Homework 10

Due: Friday, November 10, 2006, in class

Reading: cf. http:/www/nd.edu/~mhaenggi/ee344/overview.html

Problems from textbook: 5.13; 5.19; 5.21g,j; 5.22d,f; 5.23; 5.24(1,4,5); 5.29a(i), 5.30a,b(i,ii); 5.34a

Hint: For 5.21j, use the "differentiation in frequency" property.

Other (quiz-like) problems:

- 1. Let x[n] be an even rectangular pulse of length 2N + 1. Consider the specific case where N = 3.
 - (a) Define $Y(e^{j\omega}) = e^{-j\omega N} X(e^{j\omega})$ and sketch y[n].
 - (b) Let $q[n] = \text{Od}\{y[n]\}$ and sketch q[n].
 - (c) Determine $Q(e^{j\omega})$ and verify that it is purely imaginary and odd. What is Q(1)?

Now, consider the signal

$$w[n] = \begin{cases} -n - 2N - 1 & \text{for } -2N \leqslant n \leqslant -1\\ n - 2N & \text{for } 0 \leqslant n \leqslant 2N - 1\\ 0 & \text{elsewhere} \end{cases}$$

- (d) Sketch w[n] and determine $W(e^{j\omega})$. Hint: How are q[n] and w[n] related?
- (e) Let d[n] = q[n] q[n 1]. Determine D(e^{jω}) by
 (i) Deriving it directly from Q(e^{jω}).
 (ii) Decomposing d[n] into a sum (scaled and shifted) unit impulses. Compare your results from (i) and (ii).
- 2. Consider the DT LTI system given by the difference equation

$$y[n] = -ay[n-1] + b_1x[n] + b_2x[n-1].$$

- (a) Determine the frequency response H(e^{jω}) of this system by
 (i) using the method from Chapter 3.
 (ii) taking the FT of the difference equation and using H(e^{jω}) = Y(e^{jω})/X(e^{jω}).
- (b) Determine the impulse response h[n].
- (c) For which a, b_1, b_2 is this system noncausal? Unstable? Memoryless?
- (d) Find a set of coefficients a, b₁, b₂ such that this system is a
 (i) LP filter.
 (ii) UD filter.

(ii) HP filter.

You may use Matlab for this problem. Plot $|H(e^{j\omega})|$ using Matlab (freqz command) to verify that your filters have the desired magnitude response. Put a LP plot and a HP plot in your dropbox.