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Introduction

My task which I am trying to achieve is by the power of
the written word, to make you hear, to make you feel - it
is, before all, to make you see. That - and no more, and
it is everything.

Joseph Conrad

Almost two decades ago, a young mathematician by the name of Si-
mon Donaldson took the mathematical world by surprise when he discov-
ered some “pathological” phenomena concerning smooth 4-manifolds. These
pathologies were caused by certain behaviours of instantons, solutions of the
Yang-Mills equations arising in the physical theory of gauge fields.

Shortly after, he convinced all the skeptics that these phenomena rep-
resented only the tip of the iceberg. He showed that the moduli spaces
of instantons often carry nontrivial and surprising information about the
background manifold. Very rapidly, many myths were shattered.

A flurry of work soon followed, devoted to extracting more and more
information out of these moduli spaces. This is a highly nontrivial job,
requiring ideas from many branches of mathematics. Gauge theory was
born and it is here to stay.

In the fall of 1994, the physicists N. Seiberg and E. Witten introduced
to the world a new set of equations which according to physical theories had
to contain the same topological information as the Yang-Mills equations.

From an analytical point of view these new equations, now known as
the Seiberg-Witten equations, are easier to deal with than the Yang-Mills
equations. In a matter of months many of the results obtained by studying
instantons were re-proved much faster using the new theory. (To be perfectly
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xiv Introduction

honest, the old theory made these new proofs possible since it created the
right mindset to think about the new equations.) The new theory goes
one step further, since it captures in a more visible fashion the interaction
geometry-topology.

The goal of these notes is to help the potential reader share some of
the excitement afforded by this new world of gauge theory and eventually
become a player him/herself.

There are many difficulties to overcome. To set up the theory one needs
a substantial volume of information. More importantly, all this volume of
information is processed in a nontraditional way which may make the first
steps in this new world a bit hesitant. Moreover, the large and fast-growing
literature on gauge theory, relying on a nonnegligible amount of “folklore”1,
may look discouraging to a beginner.

To address these issues within a reasonable space we chose to present a
few, indispensable, key techniques and as many relevant examples as pos-
sible. That is why these notes are far from exhaustive and many notable
contributions were left out. We believe we have provided enough back-
ground and intuition for the interested reader to be able to continue the
Seiberg-Witten journey on his/her own.

It is always difficult to resolve the conflict clarity vs. rigor and even
much more so when presenting an eclectic subject such as gauge theory. The
compromises one has to make are always biased and thus may not satisfy
all tastes and backgrounds. We could not escape this bias, but whenever a
proof would have sent us far astray we tried to present all the main concepts
and ideas in as clear a light as possible and make up for the missing details
by providing generous references. Many technical results were left to the
reader as exercises but we made sure that all the main ingredients can be
found in these notes.

Here is a description of the content. The first chapter contains prelim-
inary material. It is clearly incomplete and cannot serve as a substitute
for a more thorough background study. We have included it to present in
the nontraditional light of gauge theory many classical objects which may
already be familiar to the reader.

The study of the Seiberg-Witten equations begins in earnest in Chapter
2. In the first section we introduce the main characters: the monopoles,
i.e. the solutions of the Seiberg-Witten equations and the group of gauge
transformations, an infinite dimensional Abelian group acting on the set of
monopoles. The Seiberg-Witten moduli space and its structure are described
in Section 2.2 while the Seiberg-Witten invariants are presented in Section

1That is, basic facts and examples every expert knows and thus are only briefly or not at all
explained in a formal setting. They are usually transmitted through personal interactions.
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2.3. We have painstakingly included all the details concerning orientations
because this is one of the most confusing aspects of the theory. We conclude
this chapter with two topological applications: the proof by P. Kronheimer
and T. Mrowka of the Thom conjecture for CP2 and the new proof based
on monopoles of Donaldson’s first theorem, which started this new field of
gauge theory.

In Chapter 3 we concentrate on a special, yet very rich, class of smooth
4-manifolds, namely the algebraic surfaces. It was observed from the very be-
ginning by E. Witten that the monopoles on algebraic surfaces can be given
an explicit algebraic-geometric description, thus opening the possibility of
carrying out many concrete computations. The first section of this chapter
is a brief and informal survey of the geometry and topology of complex sur-
faces together with a large list of examples. In Section 3.2 we study in great
detail the Seiberg-Witten equations on Kähler surfaces and, in particular,
we prove Witten’s result stating the equivalence between the Seiberg-Witten
moduli spaces and certain moduli spaces of divisors. The third section is
devoted entirely to applications. We first prove the nontriviality of the
Seiberg-Witten invariants of a Kähler surface and establish the invariance
under diffeomorphisms of the canonical class of an algebraic surface of gen-
eral type. We next concentrate on simply connected elliptic surfaces. We
compute all their Seiberg-Witten invariants following an idea of O. Biquard
based on the factorization method of E. Witten. This computation allows
us to provide the complete smooth classification of simply connected elliptic
surfaces. In §3.3.3, we use the computation of the Seiberg-Witten invariants
of K3-surfaces to show that the smooth h-cobordism theorem fails in four di-
mensions. We conclude this section and the chapter with a discussion of the
Seiberg-Witten invariants of symplectic 4-manifolds and we prove Taubes’
theorem on the nontriviality of these invariants in the symplectic world.

The fourth and last chapter is by far the most technically demanding
one. We present in great detail the cut-and-paste technique for comput-
ing Seiberg-Witten invariants. This is a very useful yet difficult technique
but the existing written accounts of this method can be unbalanced as re-
gards their details. In this chapter we propose a new approach to this
technique which in our view has several conceptual advantages and can be
easily adapted to other problems as well. Since the volume of technicalities
can often obscure the main ideas we chose to work in a special yet suffi-
ciently general case when the moduli spaces of monopoles on the separating
3-manifold are, roughly speaking, Bott nondegenerate.

Section 4.1 contains preliminary material mostly about elliptic equa-
tions on manifolds with cylindrical ends. Most objects on closed manifolds
have cylindrical counterparts which often encode very subtle features. We
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discovered that a consistent use of cylindrical notions is not only æsthet-
ically desirable, but also technically very useful. The cylindrical context
highlights and coherently organizes many important and not so obvious as-
pects of the whole gluing problem. An important result in this section is
the Cappell-Lee-Miller gluing theorem. We adapt the asymptotic language
of [110], which is extremely convenient in gluing problems. This section
ends with the long subsection §4.1.6 containing many useful and revealing
examples. These are frequently used in gauge theory and we could not find
any satisfactory reference for them.

In Section 4.2 we study the finite energy monopoles on cylindrical man-
ifolds. The results are very similar to the ones in Yang-Mills equations and
that is why this section was greatly inspired by [96, 133].

Section 4.3 is devoted to the local study of the moduli spaces of finite
energy monopoles. The local structure is formally very similar to that in
Yang-Mills theory with a notable exception, the computation of the virtual
dimensions, which is part of the folklore. We present in detail this com-
putation since it is often relevant. Moreover, we describe some new exact
sequences relating the various intervening deformation complexes to objects
covered by the Cappell-Lee-Miller gluing theorem. These exact sequences
represent a departure from the mainstream point of view and play a key role
in our local gluing theorem.

Section 4.4 is devoted to the study of global properties of the moduli
spaces of finite energy monopoles: generic smoothness, compactness (or lack
thereof) and orientability. The orientability is no longer an elementary issue
in the noncompact case and we chose to present a proof of this fact only in
some simpler situations we need for applications.

Section 4.5 contains the main results of this chapter dealing with the pro-
cess of reconstructing the space of monopoles on a 4-manifold decomposed
into several parts by a hypersurface. This manifold decomposition can be
analytically simulated by a neck stretching process. During this process,
the Seiberg-Witten equations are deformed and their solutions converge to
a singular limit. The key issue to be resolved is whether this process can
be reversed: given a singular limit can we produce monopoles converging to
this singular limit?

In his dissertation [99], T. Mrowka proved a very general gluing theo-
rem which provides a satisfactory answer to the above question in the related
context of Yang-Mills equations. In §4.5.2, we prove a local gluing theorem,
very similar in spirit to Mrowka’s theorem but in an entirely new context.
The main advantage of the new approach is that all the spectral estimates
needed in the proof follow immediately from the Cappell-Lee-Miller gluing
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theorem. Moreover, the Mayer-Vietoris type local model is just a reformu-
lation of the Cappell-Lee-Miller theorem. The asymptotic language of [110]
has allowed us to provide intuitive, natural and explicit descriptions of the
various morphisms entering into the definition of this Mayer-Vietoris model.

The local gluing theorem we prove produces monopoles converging to a
singular limit at a certain rate. If all monopoles degenerated to the singular
limit set at this rate then we could conclude that the entire moduli space on
a manifold with a sufficiently long neck can be reconstructed from the local
gluing constructions. This issue of the surjectivity of the gluing construction
is conspicuously missing in the literature and it is quite nontrivial in non-
generic situations. We deal with it in §4.5.3 by relying on ÃLojasewicz’s
inequality in real algebraic geometry.

In §4.5.4 we prove two global gluing theorems, one in a generic situation
and the other one in a special, obstructed setting.

Section 4.6 contains some simple topological applications of the gluing
technique. We prove the connected sum theorem and the blow-up formula.
Moreover, we present a new and very short proof of a vanishing theorem of
Fintushel and Stern.

These notes were written with a graduate student in mind but there are
many new points of view to make it interesting for experts as well (especially
our new approach to the gluing theorem). The minimal background needed
to go through these notes is a knowledge of basic differential geometry,
algebraic topology and some familiarity with fundamental facts concerning
elliptic partial differential equations. The list of contents for Chapter 1 can
serve as background studying guide.

∗ ∗ ∗

Personal note. I have spent an exciting time of my life thinking and
writing these notes and I have been supported along the way by many people.

The book grew out of a year long seminar at McMaster University and a
year long graduate course I taught at the University of Notre Dame. I want
to thank the participants at the seminar and the course for their patience,
interest, and most of all, for their many useful questions and comments.

These notes would perhaps not have seen the light of day were it not for
Frank Connolly’s enthusiasm and curiosity about the subject of gauge theory
which have positively affected me, personally and professionally. I want to
thank him for the countless hours of discussions, questions and comments
which helped me crystallize many of the ideas in the book.

For the past five years, I have been inspired by Arthur Greenspoon’s
passion for culture in general, and mathematics in particular. His interest
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in these notes kept my enthusiasm high. I am greatly indebted to him
for reading these notes, suggesting improvements and correcting my often
liberal use of English language and punctuation.

While working on these notes I benefited from the conversations with
Andrew Sommese, Stephan Stolz and Larry Taylor, who patiently answered
my sometimes clumsily formulated questions and helped clear the fog.

My wife has graciously accepted my long periods of quiet meditation or
constant babbling about gauge theory. She has been a constant source of
support in this endeavor. I want to thank my entire family for being there
for me.

Notre Dame, Indiana 1999



Chapter 1

Preliminaries

The last thing one knows in constructing a work is what
to put first.

Blaise Pascal, Pensées

The first chapter contains a fast and unavoidable biased survey of some
basic facts needed in understanding Seiberg-Witten theory. The choices in
this minimal review reflect the author’s background and taste and may not
answer everyone’s needs. We hope the generous list of references will more
than make up for the various omissions.

This introductory chapter has only one goal, namely to familiarize the
reader with the basic terms and points of view in the Seiberg-Witten world
and cannot serve as a substitute for a solid background.

1.1. Bundles, connections and characteristic
classes

1.1.1. Vector bundles and connections. Smooth vector bundles for-
malize the notion of “smooth family of vector spaces”. For example, given
a smooth manifold M and a vector space F we can think of the Cartesian
product

F = FM := F × M

1
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as a smooth family (Fx)x∈M of vector spaces. This trivial example is not
surprisingly called the trivial vector bundle with fiber F and base M .

We can obtain more interesting examples by gluing these simple ones
using gluing data. These consist of
A. an open cover (Uα) of a smooth manifold M ,
B. a gluing cocycle, i.e. a collection of smooth maps

gβα : Uαβ → Aut (F )

(where Uαβ = Uα ∩ Uβ), such that

gαα(x) ≡ 1F , gγα ≡ gγβ(x) · gβα(x) ∀x ∈ Uαβγ := Uα ∩ Uβ ∩ Uγ 6= ∅.
The open cover Uα is also known as a trivializing cover. We will also say it
is the support of the gβα.

The map gβα describes the “transition from Fα := FUα
to F β” in the

sense that for every x ∈ Uαβ the element (v, x) ∈ Fα is identified with the
element (gβα(x)v, x) ∈ F β . Pasting together the trivial bundles Fα following
the instructions given by the gluing cocycle we obtain a smooth manifold
E (called the total space), a smooth map π : E → M (called the canonical
projection) and diffeomorphisms

ψα : π−1(Uα) → Fα

(called local trivializations) such that for all x ∈ Uαβ , v ∈ V

ψβ ◦ ψ−1
α (v, x) = (gβα(x)v, x).

E
π→ M as above is called a vector bundle over M . The rank of E is by

definition the dimension of the standard fiber F (over its field of scalars).
Rank-one bundles are also known as line bundles.

Example 1.1.1. Consider the projective space CPn defined as the set of
one-dimensional complex subspaces of Cn+1. There is a natural projection

π : Cn+1 \ {0} → CPn

where π(x) := the one-dimensional subspace spanned by x. The fibers

π−1(p), p ∈ CPn,

are vector subspaces of Cn+1. The family π−1(p) is indeed a smooth family
of vector spaces in the sense described above. It is called the tautological
(or universal) line bundle over the projective space and is denoted by Un.

Exercise 1.1.1. Describe a gluing cocycle for Un.

Suppose that X
f→ Y is a smooth map and E → Y is a smooth vector

bundle given by a gluing cocycle gβα supported by an open cover (Uα) of
Y . Then f induces a vector bundle on X called the pullback of E by f and
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denoted by f∗E. It is given by the open cover (Vα = f−1(Uα)) and gluing
cocycle hβα = gβα ◦ f .

The following exercise describes a very general procedure of constructing
smooth vector bundles.

Exercise 1.1.2. Consider a smooth map P from a compact, connected,
smooth manifold X to the space End (V ) of endomorphisms of a vector
space V such that P 2(x) = P (x) ∀x ∈ X, i.e. P (x) is a smooth family of
projectors of V .
(a) Show that dim kerP (x) is independent of x ∈ X. Denote by k this
common dimension.
(b) Show that the assignment x 7→ ker P (x) defines a rank-k smooth vector
bundle over X.
(c) Provide a projector description of the tautological line bundle over CPn.

(d) Show that any map X → V ∗ \ {0} defines in a canonical way a vector
bundle over X of rank dimV − 1.

Remark 1.1.2. Denote by Gk(V ) the Grassmannian of k-dimensional sub-
spaces of an n-dimensional vector space V . Assume V is equipped with an
inner product. For each k-dimensional subspace U ⊂ V denote by PU the
orthogonal projection onto U⊥. The smooth family

Gk(V ) 3 U 7→ PU

defines according to the previous exercise a rank-k vector bundle over Gk(V )
called the universal vector bundle and denoted by Uk,n. When k = 1 this is
precisely the tautological line bundle over RPn−1 or CPn−1.

Exercise 1.1.3. Suppose that x 7→ P (X) is a smooth family of projectors
of a vector space V parameterized by a connected smooth manifold X. Set
k = dim ker P (x) and n = dimV and denote by f the map

f : X → Gk(V ), x 7→ kerP (x) ∈ Gk(V ).

Show that f is smooth and that the pullback of Uk,n by f coincides with
the vector bundle defined by the family of projections P (x).

A smooth map s from a smooth manifold X to a vector space F is a
smooth selection of an element s(x) in each fiber F ×x of F . In other words,
it is a smooth map s : X → FX such that π ◦ s = 1X where π : FX → X
is the natural projection. Replacing FX with any smooth vector bundle
E

π→ X we get the notion of smooth section of E. The space of smooth
sections of E will be denoted by Γ(E) or C∞(E). In terms of gluing cocycles
we can describe a section as a collection of smooth maps

sα : Uα → F
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such that
sβ(x) = gβα(x)sα(x), ∀x ∈ Uα ∩ Uβ .

The functorial operations in linear algebra have a vector bundle coun-
terpart. Suppose Ei

πi→ X (i = 1, 2) are two vector bundles over X with
standard fibers Fi, i = 1, 2, given by gluing cocycles gβα;i along the same
support. For example, the direct sum F1 ⊕ F2 corresponds to the direct
(Whitney) sum E1 ⊕ E2 given by the gluing cocycle gβα;1 ⊕ gβα;2.

The dual vector bundle E∗
1 is defined by the gluing cocycle (g∗βα;1)

−1

where “∗” denotes the conjugate transpose.
We can form tensor products, symmetric, exterior products of

vector bundles, etc. In particular, the bundle E∗
1 ⊗ E2 will be denoted

by Hom (E1, E2). Its sections are bundle morphisms, i.e. smooth maps
T : E1 → E2 mapping the fiber E1(x) of E1 linearly to the fiber E2(x) of
E2. When E1 = E2 = E we use the notation End (E). If the induced mor-
phisms T (x) are all isomorphisms then T is called a bundle isomorphism. A
bundle automorphism of a vector bundle E is also called a gauge transfor-
mation. The group of bundle automorphisms of E is denoted by G(E) and
is known as the gauge group of E.

Exercise 1.1.4. Suppose L → X is a smooth complex line bundle over X.
Show that

G(L) ∼= C∞(M, C∗).

The line bundle Λrank(E1)E1 is called the determinant line bundle of E1

and is denoted by detE1.
If E → X is an R-vector bundle then a metric on E is a section h of

Symm2(E∗) such that h(x) is positive definite for every x ∈ X. If E is
complex one defines similarly Hermitian metrics on E. A Hermitian bundle
is a vector bundle equipped with a Hermitian metric.

The next exercise will show how to use sections to prove that any com-
plex line bundle over a compact manifold is the pullback of the universal
line bundle over a complex projective space.

Exercise 1.1.5. Suppose M is a smooth compact manifold and E → M is
a complex line bundle. A subspace V ⊂ C∞(E) is said to be ample if for
any x ∈ M there exists u ∈ V such that u(x) 6= 0.
(a) Show that there exist finite-dimensional ample subspaces V ⊂ C∞(E).
(b) Let V be a finite-dimensional ample subspace of C∞(E). For each x ∈ M
set

Vx = {v ∈ V ; v(x) = 0}.
Equip V with a Hermitian metric and denote by P (x) : V → V the or-
thogonal projection onto Vx. Show that dim kerPx = 1 and the family of
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projections {P (x); x ∈ M} is smooth. As in Exercise 1.1.2(b) we obtain a
complex line bundle EV → V .
(c) Show that the line bundle E is isomorphic to EV . In particular, this
shows that E is the pullback of a universal line bundle over a projective
space.
(d) Suppose that f, g : M → CPn are two (smoothly) homotopic maps.
Denote by Ef (resp. Eg) the pullbacks of the universal line bundle Un via
f (resp. g). Show that Ef

∼= Eg.

Remark 1.1.3. For every smooth manifold M denote by Pic∞(M) the
space of isomorphism classes of smooth complex line bundles over M and by
[M, CPn]∞ the set of (smooth) homotopy classes of smooth maps M → Cn.
This is an inductive family

[M, CP1]∞ ↪→ [M, CP2]∞ ↪→ · · ·
and we denote by [M, CP∞]∞ its inductive limit. The above exercise shows
that if M is compact we have a bijection

Pic∞(M) ∼= [M, CP∞]∞.

The tensor product of line bundles induces a structure of Abelian group on
Pic∞(M). Since the inductive limit CP∞ of the CPn’s is a K(Z, 2)-space we
can conclude that we have an isomorphism of groups

ctop
1 : Pic∞(M) → H2(M, Z).

For any L ∈ Pic∞(M) the element ctop
1 (L) is called the topological first Chern

class of L.

One is often led to study families of vector spaces satisfying additional
properties such as vector spaces in which vectors have lengths and pairs of
vectors have definite angles (as in Euclidean geometry). According to Felix
Klein’s philosophy, this is the same as looking at the symmetry group, i.e.
the subgroup of linear maps which preserve these additional features. In
the above case this is precisely the orthogonal group. If we want to deal
with families of such spaces then we must impose restrictions on the gluing
maps: they must be valued in the given symmetry group. Here is one way
to formalize this discussion. Suppose we are given the following data.
• A Lie group G and a representation

ρ : G → End (F ).

• A smooth manifold X and open cover Uα.
• A G-valued gluing cocycle, i.e. a collection of smooth maps

gβα : Uαβ → G



6 1. Preliminaries

such that gαα(x) = 1 ∈ G ∀x ∈ Uα and

gγα(x) = gγβ(x) · gβα(x) ∀x ∈ Uαβγ .

Then the collection

ρ(gβα) : Uαβ → End (F )

defines a gluing cocycle for a vector bundle E with standard fiber F and
symmetry group G. The vector bundle E is said to have a G-structure.

Remark 1.1.4. Differential geometers usually phrase the above construc-
tion in terms of principal G-bundles. Given a gluing G-cocycle as above
we can obtain a smooth manifold P as follows. Glue the product G × Uα

to G × Uβ along Uαβ using the following prescription: for each x ∈ Uαβ

the element (g, x) in G × Uα is identified with the element (gβα(x) · g, x) in
G × Uβ . We obtain a smooth manifold P and a smooth map π : P → X
whose fibers π−1(x) are diffeomorphic to the Lie group G. This is called
the principal G-bundle determined by the gluing G-cocycle gβα. The above
vector bundle E is said to be induced from P via the representation ρ and
we write this as P ×ρ F . For more details we refer to vol. 1 of [64].

Exercise 1.1.6. Show that the above manifold P comes with a natural free,
right G-action and the space of orbits can be naturally identified with X.

Exercise 1.1.7. Regard S2n+1 as a real hypersurface in Cn+1 given by the
equation |z0|2 + |z1|2 + · · · |zn|2 = 1. The group

S1 = {eit ; t ∈ R} ⊂ C∗

acts on S2n+1 by scalar multiplication. The quotient of this action is obvi-
ously CPn.
(a) Show that S2n+1 → CPn is a principal S1-bundle. (It is known as the
Hopf bundle.
(b) Show that the line bundle associated to it via the tautological represen-
tation S1 → Aut (C1) is precisely the universal line bundle Un over CPn.

Exercise 1.1.8. Show that any metric on a rank-n real vector bundle nat-
urally defines an O(n)-structure.

To exist as a subject, differential geometry requires a way to differentiate
the objects under investigation. This is where connections come in. A
connection (or covariant derivative) ∇ on a vector bundle E

π→ M is a map
which associates to every section s ∈ Γ(E), and any vector field X on M , a
new section ∇Xs, such that, for every f ∈ C∞(M)

∇X(fs) = df(X)s + f∇Xs.
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∇Xs is the derivative of s in the direction X. One usually forgets the vector
field X in the above definition and thinks of ∇ as a map

∇• : Γ(E) → Γ(T ∗M ⊗ E)

satisfying Leibniz’ rule

∇•(fs) = df(•) ⊗ s + f∇•s.

Note the following fact.

Proposition 1.1.5. There exists at least one connection ∇0 on E. More-
over, any other connection can be obtained from ∇0 by the addition of an
End (E)-valued 1-form A ∈ Ω1(End (E)) where by definition, for any vector
bundle F → M we set

Ωk(F ) := Γ(ΛkT ∗M ⊗ F ).

In particular, the space A(E) of connections on E is an affine space modeled
by Ω1(End (E)).

The trivial bundle F admits a natural connection Θ called the trivial
connection. To describe it recall that sections of F can be regarded as
smooth functions s : M → F . Define

Θs = ds ∈ Ω1(M) ⊗ F.

Any other connection ∇ on F will differ from Θ by a 1-form A with coeffi-
cients endomorphisms of F , i.e.

∇ = Θ + A, A ∈ Ω1(M) ⊗ End (F ).

If E is obtained by gluing the trivial bundles Fα := FUα
using the

cocycle gβα, then any connection on E is obtained by gluing connections
∇α on Fα. More precisely, if ∇α = Θ + Aα then on the overlaps Uαβ the
1-forms Aα and Aβ satisfy the compatibility rules

(1.1.1) Aβ = −dgβαg−1
βα + gβαAαg−1

βα = g−1
αβdgαβ + g−1

αβAαgαβ .

Exercise 1.1.9. Prove (1.1.1).

Exercise 1.1.10. Consider a smooth family P : x 7→ Px of projectors of the
vector space F parameterized by the connected smooth manifold X. Show
that (id − P )Θ defines a connection on the subbundle kerP ⊂ FX .

Imitating the above local description of a connection we can define a
notion of connection compatible with a G-structure. Thus, let us suppose
the vector bundle E → M has a G-structure defined by the gluing cocycle

gβα : Uβα → G
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and the representation ρ : G → Aut (F ). Denote by g the Lie algebra of G.
The gluing cocycle defines a principal G-bundle P → M . A connection on
P is a collection of 1-forms

Aα ∈ Ω1(Uα) ⊗ g

satisfying (1.1.1), where gβαAαg−1
βα denotes the adjoint action of gβα(x) on

g while −dgβαg−1
βα = g−1

αβdgαβ is the pullback via gαβ of the Maurer-Cartan
form on G. (This is the g-valued, left invariant 1-form on G whose value at
1 is the tautological map T1G → g.)

Given a connection on the principal bundle we can obtain a genuine
connection (i.e. covariant derivative) on E = P ×ρ F given by the End (F )-
valued 1-forms ρ∗(Aα), where

ρ∗ : T1G → End (F )

denotes the differential of ρ at 1 ∈ G.
A gauge transformation of a bundle E with a G-structure is a collection

of smooth maps Tα : Uα → G subject to the gluing conditions

Tβ = gβαTαg−1
βα .

(From a more invariant point of view, a gauge transformation is a special
section of the bundle of endomorphisms of E.) The set of such gauge trans-
formations forms a group which will be denoted by GG(E).

