.5
to 5.7 apply. In particular, the application of the shortest path optimality condition of
Section 5.5 (see also Problem 5.24) yields the following result:

A feasible set of path flows {x;} and inputs {r;J is optimal for the combined
routing and flow control problem of Eq. (6.2) if and only if the following conditions
hold for each p E Pll' and W E W:
x; > 0 d; ::; d;,. for all pi EPw . and d; ::; -e",.(r:,) (6.7a)
r:, < I'u' ::; d;. for all p E P u' (6.7b)

where d; is the first derivative length of path p [d; = 2::(i.jIEP D"j(Fij). and Fij
is the total flow of link (i, j) corresponding to {x;}].

Note that the optimality conditions (6.7) depend only on the derivatives of the
functions D ij and ell" This means that arbitrary constants could be added to D ij and ell'
without affecting the optimum. Note also from the optimality condition (6.7b) that the
optimum point r-:V is independent of I'll' as long as I'u ' > r: .. This is a desirable feature
for a flow control strategy, preventing sessions that are being actively flow controlled
from attempting to increase their share of the resources by increasing their demands. A
simple example illustrates the optimality conditions (6.7).

Example 6.3
Consider the situation in Fig, 6,21 involving a single link connecting origin and destination,
The cost function is r a--+-C - r r

Sec. 6.5 Rate Adjustment Algorithms 523

r-__r-----iQ Destination

Overflow
link

Figure 6.21 Example problem involving
an origin and a destination connected by a
single link.

where the first term represents a penalty due to large delay lcf. the term Dij(Fi]) in
Eq. (6.2)J, and the second term represents a penalty for small throughput [ef. the term
t'u·(ru') in Eq. (6.2)J. The constant C is the capacity of the link, while the parameter a is
a positive weighting factor. The equivalent routing problem [ef. Eq. (6.6)J is

minimize _,_._ + _'_I_
C-T r-y

subject to T + Y = r, T 2' 0, y 2' 0
where y = r - r represents the amount of offered load rejected by flow control (equivalently,
the flow on the fictitious overflow link). The optimality conditions (6.7) show that there
will be no flow control (y = 0, T = r) if

C a
(C - T)2 r 2

(i.e., if the first derivative length of the overflow link exceeds the first derivative length of
the regular link). Equivalently. there will be no flow control if

According to the optimality condition [Eq. (6.7)], when there is flow control (y > 0, T < r),
the two first derivative lengths must be equal, that is.

C

Substituting y = r - r and working out the result yields

The solution as a function of offered load is shown in Fig. 6.22. Note that the throughput is
independent of the offered load beyond a certain point. as discussed earlier. The maximum
throughput C JU/(JU + JC) can be regulated by adjustment of the parameter a and tends
to the capacity C as a x.

The meaning of the parameters aU! and bu; in the cost function specified by the
formula [cf. Eq. (6.3)J

can now be clarified in the light of the optimality condition (6.7b). Consider two distinct
classes of sessions, tel and te2, sharing the same paths (PII'l = P II ,,). Then the condition

524 Flow Control

Accepted Load r

Chap. 6

Point where
flow control
becomes active

Offered Load r

Figure 6.22 Optimal accepted load as a function of offered load in the flow control
example. Flow control becomes active when the offered load exceeds a threshold level
that depends on the weighting factor a.

(6.7b) implies that at an optimal solution in which both classes of sessions are throttled
«'1 < T,rl' < Tw ,)

/ *) / * . {d*} . {d*}-eli'l (T Ii " = -c".Jr",J = mm p = mm p
, - - pEP"'1 pEP""

(6.8)

If and are specified by parameters a"" , bil'l and all'" b"" as in Eg. (6.3), it can
be seen that:

1. If bll'l = bll ." then

f,:. a''Il'1

au'::!.

and it follows that the parameter au, influences the optimal, relative input rate of
the session class w.

