# Seiberg-Witten invariants and surface singularities 

Andras Nemethi \& Liviu I. Nicolaescu<br>math.AG/0111298, math.AG/0201120

## Contents

1 Topological Invariants 1
2 Analytic invariants 3
3 The Main Problem and a Bit of History 5
4 The Main Conjecture and Evidence in its Favor 6
$(X, p)$ (germ) of isolated surface singularity (i.s.s. for brevity). Assume $X$ is Stein.

## 1 Topological Invariants

The link. Embed $(X, p) \hookrightarrow\left(\mathbb{C}^{N}, 0\right)$, and set

$$
M=X \cap S_{\varepsilon}^{2 N-1}(0)
$$

$M$ is an oriented 3-manifold independent on the embedding and $\varepsilon \ll 1$.


Figure 1: The link of an isolated singularity

Good resolutions. A resolution of $(X, p)$ is a pair $(\tilde{X}, \pi)$ where

- $\tilde{X}$ is a smooth complex surface;
- $\tilde{X} \xrightarrow{\pi} X$ is holomorphic;
- $\tilde{X} \backslash \pi^{-1}(p) \rightarrow X \backslash p$ is biholomorphic;

The resolution is called good if the exceptional divisor $E:=\pi^{-1}(p)$ is a normal crossing divisor i.e its irreducible components $\left(E_{i}\right)_{1 \leq i \leq n}$ are smooth curves intersecting transversally.
FACT. Good resolutions exist but are not unique. There exists a unique minimal resolution $\hat{X}$, i.e. a resolution containing no -1 -spheres. There exists a unique minimal good resolution. (It may have -1 spheres, but when blown down the exceptional divisor will no longer be a normal crossing divisor). Any other resolution is obtained from the minimal one by blowing-up/down -1 spheres.

Suppose $\tilde{X}$ is a resolution of $X$. We set

$$
\begin{aligned}
& \Lambda=\Lambda(\tilde{X}):=\operatorname{span}_{\mathbb{Z}}\left\{E_{i}\right\} \subset H_{2}(\tilde{X}, \mathbb{Z}) \\
& \Lambda_{+}(\tilde{X}):=\left\{\sum_{i} m_{i} E_{i} \in \Lambda ; m_{i} \geq 0\right\}
\end{aligned}
$$

Theorem. (D. Mumford) The symmetric matrix $\left(E_{i} \cdot E_{j}\right)_{i, j}$ is $<0$.
The dual resolution graph. Suppose $(\tilde{X}, \pi)$ is a good resolution of the i.s.s. $(X, p)$ with exceptional divisor $E=\bigcup_{i} E_{i}$. The (dual) resolution graph is a decorated graph $\Gamma=\Gamma_{\tilde{X}}$ obtained as follows.

- There is one vertex $v_{i}$ for each component $E_{i}$.
- Two vertices $v_{i}, v_{j}, i \neq j$ are connected by $E_{i} \cdot E_{j}$ edges.
- Each vertex $v_{i}$ is decorated by two integers, the genus $g_{i}$ of $E_{i}$, and the self intersection number $e_{i}:=E_{i}^{2}$.

We see that $\tilde{X}$ is a plumbing of disk bundles over the Riemann surfaces $E_{i}$, with plumbing instructions contained in the graph $\Gamma$. The boundary of this plumbing is precisely the link of the singularity.


Figure 2: A plumbing and its associated dual graph

Theorem. (W.Neumann) Suppose $\left(X_{i}, p\right), i=0,1$ are two i.s.s. Denote by $M_{i}$ their links, and by $\tilde{X}_{i}$ their minimal good resolutions. The following statements are equivalent.
(a) The graphs $\Gamma_{\tilde{X}_{i}}$ are isomorphic (as weighted graphs).
(b) The links $M_{i}$ are diffeomorphic as oriented 3-manifolds.

Definition. We say that a property of an i.s.s. is topological if it can be described in terms of the combinatorics of the dual graph of the minimal good resolution.