To a bundle E with a G-structure one can naturally associate a vector
bundle Ad (E) defined by the same gluing G-cocycle as E but, instead of ρ,
one uses the adjoint representation Ad : G → End (g).

Proposition 1.1.6. The space AG(E) of G-compatible connections on a
vector bundle E with a G-structure is an affine space modeled by Ω1(Ad (E)).
Moreover, the group of gauge transformations GG(E) acts on AG(E) by con-
jugation

GG(E) × AG(E) 3 (γ,∇A) 7→ γ∇Aγ−1 ∈ AG(E).

For more details about principal bundles and connections from a gauge
theoretic point of view we refer to the very elegant presentation in [116].

If E is a complex vector bundle of complex rank r equipped with a
Hermitian metric 〈•, •〉 then it is equipped with a natural U(r)-structure. A
Hermitian connection ∇ on E is by definition a connection compatible with
this U(r)-structure or, equivalently,

LX〈s1, s2〉 = 〈∇Xs1, s2〉 + 〈s1,∇Xs2〉, ∀X ∈ Vect (M), s1, s2 ∈ C∞(E).

There is a natural (left) action of GG(E) on AG(E) given by

T · ∇ := T∇T−1.
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The covariant method of differentiation has a feature not encountered
in traditional calculus in Rn. More precisely, the classical result “partial
derivatives commute”

∂2f

∂x∂y
=

∂2f

∂y∂x

no longer holds in this more general context because of deep geometric rea-
sons. One is led to quantify the extent of this noncommutativity and this is
usually encoded by the curvature of a connection.

Suppose ∇ is a connection on a vector bundle E → M . For any vector
fields X, Y on M and any section u ∈ Γ(E) define

F (X, Y )u = F∇(X, Y )u := [∇X ,∇Y ]u −∇[X,Y ]u

= (∇X∇Y −∇Y ∇X)u −∇[X,Y ]u ∈ Γ(E).

Note that for all f ∈ C∞(M)

F (fX, Y )u = F (X, fY )u = F (X, Y )(fu) = fF (X, Y )u.

Thus the map
u 7→ F (X, Y )u

is an endomorphism of E for all X, Y . We denote it by F (X, Y ). Note that
the map

TM ⊗ TM → End (E), X ⊗ Y 7→ F (X, Y )

is a skew-symmetric bundle morphism. Thus we can regard the object F (·, ·)
as a an element of Ω2(End (E)), i.e. a section of Λ2T ∗M ⊗End (E). F (•, •)
is called the curvature of ∇. When F∇ = 0 we say F is flat.

Exercise 1.1.11. Suppose E is a vector bundle equipped with a G-structure
and ∇ is a G-compatible connection. Show that F∇ ∈ Ω2(Ad (E)). In
particular, if E is a Hermitian vector bundle and ∇ is Hermitian then the
curvature of ∇ is a 2-form with coefficients in the bundle of skew-Hermitian
endomorphisms of E.

Exercise 1.1.12. (a) Consider the trivial bundle FM . Then the trivial
connection Θ is flat.
(b) If A ∈ Ω1(End (F )) then the curvature of Θ + A is

FA = dA + A ∧ A.

Above, A is thought of as a matrix of with entries smooth 1-forms ωij . Then
dA is the matrix with entries the 2-forms dωij and A∧A is a matrix whose
(i, j)-entry is the 2-form ∑

k

ωik ∧ ωkj .
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If E is given by a gluing cocycle gβα and ∇ is given by the collection of
1-forms Aα ∈ Ω1(End (Fα)) then the above exercise shows that F is locally
described by the collection of 2-forms dAα + Aα ∧ Aα.

Example 1.1.7. Suppose L → M is a complex line bundle given by a gluing
cocycle zβα : Uαβ → C∗. Then a connection on L is defined by a collection
of complex valued 1-forms ωα satisfying

ωβ =
dzαβ

zαβ
+ ωα.

The curvature is given by the collection of 2-forms dωα.
If L has a U(1)-structure (i.e. is equipped with a Hermitian metric) then

the gluing maps belong to S1:

zβα : Uαβ → S1.

The connection is Hermitian (i.e. compatible with the metric) if ωα ∈
Ω1(Uα) ⊗ u(1) ∼= iR. Thus we can write

ωα = iθα, θα ∈ Ω1(Uα).

They are related by

θβ − θα = −i
dzαβ

zαβ
= z∗αβ(dθ)

where dθ denotes the angular form on S1.

Exercise 1.1.13. Consider a Hermitian line bundle L → M and denote by
P → M the corresponding principal S1-bundle. For each p ∈ P denote by
ip the injection

S1 3 eit 7→ p · eit ∈ P.

Suppose ∇ is a Hermitian connection as in the above example. Show that
∇ naturally defines a 1-form ω ∈ Ω1(P ) such that

i∗pω = dθ, ∀p ∈ P.

ω is called the global angular form determined by ∇. Conversely, show that
any angular form uniquely determines a Hermitian connection on L.

Example 1.1.8. Consider the unit sphere S2 ⊂ R3 with its canonical ori-
entation as the boundary of the unit ball in R3. Define the open cover
{Uα, Uβ} by

Uα = S2 \ {south pole}
and

Uβ = S2 \ {north pole}.
We have a natural orientation preserving identification

Uαβ
∼= C∗.
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Denote by z the complex coordinate on C∗. For each n ∈ Z denote by Ln

the complex line bundle defined by the gluing cocycle

zβα : C∗ ∼= Uαβ → C∗, z 7→ zn.

Suppose ∇ is a connection on L defined locally by ωα, ωβ where

ωβ = −n
dz

z
+ ωα.

Denote by F its curvature. It is a complex valued 2-form on S2 and thus
it can be integrated over the 2-sphere. Denote by D± the upper/lower
hemisphere. D+ is identified in an orientation preserving fashion with the
unit disk {|z| ≤ 1} ⊂ C. We have∫

S2

F =
∫

D+

dωα +
∫

D−
dωβ =

∫
∂D+

(ωα − ωβ)

= n

∫
∂D+

dz

z
= 2πin.

We arrive at several amazing conclusions.
• The integral of F∇ is independent of ∇ !!!
• The integral of F∇ is an integer multiple of 2πi !!!
• The line bundle Ln with n 6= 0 cannot admit flat connections so that the
noncommutativity of partial derivatives is present for any covariant method
of differentiation !!!
• The line bundle Ln with n 6= 0 is not isomorphic to the trivial line bundle
C which admits a flat connection !!!

Exercise 1.1.14. Prove that the line bundle L1 in the above example is
isomorphic to the universal line bundle over CP1 ∼= S2.

The above conclusions do not represent an isolated occurrence. They
are manifestations of a more general construction called Chern-Weil theory.
Below we describe a few particular cases of this construction.

1.1.2. Chern-Weil theory. Consider a complex vector bundle E → M
and ∇ an arbitrary connection on it. Set n = rank (E). The curvature F (∇)
can be viewed either as a 2-form on M whose coefficients are endomorphisms
of E or as a n × n matrix with entries complex valued 2-forms on M . The
multiplication of even-dimensional forms is commutative so we can speak of
determinants of such matrices. Then

c(E,∇) := det
(
1E +

i
2π

F (∇)
)
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is a nonhomogeneous element,

c(E,∇) ∈ Ωeven(M) ⊗ C :=
⊕
k≥0

Ω2k(M) ⊗ C.

The component of degree 2k is denoted by ck(E,∇) and is called the k-th
Chern form of E corresponding to the connection ∇. Note that

c1(E,∇) =
i

2π
tr (F (∇)) ∈ Ω2(M) ⊗ C,

cn(E,∇) =
(

i
2π

)n

det(F (∇)) ∈ Ω2n(M) ⊗ C.

Example 1.1.9. Consider again the line bundle Ln → S2. The computa-
tions in Example 1.1.8 show that∫

S2

c1(Ln,∇) = −n

for any connection on Ln.

The above nice accident is a special case of the following theorem.

Theorem 1.1.10. (Chern-Weil) (a) The Chern forms ck(E,∇) are closed
for any k and any connection ∇ on E.
(b) For any connections ∇0, ∇1 on E and any k ∈ Z+ there exists a (2k−1)-
form T (∇1,∇0) on M such that

ck(E,∇1) − ck(E,∇0) = dT (∇1,∇0).

For a proof of this theorem we refer to [105]. Part (a) of this theorem
shows that ck(E,∇) defines a cohomology class in H2k(M, R) which by part
(b) is independent of ∇. We denote this class by ck(E) and we call it the
k-th Chern characteristic class of E. The element

c(E) = 1 + c1(E) + c2(E) + · · ·
is called the total Chern class of E. Note that if E is trivial then all classes
ck(E) vanish. We can turn this statement around and conclude that if one
of the classes ck(E) is not trivial then E is certainly not trivial. Thus these
classes provide a measure of nontriviality of a complex vector bundle.

Remark 1.1.11. The computations in Example 1.1.8 show that∫
S2

c1(Ln) = −n

so that in particular Ln is nontrivial and c1(Ln) ∈ H2(S2, Z). One can
show that for any smooth manifold M and any complex vector bundle E →
M the characteristic class ck(E) belongs to the image of H2k(M, Z) inside
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H2k(M, R). If we denote by ı the natural morphism H2(M, Z) → H2(M, R)
then one can show that

c1(L) = ı(ctop
1 (L))

where the topological first Chern class was defined in Remark 1.1.3.

Define the Chern polynomial of E by

ct(E) =
∑
k≥0

ck(E)tk ∈ H∗(M, R)[t].

Exercise 1.1.15. Show that

ct(E1 ⊕ E2) = ct(E1) · ct(E2)

where for simplicity we denoted by “·” the ∧-multiplication in Ωeven(M).
Show that if E =

⊕n
i=1 Li, where Li are complex line bundles then

ck(E) = σk(y1, · · · , yn) :=
∑

1≤i1<···ik≤n

yi1 · · · yik

where yi := c1(Li).

Exercise 1.1.16. Consider a complex line bundle L over a compact, closed,
oriented Riemann surface Σ.
(a) Show that the quantity

deg L :=
∫

Σ
c1(L)

is an integer.
Hint: Use the fact that the restriction of L over the complement of a small
disk in Σ is trivial.
(b) Suppose u is a section of L with only nondegenerate zeros, i.e. for any
x ∈ u−1(0) the adjunction map

ax : TxΣ → Lx, TxΣ 3 ζ 7→ (∇ζu) |x∈ Lx

(∇ some connection on L) is invertible. For each x ∈ u−1(0) set

deg(x) := sign det ax.

Show that

deg L :=
∑

x∈u−1(0)

deg(x).

Hint: Use the fact that L is trivial outside
⋃

x∈u−1(0) Dx, where Dx denotes
a very small disk centered at x.
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Define the Chern character of a vector bundle to be the cohomology
class

ch (E) := tr exp(
i

2π
F (∇)) =

∑
k≥0

1
k!

tr
(

i
2π

F (∇)
)k

.

Again this is a closed form whose cohomology class is independent of ∇.

Exercise 1.1.17. (a) Show that if L → M is a complex line bundle then

ch (L) = exp(c1(L)).

(b) Show that
ch(E1 ⊕ E2) = ch (E1) + ch (E2)

and
ch (E1 ⊗ E2) = ch (E1) · ch (E2).

The construction of the Chern character has a multiplicative counter-
part. Suppose that f(T ) is a formal power series

f(T ) :=
∑
n≥o

anTn ∈ C[[T ]]

such that a0 = 1. If E → M is a complex vector bundle then f(E) ∈ H∗(M)
is the cohomology class represented by

f(E,∇) := det
(∑

n≥0

an

( i
2π

F (∇)
)n

)
.

A special case frequently encountered in geometry is that of

td (T ) :=
T

1 − exp(−T )
= 1 +

1
2
T +

∞∑
k=1

(−1)k−1 Bk

(2k)!
T 2k

where the coefficients Bk are known as the Bernoulli numbers. Here are a
few values of these numbers

B1 =
1
6
, B2 =

1
30

, B3 =
1
42

, · · ·

The cohomology class obtained in this manner is called the Todd genus of
E and is denoted by td (E).

Both ch and td decompose into homogeneous parts

ch(E) =
∑
i≥0

chi(E), td (E) =
∑
i≥0

tdi(E)

expressible in terms of the Chern classes ci. For example

(1.1.2)
ch0(E) = rank (E),

ch1(E) = c1(E), ch2(E) = 1
2(c1(E)2 − 2c2(E))



1.2. Basic facts about elliptic equations 15

(1.1.3) td0(E) = 1, td1(E) =
1
2
c1(E), td2(E) =

1
12

(
c1(E)2 + 2c2(E)

)
.

So far we have considered only complex vector bundles. There is a real
theory as well. Consider a real vector bundle E → M and ∇ an arbitrary
connection on it. We define the total Pontryagin form associated to E(∇)
by

p(E,∇) = det(1 − 1
2π

F (∇)).

Again one can prove that this is a closed form whose cohomology class is
independent of ∇. This time a new phenomenon arises.

Lemma 1.1.12. The components of p(E,∇) of degree 4k + 2 are exact.

Exercise 1.1.18. Prove the above lemma.

The cohomology class p(E) decomposes as

p(E) = 1 + p1(E) + p2(E) + · · · + pk(E) + · · ·
where

pk(E) ∈ H4k(M, R).
The cohomology classes are called the Pontryagin classes of the real vector
bundle E. For example, p1(E) can be represented by the form

p1(E,∇) = − 1
8π2

tr (F (∇) ∧ F (∇)).

Exercise 1.1.19. Suppose E → M is a real vector bundle and denote by
Ec its complexification E ⊗ C. Show that

c2k+1(Ec) = 0 and c2k(Ec) = (−1)kpk(E).

1.2. Basic facts about elliptic equations

Before we begin talking about elliptic equations we must first define the no-
tion of partial differential operator (p.d.o. for brevity) on a smooth manifold
and explain the basic operations one can perform on such objects. We refer
again to [105] for more details.

Consider a smooth, oriented Riemannian manifold (M, g) and E, F → M
complex Hermitian vector bundles over M . We will denote the Hermitian
metrics on E (resp. F ) by 〈·, ·〉E (resp. 〈·, ·〉F ).

Denote by Op (E, F ) the space of C-linear operators

T : C∞(E) → C∞(F ).

Denote by C∞(M) the space of complex valued smooth functions on M . The
spaces C∞(E) and C∞(F ) have natural structures of C∞(M)-modules and
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we will be interested in a subspace of Op consisting of operators interacting
in a nice way with these module structures.

For each f ∈ C∞(M) and each T ∈ Op (E, F ) define ad(f)(T ) ∈
Op(E, F ) by

(ad(f)T )u = [T, f ]u := T (fu) − f(Tu), ∀u ∈ C∞(E).

Note that the maps T 7→ [T, f ] and f 7→ [T, f ] behave like derivations, i.e.
they satisfy the Leibniz rule

(1.2.1) [ST, f ] = [S, f ]T + S[T, f ] and [T, fg] = [T, f ]g + f [T, g]

for all f, g, T, S for which the above operations make sense.
Now define inductively an increasing sequence of subspaces

PDO(0)(E, F ) ⊂ PDO(1)(E, F ) ⊂ · · · ⊂ PDO(k)(E, F ) ⊂ · · ·
following the prescriptions

PDO(0)(E, F ) := Hom (E, F )

and
PDO(k+1)(E, F )

:=
{

T ∈ Op (E, F ); [T, f ] ∈ PDO(k)(E, F ), ∀f ∈ C∞(M)
}

.

The elements of PDO(k)(E, F ) will be called partial differential operators
of order ≤ k.

Example 1.2.1. (a) Let E = F = C and let X be a smooth vector field on
M . Then the Lie derivative LX : C∞(M) → C∞(M), u 7→ LXu, is a p.d.o.
of order at most 1. Indeed, for any u, f ∈ C∞(M) we have

[LX , f ]u = LX(fu) − f(LXu) = (LXf)u

so that [LX , f ] is the endomorphism (LXf)•.

(b) Let E = F = Λ∗T ∗M . Then the exterior derivative

d : Ω∗(M) → Ω∗(M)

is a p.d.o. of order at most 1. Indeed, for any f ∈ C∞(M) and any
ω ∈ Ω∗(M) we have

[d, f ]ω = d(fω) − f(dω) = df ∧ ω.

Thus [d, f ] is the endomorphism df ∧ • of Λ∗T ∗M .

(c) Consider the Laplacian ∆ = −∂2
x on C∞(R). Then ∆ is a p.d.o. of order

at most 2. Indeed, for any f ∈ C∞(R) we deduce from the Leibniz rule
(1.2.1)

[∂2
x, f ]• = 2[∂x, f ]∂x • +(∂2

xf) • .
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(∂2
xf) is the zeroth order operator defined as multiplication by ∂2

xf . The
computation in part (a) shows that [∂x, f ] is the operator of multiplication
by ∂xf . Hence the commutator [∂2

x, f ] is the Lie derivative along the vector
field df

dx∂x which by part (a) is a first order p.d.o.

Suppose L ∈ PDO(k)(E, F ) and choose f1, · · · , fk ∈ C∞(M). Then

AL(f1, · · · fk) := [[L, f1], · · · , fk] ∈ Hom (E, F ).

One can prove the following.
• AL(f1, · · · , fk) is symmetric in its arguments.
• If dfi(x0) = dgi(x0) for all i = 1, · · · , k then

AL(f1, · · · , fk) |x0= AL(g1, · · · , gk) |x0 .

Thus AL(f1, · · · , fk) |x0 depends only on the quantities ξi := dfi(x0) and the
symmetry property shows that it is completely determined by

σL(ξ) :=
1
k!

AL(ξ, · · · , ξ).

The quantity σL(·) is called the (principal) symbol of L. It is a bundle
morphism

σL(·) : π∗
kE → π∗

kF

where πk : SkT ∗M → M denotes the canonical projection of the k-th sym-
metric power of T ∗M . A p.d.o. L ∈ PDO(k) is said to have order k if its
symbol is not trivial. The set of k-th order operators will be denoted by
PDOk.

Proposition 1.2.2. If L1 ∈ PDO(k1)(E1, E2) and L2 ∈ PDO(k2)(E2, E3)
then

L2 ◦ L1 ∈ PDO(k1+k2)(E1, E3)
and

σL2◦L1(ξ) = σL2(ξ) ◦ σL1(ξ), ∀x ∈ M, ∀ξ ∈ T ∗
xM \ {0}.

Example 1.2.3. Suppose ∇ : C∞(E) → C∞(T ∗M ⊗E) is a linear connec-
tion. Then setting ξ = df we deduce

A∇(ξ)u = [∇, f ]u = ξ ⊗ u, ∀u ∈ C∞(E).

Thus σL(ξ) = ξ ⊗ •. Similarly, for the exterior derivative

d : Ω∗(M) → Ω∗(M)

the symbol is given by
σd(ξ) = ξ ∧ •.

If ∆ := −
∑N

i=1 ∂i
2 : C∞(RN ) → C∞(RN ) is the (geometers’) Laplacian on

RN then
σ∆(ξ) = −|ξ|2• = −

(∑
i

|ξi|2
)
• .
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Definition 1.2.4. A generalized Laplacian on a vector bundle E over a Rie-
mannian manifold (M, g) is a second order operator L : C∞(E) → C∞(E)
such that

σL(ξ) = −|ξ|2g1E .

Definition 1.2.5. If L ∈ PDO(E, F ) is a p.d.o. acting between two Her-
mitian vector bundles then a formal adjoint is a p.d.o. L∗ : C∞(F ) →
C∞(E) such that ∫

M
(Lu, v)F dvg =

∫
M

(u, L∗v)Edvg

for all compactly supported sections u ∈ C∞(E) and v ∈ C∞(F ).

For a proof of the following result and examples we refer to [105].

Proposition 1.2.6. Every k-th order operator L admits a unique formal
adjoint L∗ which is a k-th order operator whose symbol is given by

σL∗(ξ) = (−1)kσL(ξ)∗.

A p.d.o. L is called formally selfadjoint if L = L∗.

Example 1.2.7. (a) Suppose E → F is a Hermitian vector bundle over a
Riemannian manifold (M, g) and ∇ is a Hermitian connection on E. Then
for every vector field X on M the covariant derivative ∇X is a first order
p.d.o. C∞(E) → C∞(E) with formal adjoint

∇∗
X = −∇X − divg(X)

where divg(X) is the scalar defined by

LXdvg = divg(X) · dvg.

(b) If E, ∇ are as above then ∇∗∇ : C∞(E) → C∞(E) is a generalized
Laplacian called the covariant Laplacian determined by the connection ∇.

(c) The formal adjoint of the exterior derivative

d : Ωk(M) → Ωk+1(M)

is the operator

d∗ = (−1)νn,k ∗ d∗ : Ωk+1(M) → Ωk(M)

where n = dim M , νn,k = nk + n + 1 and ∗ is the Hodge ∗-operator.

(d) The operator (d + d∗)2 = dd∗ + d∗d : Ω∗(M) → Ω∗(M) is a generalized
Laplacian called the Hodge Laplacian.

The covariant Laplacian in the above example is in some sense the basic
example of generalized Laplacian. More precisely, we have the following
result. We refer to [12] for a different proof.
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Proposition 1.2.8. Suppose L : C∞(E) → C∞(E) is a formally selfadjoint
generalized Laplacian. Then there exists a Hermitian connection on E and
a symmetric endomorphism R : E → E such that

L = ∇∗∇ + R.

We will refer to such a presentation of a generalized Laplacian as a Weitzen-
böck presentation. The endomorphism R is called the Weitzenböck remain-
der of L.

Proof Choose an arbitrary Hermitian connection ∇ on E. Then L0 =
∇∗∇ is a generalized Laplacian so that L−L0 is a formally selfadjoint first
order operator which can be represented as

L − L0 = A ◦ ∇ + B

where
A : C∞(T ∗M ⊗ E) → C∞(E)

is a bundle morphism and B is an endomorphism of E. We will regard A
as an End (E)-valued 1-form on M . Hence

(1.2.2) L = ∇∗∇ + A ◦ ∇ + B.

The connection ∇ induces a connection on End(E) which we continue
to denote by ∇:

∇ : C∞(End (E)) → Ω1(End (E)).

We define the divergence of A by

divg(A) := −∇∗A.

If (ei) is a local synchronous frame at x0 and if A =
∑

i Aie
i then, at x0, we

have
divg(A) =

∑
i

∇iAi.

Since L − L0 is formally selfadjoint we deduce

A∗
i = −Ai, divg(A) = B∗ − B.

We seek a Hermitian connection ∇̃ = ∇ + C , C ∈ Ω1(End (E)) and a
symmetric endomorphism R of E such that

∇̃∗∇̃ + R = ∇∗∇ + A ◦ ∇ + B.

To determine the terms C and R we work locally, using a synchronous local
frame (ei) at x0. Then

∇̃ =
∑

i

ei ⊗ (∇i + Ci), C∗
i = −Ci, ∀i.
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Then, as in [105], Example 9.1.26, we deduce that, at x0,

∇̃∗∇̃ = −
∑

i

(∇i + Ci)(∇i + Ci)

(〈Ci〉2 := CiC
∗
i = −C2

i )

= −
∑

i

∇2
i −

∑
i

∇iCi − 2
∑

i

Ci∇i +
∑

i

〈Ci〉2

(〈C〉2 =
∑

i〈Ci〉2)
= ∇∗∇− 2C ◦ ∇ − divg(C) + 〈C〉2 = ∇∗∇ + A ◦ ∇ + B −R.

We deduce immediately that

(1.2.3) C = −1
2
A, R = B − 1

2
divg(A) − 〈C〉2 =

1
2
(B + B∗) − 1

4
〈A〉2.

The proposition is proved. ¥

Besides their nice algebraic properties, the generalized Laplacians enjoy
many nice analytic features. They all derive from the ellipticity of these
operators.

Definition 1.2.9. Let E, F → M be two smooth vector bundles over the
smooth manifold M . A p.d.o. T ∈ PDOk(E, F ) is said to be elliptic if for
any x ∈ M and any ξ ∈ T ∗

xM \ {0} the linear map σT (ξ) : Ex → Fx is an
isomorphism.

Clearly, the generalized Laplacians are elliptic second order operators.
The operator d + d∗ of Example 1.2.7 (d) is elliptic because (d + d∗)2 is a
generalized Laplacian. This feature is so frequently encountered in geometry
that it was given a name.

Definition 1.2.10. A Dirac operator is a first order operator D : C∞(E) →
C∞(F ) such that D2 is a generalized Laplacian.

Frequently, the Dirac operators are obtained from an operator D ∈
PDO1(E, F ) such that both D∗D and DD∗ are generalized Laplacians.
Then

D̃ :=
[

0 D∗

D 0

]
: C∞(E ⊕ F ) → C∞(E ⊕ F )

is a Dirac operator.
To discuss the basic analytic properties of elliptic operators we need to

introduce a suitable analytical framework. For geometric applications the
Sobolev and Hölder spaces provide such a framework.

To define these spaces we need two things: an oriented Riemannian
manifold (M, g) and a K-vector bundle π : E → M endowed with a metric
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h = 〈·, ·〉 and a connection ∇ = ∇E compatible with h. The metric g = (·, ·)
defines two important objects:
(i) the Levi-Civita connection ∇g and
(ii) a volume form dvg = ∗1. In particular, dvg defines a Borel measure on
M . We denote by Lp(M, K) the space of K-valued p-integrable functions on
(M, dvg) (modulo the equivalence relation of equality almost everywhere).

Definition 1.2.11. Let p ∈ [1,∞]. An Lp-section of E is a Lebesgue mea-
surable map ψ : M → E (i.e. ψ−1(U) is Lebesgue measurable for any open
subset U ⊂ E) such that:
(i) π ◦ ψ(x) = x for almost all x ∈ M except possibly a negligible set.
(ii) The function x 7→ |ψ(x)|h belongs to Lp(M, R).

The space of Lp-sections of E (modulo equality almost everywhere) is
denoted by Lp(E). The space Lp

loc(E) consists of measurable sections u of
E such that uϕ ∈ Lp(E) for any smooth, compactly supported function on
M .