2. If au" = aUo, = a and bw, < bw, (see Fig. 6.23), the condition (6.8) specifies that
when the input flows must be made small . < a), the session class 11'2 (the
one with higher parameter b,,) will be allowed a larger input. It follows that the
parameter bw influences the relative priority of the session class lL' under heavy
load conditions.

6.5.2 Max-Min Flow Control

One of the most difficult aspects of flow control is treating all sessions fairly when it is
necessary to tum traffic away from the network. Fairness can be defined in a number
of different ways, but one intuitive notion of fairness is that any session is entitled to as
much network use as is any other session. Figure 6.24 clarifies some of the ambiguities
in this notion. One session flows through the tandem connection of all links, and each

Sec. 6.5 Rate Adjustment Algorithms 525

min {dp) = min {dp :

pePW1 pePW2
High priority traffic cost

C:J b
W2

a

Low priority traffic cost

(-!-) bW1

rw,

Figure 6.23 Incorporating priorities of session classes in the cost function of the flow
control fonnulation. The session class with larger bw will be throttled less under heavy
load conditions.

other session goes through only one link. It is plausible to limit sessions 0, I, and 2 to
a rate of 1/3 each, since this gives each of these sessions as much rate as the others.
It would be rather pointless, however, to restrict session 3 to a rate of 1/3. Session 3
might better be limited to 2/3, since any lower limit would waste some of the capacity
of the rightmost link without benefitting sessions 0, 1, or 2, and any higher limit would
be unfair because it would further restrict session O.

This example leads to the idea of maximizing the network use allocated to the
sessions with the minimum allocation, thus giving rise to the term max-minjfow control.
After these most poorly treated sessions are given the greatest possible allocation, there
might be considerable latitude left for choosing allocations for the other sessions. It is
then reasonable to maximize the allocation for the most poorly treated of these other
sessions, and so forth, until all allocations are specified. An alternative way to express
this intuition, which turns out to be equivalent to the above, is to maximize the allocation
of each session i subject to the constraint that an incremental increase in i's allocation
does not cause a decrease in some other session's allocation that is already as small as
i's or smaller.

We assume a directed graph G = (N, A) for the network and a set of sessions P
using the network. Each session p has an associated fixed path in the network. We use jJ

Session 1 Session 2 Session 3

c"";,, 1© 1
Session 0

Figure 6.24 The fair solution is to givc to
sessions O. I. and 2 a rate of 1/3 each and
to give session 3 a rate of 2/3 to avoid
wasting the extra capacity available at the
rightmost link.

526 Flow Control Chap. 6

both to refer to the session and to its path (if several sessions use the same path, several
indices p refer to the same path). Thus, in our model we assume a fixed, single-path
routing method.

We denote by Tp the allocated rate for session p. The allocated flow on link a of
the network is then

(6.9)
all sessions p
crossing link a

Letting Ca be the capacity of link a, we have the following constraints on the vector
T= {Tp I pEP} of allocated rates:

TP 2: 0, for all pEP

Fa :::; Ca, for all a E A

(6. lOa)

(6. lOb)

A vector T satisfying these constraints is said to be feasible.
A vector of rates T is said to be max-min fair if it is feasible and for each pEP, TP

cannot be increased while maintaining feasibility without decreasing Tpi for some session
pi for which Tpl :::; T p . (More formally, T is max-min fair if it is feasible, and for each
pEP and feasible r for which Tp < rp , there is some pi with T p 2: Tpl and T p' > rp")
Our problem is to find a rate vector that is max-min fair.

Given a feasible rate vector T, we say that link a is a bottleneck link with respect
to T for a session p crossing a if Fa = Co and Tp 2: T p ' for all sessions pi crossing
link a. Figure 6.25 provides an example of a max-min fair rate vector and illustrates
the concept of a bottleneck link. In this example, every session has a bottleneck link. It
turns out that this property holds in general as shown in the following proposition:

Session 4 (rate 1)

Session 1 (rate 2/3)--f-,

All link capacities; 1

Session 5 (rate 1/3) --r----\------------,/--......,,-"
Session 3 (rate 1/3)
Session 2 (rate 1/3)

Figure 6.25 Max-min fair solution for an example network. The bottleneck links of
sessions I. 2. 3.4. and 5 are (3.5). (2.3). (2.3). (4.5). and (2.3). respectively. Link (3,5)
is not a bottleneck link for session 5 since sessions I and 5 share this link and session I
has a larger rate than session 5. Link (1.3) is not a bottleneck link of any session since
it has an excess capacity of 1/3 in the fair solution.