The arithmetic genus. $\quad \tilde{X}$ resolution of $(X, p), E=\cup_{i} E_{i}$, the exceptional divisor. Note that every $Z=\sum_{i} n_{i} E_{i} \in \Lambda_{+}$can be identified with a compact complex curve on $\tilde{X}$. The arithmetic genus of $Z$ is defined by

$$
p_{a}(Z)=1+\frac{1}{2}\left(Z \cdot Z+\left\langle K_{\tilde{X}}, Z\right\rangle\right)
$$

where $K_{\tilde{X}} \in H^{2}(\tilde{X}, \mathbb{Z})$ is the canonical line bundle of $\tilde{X}$. When $Z$ is a smooth curve $p_{a}(Z)$ is the usual genus of $Z$. Set

$$
p_{a}(\tilde{X}):=\sup \left\{p_{a}(Z) ; \quad Z \in \Lambda_{+} \backslash 0\right\}
$$

This nonnegative integer is independent of the resolution and thus it is a topological invariant of $(X, p)$. We will denote it by $p_{a}(X, p)$, and we will refer to it as the arithmetic genus of the singularity.

The canonical cycle. $(X, p)$ - i.s.s. and $(\tilde{X}, \pi)$ is a resolution. The canonical cycle is the cycle $Z_{K}=Z_{K}(\tilde{X}) \in \Lambda \otimes \mathbb{Q}$ defined by

$$
Z_{K} \cdot E_{j}=-\left\langle K_{\tilde{X}}, E_{j}\right\rangle=2-p_{a}\left(E_{j}\right)+E_{j}^{2}, \forall i
$$

Set

$$
\gamma(\tilde{X})=Z_{K_{\tilde{X}}}^{2}+b_{2}(\tilde{X}) \in \mathbb{Q}
$$

This number is independent of the resolution $\tilde{X}$, and thus it is a topological invariant of $(X, p)$. We will denote it by $\gamma(X, p)$. Note that if $\tilde{X}$ is the minimal good resolution then $Z_{K_{\tilde{X}}}$ is a topological invariant of $M$.

Observe that

$$
\gamma(X, p)=\left(K_{\tilde{X}}^{2}-(2 \chi(\tilde{X})+3 \operatorname{sign}(\tilde{X}))\right)+2-2 b_{1}(\tilde{X})
$$

Definition. Suppose $(X, p)$ is an i.s.s., and $(\tilde{X}, \pi, E)$ is a good resolution. The singularity is called Gorenstein if $\left.K_{\tilde{X}}\right|_{\tilde{X} \backslash E}$ is holomorphically trivial. The singularity is called numerically Gorenstein if $\left.K_{\tilde{X}}\right|_{\tilde{X} \backslash E}$ is topologically trivial.

Observe that $(X, p)$ is numerically Gorenstein iff

$$
K_{\tilde{X}} \in H^{2}(\tilde{X}, \partial \tilde{X} ; \mathbb{Z}) \Longleftrightarrow Z_{K} \in \Lambda
$$

Example. All local complete intersection singularities are Gorenstein. Recall that the i.s.s. $(X, p)$ is a local complete intersection singularity if near $p$ it can is described as the zero set of a holomorphic map $F: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N-2}$.

## 2 Analytic invariants

The geometric genus. $(X, p)$ i.s.s., $X$ Stein, $\tilde{X}$ resolution.

$$
\tilde{X} \text { Levi pseudoconvex } \Longrightarrow \operatorname{dim} H^{k}\left(\tilde{X}, \mathcal{O}_{\tilde{X}}\right)<\infty, \quad \forall k \geq 1
$$