Proposition 1.2.12. Lp(E) is a Banach space with respect to the norm

‖ψ‖p,E =

{ (∫
M |ψ(x)|pdvg(x)

)1/p
if p < ∞

ess supx|ψ(x)| if p = ∞
.

For each m = 1, 2, · · · define ∇m as the composition

∇m : C∞(E) ∇E

→ C∞(T ∗M ⊗ E) ∇T∗M⊗E

−→ · · · ∇→ C∞(T ∗M⊗m ⊗ E)

where we used the symbol ∇ to generically denote the connections in the
tensor products T ∗M⊗j ⊗ E induced by ∇g and ∇E .

The metrics g and h induce metrics in each of the tensor bundles
T ∗M⊗m ⊗ E, and in particular, we can define the spaces Lp(T ∗M⊗m ⊗ E).

Definition 1.2.13. (a) Let u ∈ L1
loc(E) and v ∈ L1

loc(T
∗M⊗m ⊗ E). We

say that ∇mu = v weakly if∫
M
〈v, φ〉dvg =

∫
〈u, (∇m)∗φ〉dvg, ∀u ∈ C∞

0 (T ∗M⊗m ⊗ E).

(b) Define Lm,p(E) as the space of sections u ∈ Lp(E) such that ∀j =
1, . . . , m there exist vj ∈ Lp(T ∗M⊗j ⊗ E) such that ∇ju = vj weakly. We
define the Sobolev norm ‖ · ‖m,p by

‖u‖m,p = ‖u‖m,p,E =
p∑

j=1

‖∇ju‖p.

Proposition 1.2.14. (Lk,p(E), ‖·‖k,p,E) is a Banach space which is reflexive
if 1 < p < ∞.
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Exercise 1.2.1. (Kato’s Inequalities) Suppose E → M is a Hermitian
vector bundle over an oriented Riemannian manifold (M, g). Fix a Hermitian
connection ∇ on E.
(a) Show that for every u ∈ L1,2

loc(E) the function

M 3 x 7→ |u(x)|
is in L1,2

loc(M) and moreover

|d|u(x)|| ≤ |(∇u)(x)|
almost everywhere on M .
(b) Set ∆E := ∇∗∇ and denote by ∆M the Laplacian on M . Show that for
all u ∈ L2,2

loc(E) we have

∆M (|u|2) = 2Re〈∆Eu, u〉 − 2|∇u|2

so that
∆M |u|2 ≤ 2Re〈∆Eu, u〉

almost everywhere on M .

The Hölder spaces can be defined on manifolds as well. If (M, g) is a
Riemannian manifold then g canonically defines a metric space structure
on M and, in particular, we can talk about the oscillation of a function
u : M → K. On the other hand, defining the oscillation of a section of some
bundle over M requires a little more work.

Let (E, h,∇) as before. We assume the injectivity radius ρM of M is
positive. Set ρ0 = min{1, ρM}. If x, y ∈ M are two points such that
distg(x, y) ≤ ρ0 then they can be joined by a unique minimal geodesic γx,y

starting at x and ending at y. We denote by Tx,y : Ey → Ex the ∇E-parallel
transport along γx,y. For each ξ ∈ Ex and η ∈ Ey we set by definition

|ξ − η| = |ξ − Tx,yη|x = |η − Ty,xξ|y.
If u : M → E is a section of E and S ⊂ M has diameter < ρ0 we define

osc (u ; S) = sup{|u(x) − u(y)| ; x, y ∈ S}.
Finally set

[u]α,E = sup{r−αosc (u ; Br(x)) ; 0 < r < ρ0, x ∈ M}.
For any k ≥ 0 define the Hölder norm

‖u‖k,α,E =
k∑

j=0

‖∇ju‖∞,E + [∇mu]α,T ∗M⊗m⊗E

and set
Ck,α(E) = {u ∈ Ck(E) ; ‖u‖k,α < ∞}.
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Theorem 1.2.15. Let (M, g) be a compact, N -dimensional, oriented Rie-
mannian manifold and E a vector bundle over M equipped with a metric h
and compatible connection ∇. Then the following are true.
(a) The Sobolev space Lm,p(E) and the Hölder spaces Ck,α(E) do not depend
on the metrics g, h and on the connection ∇. More precisely, if g1 is a
different metric on M and ∇1 is another connection on E compatible with
some metric h1 then

Lm,p(E, g, h,∇) = Lm,p(E, g1, h1,∇1) as sets of sections

and the identity map between these two spaces is a Banach space isomor-
phism. A similar statement is true for the Hölder spaces.
(b) If 1 ≤ p < ∞ then C∞(E) is dense in Lk,p(E).
(c) (Sobolev) If (ki, pi) ∈ Z+ × [1,∞) (i = 0, 1) are such that

k0 ≥ k1 and σN (k0, p0) = k0 − N/p0 ≥ k1 − N/p1 = σN (k1, p1)

then Lk0,p0(E) embeds continuously in Lk1,p1(E). If moreover

k0 > k1 and k0 − N/p0 > k1 − N/p1

then the embedding Lk0,p0(E) ↪→ Lk1,p1(E) is compact, i.e. any bounded
sequence of Lk0,p0(E) admits a subsequence convergent in the Lk1,p1-norm.
(d) (Morrey) If (m, p) ∈ Z+ × [1,∞) and (k, α) ∈ Z+ × (0, 1) and

m − N/p ≥ k + α

then Lm,p(E) embeds continuously in Ck,α(E). If moreover

m − N/p > k + α

then the embedding is also compact.

The proofs of all the above results can be found in [105].
Suppose now that L : PDOk(E, F ) is a k-th order elliptic operator

over an oriented Riemannian manifold (M, g). Let v ∈ Lp
loc(F ). A weak

Lp-solution of the equation
Lu = v

is a section u ∈ Lp
loc(E) such that for any smooth, compactly supported

section ϕ of F the following holds∫
M
〈v, ϕ〉F dvg =

∫
M
〈u, L∗ϕ〉Edvg.

The following result describes the fundamental property of elliptic opera-
tors. For simplicity we state it only in the special case when M is compact.
We refer to [105] and the references therein for proofs of more general state-
ments.
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Theorem 1.2.16. Suppose M is a compact, oriented Riemannian manifold
without boundary.
(a) Let p ∈ (1,∞) and m ∈ Z+. Then there exists a constant

C = C(L, m, p, g, E, F ) > 0

such that if u is a weak Lp-solution u of Lu = v, v ∈ Lm,p(F ) then

u ∈ Lm+k,p(E)

and
‖u‖m+k,p;E ≤ C(‖u‖p;E + ‖v‖m,p;F ).

(b) Let α ∈ (0, 1) and m ∈ Z+. Then there exists a constant

C = C(L, m, α, g, E, F ) > 0

such that if u is a weak Lp-solution u of Lu = v, v ∈ Cm,α(F ) then

u ∈ Cm+k,α(E)

and
‖u‖m+k,α;E ≤ C(‖u‖0,α;E + ‖v‖m,α;F ).

The above result has a famous corollary.

Corollary 1.2.17. (Weyl’s Lemma) Let L be as above. If

Lu ∈ C∞(F )

weakly then u ∈ C∞(E).

From the a priori inequalities in the above theorem one can deduce the
following important result.

Theorem 1.2.18. Suppose M is a compact, oriented Riemannian manifold,
E0, E1 are Hermitian vector bundles over M and

L : C∞(E0) → C∞(E1)

is a k-th order elliptic operator. We define the analytical realization of L as
the unbounded linear operator

La : L2(E0) → L2(E1)

with domain Dom (La) := Lk,2(E0) and acting according to

Lk,2(E0) 3 u 7→ Lu ∈ L2(E1).

Then the following hold.
(i) La is a closed operator, i.e. its graph is a closed subspace of L2(E0) ×
L2(E1).
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(ii) The functional adjoint of La (i.e. the adjoint as a closed linear operator
acting between Hilbert spaces) coincides with the analytical realization of the
formal adjoint L∗, i.e.

(La)∗ = (L∗)a.

(iii) The ranges of both La and (L∗)a are closed subspaces in L2(E1), re-
spectively L2(E0). Moreover kerLa ∈ C∞(E0), kerL∗

a ∈ C∞(E1) and

Range (La) = (ker L∗
a)

⊥, Range (L∗
a) = (ker La)⊥.

(iv) The kernels of both La and (L∗)a are finite dimensional.
(v) Denote by P : L2(E0) → L2(E0) the orthogonal projection onto ker La.
Then for every 1 < p < ∞ and every m ∈ Z+ there exists a constant
C = C(m, p, L > 0) such that

‖u − Pu‖k+m,p ≤ C‖Lu‖m,p, ∀u ∈ Lk+m,p(E0).

The properties (iii) and (iv) in the above theorem are succinctly referred
to as the Fredholm property of elliptic operators on compact manifolds. The
quantity

dimF kerLa − dimF ker L∗
a

(F= R, C) is called the F-Fredholm index of L and is denoted by indFL.
The Fredholm index of an elliptic operator L is remarkably stable under

deformations. For example, one can show (see [105]) that it depends only
on the symbol of L.

We conclude this section with an exercise which describes the Green
formulæ for various p.d.o.’s. These are more sophisticated versions of the
usual integration-by-parts trick.

Exercise 1.2.2. Consider a compact Riemannian manifold (M, g) with
boundary ∂M . Denote by ~n the unit outer normal along ∂M (see Fig-
ure 1.1). Let E, F → M be Hermitian vector bundles over M and suppose
L ∈ PDOk (E, F ). Set g0 = g |∂M , E0 = E |∂M and F0 = F |∂M . The Green
formula states that there exists a sesquilinear map

BL : C∞(E) × C∞(F ) → C∞(∂M)

such that∫
M
〈Lu, v〉dv(g) =

∫
∂M

BL(u, v)dv(g0) +
∫

M
〈u, L∗v〉dv(g).

Prove the following.
(a) If L is a zeroth order operator (i.e. L is a bundle morphism) then BL = 0.
(b) If L1 ∈ PDO (F, G) and L2 ∈ PDO (E, F ) then

BL1L2(u, v) = BL1(L2u, v) + BL2(u, L∗
1v).
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n

n

M

Figure 1.1. Riemannian manifold with boundary

(c)
BL∗(v, u) = −BL(u, v).

(d) Suppose ∇ is a Hermitian connection on E and X ∈ Vect (M). Set
L = ∇X : C∞(E) → C∞(E). Then

BL(u, v) = 〈u, v〉g(X,~n).

(e) Let L = ∇ : C∞(E) → C∞(T ∗M ⊗ E). Then

BL(u, v) = 〈u, i~nv〉E
where i~n denotes the contraction by ~n.
(f) Denote by ~ν the section of T ∗M |∂M g-dual to ~n. Suppose L is a first
order p.d.o. and set J := σL(~ν). Then

BL(u, v) = 〈Ju, v〉F .

(g) Using (a) – (f) show that for all u ∈ C∞(E), v ∈ C∞(F ) and any
x0 ∈ ∂M the quantity BL(u, v)(x0) depends only on the jets of u, v at x0 of
order at most k − 1.

1.3. Clifford algebras and Dirac operators

1.3.1. Clifford algebras and their representations. Suppose E → M
is a smooth, Hermitian vector bundle over a Riemannian manifold (M, g)
and D : C∞(E) → C∞(E) is a Dirac operator, i.e. D2 is a generalized
Laplacian. Denote by c the symbol of D. It has the remarkable property
that

c(ξ)2 = −|ξ|2g1Ex , ∀x ∈ M, ∀ξ ∈ T ∗
xM.
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If we set Vx := T ∗
xM then the above identity implies that for every x ∈ M

we have a linear map

(1.3.1) c : Vx → End (Ex)

with the property

(1.3.2) {c(u), c(v)} = −2g(u, v)1, ∀u, v ∈ V

where {A, B} denotes the anticommutator AB + BA of two elements A, B
in an associative algebra.

Now, given a Euclidean vector space (V, g), we denote by
Cl(V ) := Cl(V, g) the associative R-algebra with 1 generated by V sub-
ject to the relations (1.3.2). It is not difficult to prove the existence and
uniqueness of such an algebra. It will be called the Clifford algebra associ-
ated to the Euclidean space (V, g). We see that the map in (1.3.1) extends
to a representation

c : Cl(V ) → End (V )

of the Clifford algebra called the Clifford multiplication. The maps in (1.3.1)
can be assembled together to form a bundle morphism

c : T ∗M → End (E)

such that
{c(α), c(β)} = −2g(α, β)1E , ∀α, β ∈ Ω1(M).

A map c as above will be called a Clifford structure on the bundle E. Thus
the existence of a Dirac operator implies the existence of a Clifford structure.
Conversely, if ∇ is any connection on a bundle E equipped with a Clifford
structure c then the composition

C∞(E) ∇→ C∞(T ∗M ⊗ E) c→ C∞(E)

is a Dirac operator. Thus the existence of a Dirac operator is equivalent to
an algebraic-topological problem, that of the existence of Clifford structures.
We will be interested in a structure finer than Clifford.

Definition 1.3.1. Suppose (M, g) is a Riemannian manifold. A Dirac struc-
ture on M is a quadruple (E, c,∇E ,∇M ) where E is a Hermitian vector
bundle, c : T ∗M → End (E) is a selfadjoint Clifford structure, i.e.

(1.3.3) c(α)∗ = −c(α), ∀α ∈ Ω1(M),

∇M is a connection on T ∗M compatible with the Riemannian metric and ∇E

is a Hermitian connection on E compatible with the Clifford multiplication,
i.e.

(1.3.4) ∇E
X( c(α)u) = c(∇M

X α)u + c(α)∇E
Xu,

∀u ∈ C∞(E), α ∈ Ω1(M), X ∈ Vect (M).
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When ∇M is the Levi-Civita connection we say that (E, c,∇E) is a geo-
metric Dirac structure on M . The Dirac operator associated to a geometric
Dirac structure will be called a geometric Dirac operator.

Proposition 1.3.2. (Weitzenböck formula for geometric Dirac oper-
ators) If D is a geometric Dirac operator associated to the geometric Dirac
structure (E, c,∇E) then D = D∗ and

D2 = (∇E)∗∇E + c(F (∇E)).

The last term should be understood as follows. The curvature F (∇E) is an
End (E)-valued 2-form. Locally it is a C∞(M)-linear combination of terms
of the form ω ⊗ T , ω ∈ Ω2(M) and T ∈ End (E). Then c(ω ⊗ T ) is the
endomorphism c(ω) · T .

Exercise 1.3.1. Prove the above proposition.

To describe the Dirac structures on a given manifold M we need a better
understanding of the representation theory of the Clifford algebra associated
to a Euclidean space (V, g). If dim V = n and {e1, · · · , en} is an orthonormal
basis of V then the monomials

ei1 · · · eik , 1 ≤ i1 < · · · < ik ≤ n, e∅ := 1

form a basis of Cl(V ). Thus dimCl(V ) = 2dim V . Since the only invariant
of a Euclidean space is its dimension we will often use the notation Cln to
denote the Clifford algebra associated to an n-dimensional Euclidean space.

Note first there is a natural representation

T : Cl (V ) → End Λ∗V

induced by the correspondence

V 3 v 7→ Tv := e(v) − iv∗

where e(v) denotes the (left) exterior multiplication by v while iv∗ denotes
the contraction by the co-vector v∗ ∈ V ∗, the metric dual of v. The Cartan
identity

{e(v), iv∗} = |v|2

shows that the above correspondence does indeed extend to a representation
of the Clifford algebra. The symbol map

σ : Cl(V ) → Λ∗V

is defined by
σ(ω) := Tω · 1, ∀ω ∈ Λ∗V.

For example, if {e1, · · · , en} is an orthonormal basis of V then

σ(ei1 · · · eik) = ei1 ∧ · · · ∧ eik .
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We see that the symbol map is a bijection. Its inverse is called the quanti-
zation map and is denoted by q. Set

Cl±(V ) := q(Λeven/oddV ).

The splitting Cl(V ) = Cl+(V ) ⊕ Cl−(V ) makes Cl(V ) a superalgebra, i.e.

Cl±(V ) · Cl±(V ) ⊂ Cl+(V ), Cl±(V ) · Cl∓(V ) = Cl−(V ).

Given x ∈ Cl(V ) we denote by x± its even (odd) components, x = x+ + x−.
To understand the complex representations of Cl(V ) we need to distin-

guish two cases.

A. dimV is even, dim V = 2n.

FUNDAMENTAL FACT There exist a Z2-graded complex vector space
S(V ) = S2n = S+

2n ⊕ S−
2n and a C-linear isomorphism

c : Cl(V ) ⊗ C → End (S2n)

with the following properties.
(a) dimC S+

2n = dimC S−
2n = 2n−1.

(b)
c(Cl+(V ) ⊗ C) = End (S+

2n) ⊕ End (S−
2n).

c(Cl−(V ) ⊗ C) = Hom (S+
2n, S−

2n) ⊕ Hom (S−
2n, S+

2n).

The above pair (S2n, c) is unique up to isomorphism and is called the complex
spinor representation of Cl(V ).

Sketch of proof We will produce an explicit realization of the pair
(S2n, c) using an additional structure on V .

Fix a complex structure on V compatible with the metric. This is a
linear map J : V → V such that

J2 = −1, J∗ = −J.

Then V ⊗ C splits as
V ⊗ C = V 1,0 ⊕ V 0,1

where V 1,0 = ker(i − J) and V 0,1 = ker(i + J). Set

S(V ) := Λ∗,0V = Λ∗V 1,0.

Note that the Euclidean metric on V induces Hermitian metrics on Λp,qV
and thus a Hermitian metric on S(V ).

A morphism Cl(V ) → End (S(V )) is uniquely defined by its action on
V 1,0 and V 0,1. For v ∈ V 1,0 define c(v) :=

√
2e(v), i.e.

c(v)(u1 ∧ · · · ∧ uk) =
√

2v ∧ u1 ∧ · · · ∧ uk.
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Any v̄ ∈ V 0,1 can be identified (via the metric g) as a complex linear func-
tional on V 1,0. Define c(v̄) = −

√
2i(v̄), i.e.

c(v̄)(u1 ∧ · · · ∧ uk) =
√

2
k∑

j=1

(−1)jgc(uk, v̄)u1 ∧ · · · ∧ ûj ∧ · · · ∧ uk.

Above, gc(·, ·) denotes the extension by complex bilinearity of g to V ⊗ C.
Now choose an orthonormal basis (e1, f1; · · · ; en, fn) of V such that fj = Jej ,
∀j and then set

εj :=
1√
2
(ej − ifj), ε̄j =

1√
2
(ej + ifj).

Then (εj) is a unitary basis of V 1,0, (ε̄j) is a unitary basis of V 0,1 and
〈εi, ε̄j〉 = δij . We deduce

c(ej) = e(εj) − i(ε̄j), c(fk) = i(e(εk) + i(ε̄k)).

One can now check that c induces a map with all the required properties.
In this case

S+(V ) = Λeven,0V, S−(V ) = Λodd,0V. ¥

Example 1.3.3. Suppose that V is the four-dimensional Euclidean space
R4 with coordinates (x1, y1, x2, y2). Set ei = ∂

∂xi
and fj = ∂

∂yj
and define J

by Jei = fi. Set zj = xj + iyj . We identify V 1,0 with (V ∗)0,1 so that

εi =
1√
2
dz̄i, ε̄i =

1√
2
dzi.

Then
S4

∼= Λ0,∗V ∗ ∼= C ⊕ Λ0,1V ∗ ⊕ Λ0,2V ∗

and
S+

4
∼= C ⊕ Λ0,2V ∗, S−

4
∼= Λ0,1V ∗.

Define ω = dx1∧dy1 +dx2∧dy2 and orient V ∗ using ω∧ω. Denote by ∗ the
Hodge ∗ operator on V ∗ defined by the metric g and the above orientation.
Note that

∗(Λ2V ∗) ⊂ Λ2V ∗

and ∗2 = 1 on Λ2V ∗. Thus we have a splitting

Λ2V ∗ = Λ2
+V ∗ ⊕ Λ2

−V ∗

where Λ2
± = ker(1∓∗). The above choice of basis defines a nice orthonormal

basis of Λ2
+, {η0, η1, η2} where

η0 =
1√
2
ω =

i
2
√

2
(dz1 ∧ dz̄1 + dz2 ∧ dz̄2),

η1 =
1√
2
(dx1 ∧ dx2 − dy1 ∧ dy2) =

1
2
√

2
(dz̄1 ∧ dz̄2 + dz1 ∧ dz2),
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η2 =
1√
2
(dx1 ∧ dy2 + dy1 ∧ dx2) = − i

2
√

2
(dz̄1 ∧ dz̄2 − dz1 ∧ dz2).

We see that η0, dz1 ∧ dz2 and dz̄1 ∧ dz̄2 form a complex basis of Λ2
+V ∗ ⊗C.

The metric isomorphism V ∼= V ∗ defines an action of Λ∗V ∗ ⊗ C on
S(V ) = Λ0,∗(V ) generated by

c(dzj) = −
√

2i(dzj), c(dz̄j) =
√

2e(dz̄j)

where i(dzj)(dz̄k) = 2δjk. Since dz̄1 and dz̄2 are orthogonal we deduce

c(dz̄1 ∧ dz̄2) = c(dz̄1)c(dz̄2) = 2e(dz̄1)e(dz̄2)

and
c(dz1 ∧ dz2) = 2i(dz1)i(dz2).

To determine the action of η0 we use the real description

c(η0) =
1√
2

{
c(dx1)c(dy1) + c(dx2)c(dy2)

}
=

i
4
√

2

{(
c(dz̄1) + c(dz1)

)(
c(dz̄1) − c(dz1)

)
+

(
c(dz̄2 + c(dz2)

)(
c(dz̄2) − c(dz2)

) }

=
i

2
√

2

{(
e(dz̄1) − i(dz1)

)(
e(dz̄1) + i(dz1)

)
+

(
e(dz̄2) − i(dz2)

)(
e(dz̄2) + i(dz2)

)}
.

Now it is not difficult to see that c(ηi)dz̄j = 0, ∀i = 0, 1, 2 so that

c(Λ2
+V ∗) ⊂ End (S+(V )).

With respect to the unitary basis 1, ε1 ∧ ε2 = 1
2dz̄1 ∧ dz̄2 of S+(V ) we have

the following matrix descriptions:

c(ω) =
√

2c(η0) = 2
[
−i 0
0 i

]
,

c(ε1 ∧ ε2) =
1
2
c(dz̄1 ∧ dz̄2) = e(dz̄1)e(dz̄2) = 2

[
0 0
1 0

]
,

c(ε̄1 ∧ ε̄2) =
1
2
c(dz1 ∧ dz2) = −c(dz̄1 ∧ dz̄2)∗ = 2

[
0 −1
0 0

]
.

Note that for any real form ϕ ∈ Λ2
+V ∗ the Clifford multiplication c(ϕ) is a

traceless, skew-symmetric endomorphism of S+(V ).
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There is a quadratic map q : S+
4 → End (S+

4 ) defined by

q(ψ) := ψ̄ ⊗ ψ − 1
2
|ψ|2id

i.e. q(ψ) : φ 7→ 〈φ, ψ〉ψ− 1
2 |ψ|2φ. (The Hermitian metric is complex linear in

the first argument and complex antilinear in the second.) Using the bra-ket
notation of quantum mechanics in which we think of the spinors in S+

4 as
bra-vectors then

q(〈ψ|) = |ψ〉〈ψ| − 1
2
〈ψ|ψ〉.

We can decompose ψ ∈ S+(V ) as

ψ = α ⊕ β, α ∈ Λ0,0V ∗, β ∈ Λ0,2V ∗.

With respect to the basis {1, ε1 ∧ ε2} of S+(V ) the endomorphism q(ψ) has
the matrix description

q(ψ) =
[

1
2(|α|2 − |β|2) αβ̄

ᾱβ 1
2(|β|2 − |α|2)

]
.

We see that q(ψ) is traceless and symmetric. We will often identify q(ψ)
with a 2-form via the Clifford multiplication c : Λ2V ∗⊗C → End (S4). More
precisely

(1.3.5) q(ψ) ∼ i
4
(|α|2 − |β|2)ω +

1
2
(ᾱβ − αβ̄) ∈ iΛ2

+V ∗ ⊂ Λ2V ∗ ⊗ C.

Exercise 1.3.2. Using the notation in the previous example show that

q(ψ) =
1
4

2∑
i=0

〈ψ, c(ηk)ψ〉c(ηk).

Exercise 1.3.3. Using the notation in Example 1.3.3 show that for every
ω ∈ Λ2V ∗ we have

c(ω) = c(∗ω)
as endomorphisms of S+(V ).

Since Cl2n ⊗ C is isomorphic with an algebra of matrices End (S2n) we
can invoke Wedderburn’s theorem ([122]) to conclude that any complex
Cl2n-module V has the form S2n ⊗ V .

The odd dimensional situation follows from the even one using the fol-
lowing fact.

Lemma 1.3.4. Let V be a Euclidean space and u ∈ V such that |u| = 1.
Set V0 = 〈u〉⊥. Then there is an isomorphism of algebras

φ : Cl(V0) → Cl+(V )
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defined by
φ : x 7→ x+ + ux−.

Exercise 1.3.4. Prove the above lemma.

We deduce from the above result and the Fundamental Fact that

Cl2n−1 ⊗ C ∼= End (S+
2n) ⊕ End (S−

2n).

Thus the complex representation theory of Cl2n−1 is generated by two, non-
isomorphic, irreducible modules.

1.3.2. The Spin and Spinc groups. To produce a Dirac bundle on an
n-dimensional Riemannian manifold we need several things.

(a) A bundle of Clifford algebras, i.e. a bundle C → M of associative algebras
and an injection ı : T ∗M ↪→ C such that for all x ∈ M and all u, v ∈ T ∗

xM

{ı(u), ı(v)} = −2g(u, v)1

and the induced map ıx : Cl(T ∗
xM) → Cx is an isomorphism.

(b) A bundle of complex Clifford modules, i.e. a complex vector bundle
E → M and a morphism c : C → End (E).