Sec. 6.5 Rate Adjustment Algorithms 527

Proposition. A feasible rate vector f is max-min fair if and only if each session
has a bottleneck link with respect to r.

Proof' Suppose that f is max-min fair and, to arrive at a contradiction, assume that
there exists a session p with no bottleneck link. Then, for each link a crossed by p for
which Fa = Ca, there must exist a session Pa =I p such that f pa > f p; thus the quantity

if Fa < Ca
if Fa = Ca

is posltlve. Therefore, by increasing f p by the minimum oa over all links a crossed by p,
while decreasing by the same amount the rates of the sessions f pa of the links a crossed
by p with Fa = Ca, we maintain feasibility without decreasing the rate of any session
pi with f p ' :s: f p ; this contradicts the max-min fairness property of f.

Conversely, assume that each session has a bottleneck link with respect to the
feasible rate vector f. Then, to increase the rate of any session p while maintaining
feasibility, we must decrease the rate of some session pi crossing the bottleneck link a
of p (because we have Fa = Ca by the definition of a bottleneck link). Since f p ' :s: rp
for all pi crossing a (by the definition of a bottleneck link), the rate vector f satisfies the
requirement for max-min fairness. Q.E.D.

Next, we give a simple algorithm for computing max-min fair rate vectors. The
idea of the algorithm is to start with an all-zero rate vector and to increase the rates on
all paths together until Fa = Ca for one or more links a. At this point, each session
using a saturated link (i.e., a link with Fa = Ca) has the same rate at every other session
using that link. Thus, these saturated links serve as bottleneck links for all sessions using
them.

At the next step of the algorithm, all sessions not using the saturated links are
incremented equally in rate until one or more new links become saturated. Note that the
sessions using the previously saturated links might also be using these newly saturated
links (at a lower rate). The newly saturated links serve as bottleneck links for those
sessions that pass through them but do not use the previously saturated links. The
algorithm continues from step to step, always equally incrementing all sessions not
passing through any saturated link; when all sessions pass through at least one saturated
link, the algorithm stops.

In the algorithm, as stated more precisely below, Ak denotes the set of links not
saturated at the beginning of step k, and pk denotes the set of sessions not passing
through any saturated link at the beginning of step k. Also, denotes the number of
sessions that use link a and are in pk. Note that this is the number of sessions that will
share link a's yet unused capacity. Finally, fk denotes the increment of rate added to all
of the sessions in pk at the kth step.

I .. I d" . L I FO - 0 () - 0 pi - P d Al - Amtla con ItlOns. h - , a - ,fP -, -, an -.

1. := number of sessions p E pk crossing link (l

2. fk := minaEA,(Ca -

for p E pk
otherwise

528

{

+ -k
k._ rp r3. rp .- rp

4 F k .- '" k• a'- Lpcrossing a rp
5. Ak+!
6. pk+! := {p I p does not cross any link a E Ak+!}
7. k:= k + I
8. If pk is empty, then stop; else go to 1.

Flow Control Chap. 6

At each step k, an equal increment of rate is added to all sessions not yet passing
through a saturated link, and thus at each step k, all sessions in pk have the same rate.
All sessions in pk passing through a link that saturates in step k have at least as much
rate as any other session on that link and hence are bottlenecked by that link. Thus upon
termination of the algorithm, each session has a bottleneck link, and by the proposition
shown earlier, the final rate vector is max-min fair.

Example 6.4

Consider the problem of max-min fair allocation for the five sessions and the network shown
in Fig. 6.25. All links have a capacity of one.