The integer $\operatorname{dim} H^{1}\left(\tilde{X}, \mathcal{O}_{\tilde{X}}\right)$ is independent of the resolution, and thus it is an analytic invariant of $(X, p)$. It is called the geometric genus and is denoted by $p_{g}(X, p)$. It is known that

$$
p_{g}(X, p) \geq p_{a}(X, p)
$$

Example. Suppose $L \rightarrow \Sigma$ is a degree $d<0$ holomorphic line bundle over the Riemann surface $\Sigma$ of genus $g$. By a theorem of Grauert there exists a natural Stein space $X$ with an isolated singularity at $p \in X$, and a holomorphic map

$$
(L, \Sigma) \xrightarrow{\pi}(X, p)
$$

which makes $L$ a good resolution of $(X, p)$ with exceptional divisor $\Sigma \hookrightarrow L$. Then

$$
\begin{aligned}
& p_{a}(X, p)=g, \quad Z_{K}=\left(1+\frac{2-2 g}{d}\right) \Sigma, \quad \gamma(X, p)=d\left(1+\frac{2-2 g}{d}\right)^{2}+1 \\
& p_{g}(X, p)=\sum_{n \geq 0} \operatorname{dim} H^{1}(\Sigma, \mathcal{O}(-n L)) \stackrel{\text { Serre }}{=} \sum_{n \geq 0} \operatorname{dim} H^{0}\left(\Sigma, \mathcal{O}\left(K_{\Sigma}+n L\right)\right)
\end{aligned}
$$

We deduce that $p_{g}(X, p)$ depends on the complex structure on $\Sigma$, and on the complex structure on $L$, i.e. on the holomorphic embedding $\Sigma \hookrightarrow L$. These dependencies on analytic data become irrelevant under appropriate topological constraints.

- $\Sigma$ is rational, i.e. $g=0$.
- $\Sigma$ is elliptic, i.e. $g=1$.
- The degree of $L$ is sufficiently negative, $\operatorname{deg} L \leq-g$.

In all these cases $p_{g}(X, p)=p_{a}(X, p)=g$.

Smoothings. A smoothing of an i.s.s. $(X, p)$ is a proper flat map $(X, q) \xrightarrow{F}(\mathbb{C}, 0)$ together with an embedding $\imath:(X, p) \hookrightarrow(X, q)$ which induces an isomorphism $(X, p) \cong\left(F^{-1}(0), q\right)$. For $t \in \mathbb{C}^{*}$ sufficiently small the fiber $X_{t}:=f^{-1}(t)$ is smooth. Its topology is independent of $t$. $X_{t}$ is called the Milnor fiber of the smoothing. The Milnor number $\mu$ of the smoothing is $b_{2}\left(X_{t}\right)$.

Example. Suppose $(X, p)$ is the complete intersection, described by the zero set of a map $F: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N-2}$. To construct smoothings of $(X, p)$ its suffices to pick a line through the origin $L \subset \mathbb{C}^{N-2}$ and set $X:=F^{-1}(L)$.

Theorem. (Durfee-Laufer-Steenbrink-Wahl) Suppose ( $X, p$ ) is a smoothable Gorenstein i.s.s. We denote by $F$ its Milnor fiber. Then

$$
p_{g}(X, p)=-\frac{1}{8} \operatorname{sign}(F)-\frac{1}{8} \gamma(X, p)
$$

Motivated by the above result, we define the virtual signature of an i.s.s. by

$$
\sigma_{v i r t}(X, p):=-8 p_{g}(X, p)-\gamma(X, p)
$$

For smoothable Gorenstein singularities, the virtual signature is the signature of the Milnor fiber.

## 3 The Main Problem and a Bit of History

The Main Problem. How much information about the analytic structure of the i.s.s. $(X, p)$ is encoded in the topology of its link $M$. In particular, can we determine $p_{g}(X, p)$ from combinatorial data contained in the dual resolution graph of the minimal good resolution?

History. Work of the past four decades indicates that the link often contains nontrivial information about the analytic structure.
$(1)$ D. Mumford, 1961) $(X, p)$ is smooth at $p$ if and only if the link is $\cong S^{3}$.
(2) (M. Artin, 1962-66) $p_{g}(X, p)=0 \Longleftrightarrow p_{a}(X, p)=0$. In this case, the link $M$ is a rational homology sphere ( $\mathbb{Q} H S$ for brevity).