We want all these bundles to be associated to a common principal G-
bundle. G is a Lie group with several special properties.

Denote by (V, g) the standard fiber of T ∗M and denote by AutV the
subgroup of algebra automorphisms ϕ of Cl(V ) such that

ϕ(V ) ⊂ V (⊂ Cl(V ) ).

First we require that there exists a Lie group morphism

ρ : G → AutV .

With such a ρ fixed we notice that it tautologically induces a representation

ρ : G → Aut (V ).

Denote by E the standard fiber of E . We require there exists a representation
µ : G → End (E) such that the diagram below is commutative for all g ∈ G
and all v ∈ V .

(1.3.6)

E E

E E
u

g

w
c(v)

u
g

w
c(g·v)

This commutativity can be given an invariant theoretic interpretation as
follows. View the Clifford multiplication c : V → End (E) as an element
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c ∈ V ∗ ⊗ E∗ ⊗ E. The group G acts on this tensor product and the above
commutativity simply means that c is invariant under this action.

To produce a Dirac bundle all we now need is a principal G-bundle
P → M such that the associated bundle P ×ρ V is isomorphic to T ∗M .
(This may not be always feasible due to possible topological obstructions.)
Any connection ∇ on P induces by association metric connections ∇M on
T ∗M and ∇E on the bundle of Clifford modules E = P ×µ E. (In practice
one often requires a little more, namely that ∇M is precisely the Levi-Civita
connection on T ∗M . This leads to significant simplifications in many in-
stances.) With respect to these connections the Clifford multiplication is
covariant constant, i.e.

∇E(c(α)u) = c(∇Mα) + c(α)∇Eu, ∀α ∈ Ω1(M), u ∈ C∞(E).

This follows from the following elementary invariant theoretic result.

Lemma 1.3.5. Let G be a Lie group and ρ : G → Aut (E) a linear repre-
sentation of G. Assume there exists e0 ∈ E such that ρ(g)e0 = e0, ∀g ∈ G.
Consider an arbitrary principal G-bundle P → X and an arbitrary connec-
tion ∇ on P . Then e0 canonically determines a section u0 on P ×ρ E which
is covariant constant with respect to the induced connection ∇E = ρ∗(∇),
i.e.

∇Eu0 = 0.

Exercise 1.3.5. Prove the above lemma.

Apparently the chances that a Lie group G with the above properties
exists are very slim. The very pleasant surprise is that all these things (and
even more) happen in most of the geometrically interesting situations.

Example 1.3.6. Let (V, g) be an oriented Euclidean space. Using the uni-
versality property of Clifford algebras we deduce that each g ∈ SO(V ) in-
duces an automorphism of Cl(V ) preserving V ↪→ Cl(V ). Moreover, it defines
an orthogonal representation on the canonical Clifford module

c : Cl(V ) → End (Λ∗V )

such that

c(g · v)(ω) = g · (c(v)(g−1 · ω)) ∀g ∈ SO(V ), v ∈ V, ω ∈ Λ∗V,

i.e. SO(V ) satisfies the equivariance property (1.3.6).
If (M, g) is an oriented Riemannian manifold we can now build our

bundle of Clifford modules starting from the principal SO bundle of its
oriented orthonormal coframes. As connections we can now pick the Levi-
Civita connection and its associates. The corresponding Dirac operator is
the Hodge-deRham operator.
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The Spin and Spinc groups provide two fundamental examples of groups
with the properties listed above. Here are their descriptions.

Let (V, g) be a Euclidean vector space. Define

Spin(V ) := {x ∈ Cl+ ; x = v1 · · · v2k, vi ∈ V, |vi| = 1}.
Equip it with the induced topology as a closed subset of Cl+. First note
there exists a group morphism

ρ : Spin(V ) → SO(V ), x 7→ ρx ∈ SO(V )

ρx(v) = xvx−1. We must first verify that ρ is correctly defined, i.e. ρx is
an orthogonal map of determinant 1. To see this note that for every u ∈ V ,
|u| = 1 the map

Ru : V → V, v 7→ −uvu−1

satisfies Ru(V ) ⊂ V and more precisely, Ru is the orthogonal reflection
in the orthogonal complement of 〈u〉 := span (u). We see that for every
x = v1 · · · v2k ∈ Spin(V ) we have

ρx = Rv1 ◦ · · · ◦ Rv2k

is the product of an even number of orthogonal reflections so that ρx ∈
SO(V ). Since any T ∈ SO(V ) can be written as the product of an even
number of reflections we conclude that the map ρ is actually onto. We leave
it to the reader to prove the following elementary fact.

Exercise 1.3.6. Show that ker ρ = {±1}.

This implies that ρ is a covering map. If dimV ≥ 3 one can show that
Spin(V ) is simply connected (because the unit sphere in V is so) and thus

ρ : Spin(V ) → SO(V )

is the universal cover of SO(V ). In particular, this shows that π1(SO(V )) =
Z2. By pullback one obtains a smooth structure on Spin(V ). Hence Spin(V )
is a compact, simply connected Lie group. Its Lie algebra is isomorphic
to the Lie algebra so(V ) of SO(V ). We want to present a more useful
description of the Lie algebra of Spin(V ). To do this we need to assume the
following not so obvious fact.

Exercise 1.3.7. Show that Spin(V ) with the smooth structure induced
from SO(V ) is a smooth submanifold of Cl(V ).

The Lie algebra of Spin(V ) can be identified with a closed subspace of
Cl+(V ). More precisely,

spin(V ) = ρ−1
∗ (so(V ))

where ρ∗ denotes the differential at 1 ∈ Spin(V ) of the covering map
Spin(V ) → SO(V ). A basis of spin(V ) can be obtained from a basis of
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so(V ). Choose an orthonormal basis e1, · · · , en of V . For each i < j we
have a path γij : (−ε, ε) → Spin(V ) given by

γij(t) = −(ei cos
t

2
+ ej sin

t

2
)(ei cos

t

2
− ej sin

t

2
) = cos t + (sin t)eiej .

The orthogonal transformation ργij(t) ∈ SO(V ) acts trivially on the orthog-
onal complement of Vij = span (ei, ej), while on Vij , oriented by ei ∧ ej , it
acts as the counterclockwise rotation of angle 2t.

Now denote by Jij the element of so(V ) given by

ei 7→ ej 7→ −ei, ek 7→ ek, k 6= i, j.

The family (Jij)i<j is a basis of so(V ). We deduce
d

dt
|t=0 ργij(t) = 2Jij .

Hence
ρ−1
∗ (Jij) =

1
2

d

dt
|t=0 γij(t) =

1
2
eiej .

In particular if A ∈ so(V ) has the matrix description

Aej =
∑

i

ai
jei, ai

j = −aj
i = aij = aij

then (notice the crucial negative sign!!!)

A = −
∑
i<j

aijJij

and

(1.3.7) ρ−1
∗ (A) = −1

2

∑
i<j

aijeiej = −1
4

∑
i,j

aijeiej .

Example 1.3.7. Spin(3) ∼= SU(2).
To see this, regard SU(2) as the group of unit quaternions (so that, in

particular, SU(2) is diffeomorphic to S3). There is a map

SU(2) → SO(3), q 7→ Tq,

where Tq acts on R3 ∼= Im H by

x 7→ Tqx = qxq−1.

It is not difficult to see that q 7→ Tq is a double cover.

Example 1.3.8. Spin(4) ∼= SU(2)×SU(2). Again identify SU(2) with the
group of unit quaternions and define

T : SU(2) × SU(2) → SO(4), (p, q) 7→ Tp,q

where Tp,q acts on R4 ∼= H by

Tp,qx = pxq−1.
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Again one checks (p, q) → Tp,q is a double cover.

There is a natural embedding Spin(3) ↪→ Spin(4) which can be described
as the diagonal embedding

SU(2) ↪→ SU(2) × SU(2), q 7→ (q, q).

This embedding is compatible with the natural embedding SO(3) ↪→ SO(4)
in the sense that the diagram below is commutative.

(©)

Spin(3) Spin(4)

SO(3) SO(4)
uu

y w

uu
y w

Suppose now that (V, g) is a 2n-dimensional Euclidean space. Fix a
compatible complex structure J . This defines an isomorphism of Z2-graded
algebras

ρ : Cl2n ⊗ C → End (S+
2n ⊕ S−

2n).

Since Spin(2n) ⊂ Cl+2n we obtain two complex representations

ρ± : Spin(2n) → Aut (S±
2n).

These are irreducible and not isomorphic (as Spin(2n)-representations).
These are called the even/odd complex spinor representations of Spin(2n).
The complex Spin(2n)-module S+

2n ⊕ S−
2n is denoted by S2n.

When (V, g) is a Euclidean space of odd dimension 2n + 1 then

Spin(2n + 1) ⊂ Cl+2n+1
∼= Cl2n.

Thus Spin(2n + 1) acts naturally on S2n. This action

ρ : Spin(2n + 1) → Aut (S2n)

is called the fundamental spinor representation and the corresponding
Spin(2n + 1)-module will be denoted by S2n+1.

Exercise 1.3.8. Using the isomorphism

Cl+2n
∼= Cl2n−1

constructed in the previous subsection show that the induced representations
of Spin(2n − 1) on S±

2n are both isomorphic to S2n−1.

Example 1.3.9. Using the isomorphism Spin(4) ∼= SU(2)× SU(2) we can
describe the complex spinor representations as follows.

ρ± : SU(2) → SU(2) → Aut (C2),

ρ+(p, q) : C2 ∼= H 3 v 7→ p · v ∈ H ∼= C2
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(where H is equipped with the complex structure induced by the right mul-
tiplication by i ∈ H)

ρ−(p, q) : C2 ∼= H 3 v 7→ v · q−1 ∈ H ∼= C2

(where H is equipped with the complex structure induced by the left multi-
plication by i ∈ H).

Define the group Spinc(V ) by

Spinc(V ) = (Spin(V ) × S1)/Z2

where Z2 denotes the subgroup {(1, 1), (−1,−1)} of Spin(V )× S1. Assume
for simplicity dimV = 2n. We obtain two representations

ρc
± : Spinc(V ) → Aut (S±

2n)

by
ρc
±(gz) = zρ±(g)

where ρ± denote the complex spinor representations of Spin(V ).

Exercise 1.3.9. Show that Spinc(3) ∼= U(2).

Exactly as in the case of the spin-groups we have a commutative diagram

(©c)

Spinc(3) Spinc(4)

SO(3) SO(4)
uu

y w

uu
y w

There is an intimate relationship between the group Spinc(V ) and al-
most complex structures on V . Suppose J is an almost complex structure
compatible with the metric g and denote by U(V, J) the group of unitary
automorphisms, i.e. orthogonal transformations of V which commute with
J .

Proposition 1.3.10. There exists a canonical group morphism ξ = ξJ :
U(V, J) → Spinc(V ) such that the diagram below is commutative.

U(V, J) Spinc(V )

SO(V )

w
ξ

'
'
'
'')

ı

u

The vertical arrow is the composition Spinc(V ) → Spin(V ) → SO(V ).
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Idea of Proof Let ω ∈ U(V ) and consider a path γ : [0, 1] → U(V )
connecting 1 to ω. Viewed as a path in SO(V ), γ admits a unique lift
γ̃ : [0, 1] → Spin(V ), γ̃(0) = 1. Using the double cover

S1 → S1, z 7→ z2

we can produce a unique lift δ(t) of the path det γ(t) ∈ S1. Now define
ξ(ω) := (γ̃(1), δ(1)). We let the reader verify that ξ is a well defined mor-
phism U(V ) → Spinc(V ). ¥

Next, we need to explain how to use these groups to produce Dirac
structures on a manifold. This requires a topological interlude, to discuss
the notion of spin and spinc structures.

1.3.3. Spin and spinc structures. Consider an oriented n-dimensional
Riemannian manifold (M, g). The tangent bundle TM can be described via
a gluing cocycle gαβ : Uαβ → SO(n) supported by a good cover, that is,
an open cover (Uα) of M where all the multiple intersections Uαβ···γ can be
assumed to be contractible (or even better, geodesically convex). A spin
structure is a collection of lifts

g̃αβ : Uαβ → Spin(n)

of gαβ satisfying the cocycle condition

g̃αβ g̃βγ g̃γα ≡ 1.

A manifold admitting spin structures is called spinnable. Spin structures
may or may not exist. Let’s see what can go wrong. Clearly, each map
gαβ : Uαβ → SO(n) admits at least one lift (in fact precisely two of them)

g̃αβ : Uαβ → Spin(n).

Since gαβ satisfies the cocycle condition we deduce

wαβγ := g̃αβ g̃βγ g̃γα ∈ Z2 = ker(Spin(n) → SO(n)).

The collection wαβγ satisfies the cocycle condition

wβγδ − wαγδ + wαβδ − wαβγ ≡ 0 ∈ Z2

for all α, β, γ, δ such that Uαβγδ 6= ∅. In other words, the collection w··· is
a Z2-valued Čech 2-cocycle. By choosing different lifts g̃αβ we only change
w··· within its Čech cohomology class. Hence, this cohomology class is a
topological invariant of the smooth manifold M . It is called the second
Stiefel-Whitney class and will be denoted by w2(M). It lives in H2(M, Z2).
The above discussion shows that if w2(M) 6= 0 then M does not admit spin
structures. The converse is also true. More precisely, we have the following
result.
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Proposition 1.3.11. The oriented manifold M is spinnable if and only
if w2(M) = 0. If this is the case there is a bijection between the set of
isomorphism classes of spin structures and H1(X, Z2).

Remark 1.3.12. The definition of isomorphism of spin-structures is rather
subtle (see [92]). More precisely, two spin structures defined by the cocycles
g̃•• and h̃•• are isomorphic if there exists a collection εα ∈ Z2 ⊂ Spin(n)
such that the diagram below is commutative for all x ∈ Uαβ

Spin(n) Spin(n)

Spin(n) Spin(n)

w
εα

u
g̃βα(x)

u
h̃βα(x)

w
εβ

.

The group H1(M, Z2) acts on Spin(M) as follows. Take an element ε ∈
H1(M, Z2) represented by a Čech cocycle, i.e. a collection of continuous
maps εαβ| : Uαβ → Z2 ⊂ Spin(n) satisfying the cocycle condition

εαβ · εβγ · εγα = 1.

Then the collection ε•• · g̃•• is a Spin(n) gluing cocycle defining a spin
structure we denote by ε · σ. It is easy to check that the isomorphism class
of ε · σ is independent of the various choice, i.e Čech representatives for ε
and σ. Clearly the correspondence

H1(M, Z2) × Spin(M) 3 (ε, σ) 7→ ε · σ ∈ Spin(M)

defines a left action of H1(M, Z2) on Spin(M). This action is transitive and
free.

Exercise 1.3.10. Prove the above proposition and the statement in the
above remark.

Exercise 1.3.11. Describe the only two spin structures on S1.

There is a very efficient topological machinery which can be used to
decide whether w2(M) = 0. We refer to [93] for details. We only want to
mention a few examples.

Example 1.3.13. A compact, simply connected 4-manifold admits spin
structures if and only if its intersection form is even. A compact, simply
connected manifold M of dimension ≥ 5 admits spin structures if and only if
every compact oriented surface S embedded in M has trivial normal bundle.

Let (Mn, g) be an oriented, n-dimensional Riemannian manifold. As
above, we can regard the tangent bundle as associated to the principal bun-
dle PSO(M) of oriented orthonormal frames. Assume PSO(M) is defined by a
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good open cover U = (Uα) and transition maps

gαβ : Uαβ → SO(n).

The manifold M is said to possess a spinc structure if there exist smooth
maps g̃αβ : Uαβ → Spinc(n), satisfying the cocycle condition such that

ρc(g̃αβ) = gαβ .

As for spin structures, there are obstructions to spinc structures as well
which clearly are less restrictive. Let us try to understand what can go
wrong. We stick to the assumption that all the overlaps Uαβ···γ are con-
tractible.

Since Spinc(n) = (Spin(n) × S1)/Z2, lifting the SO(n)-structure (gαβ)
reduces to finding smooth maps

hαβ : Uαβ → Spin(n)

and
zαβ : Uαβ → S1

such that
ρ(hαβ) = gαβ

and

(1.3.8) (εαβγ , ζαβγ)
def
= (hαβhβγhγα , zαβzβγzγα) ∈ {(−1,−1), (1, 1)}.

If we set λαβ = z2
αβ : Uαβ → S1 we deduce from (1.3.8) that the collec-

tion (λαβ) should satisfy the cocycle condition. In particular, it defines a
principal S1-bundle over M or, equivalently, a complex line bundle L. This
line bundle should be considered as part of the data defining a spinc struc-
ture. The collection (εαβγ) is an old acquaintance: it is a Čech 2-cocycle
representing the second Stiefel-Whitney class.

We can represent the cocycle λαβ as

λαβ = exp(iθαβ), θαβ : Uαβ → R.

The collection
nαβγ =

1
2π

(θαβ + θβγ + θγα)

defines a 2-cocycle of the constant sheaf Z which represents the topological
first Chern class of L. The condition (1.3.8) shows that

nαβγ = εαβγ (mod 2).

To summarize, we see that the existence of a spinc structure implies the
existence of a complex line bundle L such that

ctop
1 (L) = w2(M) (mod 2).

It is not difficult to prove that the above condition is also sufficient. In fact
one can be more precise.
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Denote by Spinc(M) the collection of isomorphism classes of spinc struc-
tures on the manifold M . Any σ ∈ Spinc(M) is defined by a lift (hαβ , zαβ)
as above. We denote by det(σ) the complex line bundle defined by the gluing
data (zαβ). We have seen that

ctop
1 (det(σ)) ≡ w2(M) (mod 2).

Denote by LM ⊂ H2(M, Z) the “affine” subspace consisting of those coho-
mology classes satisfying the above congruence modulo 2. Such elements
are called characteristic (not to be confused with the characteristic classes
of Chern and Pontryagin). We thus have a map

Spinc(M) → LM , σ 7→ ctop
1 (det(σ)).

Proposition 1.3.14. The above map is a surjection.

Exercise 1.3.12. Show that if H2(M, Z) has no 2-torsion (e.g. M is simply
connected) then the above map Spinc(M) → LM is one-to-one.

Exercise 1.3.13. Complete the proof of the above proposition.

The smooth Picard group Pic∞(M) acts on Spinc(M) by

Spinc(M) × Pic∞(M) 3 (σ, L) 7→ σ ⊗ L.

More precisely, if σ ∈ Spinc(M) is given by the cocycle

σ = [hαβ , zαβ] : Uαβ → Spin (n) × S1/ ∼

and L is given by the S1 cocycle

ζαβ : Uαβ → S1

then σ ⊗ L is given by the cocycle

[hαβ , zαβζαβ ].

Note that
det(σ ⊗ L) = det(σ) ⊗ L2

so that
ctop
1 (σ ⊗ L) = ctop

1 (σ) + 2ctop
1 (L).

Proposition 1.3.15. The above action of Pic∞(M) on Spinc(M) is free
and transitive.

Proof Consider two spinc structures σ1 and σ2 defined by the good cover
(Uα) and the gluing cocycle

[h(i)
αβ , z

(i)
αβ ], i = 1, 2.
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Since ρc(h(1)
αβ) = ρc(h(2)

αβ) = gαβ we can assume (possibly modifying the maps

h
(2)
αβ by a sign) that

h
(1)
αβ = h

(2)
αβ .

This implies that
ζαβ = z

(2)
αβ /z

(1)
αβ

is an S1-cocycle defining a complex line bundle L. Obviously σ2 = σ1 ⊗ L.
This shows the action of Pic∞(M) is transitive. We leave the reader verify
this action is indeed free. The proposition is proved. ¥

The group of orientation preserving diffeomorphisms of M acts in a
natural manner on Spinc(M) by pullback.

Given two spinc structures σ1 and σ2 we can define their “difference”
σ2/σ1 as the unique line bundle L such that σ2 = σ1 ⊗ L. This shows
that the collection of spinc structures is (noncanonically) isomorphic with
H2(X, Z) ∼= Pic∞. It is a sort of affine space modeled on H2(X, Z) in the
sense that the “difference” between two spinc structures is an element in
H2(X, Z) but there is no distinguished origin of this space. A structure as
above is usually called an H2(M, Z)-torsor.

We will list below (without proofs) some examples of spinc manifolds.

Example 1.3.16. (a) Any spin manifold admits a spinc structure.
(b) Any almost complex manifold has a natural spinc structure.
(c) (Hirzebruch-Hopf, [55]; see also [98]) Any oriented manifold of dimension
≤ 4 admits a spinc structure.

Let us analyze the first two examples above. If M is a spin manifold
then the lift

g̃αβ : Uαβ → Spin(n)
of the SO-structure to a spin structure canonically defines a spinc structure
via the trivial morphism

Spin(n) → Spinc(n) ×Z2 S1, g 7→ (g, 1) mod the Z2−action.

We see that in this case the associated complex line bundle is the trivial
bundle. This is called the canonical spinc structure of a spin manifold.
Thus on a spin manifold the torsor of spinc-structures does in fact possess
a “canonical origin” so in this case there is a canonical identification

Spinc(M) ∼= Pic∞ ∼= H2(M, Z).

To any complex line bundle L defined by the S1-cocycle (zαβ) we can asso-
ciate the spinc structure defined by the gluing data

{(g̃αβ , zαβ)}.
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Clearly, the line bundle associated to this structure is L2 = L⊗2. In particu-
lar, this shows that a spin structure on a manifold M canonically determines
a square root det(σ)1/2 of det(σ), for any σ ∈ Spinc(M) .

Exercise 1.3.14. Show that any two spin structures on a manifold M such
that H2(M, Z) has no 2-torsion are isomorphic as spinc structures.

Exercise 1.3.15. Suppose N is a closed, oriented, Riemannian 3-manifold.
Denote by FrN the bundle of oriented, orthogonal frames of TN . FrN → N
is a principla SO(3)-bundle. Denote by SN the set of cohomology classes
c ∈ H2(FrN , Z) such that their restriction to any fiber coincides with the
generator of H2(SO(3), Z) ∼= Z2. Prove that there exists a natural bijection

Spinc(N) → SN .

The commutative diagram (©c) shows that given a spinc-structure σ on
a closed, oriented 3-manifold N canonically induces a spinc structure σ̂ on
R × N . We will often use the notations

σ̂ := R × σ, σ := σ̂ |N .

Conversely, the SO(4)-structure on T (R×N) naturally reduces to a SO(3)-
structure (split the longitudinal tangent vector ∂t), and invoking the diagram
(©c) again we deduce that any spinc structure σ̂ on R induces a spinc

structure on N or, more precisely, the map

Spinc(N) → Spinc(R × N), σ 7→ R × σ

is an isomorphism.
In the conclusion of this subsection we would like to explain in some

detail why an almost complex manifold (necessarily of even dimension n =
2k) admits a canonical spinc structure. Recall that the natural morphism
U(k) → SO(2k) factors through a morphism

ξ : U(k) → Spinc(2k).

The U(k)-structure of TM , defined by the gluing data

hαβ : Uαβ → U(k)

induces a spinc structure defined by the gluing data ξ(hαβ). Its associated
line bundle is given by the S1-cocycle

detC(hαβ) : Uαβ → S1

and it is precisely the determinant line bundle

detCT 1,0M = Λk,0TM.

The dual of this line bundle, detC(T ∗M)1,0 = Λk,0T ∗M plays a special role in
algebraic geometry. It usually denoted by KM and it is called the canonical
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line bundle. Thus the line bundle associated to this spinc structure is
K−1

M

def
= K∗

M .

Exercise 1.3.16. Show that an almost complex manifold M admits a spin
structure if and only if the canonical line bundle KM admits a square root,
i.e. there exists a complex line bundle L such that L⊗2 ∼= KM . (Traditionally
such a line bundle is denoted by K

1/2
M , although the square root may not be

unique.)

1.3.4. Dirac operators associated to spin and spinc structures. Sup-
pose (M, g) is an oriented Riemannian manifold of dimension n equipped
with a spin structure. To describe it we assume the tangent bundle TM is
defined by the open cover (Uα) and transition maps

gαβ : Uαβ → SO(n).

These define a principal SO(n)-bundle PSO(n) → M . The spin structure is
given by the lifts

g̃αβ : Uαβ → Spin(n)

which define a principal Spin(n)-bundle PSpin(n) → M . Using the represen-
tation

τ : Spin(n) → Aut (Sn)

we can construct the associated vector bundle PSpin(n) ×τ Sn with structure
group Spin(n) and fiber Sn given by the gluing cocycle

τ(g̃αβ) : Uαβ → Aut (Sn).

It is called the bundle of complex spinors associated to the given spin struc-
ture and will be denoted by S0 = S0(M).

Exercise 1.3.17. As indicated in the Exercise 1.3.11, there are two spin
structures on S1, • and ◦. Denote by S• and S◦ the associated bundles of
complex spinors. These are complex line bundles over S1 and as such they
must be isomorphic. What bit of information do the spin structures add to
these bundles which will allow us to distinguish them?

Exercise 1.3.18. The bundle S0 has a natural selfadjoint Clifford structure
c : T ∗M → End (SM ).

The Levi-Civita connection ∇M on T ∗M is induced by a connection on
PSO(n). This is given by a collection of so(n)-valued 1-forms ωα ∈ Ω1(Uα)⊗
so(n) satisfying the transition rules (1.1.1). Using the double covering map
ρ : Spin(n) → SO(n) we obtain a Spin(n)-connection given by the collection

ω̃α = ρ−1
∗ (ωα) ∈ Ω1(Uα) ⊗ spin(n).
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Then the collection of End (S0)-valued 1-forms τ∗(ω̃α) defines a connection
∇̃M on SM , compatible with the Spin(n)-structure. The proof of the fol-
lowing result is left to the reader as an exercise.

Proposition 1.3.17. (S0, c, ∇̃M ) is a geometric Dirac bundle.

The geometric Dirac operator associated to the above Dirac structure is
called the spin Dirac operator associated to the given spin-structure on M .
We will denote it by DM .