Step I: All sessions get a rate of 1/3. Link (2,3) is saturated at this step, and the
rate of the three sessions (2, 3, and 5) that go through it is fixed at 1/3.
Step 2: Sessions I and 4 get an additional rate increment of 1/3 for a total of 2/3.
Link (3,5) is saturated. and the rate of session 1 is fixed at 2/3.
Step 3: Session 4 gets an additional rate increment of 1/3 for a total of I. Link (4,5)
is saturated. and the rate of session 4 is fixed at I. Since now all sessions go through
at least one saturated link, the algorithm terminates with the max-min fair solution
shown in Fig. 6.25.

Several generalizations can be made to the basic approach described above. First,
to keep the flow on each link strictly below capacity, we can replace Ca in the algorithm
with some fixed fraction of Ca' Next, we can consider ways to assign different priorities
to different kinds of traffic and to make these priorities sensitive to traffic levels. If
bp(rp) is an increasing function representing the priority of p at rate r p' the max-min
fairness criterion can be modified as follows: For each p, maximize rp subject to the
constraint that any increase in r p would cause a decrease of rp' for some pi satisfying
bp,(rp') ::; bp(Tp). It is easy to modify the algorithm above to calculate fair rates with such
priorities. Another twist on the same theme is to require that each Tp be upper bounded
by Ca - Fa on each link used by path p; the rationale is to maintain enough spare capacity
on each link to be able to add an extra session. The problem here, however, is that as the
number of sessions on a link grow, the reserve capacity shrinks to zero and the buffer
requirement grows with the number of sessions, just like the corresponding growth using
windows. This difficulty can be bypassed by replacing the constraint Tp ::; Ca - Fa by a
constraint of the form rp ::; (Ca - Fa)qa' where qa is a positive scalar factor depending
on the number of sessions crossing link a (see Problem 6.18).

There has been a great deal of work on distributed algorithms that dynamically
adjust the session rates to maintain max-min fairness as the sessions change. A repre-

Chap. 6 Summary 529

sentative algorithm [Hay81] will help in understanding the situation. In this algorithm,
represents an estimate of the maximum allowable session rate on link a at the kth

iteration, F: is the allocated flow on link a corresponding to the rates r;, and na is the
number of sessions using link a. The typical iteration of the algorithm is

G _Fk
vk+1 = vk + a a
a a na
r k+1 = min V k+1
P links a on a

path p

Each iteration can be implemented in a distributed way by first passing the values I

from the links a to the sessions using those links, and then passing the values r;+l
from the sessions p to the links used by these sessions. The major problem is that the
allocated rates can wander considerably before converging, and link flows can exceed
capacity temporarily. There are other algorithms that do not suffer from this difficulty
([GaB84b] and [Mos84]). In the algorithm of [GaB84b], the session rates are iterated at
the session sources according to

{
G - F k

- r k }rk+ I = min rk + a a p
p links a on P I + na

path P

This algorithm aims at solving the max-min fair flow control problem subject to the
additional constraints rp :S Ga - Fa for each session p and link a crossed by p (see
Problem 6.18). By adding the relation

k+1 k Ga - F: - r;
rp :Srp + I + na

over all sessions p crossing link a, it is straightforward to verify that

F k+1 < naGa
a - I + nil

so the link flows are strictly less than the link capacities at all times. Extensions of this
algorithm to accommodate session priorities are possible (see [GaB84b]).

Max-min fair rates may be implemented using leaky bucket schemes as discussed
in Section 6.3. Another approach to implementing max-min fair rates has been explored
in [HaG86]. This approach avoids both the problem of communication in a distributed
algorithm and also the problem of the ambiguity in the meaning of rate for interactive
traffic. The idea is very simple: Serve different sessions on each link in the network on
a round-robin basis. This means that if a session always has a packet waiting at a node
when its tum comes up on the outgoing link, that session gets as much service as any
other session using that link. Thus, to achieve max-min fairness, it is only necessary
that each session always has a packet waiting at its bottleneck link. In fact, it can be
shown that by using node-by-node windowing with a large enough window, a session
that always has something to send will always have a packet waiting at its bottleneck
link (see [Hah86]).