3 (H. Laufer, 1977) Assume that $(X, p)$ is elliptic, i.e. $p_{a}(X, p)=1$, and Gorenstein. Then the condition $p_{g}(X, p)=1$ is topological.
4 (A. Nemethi, 1999) Assume that $(X, p)$ is elliptic, Gorenstein, and the link $M$ is a $\mathbb{Q} H S$. Then $p_{g}(X, p)$ is equal to a certain topological invariant of $M$, the length of the elliptic sequence defined by S.S.-T. Yau.

Remark. (a) $M$ is a $\mathbb{Q} H S$ iff $\Gamma$ is a tree and all the components $E_{i}$ are rational curves. (b) The condition that $M$ is a $\mathbb{Q} H S$ cannot be removed from © To see this consider the singularities $\left(X_{1}, 0\right)=\left\{x^{2}+y^{3}+z^{18}=0\right\},\left(X_{2}, 0\right)=\left\{z^{2}+y\left(x^{4}+y^{6}\right)=0\right\}$. They have isomorphic resolution graphs (see below), but $p_{g}\left(X_{1}, 0\right)=3, p_{g}(X, 2,0)=2$.


6 (Fintushel-Stern, Neumann-Wahl, 1990) Suppose ( $X, p$ ) is a Brieskorn complete intersection singularity and the link $M$ is an integral homology sphere $(\mathbb{Z} H S)$. Then

$$
\operatorname{Casson}(M)=-\frac{1}{8} \sigma_{v i r t}(X, p)
$$

Here we recall that a Brieskorn complete intersection singularity is a complete intersection singularity of the form

$$
\left\{\begin{array}{ccccccc}
a_{11} z_{1}^{p_{1}} & + & \cdots & + & a_{1 n} z_{n}^{p_{n}} & = & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
a_{(n-2) 1} z_{1}^{p_{1}} & + & \cdots & + & a_{(n-2) n} z_{n}^{p_{n}} & = & 0
\end{array}\right.
$$

Remark. If in 6 we assume only that $M$ is a $\mathbb{Q} H S$ then the obvious generalization

$$
\text { Casson-Walker }(M)=-\frac{1}{8} \sigma_{v i r t}(X, p)
$$

is no longer true.

## 4 The Main Conjecture and Evidence in its Favor

The Main Conjecture. Suppose $(X, p)$ is a rational, or Gorenstein singularity such that its link is a $\mathbb{Q} H S$. Then $M$ is equipped with a canonical spin $^{c}$ structure $\sigma_{\text {can }}$, which depends only on the resolution graph $\Gamma$ of the minimal good resolution, and

$$
\boldsymbol{s} \boldsymbol{w}_{M}\left(\sigma_{c a n}\right)=-\frac{1}{8} \sigma_{v i r t}(X, p)
$$

where $\boldsymbol{s} \boldsymbol{w}_{M}\left(\sigma_{c a n}\right)$ denotes the Seiberg-Witten invariant of the canonical spin ${ }^{c}$ structure. In particular, if $M$ is a $\mathbb{Z} H S$ then there is an unique $\operatorname{spin}^{c}$ structure on $M$ whose SeibergWitten invariant equals the Casson invariant of $M$ so that

$$
\operatorname{Casson}(M)=-\frac{1}{8} \sigma_{v i r t}(X, p)
$$

Evidence. We need to describe the various terms in the Main Conjecture.
Denote by $\tilde{X}$ the minimal good resolution of $(X, p)$. Then

$$
\Lambda=H_{2}(\tilde{X}, \mathbb{Z}), \quad H^{2}(\tilde{X}, \mathbb{Z}) \cong \check{\Lambda}:=\operatorname{Hom}(\Lambda, \mathbb{Z})
$$