It is useful to have a local description of this Dirac operator. Suppose
(ei) is a local, oriented, orthonormal frame of TM over Uα and denote by
(ei) the dual coframe. Then the Levi-Civita connection on TM is given by

∇ej =
∑

i

ωijei, ωij ∈ Ω1(Uα), ωij = −ωji

and on T ∗M by
∇ej =

∑
i

ωije
i =

∑
k,i

ek ⊗ ωkije
i.

Using (1.3.7) we obtain

∇̃M = d − 1
4

∑
i,j

ωijc(ei)c(ej) = d − 1
4

∑
i,j,k

ek ⊗ ωkijc(ei)c(ej).

We deduce

(1.3.9) DM =
∑

k

c(ek)∂ek
− 1

4

∑
i,j,k

ωkijc(ek)c(ei)c(ej).

The curvature of the connection ∇̃M can be obtained as follows. The
Riemannian curvature R of M (or equivalently, the curvature of the Levi-
Civita connection on TM) is given by the collection of so(n)-valued 2-forms

Rα = dωα +
1
2
ωα ∧ ωα =

∑
k<`

ek ∧ e`Rk`

where Rk` : Uα → so(n) is given by

Rk`ej = Ri
jklei = Rijk`ei.

Then the curvature of the connection (ω̃α) on PSpin(n) is given by

R̃ = ρ−1
∗ (R) =

∑
k<`

ek ∧ e`ρ−1
∗ (Rk`)

(1.3.7)
= −1

4

∑
k<`

ek ∧ e`
∑
i<j

Ri
jk`ei · ej .

The curvature of ∇̃M is then

F (∇̃M ) = −1
4

∑
k<`

ek ∧ e`
∑
i<j

Ri
jk`c(ei) · c(ej).
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Using Proposition 1.3.2 and the above expression one can prove the following
important result.

Theorem 1.3.18. (Lichnerowicz) DM is a formally selfadjoint operator
and

(1.3.10) D2
M = (∇̃M )∗∇̃M +

s

4
where s denotes the scalar curvature of the Riemannian manifold M .

Remark 1.3.19. Suppose ∇M is a metric connection on T ∗M , not neces-
sarily the Levi-Civita connection. Choosing an orthonormal coframe (ei) as
above we can represent

∇Mej =
∑
k,i

Ωkije
k ⊗ ei.

Using again the isomorphism τ we obtain a connection ∇̂M = τ∗∇ on S0,
locally described by

∇̂M = d − 1
4

∑
i,j,k

ek ⊗ Ωkijc(ei)c(ej).

It satisfies the following compatibility relation:

∇̂M
X c(α) = c(∇M

X α), ∀X ∈ Vect (M), α ∈ Ω1(M).

Then (S0, c,∇M , ∇̂M ) is a Dirac structure called the Dirac structure induced
by the connection ∇M . As explained in Sec. 1.3.1, this Dirac structure
determines a Dirac operator we will call the Dirac operator induced by the
connection ∇M .

Exercise 1.3.19. Suppose (M, g) is a Riemannian spin-manifold and ∇M

is a metric connection. The trace of its torsion is the 1-form tr (T ) locally
defined by

tr (T )(ei) =
∑

k

g(ek, T (ek, ei) )

where (ei) is a local orthonormal frame. Show that the induced Dirac op-
erator is formally selfadjoint if and only if the torsion of ∇M is traceless,
tr (T ) ≡ 0.

The above construction can be generalized as follows. Given a Hermitian
vector bundle E → M and a Hermitian connection ∇E we can define a
geometric Dirac structure

(SM ⊗ E, cE ,∇)

on M where

cE : Ω∗(M) c→ End (SM )
⊗1E
↪→ End (SM ⊗ E)
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and ∇ is the connection on SM ⊗ E induced by the connection ∇̃M on SM

and the connection ∇E on E. We denote by DM,E the associated geometric
Dirac operator. We say that DM,E is obtained from DM by twisting with
the pair (E,∇E).

Exercise 1.3.20. Prove that the above triple (SM ⊗ E, cE ,∇) is indeed a
geometric Dirac structure on M .

The curvature of ∇ is

F (∇) = F (∇̃M ) ⊗ 1E + 1SM
⊗ F (∇E).

From the Weitzenböck formula we deduce

(1.3.11) D2
M,E = ∇∗∇ +

s

4
+ c(F (∇E)).

The endomorphism R = s
4 + c(F (∇E)) is the Weitzenböck remainder of the

generalized Laplacian D2
M,E .

At this point we want to discuss some features of the above formula
when dimM is even. In this case SM is Z2-graded

SM = S+
M ⊕ S−

M

and in particular we obtain a splitting

SM ⊗ E = S+
M ⊗ E ⊕ S−

M ⊗ E.

With respect to the above grading the operator DM,E has the block decom-
position

DM,E =
[

0 6D∗
M,E

6DM,E 0

]
where 6DM,E : C∞(S+

M ⊗ E) → C∞(S−
M ⊗ E). Then

D2
M,E =

[
6D∗

M,E 6DM,E 0
0 6DM,E 6D∗

M,E

]
.

We conclude that the Weitzenböck remainder R of D2
M,E has the block

decomposition

R =
[
R+ 0
0 R−

]
When dimM = 4 we can be more specific. Using the computation in the
Example 1.3.3 we deduce

(1.3.12) 6D∗
M,E 6DM,E = ∇∗∇ +

s

4
+ c

(
F+(∇E)

)
,

(1.3.13) 6DM,E 6D∗
M,E = ∇∗∇ +

s

4
+ c

(
F−(∇E)

)
where F±(∇E) denotes the self/antiself-dual part of the curvature of ∇E .



1.3. Clifford algebras and Dirac operators 49

Assume now that (M, g) is an oriented, n-dimensional Riemannian man-
ifold equipped with a spinc structure σ ∈ Spinc(M). Denote by (gαβ) a col-
lection of gluing data defining the SO structure PSO(M) on M with respect
to some good open cover (Uα). Moreover, we assume σ is defined by the
data

hαβ : Uαβ → Spinc(n).

Denote by ρc the fundamental complex spinorial representation

ρc : Spinc(n) → Aut (Sn).

We obtain a complex bundle

Sσ(M) = PSpinc ×ρc Sn

which has a natural Clifford structure. This is called the bundle of complex
spinors associated to σ. We want to point out that if M is equipped with a
spin structure then

Sσ
∼= S0 ⊗ det(σ)1/2.

We will construct a family of geometric Dirac operators on Sσ(M).
Consider for warm-up the special case when TM is trivial. Then we can

assume gαβ ≡ 1 and

hαβ = (1, zαβ) : Uαβ → Spin(n) × S1 → Spinc(n).

The S1-cocycle (z2
αβ) defines the line bundle det(σ). In this case something

more happens. The collection (zαβ) is also an S1-cocycle defining the com-
plex Hermitian line bundle L̂ = det(σ)1/2. Now observe that

SM,σ = SM ⊗ det(σ)1/2.

We can now twist the Dirac operator DM with a pair (det(σ)1/2, A), where
A is a Hermitian connection on det(σ)1/2 and obtain a Dirac operator on
SM,σ. Notice that if the collection

{ωα ∈ u(1) ⊗ Ω1(Uα)}
defines a connection on det(σ), i.e.

ωβ =
dz2

αβ

z2
αβ

+ ωα over Uαβ

then the collection
ω̂α =

1
2
ωα

defines a Hermitian connection on L̂ = det(σ)1/2. Moreover if F denotes
the curvature of (ωα) then the curvature of (ω̂α) is given by

(1.3.14) F̂ =
1
2
F.
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Hence any connection on det(σ) defines in a unique way connection on
Sσ(M).

Assume now that TM is not necessarily trivial. We can however cover
M by open sets (Uα) such that each TUα is trivial. If we pick from the start
a connection on det(σ) this induces a Clifford connection on each SUα,σ.
These can be glued back to a Clifford connection on SM,σ using partitions
of unity. We let the reader check the connection obtained in this way is
independent of the various choices.

Exercise 1.3.21. Suppose (M, g) is an oriented Riemannian manifold
equipped with a spinc structure σ and A is a Hermitian connection on
det(σ). Denote by ∇̂A the connection on Sσ induced by A. Given a smooth
map γ : M → U(1) ⊂ C∗ we can construct a new connection γ∇̂Aγ−1. Show
that this connection is induced by the connection A − 2(dγ)γ−1 on det(σ).
In particular, the assignment

(γ, A) 7→ A − 2(dγ)γ−1

defines a smooth left action of the gauge group GU(1)(det(σ)) on the space
of Hermitian connection on det(σ).

Let A be a connection on det(σ). Denote by ∇A the Clifford connection
it induces on SM,σ and by DA := DM,A the geometric Dirac operator as-
sociated to the geometric Dirac structure (SM,σ, c,∇A). The Weitzenböck
remainder of D2

M,A is a local object so in order to determine its form we can

work on Uα where SUα,σ = SUα ⊗ det(σ) |1/2
Uα

. Using the equalities (1.3.11)
and (1.3.14) we deduce

(1.3.15) D2
σ,A = (∇A)∗∇A +

1
4
s +

1
2
c(FA)

where FA denotes the curvature of the connection A on det(σ). If M is
four-dimensional then we have a splitting

SM,σ = S+
M,σ ⊕ S−

M,σ

and

(1.3.16) 6D∗
A 6DA = (∇A)∗∇A +

s

4
+

1
2
c(F+

A ).

Exercise 1.3.22. Suppose M is a Riemannian manifold equipped with a
spinc structure σ and A is a Hermitian connection on det(σ). Show that for
any imaginary 1-form ia ∈ iΩ1(M) we have

DA+ia = DA +
1
2
c(ia).
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The space Spinc(M) of spinc structures on M is equipped with a natural
involution σ 7→ σ̄. It can be described as follows. Suppose σ is a spinc

structure given by a cocycle (hαβ , zαβ). Then σ̄ is the spinc-structure defined
by the cocycle (hαβ , z̄αβ). We let the reader verify that the isomorphism
class of σ̄ depends only on the isomorphism class of σ. This involution
enjoys several nice features.

Exercise 1.3.23. (a) For every σ ∈ Spinc(M) there exists a natural iso-
morphism of complex line bundles.

det(σ̄) ∼= det(σ)

(b)∗ If dim M = 4 then there exist natural isomorphisms of complex vector
bundles

(1.3.17) ϑ : S̄+
σ → S+

σ̄ , ϑ] : S̄−
σ → S−

σ̄

such that for every 1-form α on M we have the equality

ϑ](cσ(α)ψ) = cσ̄(α)ϑ(ψ̄)

where cσ denotes the Clifford multiplication on the bundle Sσ. Moreover,
for every ψ ∈ C∞(S+

σ ) we have the equality

(1.3.18) q(ϑ(ψ̄)) = −q(ψ)

where q(ψ) denotes the endomorphism φ 7→ 〈φ, ψ〉ψ− 1
2 |ψ|2φ. (The Hermit-

ian metric is assumed to be complex linear in the first variable.)
(c) Show that for every Hermitian connection A on det(σ) and for every
ψ ∈ C∞(S+

σ ) we have the identity

(1.3.19) ϑ](6DAψ) = 6DA∗ϑ(ψ̄)

where A∗ denotes the connection induced by A on det σ̄ ∼= (det σ)∗.

Hint for (b). If ρ± : Spin(4) → SO(S+
4 ) denotes the even/odd spinor

representation then there exists a complex linear isomorphism C± : S±
4 →

S
±
4 such that C± ◦ ρ± = ρ̄±. More precisely, if we identify Spin(4) with

SU(2)×SU(2) and SU(2) with the group of unit quaternions then S+
4 is the

space of quaternions H equipped with the complex structure given by Ri, the
right multiplication by i. For (q+, q−) ∈ Spin(4) the map ρ(q+, q−) ∈ SO(H)
is described by Lq+ , the left multiplication by q+. The morphism C± is then
given by Rj, the right multiplication by j. The description of C− is obtained
from the above by making the changes

left ↔ right and ρ+(q+, q−) = Lq+ ↔ ρ−(q+, q−) = Rq−1
−

.

Suppose now that M is a closed, compact, oriented 4-manifold equipped
with a spinc structure σ. Upon choosing a connection A on the associated
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line bundle detσ we obtain a Dirac operator

6DA : C∞(S+
σ ) → C∞(S−

σ ).

This is an elliptic operator which has a finite index

indC(6DA) = dimC ker 6DA − dimC ker 6D∗
A.

According to the celebrated Atiyah-Singer index theorem this index can be
expressed in purely topological terms. More precisely, we have the following
equality:

(1.3.20) indC 6DA =
1
8

(∫
M

c1(det σ) ∧ c1(det σ) − τ(M)
)

where τ(M) denotes the signature of the manifold M .

1.4. Complex differential geometry

We present here a very brief survey of some basic differential geometric facts
about complex manifolds in general, and complex surfaces in particular.
We will return to this subject later on, in Section 3.1. This is an immense
research area and our selection certainly does not do it justice. For more
details and examples we refer to [9, 10, 49, 54, 63] and the sources therein.

1.4.1. Elementary complex differential geometry. An almost complex
structure on a manifold X is an endomorphism J of the tangent bundle TX
such that J2 = −1. Note in particular that such a structure can exist only
on orientable even-dimensional manifolds. By duality we get a similar en-
domorphism of the cotangent bundle T ∗X which we continue to denote by
J .

The operator J extends by complex linearity to an endomorphism of the
complexified tangent TX ⊗C. It defines two eigenbundles corresponding to
the eigenvalues ±i and thus it produces a splitting of complex bundles

TX ⊗ C = (TX)1,0 ⊕ (TX)1,0

where the (1, 0) superscript indicates the i-eigenbundle while the (0, 1)-
superscript indicates the −i-eigenbundle. Note that (TX, J) is isomorphic
to (TX)1,0 as complex vector bundles. Denote by P 1,0 (resp. P 1,0) the pro-
jection onto (TX)1,0 (resp. (TX)0,1) corresponding to the above splitting.

For any vector field X on M define Xc := P 1,0X = 1
2(X − iJX) and

X̄c := P 0,1X = 1
2(X + iJX). By duality, these induce projectors of T ∗X⊗C

and thus we get a similar splitting

(1.4.1) T ∗X ⊗ C = (T ∗X)1,0 ⊕ (T ∗X)0,1
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which leads to a decomposition

(1.4.2) ΛkT ∗X ⊗ C =
⊕

p+q=k

Λp,qT ∗X

where
Λp,qT ∗X ∼= Λp(T ∗X)1,0 ⊗ Λq(T ∗X)0,1.

The sections of Λp,qT ∗X are called (p,q)-forms on X. For example, if α ∈
Ω1(M) ⊗ C then α extends to a C∞(M, C)-linear map

Vect (M) ⊗ C → C∞(M, C)

and
α = α1,0 + α0,1

where α1,0(X) := α(P 1,0X) and α0,1(Y ) := α(P 0,1Y ).

Example 1.4.1. Consider the manifold Cn with coordinates zj = xj + iyj ,
j = 1, · · · , n. It is equipped with a natural almost complex structure defined
by

J :
∂

∂xj
7→ ∂

∂yj
7→ − ∂

∂xj
.

The complex bundle (TCn)1,0 (resp (T ∗Cn)0,1) admits a global trivialization
defined by

∂

∂zj
:=

1
2
(

∂

∂xj
− i

∂

∂yj
)

and respectively
dzj := dxj + idyj .

Similarly (TCn)0,1 (resp. (T ∗Cn)0,1) is globally trivialized by

∂

∂z̄j
:=

1
2
(

∂

∂xj
+ i

∂

∂yj
)

and respectively
dz̄j = (dxj − idyj).

A (p, q)-form on Cn has the form

α =
∑
I,J

αIJdzI ⊗ ∧dz̄J

where the summation is carried over all ordered multi-indices

I : 1 ≤ i1 < · · · < ip ≤ n, J : 1 ≤ j1 < · · · < jq ≤ n

and αIJ is a complex valued function on Cn.
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The exterior derivative extends by complex linearity to an operator

d : C∞(
ΛkT ∗X ⊗ C

)
→ C∞(

Λk+1T ∗X ⊗ C
)
.

It is not difficult to check that

d(Λp,q) ⊂ Λp+2,q−1 ⊕ Λp+1,q ⊕ Λp,q+1 ⊕ Λp−1,q+2.

Accordingly, we get a decomposition of d

d = d2,−1 + d1,0 + d0,1 + d−1,2.

Traditionally one uses the notation

∂ := d1,0, ∂̄ := d0,1.

The almost complex structure is said to be integrable if d2,−1 = 0 and d−1,2 =
0.

Proposition 1.4.2. Consider an almost complex manifold (M, J).The fol-
lowing conditions are equivalent.
(a) The almost complex structure is integrable.
(b) d2,−1α = d−1,2α = 0 for all α ∈ Ω1(M) ⊗ C.
(c) ∂̄2f = 0 = ∂2f , ∀f ∈ C∞(M).
(d) The Nijenhuis tensor N ∈ Ω2(TM) defined by

N(X, Y ) =
1
4
([JX, JY ] − [X, Y ] − J [X, JY ] − J [JX, Y ]),

∀X, Y ∈ Vect (M), is identically zero.

Proof Clearly (a) ⇒ (b). Using a partition of unity it is not difficult to
prove the converse, (b) ⇒ (a).

Clearly (b) ⇒ (c). Using partitions of unity we can replace the condition
“∀α ∈ Ω1(M)” in (b) by the condition “∀α = fdg, f, g ∈ C∞(M)”. This
weaker, equivalent version of (b) is clearly implied by (c). To establish the
remaining equivalences we need to establish several identities of independent
interest.

Let f ∈ C∞(M). Then

∂2f(Xc, Yc) = d∂f(Xc, Yc) = Xc∂f(Yc) − Yc∂f(Xc) − ∂f([Xc, Yc])

= Xcdf(Yc) − Ycdf(Xc) − df([Xc, Yc]c).
We compute each of the terms separately.

Xcdf(Yc) =
1
4

{
Xdf(Y ) − JXdf(JY ) − i(Xdf(JY ) + JXdf(Y ))

}
.

Ycdf(Xc) =
1
4

{
Y df(X) − JY df(JY ) − i(Y df(JX) + JY df(X))

}
.

df([Xc, Yc]c) =
1
2
df([Xc, Yc] − iJ [Xc, Yc])
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=
1
8
df([X − iJX, Y − iJY ]) − i

8
df(J [X − iJX, Y − iJY ])

=
1
8
df([X, Y ] − [JX, JY ] − i[JX, Y ] − i[X, JY ])

− i
8
df(J [X, Y ] − J [JX, JY ] − iJ [JX, Y ] − iJ [X, JY ])

=
1
8
df([X, Y ] − [JX, JY ] − J [JX, Y ] − J [X, JY ])

− i
8
df(J [X, Y ] − J [JX, JY ] + [JX, Y ] + [X, JY ]).

At this point we use the equality d2f = 0 which implies

Udf(V ) − V df(V ) = df([U, V ]), ∀U, V ∈ Vect (M).

We deduce

Xcdf(Yc) − Ycdf(Yc) =
1
4

{
df([X, Y ]) − df([JX, JY ])

}
− i

4

{
df([X, JY ] + df([JX, Y ])

}
.

Putting together all of the above we deduce

∂2f(X, Y ) = ∂2f(Xc, Yc) =
1
8
df([X, Y ] − [JX, JY ] + J [JX, Y ] + J [X, JY ])

+
i
8
df(J [X, Y ] − J [JX, JY ] + J [JX, Y ] + J [X, JY ])

= −df(N(X, Y )c) = −∂̄f(N(X, Y )).

Similarly
∂̄2f(X, Y ) = −∂f(N).

It is now clear that (c) ⇐⇒ (d). ¥

It is very easy to show that if M is a complex manifold (i.e. admits local
coordinates U → Cn with holomorphic transition maps) then the induced
almost complex structure is integrable. The converse is also true but it is
highly nontrivial. It is known as the Newlander-Nirenberg theorem.

Suppose now that M is an almost Hermitian manifold, i.e. TM is
equipped with a Riemannian metric g and a compatible almost complex
structure J , i.e. J∗ = −J . Extend J to an almost complex structure J [ on
T ∗X via the metric duality so that

(J [α)(X) = −α(JX).

We obtain an eigenbundle decomposition

T ∗X ⊗ C ∼= ker(i − J [) ⊕ ker(i + J [) ∼= (T ∗X)1,0 ⊕ (T ∗X)0,1
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which coincides with the splitting in (1.4.1). Now define ω ∈ Ω2(M) by

ω(X, Y ) = g(JX, Y ), ∀X, Y ∈ Vect (M).

Note that ω ∈ Ω1,1(M). We can now define a Hermitian metric on the
complex bundle (TX, J) by

h(X, Y ) = g(X, Y ) − iω(X, Y ).

It is often very useful to have local descriptions of the various notions. Pick
a local orthonormal frame of TM

{e1, f1; · · · ; en, fn}, fk = Jek.

Then εj = 1√
2
(ej − ifj) form a local, complex, unitary frame of T 1,0 while

ε̄j = 1√
2
(ei + ifj) form a local, complex, unitary frame of T 0,1. If we denote

by (ej , f j) the dual basis of (ej , fj) then

εj =
1√
2
(ej + if j)

is a local unitary frame of (T ∗X)1,0 and

ε̄k :=
1√
2
(ek − ifk)

is a local unitary frame of (T ∗X)0,1. Then

ω = i
∑

j

εj ∧ ε̄j .

If D denotes the Levi-Civita connection then we have the following identity
(see [64, IX, §4, vol.2]):

(DXω)(Y, Z) = g((DXJ)Y, Z)

(1.4.3) = −1
2
dω(X, JY, JZ) +

1
2
dω(X, Y, Z) + 2g(N(Y, Z), JX).

Exercise 1.4.1. Prove the identity (1.4.3).

Suppose now that dω = 0. The identity (1.4.3) simplifies dramatically
to

(1.4.4) (DXω)(Y, Z) = g((DXJ)Y, Z) = 2g(N(Y, Z), JX).

Definition 1.4.3. An almost Hermitian manifold (M, g, J) is said to be
almost Kähler if the form ω is closed. An almost Kähler manifold (M, g, J)
is said to be Kähler if the almost complex structure J is integrable.
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Exercise 1.4.2. Suppose (M2n, ω) is a symplectic manifold , i.e ω is a
closed 2-form amd ωn is a volume form on M . Show that there exist almost
Káhler structures (g, J) on M such that

ω(X, Y ) = g(JX, Y ), ∀X, Y ∈ Vect (M).

In this case both g are said to be adapted to ω. Moreover, show that when
n = 2 the symplectic form ω is self-dual with respect to any adapted metric.

Using the metric duality we can regard any tensor B ∈ Ω2(TM) as a
T ∗M -valued 2-form

〈B(X, Y ), Z〉 := g(B(X, Y ), Z), ∀X, Y, Z ∈ Vect (M)

where 〈·, ·〉 denotes the duality between T ∗M and TM . Now define the
Bianchi projector

bB(X, Y, Z) = 〈B(X, Y ), Z〉 + 〈B(Z, X), Y 〉 + 〈B(Y, Z), X〉.
Then bN is a 3-form. If dω = 0 then using the elementary identity

N(JY, JZ) = −N(Y, Z)

we deduce
DXω(Y, Z) = −2g(N(JY, JZ), JX)

so that ∀X, Y, Z ∈ Vect (M)

(1.4.5) bN(JX, JY, JZ) = −1
2
(bDω)(X, Y, Z) = −1

2
dω(X, Y, Z) = 0

where at the second step we have use the following identity (see Exercise
1.4.4 for a more general situation)

dη(X, Y, Z) = b(Dη)(X, Y, Z), ∀η ∈ Ω2(M), X, Y, Z ∈ Vect (M).

Consider now an almost Hermitian manifold (M, g, J). A connection ∇ on
TX is said to be Hermitian if ∇g = 0 and ∇J = 0.

If ∇ is such a connection then its torsion is the TM -valued 2-form T ∈
Ω2(TM) defined by

T (X, Y ) = ∇XY −∇Y X − [X, Y ], ∀X, Y ∈ Vect (M).

Proposition 1.4.4. Suppose ∇ is a Hermitian connection on an almost
Hermitian manifold (M, g, J) and denote by T its torsion. Then ∀X, Y ∈
Vect (M)
(a)

4N(X, Y ) = T (X, Y ) + JT (JX, Y ) + JT (X, JY ) − T (JX, JY )

(1.4.6) = N(X, Y ) + JN(JX, Y ) + JN(X, JY ) − N(JX, JY ).
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(b) If (M, g, J) is almost Kähler then there exists a unique Hermitian con-
nection ∇ on TM such that

T∇ = N.

Proof (a) We prove only the first equality in (1.4.6). It all begins with
the identity

[X, Y ] = ∇XY −∇Y X − T (X, Y ).
Then

[JX, JY ] = ∇JX(JY ) −∇JY (JX) − T (JX, JY )
= J(∇JXY −∇JY X) − T (JX, JY ).

J [X, JY ] = J(∇X(JY ) −∇JY X − T (X, JY ))
= −∇XY − J∇JY X − JT (X, JY ).

J [JX, Y ] = J(∇JXY −∇Y (JX) − T (JX, Y ) )
= J∇JXY + ∇Y X − JT (JX, Y ).

We deduce

4N(X, Y ) = T (X, Y ) + JT (JX, Y ) + JT (X, JY ) − T (JX, JY ).

(b) We first need to prove an auxiliary result.

Lemma 1.4.5. For any TM -valued 2-form T there exists a unique connec-
tion on TM compatible with the metric whose torsion is precisely T .

Proof of the lemma Denote by D the Levi-Civita connection on M .
Then any other metric connection has the form

∇ = D + A, A ∈ Ω1(End−(TM))

where End−(TM) denotes the bundle of skew-symmetric endomorphisms of
TM . Since D has no torsion we deduce that the torsion of ∇ is

T∇(X, Y ) = AXY − AY X, ∀X, Y ∈ Vect (M)

where AX denotes the contraction of A with X. We can regard A as a
T ∗M -valued 2-form using the identification

〈A(X, Y ), Z〉 := g(AZX, Y ).