530

SUMMARY

Flow Control Chap. 6

In this chapter we identified the major flow control objectives as limiting average
delay and buffer overflow within the subnet, and treating sessions fairly. We reviewed the
major flow control methods, and we saw that the dominant strategies in practice are based
on windows and input rate control. Window strategies combine low overhead with fast
reaction to congestion but have some limitations, particularly for networks with relatively
large propagation delay. Window strategies are also unsuitable for sessions that require a
minimum guaranteed rate. Rate adjustment schemes are usually implemented by means
of leaky buckets. However, there remain a number of questions regarding the choice
and adjustment of the leaky bucket parameters in response to traffic conditions. We also
described two theoretical input rate adjustment schemes. The first scheme extends the
optimal routing methodology of Chapter 5 to the flow control context, and combines
routing and flow control into a single algorithm. The second scheme assumes fixed,
single-path routing for each session, and focuses on maintaining flow control fairness.

NOTES, SOURCES, AND SUGGESTED READING

Section 6.1. Extensive discussions of flow control can be found in the April 1981
special issue of the IEEE Transactions on Communications. An informative survey is
[GeK80]. A more recent survey [GeK89] discusses flow control in local area networks.

Section 6.2. The special difficulties of window flow control along satellite links
are discussed in [GrB83].

Section 6.3. The leaky bucket scheme is discussed in [Tur86] and [Zha89]. Sev-
eral rate control schemes are discussed in [GoI90a], [GoI90b], [ELL90a], and [ELL90b].

Section 6.4. Flow control in the ARPANET is described in several sources (e.g.,
[Kle76] and [Kl077]). The more recent rate control scheme is discussed in [RFS91]
and [ELS90]. The TYMNET flow control system is discussed in [Tym81]. For further
discussion on SNA, see [Ahu79] and [GeY82], and for more on the Codex network, see
[HSS86]. The PARIS flow control scheme and other PARIS protocols are discussed in
[CiG88], and [CGK90].

Section 6.5. The combined optimal routing and flow control was formulated in
[GaG80] and [GoI80]. For additional material on this subject, see [Ibe81] and [Gaf82].
A simulation together with a discussion of practical implementation schemes is given in
[ThC86]. Flow control based on adjusting the rate of encoding of digitized voice has
been considered in [BGS80]. The material on fair flow control is based on [Hay81]. For
related work, see [laf81], [GaB84b], [Mos84], [Hah86], and [HaG86].

Chap. 6 Problems

PROBLEMS

531

6.1 Consider a window flow controlled virtual circuit going over a satellite link. All packets
have a transmission time of 5 msec. The round-trip processing and propagation delay is 0.5
sec. Find a lower bound on the window size for the virtual circuit to be able to achieve
maximum speed transmission when there is no other traffic on the link.

6.2 Suppose that the virtual circuit in Problem 6.1 goes through a terrestrial link in addition to
the satellite link. The transmission time on the terrestrial link is 20 msec, and the processing
and propagation delay is negligible. What is the maximum transmission rate in packets/sec
that can be attained for this virtual circuit assuming no flow control? Find a lower bound to
an end-to-end window size that will allow maximum transmission rate assuming no other
traffic on the links. Does it make a difference whether the terrestrial link is before or after
the satellite link?

6.3 Suppose that node-by-node windows are used in the two-link system of Problem 6.2. Find
lower bounds on the window size required along each link in order to achieve maximum
speed transmission, assuming no other traffic on the links.

6.4 The three-node network of Fig. 6.26 contains only one virtual circuit from node I to 3, and
uses node-by-node windows. Each packet transmission on link (1,2) takes I sec, and on
link (2.3) takes 2 sec: processing and propagation delay is negligible. Pennits require I sec
to travel on each link. There is an inexhaustible supply of packets at node I. The system
starts at time 0 with TV pennits at node I, H' permits at node 2, and no packets stored at
nodes 2 and 3. For 11' = I, find the times, from 0 to 10 sec at which a packet transmission
starts at node I and node 2. Repeat for TV = 2.