Set $H:=H_{1}(M, \mathbb{Z})$, and denote the group operation on $H$ multiplicatively. The intersection form on $\Lambda$ defines an embedding $\Lambda \hookrightarrow \check{\Lambda}$, and we have

$$
H \cong \check{\Lambda} / \Lambda
$$

$H$ acts freely and transitively on the set $\operatorname{Spin}^{c}(M)$ of $\operatorname{spin}^{c}$ structures on $M$

$$
H \times \operatorname{Spin}^{c}(M) \ni(h, \sigma) \mapsto h \cdot \sigma \in \operatorname{Spi}^{c}(M)
$$

To define the canonical $\operatorname{spin}^{c}$ structure $\sigma_{c a n}$ let us recall that a choice of a $\operatorname{spin}^{c}$ structure on $M$ is equivalent to a choice of an almost complex structure on the stable tangent bundle $\underline{\mathbb{R}} \oplus T M$ of $M$. The stable tangent bundle of $M$ is equipped with a natural complex structure induced by the complex structure on $\tilde{X} . \sigma_{c a n}$ is the $\operatorname{spin}^{c}$ structure associated to this complex structure.

* Proposition. $\sigma_{\text {can }}$ can be described only in terms of the combinatorics of $\Gamma_{\tilde{X}}$.

Proof. Denote by $\boldsymbol{l} \boldsymbol{k}_{M}: H \times H \rightarrow \mathbb{Q} / \mathbb{Z}$ the linking form of $M$. An enhancement of $\boldsymbol{l} \boldsymbol{k}_{M}$ is a function

$$
q: H \rightarrow \mathbb{Q} / \mathbb{Z}
$$

such that

$$
q\left(h_{1} h_{2}\right)-q\left(h_{1}\right)-q\left(h_{2}\right)=\boldsymbol{l} \boldsymbol{k}_{M}\left(h_{1}, h_{2}\right), \quad \forall h_{1}, h_{2} \in H
$$

There is a natural bijection between $\operatorname{Spin}^{c}(M)$ and the set of enhancements, $\sigma \mapsto q_{\sigma}$. Recalling that $H \cong \check{\Lambda} / \Lambda$ we define

$$
q_{c a n}: \check{\Lambda} / \Lambda \rightarrow \mathbb{Q}, \quad q_{c a n}(h)=-\frac{1}{2}\left(K_{\tilde{X}} \cdot \check{h}+\check{h} \cdot \check{h}\right) \bmod \mathbb{Z}
$$

for every $h \in \check{\Lambda} / \Lambda$, and every $\check{h} \in \check{\Lambda}$ which projects onto $h$. The expression in the right hand side depends only on $\Gamma . \sigma_{\text {can }}$ is the spin $^{c}$ structure corresponding to $q_{c a n}$.

Remark. (a) $q_{c a n}$ first appeared in work of Looijenga-Wahl.
(b) From the above description of $\sigma_{c a n}$ and the equality $(\gamma)$ we deduce that $\gamma(X, p)-2$ equals the Gompf invariant of the $\operatorname{spin}^{c}$ structure $\sigma_{c a n}$.

The Seiberg-Witten invariant is a function

$$
\boldsymbol{s \boldsymbol { w } _ { M }}: \operatorname{Spin}^{c}(M) \rightarrow \mathbb{Q}, \quad \sigma \mapsto \boldsymbol{w}_{M}(\sigma) .
$$

$\boldsymbol{s} \boldsymbol{w}_{M}(\sigma)=\#$ of Seiberg-Witten $\sigma$-monopoles + the Kreck-Stolz invariant of $\sigma$ (a certain combination of eta invariants). For each $\sigma \in \operatorname{Spin}^{c}(M)$ define

$$
\boldsymbol{S} \boldsymbol{W}_{M, \sigma}: H \rightarrow \mathbb{Q}, \quad \boldsymbol{S} \boldsymbol{W}_{M, \sigma}(h)=\boldsymbol{s} \boldsymbol{w}_{M}\left(h^{-1} \cdot \sigma\right) .
$$