Thus we deduce

(1.4.7) 〈T (X, Y ), Z〉 = 〈A(Y, Z), X〉 + 〈A(Z, X), Y 〉.
A cyclic summation leads to the identity

bT = 2bA.

We can now rewrite (1.4.7) as follows:

〈T (X, Y ), Z〉 = (bA)(X, Y, Z) − 〈A(X, Y ), Z〉
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=
1
2
bT (X, Y, Z) − 〈A(X, Y ), Z〉.

Hence
A = −T +

1
2
bT.

The lemma is proved. ¥

According to Lemma 1.4.5 there exists a unique metric connection ∇ on
TM such that T = N . It is explicitly defined by

∇ = D − N +
1
2
bN.

We have to show that when (M, g, J) is almost Kähler this connection is
also Hermitian, i.e.

∇J = 0.

Note first that in this case, according to (1.4.5), we have

∇ = D − N,

that is,

g(∇XY, Z) = g(DXY, Z) − g(N(Y, Z), X), ∀X, Y, Z ∈ Vect (M).

We have to show that

g(DXJY, Z) − g(N(JY, Z), X) = −g(DXY, JZ) + g(N(Y, JZ), X)

or equivalently

(1.4.8) g(DXJY, Z) + g(DXY, JZ) = g(N(JY, Z), X) + g(N(Y, JZ), X).

Note that
N(JY, Z) = N(Y, JZ) = −JN(Y, Z)

and
g(DXJY, Z) + g(DXY, JZ) = g((DXJ)Y, Z)

so that (1.4.8) is equivalent to

g((DXJ)Y, Z) = 2g(N(Y, Z), JX)

which is precisely (1.4.4). The proposition is proved. ¥

Remark 1.4.6. (a) If J is integrable (so that M is Kähler) then N = 0
so that the connection constructed in the above proposition is precisely the
Levi-Civita connection.
(b) One can show (see [64]) that on any almost complex manifold there
exist many connections compatible with the almost complex structure and
torsion N . We refer to the survey [46] for additional facts on Hermitian
connections.
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Definition 1.4.7. The Chern connection of an almost Kähler manifold
(M, g, J) is the unique Hermitian connection with torsion N .

Exercise 1.4.3. Suppose that (M, g, J) is an almost Kähler manifold and
D is the Levi-Civita connection of g. Show that the Chern connection ∇
associated to the almost Kähler structure can be described as

∇X = DX − 1
2
J(DXJ), ∀X ∈ Vect (M).

Exercise 1.4.4. Suppose (M, g) is a Riemannian manifold and ∇ is a
connection on TM compatible with the metric g with torsion T . Define
tr (T ) ∈ Ω1(M) by

tr (T )(X) =
∑

i

g(ei, T (ei, X)), ∀X ∈ Vect (X)

where ei denotes a local orthonormal frame on M . Show that for any η ∈
Ωp(M) we have

dη(X0, · · · , Xp) =
p∑

j=0

(−1)j(∇Xjη)(X0, · · · , X̂j , · · · , Xp)

(1.4.9) +
∑
j<k

(−1)j+kη(T (Xj , Xk), X0, . . . , X̂j , . . . , X̂k, · · · , Xp),

d∗η(X1, . . . , Xp−1) = −
dim M∑

i=1

(∇eiη)(ei, X1, · · · , Xp−1)

(1.4.10) +η((trT )[, X1, . . . , Xp−1)

−
p−1∑
j=1

(−1)j〈 g(Xj , T ) , η(•, •, X1, · · · , X̂j , · · · , Xp−1) 〉

where (ei) is a local orthonormal frame, tr (T )[ denotes the vector field dual
to tr (T ), g(Xj , T ) denotes the 2-form (X, Y ) 7→ g(Xj , T (X, Y ) and the
pairing 〈•, •〉 refers to the inner product of two forms. (Observe that the
above identities extend by complex linearity to complex valued forms and
vectors.)

Exercise 1.4.5. Suppose (M, g, J) is an almost Kähler manifold and ∇ is
the associated Chern connection.
(a) Show that tr (N) = 0.
(b) Show that if X, Y ∈ C∞(T 0,1M) then N(X, Y ) ∈ C∞(T 1,0M).
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(c) Denote by gc the extension of g by complex bilinearity to TM ⊗C. Show
that for every X ∈ C∞(T 0,1M) the 2-form ωX defined by

ωX(Y, Z) = gc(X, N(Y, Z))

has type (0, 2), i.e.

ωX(JY, Z) = ωX(Y, JZ) = −iωX(Y, Z), ∀Y, Z ∈ Vect (M).

(d) Show that for any η ∈ Ω0,p(M) and any Z0, · · · , Zp ∈ C∞(T 0,1M) we
have the identities

(1.4.11) ∂̄η(Z0, . . . , Zp) =
p∑

j=1

(−1)j(∇Zjη)(Z0, · · · , Ẑj , · · · , Zp),

(1.4.12) ∂̄∗η(Z1, · · · , Zp−1) = −
dim M∑

i=1

(∇eiη)(ei, Z1, · · · , Zp−1)

where ei denotes a local, orthonormal frame of TM . (For a generalization
of these identities we refer to [46].)

Hint: Use that fact that for any Z0, · · · , Zp ∈ C∞(T 0,1M) and η ∈ Ω0,p(M)
we have

(∂̄η)(Z0, · · · , Zp) = dη(Z0, · · · , Zp)
and

(∂̄∗η)(Z1, · · · , Zp−1) = d∗η(Z1, · · · , Zp−1).

In the remainder of this section we will assume (M, g, J) is an almost
Kähler manifold. Denote by ω the associated symplectic form

ω(X, Y ) = g(JX, Y ), ∀X, Y ∈ Vect (M).

Set 2n = dimM . We orient M using the nowhere vanishing 2n-form ωn.
Note that

dvg =
1
n!

ωn.

Using the metric g and the above orientation we obtain a Hodge operator

∗ : Ωp(M) → Ω2n−p(M)

which we extend by complex anti-linearity to an operator

∗ : Ωp(M) ⊗ C → Ω2n−p(M).

Exercise 1.4.6. Let ϕ ∈ Ωp,q(M). Prove that

∗ϕ ∈ Ωn−p,n−q(M)

and
ϕ ∧ ∗ϕ = |ϕ|2dvg

where | • | denotes the Hermitian metric induced by (g, J) on Λp,qT ∗M .
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Exterior multiplication by ω defines a bundle morphism

L : Ωp,q(M) → Ωp+1,q+1(M).

Its adjoint, L∗ = Λ : Ωp+1,q+1(M) → Ωp,q(M), is called the contraction by
the symplectic form.

Exercise 1.4.7. Suppose (M, g, J) is an almost Kähler manifold and (ei, fi)
is a local orthonormal frame such that fi = Jfi for all i. Its dual coframe
will be denoted by (ei, f i) and, as usual, set

εi = 2−1/2(ei − ifi), ε̄i = 2−1/2(ei + ifi),

εi = 2−1/2(ei + if i), ε̄i = 2−1/2(ei − if i).
For k = 1, 2, · · · , n we denote by ık and ı̄k the (locally defined) odd deriva-
tions of Ω∗,∗(M) uniquely determined by

ıkε
i = δi

k = ı̄kε̄
i, ıkε̄

i = ı̄kε
i = 0

where δ denotes the Kronecker symbol. Show that locally

Λ = −i
∑

k

ı̄kık.

Denote by Πp,q the natural projection Ω∗(M) ⊗ C → Ωp,q(M) and set

Π =
∑
p,q

ip−qΠp,q : Ω∗(M) ⊗ C → Ω∗(M) ⊗ C,

H =
∑
p,q

(n − p − q)Πp,q.

Observe that Π is bijective and Π∗ = Π−1. Now define dc, d
∗
c : Ω∗(M)⊗C →

Ω∗(M) ⊗ C by dc = Π−1dΠ and d∗c = Π−1dΠ.

Example 1.4.8. Consider the space Cn (with coordinates
z1, · · · , zn) equipped with the canonical Kähler structure

ω0 =
i
2

∑
i

dzi ∧ dz̄i.

Set εi = 1√
2
dzi and ε̄i = 1√

2
dz̄i. For every pair of ordered multi-indices

I = (i1 < · · · < ik), J = (j1 < · · · < jm)

we set
εI = εi1 ∧ · · · ∧ εik , ε̄J = εj1 ∧ · · · ∧ εjm .

Denote by Ic the ordered multi-index complementary to I, i.e. as unordered
sets, we have the equality Ic = {1, · · · , n}\I. Also denote by σI the signature
of the permutation obtained by writing the multi-indices I and Ic one after
the other.
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We can rewrite
ω0 = i

∑
i

εi ∧ ε̄i

so that
1
n!

ωn
0 = in

2
ε1 ∧ · · · ∧ εn ∧ ε̄1 ∧ · · · ∧ ε̄n.

Observe that
∗εi =

1√
2
(∗dxi − i ∗ dyi)

=
1√
2
(dx1 ∧ dy1) ∧ · · · ∧ ̂(dxi ∧ dyi) ∧ · · · ∧ (dxn ∧ dyn) ∧ (dyi + idxi)

(hat ←→ missing term)

= i(n−1)2+1(−1)n−iε1 ∧ · · · ∧ ε̂i ∧ · · · ∧ εn ∧ ε̄1 ∧ · · · ∧ ε̄n

Using the above exercise we deduce

∗ω0 =
1

(n − 1)!
ωn−1

0

and, more generally,

∗(εI ∧ ε̄J) = (−1)|J |(n−|I|)in
2
σIσJεIc ∧ ε̄Jc

.

The operators we have introduced above satisfy a series of important
identities. For a proof of the following proposition we refer to [146].

Proposition 1.4.9. Suppose (M, g, J) is an almost Kähler manifold. Then

Π2 = ∗2 =
∑
p,q

(−1)p+qΠp,q,

Λ = ∗−1L∗, d∗ = − ∗ d∗,
[L,Λ] = H,

[L, d] = [Λ, d∗] = [L, dc] = [Λ, d∗c ] = 0,
[L, d∗] = dc, [Λ, d] = −d∗c , [L, d∗c ] = −d, [Λ, dc] = d∗.

When M is Kähler the above list of identities can be considerably en-
riched. For a proof of the following important identities we refer to [49].

Proposition 1.4.10. Suppose (M, g, J) is a Kähler manifold. Then

∂∗ = − ∗ ∂∗, ∂̄∗ = − ∗ ∂̄∗, d∗ = ∂∗ + ∂̄∗,

[L, ∂] = [L, ∂̄] = [Λ, ∂∗] = [Λ, ∂̄∗] = 0,

[L, ∂∗] = i∂̄, [L, ∂̄∗] = −i∂,

[Λ, ∂] = i∂̄∗, [Λ, ∂̄] = −i∂∗,

∂∂̄∗ = −∂̄∗∂ = −i∂̄∗L∂̄∗ = −i∂Λ∂̄
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∂̄∂∗ = −∂∗∂̄ = −i∂∗L∂∗ = i∂̄Λ∂.

If we set ∆d = dd∗ + d∗d, ∆∂ = ∂∂∗ + ∂∗∂ and ∆∂̄ = ∂̄∗∂̄ + ∂̄∂̄∗ then

∆∂ = ∆∂̄ =
1
2
∆d.

We include here for later use some simple consequences of these identi-
ties.

Corollary 1.4.11. Suppose (M, g, J) is a Kähler manifold. Then we have
the following identities.

(1.4.13) iΛ(∂α) = −∂̄∗α, ∀α ∈ Ω0,1(M),

(1.4.14) iΛ∂̄β = ∂∗β, ∀β ∈ Ω1,0(M),

(1.4.15) iΛ(∂∂̄f) = −1
2
d∗df ∀f ∈ Ω0,0(M).

Proof To prove (1.4.13) we use the commutator identity

[Λ, ∂] = i∂̄∗.

We deduce
Λ∂α = ∂Λα + i∂̄∗α = i∂̄∗α

since Λα = 0 because α ∈ Ω0,1(M). The first identity is proved. The same
method proves the second identity as well. The third identity follows from
the first and the equality ∆∂̄ = 1

2∆d. ¥

The identities in Proposition 1.4.10 do not hold for almost Kähler man-
ifolds but surprisingly the identities in Corollary 1.4.11 continue to hold on
an arbitrary almost Kähler manifold. We will spend the remainder of this
subsection proving this fact.

Proposition 1.4.12. The identities (1.4.13) – (1.4.15) continue to hold for
arbitrary almost Kähler manifolds.

Proof We prove only (1.4.13) and

(1.4.16)
1
2
d∗df = ∂̄∗∂̄f, ∀f ∈ Ω0,0(M).

The identity (1.4.14) follows from (1.4.13) by complex conjugation while
(1.4.15) follows from (1.4.13) and (1.4.16).
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Denote by ∇ the Chern connection of the almost Kähler structure and
choose a local orthonormal frame (ei, fi) as in Exercise 1.4.7. To prove
(1.4.13) we use the identity ∂α = (dα)1,1, that is,

∂α(εi, ε̄j) = (dα)(εi, ε̄j), ∀i, j.

At this point we want to use the fact that the torsion of the Chern connection
is N and the identity (1.4.9)

(dα)(εi, ε̄j) = (∇εiα)(ε̄j) − (∇ε̄jα)(εi) + α(N(εi, ε̄j)).

= (∇εiα)(ε̄j) + α
(
N(εi, ε̄j)

)
because ∇ε̄jα ∈ Ω0,1(M).

To compute Λ∂α we use the local description of Λ in Exercise 1.4.7. We
deduce

iΛ∂α =
∑

k

(∂α)(εk, ε̄k) =
∑

k

(
(∇εk

α)(ε̄k) + α
(
N(εk, ε̄k)

) )
.

We need to analyze in greater detail the terms in the above sums. We will
use the fact that for any β ∈ Ω0,1(M) we have

β(JX) = −iβ(X), ∀X ∈ Vect (M) ⊗ C.

This implies that

(1.4.17) β(ek) = iβ(fk), ∀k.

Then
(∇εk

α)(ε̄k) =
1
2
(∇ek

− i∇fk
)α(ek + ifk)

=
1
2

(
∇ek

α(ek) + ∇fk
α(fk)

)
+

1
2

(
−i(∇fk

α)(ek) + i(∇ek
α)(fk)

)
(use the fact that ∇ek

α,∇fk
α ∈ Ω0,1(M) and (1.4.17))

= (∇ek
α)(ek) + (∇fk

α)(fk).

Using the identity (1.4.12) we deduce∑
k

(∇εk
α)(ε̄k) = −∂̄∗α.

To conclude the proof of (1.4.13) it suffices to show that

(1.4.18) N(εk, ε̄k) = 0, ∀k.

We have

N(εk, ε̄k) =
1
2
N(ek − ifk, ek + ifk) = iN(ek, fk) = iN(ek, Jek)

= −iJN(ek, ek) = 0.

The identity (1.4.13) is proved. Combining the above arguments with
(1.4.11) one can easily obtain (1.4.17). The details are left to the reader. ¥
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1.4.2. Cauchy-Riemann operators. Suppose (M, J) is an almost com-
plex manifold and E → M is a complex Hermitian vector bundle over M .
We denote by Ωp,q(E) the space of smooth sections of the complex bundle
Λp,qT ∗M ⊗ E so that we have a decomposition

Ωk(E) =
⊕

p+q=k

Ωp,q(E).

A Cauchy-Riemann operator (CR-operator for brevity) on E is a first order
p.d.o.

L : Ω0,0(E) → Ω0,1(E)

such that

L(fu) = (∂̄f) ⊗ u + fLu, ∀f ∈ C∞(M), u ∈ Ω0,0(E).

Let us remark that the above condition is simply a statement about the
symbol of L. We denote by CR(E) the space of CR-operators on E and by
Ah(E) the affine space of Hermitian connections on E. Denote by P 1,0 and
P 0,1 the projectors associated to the decomposition

Ω1(E) = Ω1,0(E) ⊕ Ω0,1(E).

Given a connection A ∈ Ah(E) with covariant derivative

∇A : Ω0(E) → Ω1(E)

we obtain an operator

∂̄A = P 0,1 ◦ ∇A : Ω0,0(E) → Ω0,1(E).

We let the reader check that ∂̄A is a CR-operator. We thus obtain a map

∂̄• : Ah → CR(E), A 7→ ∂̄A.

Proposition 1.4.13. The map ∂̄• is a bijection.

Proof We first show that ∂̄• is injective. Suppose A, B are two Hermitian
connections such that ∂̄A = ∂̄B. Then

δ = B − A

is a 1-form valued in the bundle of skew-Hermitian endomorphisms of E
such that

δ0,1 = 0.

Note that

δ0,1(X) =
1
2
(δ(X) + iδ(JX)), ∀X ∈ Vect (M)

where δ(X) is a skew-Hermitian endomorphism and iδ(JX) is Hermitian.
This implies δ(X) = δ(JX) = 0 since any complex endomorphism decom-
poses uniquely as a sum of a skew-Hermitian and a Hermitian operator.
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To prove the surjectivity we will construct a right inverse

∇• : CR(E) → Ah(E).

Fix a Hermitian connection A0 on E and denote by L0 the associated CR-
operator ∂̄A0 . If L ∈ CR(E) then

β = L − L0 ∈ Ω0,1(End (E)).

We have to construct a 1-form δ valued in the bundle of skew-Hermitian
endomorphisms of E such that

δ0,1 = β.

In other words, δ satisfies the functional equation

δ(X) + iδ(JX) = 2β(X), ∀X ∈ Vect (M).

We deduce from the above equality that δ(X) is the skew-Hermitian part of
the endomorphism 2β(X) so that

δ(X) = β(X) − β(X)∗.

Now set
∇L0+β

· = ∇A0
· + β(·) − β(·)∗.

The map
L0 + β 7→ ∇L0+β

is a right inverse for ∂̄•. ¥

Suppose L ∈ CR (E). Then L induces first order p.d.o.’s

L : Ωp,q(E) → Ωp,q+1(E)

uniquely determined by

L(α ⊗ u) = ∂̄α ⊗ u + (−1)p+qα ∧ Lu, ∀α ∈ Ωp,q(M), u ∈ C∞(E).

If A is Hermitian connection on E we denote by the same symbol all the
CR-operators

∂̄A : Ωp,q(E) → Ωp,q+1(E).

Then for every u ∈ C∞(E) we have

(1.4.19) ∂̄2
Au = F 0,2

A u − (∂Au) ◦ N

where N denotes the Nijenhuis tensor of the almost complex structure on
N .

Exercise 1.4.8. Use the arguments in the proof of Proposition 1.4.2 to
prove the identity (1.4.19).
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In the remaining part of this subsection we will assume the almost com-
plex structure on M is integrable. This means the manifold M can be
covered by (contractible) coordinate charts Uα → Cn such that the transi-
tion maps are holomorphic. A holomorphic structure on the rank-r complex
vector bundle E is a collection of holomorphic local trivializations, i.e. a
collection of local trivializations

Ψα : E |Uα→ Cr
Uα

such that the transition maps

gβα := Ψβ(p) ◦ Ψ−1
α (p) : Uαβ → GL(r, C) ⊂ Cr2

are holomorphic. A holomorphic vector bundle is a pair

(vector bundle, holomorphic structure).

Two holomorphic structures Ψ = (Ψα, gβα = Ψβ ◦ Ψ−1
α ) and Φ =

(Φα, hβα = Φβ ◦ Φ−1
α ) are isomorphic if there exist holomorphic maps

Tα : Uα → GL(r, C)

such that
hβα = TβgβαT−1

α .

We denote by Hol (E) the set of isomorphism classes of holomorphic struc-
tures on E. (To be completely rigorous, one has to include in the definition
of equivalence the gluing cocycles subordinated to different covers.)

Exercise 1.4.9. Prove that any holomorphic structure on E induces an
integrable complex structure on the total space of the bundle such that
the canonical projection E → M is a holomorphic map. Moreover, two
equivalent isomorphic holomorphic structures induce biholomorphic complex
structures on the total space.

Fix a holomorphic structure on E given by the local holomorphic trivial-
ization Ψα. There is a canonically associated sheaf of holomorphic sections.
If V is an open subset of M and Vα = V ∩Uα then a section ψ of E over V
is called holomorphic if the functions

ψα := Ψα ◦ ψ |Vα : Vα → Cr

are holomorphic. We denote by OM (E) the sheaf of holomorphic local sec-
tions of E. The manifold M is equipped with a fundamental sheaf OM ,
the sheaf of local holomorphic functions on M . Then OM (E) is a sheaf of
OM -modules. It is a locally free sheaf, i.e. it is locally isomorphic to the
sheaf Or

M .

Exercise 1.4.10. Prove that two holomorphic structures on E are isomor-
phic iff the associated sheaves of holomorphic sections are isomorphic as
sheaves of OM -modules.
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Denote by ei the canonical spanning sections of the trivial vector bundle
Cr

Uα
and define

Ψ−1
α (e1) = uα

1 , · · · , Ψ−1
α (er) = uα

r ∈ OM (E, Uα).

These sections span the fibers of Eα. Any section u ∈ C∞(Eα) can be
uniquely written as

u =
∑

i

fiu
α
i , fi ∈ C∞(Uα) ⊗ C.

Define ∂̄α ∈ CR(Eα) by

∂̄αu =
∑

(∂̄fi) ⊗ uα
i .

Since the identifications Eα
∼= Eβ over Uαβ are given by holomorphic maps

we deduce
∂̄α = ∂̄β over Uαβ .

Thus the operators ∂̄α glue together to form a CR-operator on E. It depends
on the choice of the trivializations Ψα. We will denote it by ∂̄Ψ.

Exercise 1.4.11. Show that

∂̄Ψ ◦ ∂̄Ψ = 0.

Definition 1.4.14. A CR-operator L on a complex vector bundle E over
a complex manifold M is called integrable if L2 = 0. We will denote by
CRi(E) the space of complex integrable CR-operators.

Suppose
(
Ψ = (Ψα)

)
and

(
Ψ̂ = (Ψ̂α)

)
define two isomorphic holomor-

phic structures on E. Thus, there exist holomorphic maps

γα : Uα → GL(r, C)

such that
Ψ̂β ◦ Ψ̂−1

α γα = γβΨβ ◦ Ψ−1
α .

Define
Φα := γ−1

α Ψ̂α.

Observe that
Φβ ◦ Φ−1

α = Ψβ ◦ Ψ−1
α .

Thus, the collections
(
Ψ = (Ψα)

)
and

(
Φ = (Φα)

)
lead to the same holo-

morphic gluing cocycle. Moreover, since the maps γα are holomorphic we
have

∂̄Ψ̂ = ∂̄Φ.

The collections Ψ and Φ are cohomologous, i.e. there exist smooth maps

Tα : Uα → GL(r, C)
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such that
Ψα = Tα ◦ Φα.

Clearly
Tβ = gβαTαgαβ

so that T defines a complex automorphism of the bundle E. Thus, two col-
lections of local trivializations which lead to the same (holomorphic) gluing
cocycle differ by an automorphism of E.

Suppose now that T ∈ G(E) is a complex (not necessarily holomorphic)
automorphism of E. Using the trivializations Ψα it can be described as a
collection of smooth maps Tα : Uα → GL(r, C) satisfying the gluing rules

Tβ = gβαTαg−1
βα ⇐⇒ T−1

β gβαTα = gβα.

It defines new trivializations

Φα : Eα → Cr, Φα = T−1
α ◦ Ψα.

Notice that

Φβ ◦ Φ−1
α = T−1

β ΨβΨ−1
α Tα = T−1

β gβαTα = gβα

so that Φα are compatible with the gluing cocycle gβα. We will denote
Φ = Ψ ◦ T . We obtain a new CR-operator ∂̄Φ.

If s is a section of Eα then we can write

s =
∑

i

siΨ−1
α (ei) and Ts =

∑
i

siΨ−1
α Tα(ei).

Note that

∂̄ΦTs =
∑

i

(∂̄si)Ψ−1
α Tα(ei) = T

∑
i

(∂̄si)Ψ−1
α (ei) = T ∂̄Ψs.

In other words
∂̄Ψ◦T = T ∂̄ΨT−1.

The group G(E) of complex automorphisms of E acts on CRi(E) as
above, by conjugation. We thus have a well defined map

Hol (E) → CRi(E)/G(E)

which associates to each holomorphic structure Ψ on E the G(E)-orbit in
CRi(E) of the CR-operator ∂̄Ψ. Observe that the sheaf OM (E, Ψ) of local
sections of E holomorphic with respect Ψ coincides precisely with the sheaf
of local solutions of the partial differential equation

∂̄Ψu = 0, u local smooth section of E.

If Ψ1 and Ψ2 are two holomorphic structures such that the associated CR-
operators lie in the same orbit of G(E) then clearly the associated sheaves
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of holomorphic sections are isomorphic as sheaves of OM -modules and, ac-
cording to Exercise 1.4.10, the two holomorphic structures are isomorphic.
This means that the map

Hol (E) → CRi(E)

is one-to-one. This map is also surjective and we refer to [29, Chap. 2]
or [63, Chap. I] for a proof of this nontrivial fact. The following results
summarizes the above observations.

Proposition 1.4.15. The map Hol (E) → CRi(E)/G(E), (E, Ψ) 7→ ∂̄Ψ

described above is a bijection.

In view of this proposition, we can reconsider the manner in which we
regard holomorphic bundles. In the sequel, by a holomorphic bundle over
a complex manifold we will understand a pair (E, L) where E is a complex
bundle and L is an integrable CR-operator.

Suppose now that E is equipped with a Hermitian metric h. As we have
seen we have a bijection

∂̄• : Ah(E) → CR(E), A 7→ ∂̄A.

Set
A

1,1
h = ∂̄−1

• (CRi(E)).

Lemma 1.4.16. The space A
1,1
h (E) consists of Hermitian connections A

such that F 2,0
A = F 0,2

A = 0.