6.5 In the discussion of node-by-node window flow control, it was assumed that node i can send
a pennit back to its predecessor (i - I) once it releases a packet to the DLC of link (i, i + I).
The alternative is for node i to send the pennit when it receives the DLC acknowledgment
that the packet has been received correctly at node i + I. Discuss the relative merits of the
two schemes. Which scheme requires more memory? What happens when link (i, i + 1) is
a satellite link?

6.6 Consider a combined optimal routing and flow control problem involving the network of
Fig. 6.27 (cf. Section 6.4.1). The cost function is

where a is a positive scalar parameter. Find the optimal values of the rates rl and r2 for
each value of a.

6.7 Consider six nodes arranged in a ring and connected with unit capacity bidirectional links
(i. i + I), i = 1.2.3.4.5. and (6,1). There are two sessions from nodes I, 2, 3, 4, and 5
to node 6, one in the clockwise and one in the counterclockwise direction. Similarly, there
are two sessions from nodes 2, 3, and 4 to node 5, and two sessions from node 3 to node
4. Find the max-min fair rates for these sessions.

---..·-i8}---·---(0}---..----(G}------I..
Figure 6.26

532

Origin 1

r; = 10

Origin 2

Flow Control

)----1----(4 Destination

Figure 6.27

Chap. 6

6.8 Suppose that the definition of a fair rate vector of Section 6.4.2 is modified so that, in
addition to Eq. (6.10), there is a constraint Tp S bp that the rate of a session p must satisfy.
Here bp is the maximum rate at which session p is capable of transmitting. Modify the
algorithm given in Section 6.4.2 to solve this problem. Find the fair rates for the example
given in this section when bp = 1, for p = 2,4,5 and bp = 1/4, for p = 1. 3. Hint: Add a
new link for each session.

6.9 The purpose of this problem is to illustrate how the relative throughputs of competing
sessions can be affected by the priority rule used to serve them. Consider two sessions A
and B sharing the first link L of their paths as shown in Fig. 6.28. Each session has an end-
to-end window of two packets. Permits for packets of A and B arrive dA and dB seconds,
respectively, after the end of transmission on link L. We assume that dA is exponentially
distributed with mean of unity, while (somewhat unrealistically) we assume that dB = O.
Packets require a transmission time on L which is exponentially distributed with mean of
unity. Packet transmission times and permit delays are all independent. We assume that a
new packet for A (B) enters the transmission queue of L immediately upon receipt of a
permit for A (B).
(a) Suppose that packets are transmitted on L on a first-come first-serve basis. Argue that

the queue of L can be represented by a Markov chain with the 10 queue states BB, BBA,
BAB, ABB, BBAA, BABA, BAAB, ABBA, ABAB, and AABB (each letter stands for
a packet of the corresponding session). Show that all states have equal steady-state
probability and that the steady-state throughputs of sessions A and B in packets/sec are
0.4 and 0.6, respectively.

(b) Now suppose that transmissions on link L are scheduled on a round-robin basis. Between
successive packet transmissions for session B, session A transmits one packet if it has
one waiting. Draw the state transition diagram of a five-state Markov chain which

Figure 6.28

Chap. 6 Problems 533

models the queue of L. Solve for the equilibrium state probabilities. What are the
steady-state throughputs of sessions A and B?

(e) Finally, suppose that session A has nonpreemptive priority over session B at link L.
Between successive packet transmissions for session B, session A transmits as many
packets as it can. Session B regains control of the link only when A has nothing to
send. Draw the state transition diagram of a five-state Markov chain which models L
and its queue. Solve for the equilibrium state probabilities. What are the steady-state
throughputs of sessions A and B?

