Homework 6

Due: Friday, October 6, 2006, in class

Reading: cf. http:/www/nd.edu/~mhaenggi/ee344/overview.html

Problems from textbook: 3.31, 3.41, 3.32a*; 3.34a,b; 3.38, 3.44; 3.56**
*Solve the equations in Matlab using inv() and hand in your result with the written homework. Remember that both i and j are pre-defined in Matlab as $\sqrt{-1}$.
${ }^{* *}$ Use the multiplication property.

Problems from exercise book: 3.5a-d (read 3.1 first).

Matlab problems:

(a) Modify the function you wrote in Computer Explorations exercise 1.5a to implement equation (2.113) of the text with $N=M=1$. This will require the declaration to be of the form $y=\operatorname{diffeqn}$ (a , $\mathrm{b}, \mathrm{x}, \mathrm{yn} 1$), where a, b and x are vectors. x may be of arbitrary length, so diffeqn() should use the length() function to figure out its dimension. For this exercise you may "hard wire" $N=M=1$, or have your function find and use the lengths of a and b.
(b) In the directory /afs/nd.edu/courses/ee/ee30344.01/sounds/you will find several digital audio files. Write a MATLAB program which will load the file audio.mat (or similarly named files) and play it using the command soundsc (audio). Write a MATLAB function which calls your new diffeqn() to process the the audio vector. Write two output data files, audiofilt1.mat and audiofilt2.mat which result from setting, respectively, $a_{0}=1, a_{1}=-0.9, b_{0}=1.0, b_{1}=0.5$, and $a_{0}=1$, $a_{1}=0.9, b_{0}=1.0, b_{1}=-0.5$. Listen to the filtered vectors and comment on the effects your filters have had on them. A convenient way to listen to them all together for comparison is to dump them all into one vector: soundvec = [audio audiofilt1 audiofilt2] (for all row vectors); soundsc (soundvec). Put your MATLAB programs with comments and all output files into your dropbox under (afs_id)/hw6.
(c) Read tutorial 2.2 in the Computer Explorations book and write a Matlab program that does the filtering operations above using the filter command.