Proof Suppose A ∈ A
1,1
h (E). Then using (1.4.19) we deduce F 0,2

A = ∂̄2
A =

0. On the other hand, since the connection A is compatible with the metric
h, the curvature FA is skew-Hermitian so that F 2,0

A = −(F 2,0
A)t = 0. ¥

There is an action of G(E) on Ah(E) induced by the isomorphism A
1,1
h (E) ∼=

CRi(E). More precisely, given T ∈ G(E) and A ∈ A
1,1
h (E) we define T · A

by the equality
∂̄T ·A = T ∂̄AT−1.

We have thus proved the following result.

Proposition 1.4.17. Any Hermitian metric h on a complex vector bundle
E over a complex manifold defines a bijection

Hol(E) ∼= A
1,1
h (E)/G(E).

Moreover, any integrable CR-operator ∂̄ on E induces a unique holomorphic
structure Ψ on E and a unique Hermitian connection A such ∂̄A = ∂̄ = ∂̄Ψ.
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Remark 1.4.18. The above identification has profound consequences. For
example, in [58] it is shown that, modulo some topological identifications,
it contains as a special case the classical Abel-Jacobi theorem.

Example 1.4.19. Suppose L → M is a complex line bundle over a complex
manifold M equipped with a Hermitian metric h. The group G(L) can be
identified with the group of smooth maps

f : M → C∗.

Suppose we are given an integrable CR-operator ∂̄ on L. This induces a
holomorphic structure on L and a Hermitian connection A such that

∂̄A = ∂̄ and FA ∈ Ω1,1(M).

To find an explicit local description of A we choose a local trivializing patch
U and a nowhere vanishing holomorphic section s of L over U . Set

ρ = h(s, s) = |s|2h.

The connection A is locally described by a (1, 0)-form θ determined by the
conditions

∇As = θs,

dρ = θh(s, s) + θ̄h(s, s) = ρ(θ + θ̄)
from which we deduce

θ =
∂ρ

ρ
= ∂ log ρ.

The curvature of A is given by the 2-form

dθ = ∂̄∂ log ρ.

Suppose now that f ∈ G(L). We get a new CR-operator ∂̄f on L:

∂̄f = f∂̄f−1 = ∂̄ − ∂̄f

f

defining the same holomorphic structure on L as ∂̄. Its associated Chern
connection, denoted by Af , can be determined as in the proof of Proposition
1.4.13 using the equality

Af − A = − ∂̄f

f
+

∂f̄

f̄
.

This formula describes the action of G(L) on A
1,1
h (L).

Suppose that instead of the metric h we work with the metric

hu = exp(2u)h

where u is a smooth real valued function on M . Denote by Au the Chern
connection associated to the CR-operator ∂̄ and the metric hu. Then

∂Aus = θus, θu = ∂ log |s|2hu
= θ + 2∂u
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so that Au − A = 2∂u.

FAu = FA + 2∂̄∂u. ¥

Example 1.4.20. Supppose L` → S2 is a complex line bundle of degree
` ∈ Z over S2 ∼= P1. Observe that any CR-operator on L` is automatically
integrable since Ω0,2(P1) = 0.

Thus, for any Hermitian metric h on L we have

Ah(L) = A
1,1
h (L)

and we have a bijection

Ah(L) → CRi(L) = CR(L), A 7→ ∂̄A.

Fix a CR-operator ϑ : Ω0,0(L) → Ω0,1(L). Then, for every metric h on L
denote by Ah the Chern connection determined by ϑ and h. If we change
h → hu := e2uh, u : S2 → R then, using the computations the previous
example, the curvature of Ah changes according to

FAh
→ FAh

+ 2∂̄∂u.

Suppose additionally that S2 := P1 is equipped with a Kähler metric g0.
(All Riemannian metrics on a Riemann surface are automatically Kähler.)
Denote by ω0 the Kähler form. Then, using the Kähler-Hodge identities in
Corollary 1.4.11 we deduce

2∂̄∂u = 2Λ(∂̄∂u)ω0 = (−i∆du)ω0.

Let

c := −2π deg(L)
volg0(S2)

so that ∫
S2

(
icω0 − FAh

)
= 0.

Thus, the 2-form icω0 − FAh
is exact, and there exists a smooth function

u : S2 → R, unique up to an additive constant, such that

2∂̄∂u = icω0 − FAh
.

The curvature of Ahu is the harmonic 2-form

FAhu
:= −2π deg(L)

volg0(S2)
iω0.

The metric hu is determined by (ϑ, g0), uniquely up to a positive multiplica-
tive constant. ¥
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Suppose (M, g, J) is a Kähler manifold and E → M is a holomorphic,
Hermitian line bundle. Denote by A the associated Chern connection and
by ∂̄A the family of operators

∂̄A : Ωp,q(E) → Ωp,q+1(E).

There is a Hodge ∗-operator

(1.4.20) ∗E : Ωp,q(E) → Ωn−p,n−q(E∗)

defined as the the tensor product (over C) of the complex conjugate-linear
bundle morphisms

∗ : Λp,qT ∗
CM → Λn−p,n−qT ∗

CM

and the metric duality
DE : E → Ē ∼= E∗.

We have the following generalization of Proposition 1.4.10. For a proof we
refer to [49].

Proposition 1.4.21. Let E → M and A be as above. Then

∂2
A = ∂̄2

A = 0, ∂A∂̄A + ∂̄A∂A = e(FA)

where e(FA) denotes the exterior multiplication by FA ∈ Ω1,1(M). Addition-
ally, the Hodge identities continue to hold:

∂̄∗
A = − ∗E ∂̄A∗E , ∂∗

A = − ∗ ∂A∗,
[L,Λ] = H,

[∂A, L] = [∂̄A, L] = [∂∗
A, Λ] = [∂̄∗

A, Λ] = 0,

[L, ∂∗
A] = i∂̄A, [L, ∂̄∗

A] = −i∂A,

[Λ, ∂A] = i∂̄∗
A, [Λ, ∂̄A] = −i∂∗

A.

We conclude with a Weitzenböck type identity we will need in 3.3.4.

Proposition 1.4.22. Suppose (M, g, J) is an almost Kähler manifold and
E is a Hermitian line bundle equipped with a Hermitian connection A. Then
for every smooth section s of E we have the equality

2∂̄∗
A∂̄As = (∇A)∗∇As − i(ΛFA)s.

Proof Fix a local orthonormal frame (ei, fi) as in Exercise 1.4.7. Then

∂̄A =
∑

k

ε̄k ∧∇A
ε̄k

=
1
2

∑
k

(ek − ifk) ∧ (∇A
ek

+ i∇A
fk

)

=
1
2

∑
k

(ek ∧∇A
ek

+ fk ∧∇A
fk

) +
i
2

∑
k

(ek ∧∇A
fk

− fk ∧∇A
ek

)
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=
1
2
∇A +

i
2

∑
k

(ek ∧∇A
fk

− fk ∧∇A
ek

).

For s ∈ Ω0,0(E) we have ∂̄∗
A∂̄As = (∇A)∗∂̄A so that

∂̄∗
A∂̄As =

1
2
(∇A)∗∇A +

i
2
(∇A)∗

∑
k

(ek ∧∇A
fk

− fk ∧∇A
ek

)s.

For any vector field X on M we denote by i(X) the contraction by X. Then

(∇A)∗ =
∑

j

( (∇A
ej

)∗i(ej) + (∇A
fj

)∗i(fj) ).

Since
( (∇A

ej
)∗i(ej) + (∇A

fj
)∗i(fj) )(ek ∧∇A

fk
− fk ∧∇A

ek
)s

= δk
j ( (∇A

ej
)∗∇A

fk
− (∇A

fj
)∗∇A

ek
)s

we deduce

∂̄∗
A∂̄As =

1
2
(∇A)∗∇As +

i
2

∑
k

( (∇A
ek

)∗∇A
fk

− (∇A
fk

)∗∇A
ek

)s.

Using the identities

(∇A
ek

)∗ = −∇A
ek

− div (ek), (∇A
ek

)∗ = −∇A
ek

− div (ek)

and
−[∇A

ek
,∇A

fk
] = −FA(ek, fk) −∇A

[ek,fk]

we deduce
∂̄∗

A∂̄As =
1
2
(∇A)∗∇As − i

2

∑
k

FA(ek, fk)s

− i
2

∑
k

(
∇A

[ek,fk] + div(ek)∇A
fk

− div(fk)∇A
ek

)
s

=
1
2

(
(∇A)∗∇A − iΛ(FA)

)
s − i

2

∑
k

(
∇A

[ek,fk] + div(ek)∇A
fk

− div(fk)∇A
ek

)
s

Hence, to conclude the proof of the proposition it suffices to prove the fol-
lowing identity:

(1.4.21)
∑

k

[ek, fk] =
∑

k

(div(fk)ek − div(ek)fk).

The proof of this identity relies on the following elementary facts:

ω =
∑

k

ek ∧ fk, ωn = n!dvg, dω = 0.

Let us now supply the details. First note that (1.4.21) is equivalent to

(1.4.22)
∑

k

ej([ek, fk]) = div(fj) and
∑

k

f j([ek, fk]) = −div(ek).
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Next, observe that

div(ej) = ∗d ∗ ej =
1

(n − 1)!
∗ d(f j ∧ ωn−1)

=
1

(n − 1)!
∗ (df j ∧ ωn−1) =

1
(n − 1)!

(df j ∧ ωn−1)(e1, f1, · · · , en, fn)

and, similarly,

div(fj) = ∗d ∗ f j = − 1
(n − 1)!

(dej ∧ ωn−1)(e1, f1, · · · , en, fn).

Thus (1.4.22) is equivalent to

(1.4.23)
1

(n − 1)!
(df j ∧ ωn−1)(e1, f1, · · · , en, fn) = −

∑
k

f j([ek, fk])

(1.4.24)
1

(n − 1)!
(dej ∧ ωn−1)(e1, f1, · · · , en, fn) = −

∑
k

ej([ek, fk]).

Now introduce the operators

Ck = i(fk)i(ek), k = 1, · · · , n.

They enjoy some nice elementary properties.

(1.4.25) C2
k = 0 and [Ck, Cj ] = 0, ∀k, i.

(1.4.26) Ck(η ∧ Ckϕ) = Ckη ∧ Ckϕ, ∀η, ϕ ∈ Ω∗(M), ∀k.

Define P :=
∏

k Ck, Pk :=
∏

j 6=k Cj and S :=
∑

k Ck. Observe that

1
(n − 1)!

ωn−1 =
1
n!

Sωn.

Thus
1

(n − 1)!
(df j ∧ ωn−1)(e1, f1, · · · , en, fn) = P ( df j ∧ 1

(n − 1)!
ωn−1)

=
1
n!

P (df j ∧ Sωn)

(use the identities (1.4.25), (1.4.26))

=
1
n

∑
k

Pk(Ck(df j) ∧ Ckω
n) =

1
n!

∑
k

Ck(df j)Pωn =
∑

k

Ckdf
j

=
∑

k

df j(ek, fk) = −
∑

k

f j([ek, fk]).

This proves the equality (1.4.23). (1.4.24) is proved similarly. The proof of
Proposition 1.4.22 is complete. ¥



1.4. Complex differential geometry 77

Exercise 1.4.12. Suppose (M, g, J) is an almost Kähler 4-manifold and
E → M is a Hermitian line bundle equipped with a Hermitian connection.
Denote by A the Hermitian connection induced on the line bundle Λ0,2T ∗M
by the Chern connection. Show that for every section β ∈ Ω0,2(E) we have
the following Weitzenböck type identity:

∂̄B ∂̄∗
Bβ =

1
2
( (∇A⊗B)∗∇A⊗B + iΛ(FA + FB)).

1.4.3. Dirac operators on almost Kähler manifolds. Suppose (M, g, J)
is an almost Kähler manifold of dimension 2n. We denote by D the Levi-
Civita connection of g and by ∇ the Chern connection of this almost Kähler
structure. Recall that if M is Kähler then D = ∇.

The almost complex structure defines a canonical spinc structure σ0 on
M . We have seen that the line bundle associated to this structure is K−1

M =
Λ0,nT ∗M . The Fundamental Fact in §1.3.1 shows that the associated
bundle of spinors is

Sc
∼= Λ0,∗T ∗M, S±

c
∼= Λ0,even/oddT ∗M.

The Chern connection induces Hermitian connections on Λ0,pT ∗M , ∀p and
in particular, a Hermitian connection on K−1

M . In this manner we obtain a
geometric Dirac operator

6Dc : Λ0,evenT ∗M → Λ0,oddT ∗M.

We say that 6Dc is the canonical Hermitian Dirac operator associated to the
almost Kähler structure.

On the other hand, the Chern connection induces CR-operators

∂̄ : Λp,qT ∗M → Λp,q+1

and we can form the first order p.d.o.

∂̄ + ∂̄∗ : Λ0,evenT ∗M → Λ0,oddT ∗M.

Proposition 1.4.23. Let (M, g, J) be as above. Then

6Dc =
√

2(∂̄ + ∂̄∗).

Proof Choose a local orthonormal frame (ei, fi) of TM such that fi = Jei.
Set ei+n = fi and define εi, ε̄j as usual. Denote by D̂ the connection on Sc

induced by the Levi-Civita connection on TM and the Chern connection on
K−1

M . Then

6Dc =
∑

i

c(εi)D̂εi +
∑

i

c(ε̄i)D̂ε̄i .



78 1. Preliminaries

To proceed further we need to use the explicit description of the Clifford
multiplication explained in the proof of the Fundamental Fact. We have
to be careful about conventions because the description Sc

∼= Λ0,∗T ∗M uses
the isomorphism TM1,0 ∼= T ∗M0,1 given by

εi ←→ ε̄i.

We deduce
c(ε̄j) =

√
2e(ε̄j), c(εk) = −

√
2i(ε̄k).

If we continue to denote by ∇ the connection on Λ0,∗T ∗M induced by the
Chern connection then, using Exercise 1.4.5, we deduce

√
2(∂̄ + ∂̄∗) =

∑
i

c(εi)∇εi +
∑

i

c(ε̄i)∇ε̄i .

Next, note that since all the computations are local we can assume that,
topologically, M is the open ball in R2n. It has a spin structure and we
denote by S0 the associated bundle of complex spinors. This spin structure
also defines a square root K1/2 of the canonical line bundle and we can write
Sc

∼= S0⊗K−1/2. As in Remark 1.3.19 the Chern connection induces a Dirac
structure (S0, c, ∇̂,∇), where the connection ∇̂ on S0 satisfies

(1.4.27) ∇̂Xc(α) = c(∇Xα), ∀X ∈ Vect (M),∀α ∈ Ω1(M).

Using the Chern connection on K−1
M we obtain by twisting, as in §1.3.4, a

connection on Sc, which we continue to denote by ∇̂, satisfying the same
compatibility relation (1.4.27). We can now define a new Dirac operator

6Dh =
∑

i

c(εi)∇̂εi +
∑

i

c(ε̄i)∇̂ε̄i .

We have thus obtained three first order p.d.o.’s 6Dc, 6Dh,
√

2(∂̄ + ∂̄∗) which
have the same symbol. The proposition will be proved once we show these
three operators actually coincide. The proof of this more refined statement
will be carried out in two steps.

Step 1
6Dc = 6Dh.

Set S = ∇̂ − D̂ ∈ Ω1(End (Sc)). Then

6Dh − 6Dc =
2n∑
i=1

c(ei)S(ei) =
n∑

i=1

c(εi)S(εi) +
n∑

i=1

c(ε̄i)S(ε̄i).

Thus we have to show that

(1.4.28)
n∑

i=1

c(εi)S(εi) +
n∑

i=1

c(ε̄i)S(ε̄i) = 0.
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Using Proposition 1.4.4 we deduce

∇iej = Diej −
2n∑

k=1

N i
jkek, ∀i, j = 1, · · · , 2n

and

∇ie
j = Die

j −
2n∑

k=1

N i
jke

k, ∀i, j = 1, · · · , 2n

where N =
∑2n

i,j,k=1 N i
jkei ⊗ ej ⊗ ek denotes the Nijenhuis tensor. We will

regard N as a T ∗M -valued 2-form using the metric duality

N(X, Y, Z) = g(X, N(Y, Z)), ∀X, Y, Z ∈ Vect (M).

Thus N ∈ C∞(T ∗M⊗3) and is skew symmetric in the last two variables. We
can extend it by complex multilinearity to an element of C∞(T ∗M⊗3) ⊗ C.
Using Exercise 1.4.5 (b), (c) we deduce that

N ∈ C∞((T ∗M1,0)⊗3) ⊕ C∞((T ∗M0,1)⊗3).

From Remark 1.3.19 we deduce

S = ∇̂ − D̂ =
1
4

2n∑
i,j,k=1

ei ⊗ N(ei, ej , ek)c(ej)c(ek)

=
1
4

n∑
i,j,k=1

εi ⊗ N(εi, εj , εk)c(εj)c(εk) +
1
4

n∑
i,j,k=1

ε̄i ⊗ N(ε̄i, ε̄j , ε̄k)c(ε̄j)c(ε̄k)

and therefore
n∑

i=1

c(εi)S(εi) =
1
4

n∑
i,j,k=1

N(εi, εj , εk)c(εi)c(εj)c(εk)

(c(εi)c(εj) = −c(εj)c(εi), c(εi)2 = 0, ∀i, j)

=
1
2

∑
1≤i<j<k≤n

(N(εi, εj , εk) + N(εk, εi, εj) + N(εj , εk, εi))c(εi)c(εj)c(εk)

=
1
2

∑
1≤i<j<k≤n

(bN)(εi, εj , εk) · c(εi)c(εj)c(εk)
(1.4.5)

= 0.

Similarly, one proves that
n∑

i=1

c(ε̄i)S(ε̄i) = 0.

The equality (1.4.28) is proved.

Step 2
6Dh =

√
2(∂̄ + ∂̄∗).
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Set S = ∇̂−∇ ∈ Ω1(End (Sc)). Note that both connections ∇ and ∇̂ satisfy
the compatibility condition (1.4.27), so that

[S(X), c(α)] = 0, ∀X ∈ Vect (M), α ∈ Ω1(M).

This means that ∀x ∈ M the operator S(X)x commutes with every element
in Cl(T ∗

xM)⊗C = EndC(Sc |x). Using Schur’s lemma we deduce that S(X)x

is a multiple of the identity. In other words, there exists a purely imaginary
1-form a such that

S = a ⊗ id.

We want to prove a ≡ 0. Note that the constant function 1 can be viewed
as a section of Λ0,0T ∗M ↪→ Sc so that

a = (∇̂ − ∇)1 = ∇̂1

so that it suffices to show ∇̂1 ≡ 0.
Locally we have

∇ej =
2n∑

i,k=1

Ωi
kjei

and

∇ej =
2n∑

i,k=1

Ωi
kje

i.

Using the metric duality we can regard the End (TM)-valued 1-form Ω as a
T ∗M -valued 2-form

Ω(ek, ei, ej) = g(∇kej , ei).

We can extend it by complex linearity to an element of C∞(T ∗M⊗3) ⊗ C.
Note that since ∇ is compatible with the complex structure it preserves the
splitting TM ⊗ C = TM1,0 ⊕ TM0,1. This implies that ∀X ∈ Vect (M) the
2-form Ω(X, ·, ·) has type (1, 1), i.e.

Ω(X, εi, εj) = Ω(X, ε̄j , ε̄j) = 0, ∀ i, j = 1, · · · , n.

Moreover, ∀X ∈ Vect (M)

∇Xεj =
∑

i

Ω(X, ε̄i, εj)εj , ∇X ε̄j =
∑

i

Ω(X, εi, ε̄j)ε̄j .

The connection ∇̂0 induced by ∇ on S0 has the local description

∇̂0 = d − 1
4

∑
i,j,k

ek ⊗ Ω(ek, ei, ej)c(ei)c(ej)

= d − 1
4

∑
i,j,k

εk ⊗ Ω(εk, εi, ε̄j)c(εi)c(ε̄j) − 1
4

∑
i,j,k

εk ⊗ Ω(εk, ε̄j , εi)c(ε̄j)c(εi)
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−1
4

∑
i,j,k

ε̄k ⊗ Ω(ε̄k, εi, ε̄j)c(εi)c(ε̄j) − 1
4

∑
i,j,k

ε̄k ⊗ Ω(ε̄k, ε̄j , εi)c(ε̄j)c(εi).

Now define δ ∈ Ω1(M) by

∇(ε̄1 ∧ · · · ∧ ε̄n) = δ ⊗ ε̄1 ∧ · · · ∧ ε̄n.

The connection ∇̂ on Sc induced by ∇ is

∇̂ = ∇̂0 +
1
2
δ.

Since c(εi)1 = 0 we deduce

∇̂εk
1 = −1

4

∑
i,j

Ω(εk, εi, ε̄j)c(εi)c(ε̄j) +
1
2
δ(εk)

(c(εi)c(ε̄j)1 = −2δij)

=
1
2

∑
i

Ω(εk, εi, ε̄i) +
1
2
δ(εk).

On the other hand, if we denote by gc the complexification of the metric g
(by complex linearity) we deduce

(∇εk
ε̄j)(ε̄i) = −ε̄j(∇εk

ε̄i) = −gc(εj ,∇εk
ε̄i)

= −
∑

`

gc(εj , Ω(εk, εl, ε̄i)ε̄` ) = −
∑

`

δj`Ω(εk, ε`, ε̄i) = −Ω(εk, εj , ε̄i)

so that
∇εk

ε̄j = −
∑

i

Ω(εk, εj , ε̄i)ε̄i.

This implies immediately that

δ(εk) = −
∑

i

Ω(εk, εi, ε̄i)

so that ∇̂εk
1 = a(εk) = 0. Similarly we have a(ε̄k) = 0 which shows that

a = 0 and completes the proof of the proposition. ¥

Remark 1.4.24. For an alternate proof of Proposition 1.4.23 we refer to
[119].

The following result now follows immediately from the above. Its proof
is left to the reader.

Proposition 1.4.25. Supose (M, g, J) is an almost Kähler manifold of di-
mension 2n, L → M is a Hermitian line bundle and B is a Hermitian
connection on L. L defines a spinc structure σL = σc ⊗ L, where σc is the
spinc structure induced by J . Moreover, det(σL) = K−1

M ⊗ L2. Using the
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Chern connection A0 on M and the connection B on L we obtain a connec-
tion A = A0 ⊗ B⊗2 on det(σL) and thus a geometric Dirac operator 6DA on
SσL = Ω0,∗(L). Then

6DA =
√

2(∂̄B + ∂̄∗
B).

1.5. Fredholm theory

When defining the Seiberg-Witten invariants one relies essentially on the
fact that the various operators involved are Fredholm. In this section we
discuss some important topological features of Fredholm operators.

1.5.1. Continuous families of elliptic operators. Suppose (M, g) is a
smooth, closed, compact, oriented Riemannian manifold and E0, E1 → M
are real vector bundles equipped with a metric 〈·, ·〉 and 6D0 : C∞(E0) →
C∞(E1) is a first order elliptic operator. Suppose X is a smooth, compact,
connected manifold. Using the natural projection X×M → M we obtain by
pullback a bundle EX → X×M . Now consider a section T of Hom (E0

X , E1
X).

We can regard T as a smooth family (Tx)x∈X of morphisms of E0 → E1.
We can now form the family of elliptic operators

6Dx : C∞(E0) → C∞(E1)

described by
6Dx = 6D0 + Tx.

These operators have symbols independent of x ∈ X and define closed,
unbounded, Fredholm linear operators L2(E0) → L2(E1) with common do-
main L1,2(E). Moreover the map

ind (6D•) : X → Z, x 7→ ind (6Dx)

is constant since X is connected.
Suppose dim ker 6Dx is independent of x. Then dim ker 6D∗

x = dim ker 6Dx−
ind (6Dx) is also independent of x. We then get two smooth vector bundles
ker 6D and ker 6D∗ and a real line bundle

det(6D) = det ker 6D ⊗ (det ker 6D∗)∗

called the determinant line bundle of the family 6D. Remarkably, one can
still define such a line bundle even if the dimension of the kernels of 6Dx

jumps. To explain the construction we first recall a couple of facts proven in
[105], Sec. 9.4.1. First, set for simplicity Hi = L2(Ei), i = 0, 1. For every
closed subspace V ⊂ H1 define the unbounded operator

6DV,x : H0 ⊕ V → H1
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with domain L1,2(E0) ⊕ v acting according to

6DV,x(h ⊕ v) = 6Dxh + v, ∀u ∈ L1,2(E0), v ∈ V.

A stabilizer of the family (6Dx)x∈X is a finite-dimensional subspace V ⊂ H1

such that 6DV,x is surjective for all x ∈ X. We will denote by S(6D) the set
of stabilizers.

Example 1.5.1. The cokernel of a single operator 6D, ∼= ker 6D∗, is a sta-
bilizer for the one-member family 6D so that S(6D) 6= ∅. In fact, any finite
dimensional subspace of H1 containing the cokernel will be a stabilizer. Ob-
serve that if we denote V0 = ker 6D∗ then

ker 6DV0
= {u ⊕ 0 ; u ∈ ker 6D}

so that there is a natural isomorphism ker 6D ∼= ker 6DV0
.

If V ∈ S(6D) then for every x ∈ X we have a natural short exact sequence
of Hilbert spaces

0 → ker 6DV,x → H0 ⊕ V
6DV,x−→ H1 → 0.

It admits a canonical splitting in the form of the bounded, right inverse

RV,x : H1 → (ker 6DV,x)⊥ ⊂ H0 ⊕ V

where RV h1 = h0 ⊕ v if and only if

(v ⊕ h0) ∈ (ker 6DV )⊥, 6Dh0 + v = h1.

Remark 1.5.2. For any stabilizer V of a family 6D we could define 6D−
V by

the equality
6D−

V (v + h0) = −v + h0.

This operator is onto and it has a right inverse R−
V defined by the conditions

RV h1 = v ⊕ h0 ⇔ (v ⊕ h0) ∈ (ker 6D−
V )⊥, 6Dh0 − v = h1.

In this book we will consistently work with the first convention, 6DV and RV .

The following results can be deduced immediately from the considera-
tions in [105, §9.4.1].