6.10 Consider a window between an external source and the node by which that source is con-
nected to the subnet. The source generates packets according to a Poisson process of rate
A. Each generated packet is accepted by the node if a permit is available. If no permit is
available, the packet is discarded, never to return. When a packet from the given source
enters the DLC unit of an outgoing link at the node, a new permit is instantaneously sent
back to the source. The source initially has two permits and the window size is 2. Assume
that the other traffic at the node imposes a random delay from the time a packet is accepted
at the node to the time it enters the DLC unit. Specifically, assume that in any arbitrarily
small interval 0, there is a probability pO that a waiting packet from the source (or the first
of two waiting packets) will enter the DLC; this event is independent of everything else.
(a) Construct a Markov chain for the number of permits at the source.
(b) Find the probability that a packet generated by the source is discarded.
(e) Explain whether the probability in part (b) would increase or decrease if the propagation

and transmission delay from source to node and the reverse were taken into account.
(d) Suppose that a buffer of size k is provided at the source to save packets for which no

permit is available; when a permit is received, one of the buffered packets is instantly
sent to the network node. Find the new Markov chain describing the system, and find
the probability that a generated packet finds the buffer full.

6.11 Consider a network with end-to-end window flow control applied to each virtual circuit.
Assume that the data link control operates perfectly and that packets are never thrown away
inside the network; thus, packets always arrive at the destination in the order sent, and all
packets eventually arrive.
(a) Suppose that the destination sends permits in packets returning to the source; if no return

packet is available for some time-out period, a special permit packet is sent back to the
source. These permits consist of the number modulo m of the next packet awaited by
the destination. What is the restriction on the window size in terms of the modulus
m? Why?

(b) Suppose next that the permits contain the number modulo m of each of the packets
in the order received since the last acknowledgment was sent. Does this change your
answer to part (a)? Explain.

(e) Is it permissible for the source to change the window size without prior agreement
from the destination? Explain.

(d) How can the destination reduce the effective window size below the window size used
by the source without prior agreement from the source? (By effective window size we
mean the maximum number of packets for the source-destination pair that can be in
the network at one time.)

6.12 Consider a node-by-node window scheme. In an effort to reduce the required buffering, the
designers associated the windows with destinations rather than with virtual circuits. Assume
that all virtual circuit paths to a given destination j use a directed spanning tree so that each

534 Flow Control Chap. 6

node i i= j has only one outgoing link for traffic to that destination. Assume that each node
i i= j originally has permits for two packets for j that can be sent over the outgoing link
to j. Each time that node i releases a packet for j into its DLC unit on the outgoing link,
it sends a new permit for one packet back over the incoming link over which that packet
arrived. If the packet arrived from a source connected to i, the permit is sent back to the
source (each source also originally has two permits for the given destination).
(a) How many packet buffers does node i have to reserve for packets going to destination

j to guarantee that every arriving packet for j can be placed in a buffer?
(b) What are the pros and cons of this scheme compared with the conventional node-by-node

window scheme on a virtual circuit basis?
6.13 Consider a network using node-by-node windows for each virtual circuit. Describe a strategy

for sending and reclaiming permits so that buffer overflow never occurs regardless of how
much memory is available for packet storage at each node and of how many virtual circuits
are using each link. Hint: You need to worry about too many permits becoming available
to the transmitting node of each link.

6.14 Consider a network using a node-by-node window for each session. Suppose that the
transmission capacity of all links of the networks is increased by a factor I'C and that the
number of sessions that can be served also increases by a factor K. Argue that in order
for the network to allow for full-speed transmission for each session under light traffic
conditions, the total window of the network should increase by a factor K if propagation
delay is dominated by packet transmission time and by a factor K 2 if the reverse is true.

6.15 Consider the variation of the leaky bucket scheme where n- > I permits are allocated
initially to a session and the count is restored back to rF every n)r seconds. Develop a
Markov chain model for the number of packets waiting to get a permit. Assume a Poisson
arrival process.

6.16 Describe how the gradient projection method for optimal routing can be used to solve in
distributed fashion the combined optimal routing and flow control problem of Section 6.5.1.

6.17 Let r be a max-min fair rate vector corresponding to a given network and set of sessions.
(a) Suppose that some of the sessions are eliminated and let T be a corresponding max-min

fair rate vector. Show by example that we may have Tp < r p for some of the remaining
sessions p.