One can give a combinatorial description of this invariant. For each spin ${ }^{c}$ structure $\sigma$, the Reidemeister-Turaev torsion of $(M, \sigma)$ is a function

$$
\mathcal{T}_{M, \sigma}: H \rightarrow \mathbb{Q} .
$$

Denote by $C W_{M}$ the Casson-Walker invariant of $M$, and define the modified ReidemeisterTuraev torsion of $M$ by

$$
\mathcal{T}_{M, \sigma}^{0}: H \rightarrow \mathbb{Q}, \quad \mathcal{T}_{M, \sigma}^{0}(h):=\frac{1}{|H|} C W_{M}+\mathcal{T}_{M, \sigma}(h), \quad \forall h \in H
$$

Theorem. (L.I. Nicolaescu) For every $\sigma \in \operatorname{Spin}^{c}(M)$ we have

$$
\boldsymbol{S} \boldsymbol{W}_{M, \sigma} \equiv \mathcal{T}_{M, \sigma}^{0} .
$$

Denote by $\hat{H}$ the Pontryagin dual of $H, \hat{H}:=\operatorname{Hom}(H, U(1))$. The Fourier transform of $\mathcal{T}_{M, \sigma_{c a n}}$ is the function

$$
\hat{\mathfrak{T}}_{M, \sigma_{c a n}}: \hat{H} \rightarrow \mathbb{C}, \quad F(\chi)=\sum_{h \in H} \mathcal{T}_{M, \sigma_{c a n}}(h) \bar{\chi}(h) .
$$

The Fourier inversion formula implies

$$
\begin{equation*}
s \boldsymbol{w}_{M}\left(\sigma_{c a n}\right)=\boldsymbol{S} \boldsymbol{W}_{M, \sigma_{c a n}}(1)=\frac{1}{|H|} C W_{M}+\frac{1}{|H|} \sum_{\chi \in \hat{H}} \hat{\mathcal{T}}_{M, \sigma_{c a n}}(\chi) . \tag{*}
\end{equation*}
$$

Theorem.(Lescop-Raţiu) The Casson-Walker invariant can be described explicitly in terms of the combinatorics of $\Gamma$.
Main Technical Result. (Nemethi-Nicolaescu) $\hat{\mathfrak{T}}_{M, \sigma_{\text {can }}}$ can be described explicitly in terms of the combinatorics of $\Gamma_{\tilde{X}}$.

Idea of Proof. Using surgery formulæ we produce an explicit holomorphic regularization $R_{M}$ of $\hat{\mathscr{T}}_{M, \sigma_{c a n}}$. This is an element in the group algebra $\mathbb{C}(t)[\hat{H}]$,

$$
R_{M}=\sum_{\chi \in \hat{H}} R_{\chi}(t) \chi, \quad R_{\chi} \in \mathbf{C}(t)=\text { the field of rational functions in one variable } \quad(* *)
$$

such that for every character $\chi$

$$
\lim _{t \rightarrow 1} R_{\chi}(t)=\hat{\mathfrak{T}}_{M, \sigma_{c a n}}(\chi)
$$

In applications the sum in the right-hand side of $(*)$ is difficult to compute if the combinatorics of the graph is very involved.
Theorem. (Nemethi-Nicolaescu) The Main Conjecture is true for all the quasihomogeneous singularities whose links are $\mathbb{Q} H S$ 's.

Idea of Proof. For a quasihomogeneous singularity $(X, p)$ the resolution graph is star-shaped and the sum in (*) simplifies somewhat. Our expression for the holomorphic regularization $R_{M}$ in (**) is formally identical to the Poincaré series associated to the Universal Abelian cover of ( $X, p$ ) introduced by W.Neumann. The proof of the Main Conjecture in this case relies on a formula for $p_{g}(X, p)$ of Dolgachev-Pinkham, and on some ideas of Neumann and Zagier.