(b) Suppose that some of the link capacities are increased and let T be a corresponding max-
min fair rate vector. Show by example that we may have Tp < r p for some sessions p.

6.18 Alternatil'e Formulation of Max-Min Fair Flow Control ({Jaf81] and [GaB84b]). Consider
the max-min flow control problem where the rate vector r is required, in addition, to satisfy
rp ::; (Ca - Fa)qa for each session p and link a crossed by session p. Here qa are given
positive scalars.
(a) Show that a max-min fair rate vector exists and is unique, and give an algorithm for

calculating it.
(b) Show that for a max-min fair rate vector, the utilization factor pa = Fa/Ca of each

link a satisfies

where Tla is the number of sessions crossing link a.
(c) Show that additional constraints of the form r p ::; R p , where R p is a given posillve

scalar for each session p, can be accommodated in this formulation by adding to the
network one extra link per session.

Chap. 6 Problems 535

(6.11)

6.19 Guaranteed Delay Bounds Using Leaky Buckets [PaG9Jaj.{PaG9Jh}. In this problem we
show how guaranteed delay bounds for the sessions sharing a network can be obtained by
appropriately choosing the sessions' leaky bucket parameters. We assume that each session
i has a fixed route and is constrained by a leaky bucket with parameters TFI and fl, as in
the scheme of Fig. 6.16. We assume a fluid model for the traffic, i.e., the packet sizes are
infinitesimal. In particular, if Ai(T. t) is the amount of session i traffic entering the network
during an interval [T. f],

A.i(T, t) :::; Wi + Ti(t - T).

Let T} (T. t) be the amount of session i traffic transmitted on link I in an interval [T. f].
Assume that each link I transmits at its maximum capacity C/ whenever it has traffic in queue
and operates according to a priority discipline, called Rate Proportional Processor Sharing,
whereby if two sessions i and} have traffic in queue throughout the interval [T. f], then

T/(r.f) _
r/(T f) - f'
J' J

We also assume that bits of the same session are transmitted in the order of their arrival.
(For practical approximations of such an idealized scheme, see [PaG91a].) Let S(l) be the
set of sessions sharing link I and let

(I) = LIES(l) ri
P C/

be the corresponding link utilization. Assume that p(l) < 1 for all links I.
(a) Let Ii be the first link crossed by session i. Show that the queue length at link Ii for

session i is never more than TVi. Furthennore, at link Ii, each bit of sessioni waits
in queue no more than ITI p(li) / fi time units, while for each interval [T. f] throughout
which session i has traffic in queue,

rl'(T. t) > ri(t - T)
I - p(li)

Hint: The rate of transmission of session i in an interval throughout which session i
has traffic in queue is at least fl / P(li). If l' and t are the start and end of a busy period
for session i, respectively, the queue length at times f E [1'. t] is

Qi(t) = AI(T. t) - r!' (1'. t) :::; Wi + (r i - P;;;)) (f - 1')

(b) Let P;na.r be the maximum utilization over the links crossed by session i and assume
that processing and propagation delay are negligible. Show that the amount of traffic
of session i within the entire network never exceeds TFI . Furthennore, the time spent
inside the network by a bit of session i is at most ITI P;na.r / fl. Hint: Argue that while
some link on session i's path has some sessioni traffic waiting in queue, the rate of
departure of session i traffic from the network is at least rl / P;n a,r'

(c) Consider now a generalization of the preceding scheme called Generalized Processor
Sharing. In particular, suppose that at each link I, instead of Eq. (6.11), the following
relation holds for all sessions i.} E S (I)

r} (T. t)
-1--
Tj(T.f)

536 Flow Control Chap. 6

min
all links I
crossed by i

9i

I Iwhere 6 i . OJ are given positive numbers. For any session i define

I 0:
p(/) LjES(l) 9j

Show that if 9i I'i. then the amount of traffic of session i within the entire network
never exceeds

Tril'i

9i

Furthermore. the time spent by a bit of session i inside the network is at most Wi I9i.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47