Fact 1 S(6D) 6= ∅. Moreover, if V ∈ S(6D) and W ⊇ V then W ∈ S(6D).

Fact 2 For any V ∈ S(6D) the bounded linear operators RV,x depend
smoothly upon x and the family x 7→ ker 6DV,x defines a smooth vector
bundle ker 6DV over X.

Suppose V, W ∈ S(6D), V ⊆ W . The short exact sequence

(1.5.1) 0 → V → W → W/V → 0
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admits a natural metric induced splitting by identifying W/V with the or-
thogonal complement in W . We also have a natural dual split exact sequence

(1.5.2) 0 → V ∗ → W ∗ → (W/V )∗ → 0.

Then there is a natural exact sequence

(1.5.3) 0 → ker 6DV ↪→ ker 6DW → W/V → 0

where the first arrow is induced by the inclusion V ↪→ W and the second
arrow is given by orthogonal projection. This sequence admits a natural
splitting

sW/V : W/V → ker 6DW , w/v 7→ (−RV (w/v)) ⊕ (w/v).

Taking the direct sum of the split exact sequences (1.5.3) and (1.5.2) (in
this order) we obtain the split exact sequence

(1.5.4) 0 → ker 6DV ⊕ V ∗ → ker 6DW ⊕ W ∗ → W/V ⊕ (W/V )∗ → 0

which leads to an isomorphism

ker 6DV ⊕ V ∗ ⊕ (W/V ) ⊕ (W/V )∗ → ker 6DW ⊕ W ∗.

By passing to determinants we obtain a natural isomorphism

IW/V : det ker 6DV ⊗ det V ∗ → det ker 6DW ⊗ det W ∗

defined by the commutative diagram below.

det ker 6DV ⊗ detV ∗ det ker 6DV ⊗ det V ∗ ⊗ det(W/V ) ⊗ det(W/V )∗

det ker 6DW ⊗ det W ∗

w
∼=

h
h
h
h
h
h
h
h
h
h
h
h
hhj

IW/V

u

∼= .

Set LV := det ker 6DV ⊗ detV ∗ so that IW/V is a line bundle isomorphism
LV → LW . Thus, the isomorphism class of the real line bundle LV is
independent of V ∈ S(6D).

Definition 1.5.3. The isomorphism class of the line bundles LV is called
the determinant line bundle of the family 6D and will be denoted by det 6D.

The above construction has a built-in coherence, explicitly described in
the next result.

Proposition 1.5.4. If V1 ⊂ V2 ⊂ V3 are stabilizers of the family 6D• then

IV3/V1
= IV3/V2

◦ IV2/V1
.
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Proof We begin by making a few useful conventions. For any ordered
basis b of a vector space E we will denote by b∗ the dual ordered basis of
E∗, by det(b) the element it defines in det E and by det(b)∗ the corresponding
element in det E∗.

If b1 and b2 are ordered bases in E1 and E2 we denote by b1 ∪ b2 the
ordered basis in the ordered direct sum E1 ⊕ E2. Observe that

det(b∗1 ∪ b∗2) = det(b1 ∪ b2)∗.

There is a natural isomorphism

R → det(E ⊕ E∗)

defined by 1 7→ det(b ∪ b∗), where b is an arbitrary ordered basis of E. It is
easy to see that this isomorphism is independent of b.

For 1 ≤ i < j ≤ 3 denote by sij : Vj/Vi → ker 6DVj
the natural splitting

sVj/Vi
of the exact sequence

(Sij) 0 → ker 6DVi
→ ker 6DVj

→ Vj/Vi → 0.

Fix an ordered basis b1 of V1, an ordered basis β1 of ker 6DV1
and ordered

bases b2/b1, b3/b2 of V2/V1 and V3/V2. We get bases b2 = b1 ∪ (b2/b1) of V2

and b3 = b2 ∪ b3/b2 of V3. Set b3/b1 = b2/b1 ∪ b3/b2 so that b3 = b1 ∪ b3/b1.
Using the split sequence (S12) we obtain an ordered basis

β2 = β1 ∪ s12(b2/b1)

of ker 6DV2
and similarly, from (S23), an ordered basis

β3 = β2 ∪ s23(b3/b2) = β1 ∪ s12(b2/b1) ∪ s23(b3/b2).

From the explicit description of sij we deduce immediately that

s13(b2/b1 ∪ b3/b2) = s12(b2/b1) ∪ s23(b3/b2).

This implies
β3 = β1 ∪ s13(b3/b1).

The above identities can be written succinctly as

βj = βi ∪ sij(bj/bi).

The isomorphism Iji can now be described as follows:

det(βi ∪ b∗i ) 7→ det(βi ∪ b∗i ∪ (bj/bi) ∪ (bj/bi)∗) 7→

7→ det(βi ∪ sij(bj/bi) ∪ (bi)∗ ∪ (bj/bi)∗)

= det(βi ∪ b∗i ∪ (bj/bi)∗) = det(βj ∪ b∗j ).

The proposition is now obvious. ¥
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Exercise 1.5.1. Suppose 6D is a family such that dim ker 6Dx is independent
of x ∈ X. Show that

det 6Dx
∼= det ker 6Dx ⊗ (det ker 6D∗

x)∗.

Suppose now that we have two families (T0), (T1) of morphisms param-
eterized by X. They are said to be homotopic if there exists a morphism
T̃ : E0

[0,1]×X → E1
[0,1]×X such that

T̃ |{i}×X= Ti, i = 0, 1.

Proposition 1.5.5. Two homotopic families (Ti), i = 0, 1, have isomorphic
determinant line bundles

det 6D0
∼= det 6D1.

Proof We denote by ˜6D the family of operators parameterized by [0, 1]×X

generated by the homotopy (T̃ ). Fix U ∈ S( ˜6D). Then U ∈ S(6D0) ∩ S(6D1).
To prove the proposition it suffices to construct an isomorphism

ker 6D0
U → ker 6D1

U .

To do this, consider the bundle ker ˜6DU → [0, 1] × X, fix a connection on it
and denote by Tx the parallel transport from ker ˜6DU,(0,x) to ker ˜6DU,(1,x) along
the path [0, 1] 3 t 7→ (t, x) ∈ [0, 1] × X. Then T induces the correspond-
ing isomorphism. Observe that the homotopy class of the isomorphism is
independent of the choice of the connection on ker ˜6DU . ¥

Definition 1.5.6. (a) The family (6Dx)x∈X is called orientable if det 6D is
trivial.
(b) An orientation on a real line bundle L → X is a homotopy class of
isomorphisms φ : L → R. Two oriented line bundles φi : Li → R, i = 1, 2,
are said to be equivalent if there exists an isomorphism δ : L1 → L2 such
that φ2 ◦ δ and φ1 are homotopic through isomorphisms.

From Proposition 1.5.5 we deduce immediately the following consequence.

Corollary 1.5.7. Suppose (Ti), i = 0, 1, are two homotopic families. Then
det 6D0 is orientable iff det 6D1 is orientable. Moreover, any orientation on
det 6D0 canonically induces an orientation on det 6D1.

In practice one is often led to ask the following question.

How can one construct orientations on a given oriented family 6D?

We will address two aspects of this issue.
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Step 1 Describe special cases when there is a canonical way of assigning
orientations.

Step 2 Describe how to transport orientations via homotopies.

Step 1 To construct an orientation on det 6D it suffices to construct coherent
orientations on the line bundles LV . The coherence means that the natural
isomorphisms IWV are orientation preserving. We describe below several
situations when such an approach is successful.

Suppose the family (6D)x is nice, i.e. satisfies the following two condi-
tions:
(i) dim ker 6Dx is independent of x.
(ii) The real vector bundles ker 6D and ker 6D∗ are equipped with orientations.

For example, if ind (6Dx) ≡ 0 and all the operators 6Dx are one-to-one
(and hence also onto) then both the above conditions are satisfied. If 6Dx is
a family of complex operators satisfying (i) then the condition (ii) is auto-
matically satisfied since the bundles in question are equipped with complex
structures and thus canonical orientations.

To proceed further we need the following elementary fact.

Exercise 1.5.2. There exists a finite-dimensional subspace V ⊂ H1 such
that ker 6D∗ is a subbundle of the trivial bundle V .

We denote by Ŝ(6D) the set of oriented finite-dimensional subspaces of
H1 such that the bundle V0 := ker 6D∗ is a subbundle of V .

To proceed further we will need to make an orientation convention.

Convention Consider a split exact sequence of finite-dimensional vector
spaces

0 → E0 → E1 → E2 → 0.

If any of the two spaces above is oriented then the third space is given the
orientation determined by the splitting induced isomorphism

E0 ⊕ E2
∼= E1.

More precisely
or(E0) ∧ or(E2) = or(E1).

Now let V ∈ Ŝ(6D). Denote by V̂ the orthogonal complement of the bun-
dle V0 := ker 6D∗ inside the trivial bundle V . To orient LV = ker 6DV ⊗detV ∗

we equip ker 6DV with a compatible orientation. This is done as follows.

Orientation Recipe
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¦ Orient V̂ := V/V0 using the canonical split exact sequence of Hilbert spaces

0 → V0 → V → V̂ → 0.

where the second arrow denotes the orthogonal projection. Observe that ker 6DV0

is canonically isomorphic to ker 6D.

¦ Equip ker 6DV with the orientation induced by split exact sequence (1.5.3)

0 → ker 6DV0
→ ker 6DV → V/V0 = V̂ → 0.

The orientation on V and the above orientation on ker 6DV induce an
orientation on LV . Now observe that we have the following sequence of
isomorphisms of oriented line bundles:

IV := det ker 6D ⊗ (det ker 6D∗)∗ ∼= det ker 6DV0
⊗ det V ∗

0 = LV0

IV/V0−→ LV .

Exactly as in the proof of Proposition 1.5.4 we see that for any oriented
stabilizers V ⊂ W we deduce that IW = IWV ◦ IV which shows that IWV

is orientation preserving. This coherence allows us to equip det 6D with an
orientation.

Proposition 1.5.8. Suppose (6Dx)x∈X is a nice family. Then det 6D admits
a natural orientation which can be concretely described as follows.
• Pick V ∈ Ŝ(6D).
• Equip the bundle ker 6DV with the compatible orientation.
• Orient det V ∗ ⊗ det 6D ∼= det 6DV using the orientation on V and the com-
patible orientation on ker 6DV .

There is another situation when one can canonically assign orientations.
Suppose the vector bundles E0 and E1 are equipped with complex structures
and the operators 6D0 and Tx are complex. Then the stabilizers can be
chosen to be complex subspaces so that the bundles ker 6DU are complex, hence
equipped with canonical orientations. Arguing exactly as above we can
deduce that the orientations thus obtained on the determinant line bundles
are independent of the choice of complex stabilizers. We summarize the
results proved so far in the following proposition.

Proposition 1.5.9. If the family (6Dx) is the direct sum of a nice family
and a complex one then its determinant line bundle can be given a canonical
orientation.

Remark 1.5.10. (a) The above observations extend to more general sit-
uations. Suppose that H0,H1 → X are two, smooth, real Hilbert vector
bundles over a compact smooth manifold X and 6D : H0 → H1 is a Fred-
holm morphism. This means 6D is a smooth morphism of Hilbert bundles
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such that for every x ∈ X the induced map 6Dx : H0
x → H1

x is Fredholm.
To such a morphism one can attach a determinant line bundle. Moreover,
Proposition 1.5.9 continues to hold in this more general context.

(b) The construction in this section which associates to each continu-
ous family of elliptic operators a line bundle on the parameter space has its
origins in K-theory. Each continuous family of Fredholm operators parame-
terized by a compact CW -complex X defines an element in K(X), a certain
abelian group naturally associated to X, which is a homotopy invariant of
X. We recommend [3] for a beautiful introduction to this subject.

Exercise 1.5.3. Prove the claims in the above remark. (Hint: Consult
[3].)

Step 2 Suppose we have two homotopic nice families, (6D0
x)x∈X and

(6D1
x)x∈X . Using the canonical orientation on det 6D0 and the connecting

homotopy we can produce another orientation on det 6D1. Naturally, one
wonders what is the relationship between this transported orientation and
the canonical orientation on det 6D1. It is natural to expect that the com-
parison between these orientations depends on the given homotopy.

We will consider only one situation, which suffices for most applications
in Seiberg-Witten theory. Suppose X consists of one point and (∇i, Ti),
i = 0, 1, are two pairs (connection on E, morphism E0 → E1). We get two
Dirac operators

6Di : C∞(E0) → C∞(E1).

Fix orientations on ker 6Di and ker 6D∗
i . Clearly the two families (∇i, Ti)

satisfy the conditions (i) and (ii) and we thus get two oriented lines

φi : det 6Di → R, i = 0, 1.

Each homotopy h(s) = 6Ds determines a homotopy class of isomorphisms

ψ : det 6D0 → det 6D1

and we obtain an induced orientation on det 6D1 defined by the composition

ψ1 : det 6D1
ψ−1

→ det 6D0
φ0→ R.

We thus obtain a linear isomorphism

ψ1 ◦ φ−1
1 : R

φ−1
1→ det 6D1

ψ1→ R

whose homotopy class is determined by a number m ∈ {−1, 1}. This real
number is called the orientation transport along the given homotopy. We will
denote it by ε(6D1, h, 6D0). We want to emphasize that this number depends
on the chosen orientations on ker 6Di and ker 6D∗

i and on the chosen homotopy
h(s).
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Example 1.5.11. To understand the subtleties of the above construction
we present in detail the following simple example. Consider the map

L : Rn → Rk, v 7→
k∑

i=1

〈v, ei〉ei

where n > k, (ei) denotes the canonical basis of Rn and 〈•, •〉 denotes the
usual inner product. The kernel of L is precisely the subspace spanned by
ek+1, · · · , en. We choose this ordered basis to orient kerL. Observe two
things.

1. coker (L) = 0 so that an orientation of the line detL uniquely defines an
orientation of kerL.
2. The map L is homotopic to the trivial map Rn → Rk whose kernel and
cokernel are naturally oriented. This homotopy induces another orientation
on detL. The difference between these two orientations is precisely the
orientation transport along the path tL, t ∈ [0, 1] defined above. We want
to describe this explicitly since it is very similar to the situation we will
encounter in Seiberg-Witten theory.

Consider the family Lt : Rn → Rk, v 7→ tLv, t ∈ [0, 1], and set

V := span (e1, · · · , ek) ⊂ Rn.

V is a stabilizer for the family Lt.
For t = 0 we have V = ker L∗

0 and the compatible orientation of V given
by the rules above is the natural one, determined by the oriented basis
e1, · · · , ek. ker LV,0 is oriented using the natural isomorphism

ker L0 ⊕ V ∼= kerLV,0, (kerL0 ⊕ V ) 3 (u ⊕ v) 7→ u ⊕ 0.

Hence

(1.5.5) e1 ⊕ 0, · · · , en ⊕ 0

is an oriented basis of ker LV,0.
Observe that for each t ≥ 0 the collection of vectors in Rn ⊕ V

(1.5.6)
v1(t) := e1 ⊕ (−te1), · · · , vk(t) := ek ⊕ (−tek),

vk+1(t) = ek+1 ⊕ 0, · · · vn(t) := en ⊕ 0

forms a basis of kerLV,t. When t = 0 it coincides with the basis (1.5.5).
Thus for t = 1 it defines an oriented basis of kerLV,1.

The orientation on kerL which induces the above orientation is deter-
mined from the natural split exact sequence

0 → ker L → ker LV → V → 0.
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This leads to the isomorphism

(1.5.7)
ker L ⊕ V ∼= ker LV ,

kerL ⊕ V 3 (u ⊕ v) 7→ u ⊕ v − Rv ⊕ 0 ∈ ker LV

where R denotes the canonical right inverse of L which in this case is the
natural inclusion V ⊂ Rn.

The natural basis of

ek+1 ⊕ 0, · · · , en ⊕ 0, 0 ⊕ e1, · · · , 0 ⊕ ek

of kerL ⊕ V determines via the isomorphism (1.5.7) the following basis of
kerLV :

ek+1 ⊕ 0, · · · , en ⊕ 0, (−e1) ⊕ e1, · · · , (−ek) ⊕ ek.

The orientation defined by this basis differs from the positive orientation
defined by the basis (1.5.6) by (−1)k(n−k)+k. Thus kerL is oriented by the
element (−1)k(n−k+1)ek+1 ∧ · · · ∧ en of det kerL.

Returning to the general situation, let us additionally assume

(1.5.8) ind 6D0 = ind 6D1 = 0.

The orientation transport has a couple of important properties.

P0 Fix 6D0 and 6D1. Then ε(6D1, h, 6D0) depends only on the homotopy
class of h.

P1 If along the homotopy the operators 6Ds are invertible then
ε(6D1, h, 6D0) = 0.

Proof Note that the trivial subspace is a stabilizer for the family 6Ds.
This property now follows from the proof of Proposition 1.5.5. ¥

P2 Suppose h0, resp. h1, is a homotopy connecting 6D0 to 6D1, resp. 6D1

to 6D2. Denote by h the resulting homotopy connecting 6D0 to 6D2. Then

ε(6D2, h, 6D0) = ε(6D2, h1, 6D1) · ε(6D1, h0, 6D0).

Definition 1.5.12. Suppose h(s) = 6Ds is a homotopy connecting two op-
erators 6D0 and 6D1.
(a) The resonance set of the homotopy is

Zh = {s ∈ [0, 1] ; ker 6Ds = {0} }.
For each s ∈ Zh we denote by Ps the orthogonal projection onto ker(6Ds)∗.
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(b) Set Cs = 6Ds − 6D0. Cs is a zeroth order p.d.o., i.e. a bundle morphism.
Define Ċs = d

dsCs. The homotopy is called regular if the resonance set is
finite and ∀s ∈ [0, 1] the resonance operator

Rs : ker 6Ds
Ċs→ L2(E1) Ps→ ker 6D∗

s

is a linear isomorphism.

P3([119]) Suppose h is a regular homotopy connecting 6D0 to 6D1. Set ds =
dim ker 6Ds = dim ker 6D∗

s. Then

(1.5.9) ε(6D1, h, 6D0) = sign(R1)sign (R0)
∏

s∈[0,1)

(−1)ds

where sign(Ri) = ±1 (i = 0, 1) according to whether Ri : ker 6Di → ker 6D∗
i

preserves or reverses the chosen orientations.

Proof Using the product formula P2 we can reduce the proof of (1.5.9)
to two cases.

Case 1 Zh = {0}. Set

σ+ = lim
s↘0

ε(6Ds, h, 6D0).

Using P1 and P2 we deduce ε(6D1, h, 6D0) = σ+. We have to show

σ+ = (−1)d0sign (R0).

Set V0 = ker 6D∗
0 and fix an oriented basis (f1, · · · , fn) (n = d0 = dimV0) of

V0. Then V0 is a stabilizer for 6Ds for all sufficiently small s ∈ [0, ε] and

det 6Ds = det 6DV0,s ⊗ V ∗
0 .

For s 6= 0 the operator 6Ds is invertible and for each fk there exists a unique
xk ∈ L1,2(E0) such that

(1.5.10) 6Dsxk + fk = 0.

Then x1⊕f1, · · · , xn⊕fn is a basis of ker 6DV0,s and we see that the orientation
of V0 induces an orientation on ker 6DV0,s. These orientations on ker 6DV0,s and
V0 are compatible (in the sense described at Step 1) and define according
to Proposition 1.5.8 the canonical orientation on the line det 6Ds, s > 0. For
s = 0 we orient det 6D0 using the oriented bases (e1, · · · , en) of ker 6D0 and
(f1, · · · , fn) of V0.

Denote by Qs the orthogonal projection onto ker 6DV0,s ⊂ L2(E1). The
trivial connection d

ds on the trivial bundle L2(E1) × [0, ε] → [0, ε] induces
a connection Qs

d
ds on the bundle ker 6DV0,• → [0, ε]. It produces a parallel

transport map
Ts : ker 6DV0,0 → ker 6DV0,s.
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ker 6DV0,0 is oriented by the oriented basis e1 ⊕ 0, · · · , en ⊕ 0 while ker 6DV0,s

is oriented by the oriented basis x1 ⊕ f1, · · · , xn ⊕ vn. Set

yk(s) ⊕ vk(s) := Ts(ek ⊕ 0) ∈ ker 6DV0,s.

The vectors yk(s) ⊕ vk(s) determine a smoothly varying basis of ker 6DV0,s

described by the initial value problem

(1.5.11)


6Dsyk(s) + vk(s) = 0

yk(0) = ek

vk(0) = 0
(v̇k, ẏk) ∈ (ker 6DV0,s)⊥

Observe that σ+ is ±1 depending on whether Ts preserves/reverses the above
orientations for s very small. In other words, to decide the sign of σ+ we
have to compare the orientations defined by the bases

(xk(s) ⊕ fk) and (yk(s) ⊕ vk(s))

of ker 6DV0,s. We cannot pass to the limit as s ↘ 0 since the vectors xk(s)
“explode” near s = 0. The next result makes this statement more precise
and will provide a way out of this trouble.

Lemma 1.5.13.

(1.5.12) ‖sxk(s) + R−1
0 fk‖ = O(s) as s ↘ 0

where ‖ · ‖ denotes the L2-norm.

Proof of the lemma First observe that we have an asymptotic expansion

(1.5.13) 6Ds = 6D0 + sĊ0 + O(s2) as s ↘ 0

where O(s2) denotes a morphism E0 → E1 whose norm as a bounded oper-
ator L2(E0) → L2(E1) is ≤ const · s2 as s ↘ 0. Set

zk(s) =
{

sxk(s) if s 6= 0
−R−1

0 fk if s = 0
.

We want to prove that

‖zk(s) − zk(0)‖ = O(s) as s ↘ 0.

Using the equalities (1.5.10) and (1.5.13) we deduce

(6D0 + sĊ0 + O(s2))zk + sfk = 0

so that

(1.5.14) 6D0zk = −sĊ0zk − sfk + O(s2)zk.

We decompose zk following the orthogonal decomposition

L2(E0) = ker 6D0 ⊕ (ker 6D0)
⊥ −→ zk = z0

k + z⊥k .
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Recall that P0 denotes the orthogonal projection onto ker 6D∗
0 = Range(6D0)⊥.

We can now rewrite (1.5.14) as

(1.5.15)


6D0z

⊥
k = (1 − P0)(−sĊ0zk − sfk + O(s2)zk)

P0Ċ0zk + fk = P0O(s)zk.

From the first equation we deduce

‖z⊥k ‖ ≤ Cs(‖zk‖ + ‖fk‖)
so that

(1.5.16) ‖z⊥k ‖ ≤ Cs(‖z0
k‖ + ‖fk‖).

We can now rewrite the second equation in (1.5.15) as

R0z
0
k = P0Ċ0z

0
k = P0O(s)(z0

k + z⊥k ) − fk − P0Ċ0z
⊥
k

so that
z0
k = zk(0) + R−1

0 O(s)(z0
k + z⊥k ) − R−1

0 P0Ċ0z
⊥
k

and using (1.5.16) we deduce

‖z0
k − zk(0)‖ ≤ Cs(‖z0

k‖ + 1).

The equality (1.5.12) is now obvious. ¥

Notice that the bases zk(s) ⊕ sfk and xk(s) ⊕ fk define the same orien-
tations on ker 6DV0,s, for all s > 0 sufficiently small. Thus, in order to find
the sign of σ+ we have to compare the orientations determined by the bases
zk(s) ⊕ fk and yk(s) ⊕ vk as s ↘ 0. The advantage now is that we can
pass to the limit in both bases. Thus we need to compare the orientations
determined by the bases (−R−1

0 fk) ⊕ 0 and ek ⊕ 0. They differ exactly by
(−1)nsign (R0) where n = dim ker 6D0 = d0.

Case 2 Zh = {1}. Set σ− = lims↗1 ε(6D1, h, 6Ds). We have to show

σ− = sign (R1).

The proof is identical to the one in Case 1. The equality (1.5.12) has to be
replaced with

‖sxk(1 − s) − R−1
1 fk‖ = O(s), as s ↘ 0

because instead of (1.5.13) we have

(1.5.17) 6D1−s = 6D1 − sĊ1 + O(s2) as s ↘ 0

In the end we have to compare the bases R−1
1 fk and ek. Property P3 is

proved. ¥

Remark 1.5.14. For a different proof of P3 we refer to [119].



1.5. Fredholm theory 95

In Section 2.3 we will need the following technical result.

Proposition 1.5.15. Suppose 6Dt, t ∈ [0, 1], is a continuous family of real
first order elliptic operators

6Dt : L1,2(E0) ⊂ H0 := L2(E0) → H1 := L2(E1)

with the following properties.
(a) ind 6Dt = 0.
(b) 6Dt is invertible for t close to 0 and 1.
(c) There exists a smooth family of continuous linear maps Lt : R → H1

such that
(c0) Lt = 0 for t = 0, 1.
(c1) The map St := Lt + 6Dt : H0 ⊕ R → H1, h0 ⊕ µ → Ltµ + 6Dth0 is

onto.
(c2) The real line bundle L := ker(S•) → [0, 1] is oriented.

Observe that the fibers of L over i = 0, 1 can be identified with R via the
natural isomorphisms

(1.5.18) ωi : R → Li, µ 7→ (0, µ).

On the other hand, the orientation of L defines orientations φi : Li → R,
i = 0, 1. The homotopy class of the isomorphism φiωi : R → R is uniquely
determined by a sign εi ∈ {±1}.

Then the orientation transport along the path 6Dt is ε0/ε1.

Proof Recall how one computes the parallel transport. Fix an arbitrary
oriented stabilizer V for the family 6Dt. We get a vector bundle

ker 6DV,• → [0, 1].

Once we fix a connection ∇ on this bundle we get a parallel transport

(1.5.19) T = T∇ : ker 6DV,0 → ker 6DV,1.

Using condition (b) we obtain isomorphisms ker 6DV,i = 0 ⊕ V , i = 0, 1,
defined explicitly by

(1.5.20) τi : 0 ⊕ V ⊕ 3 (0, v) 7→ (−6D−1
i v, v) ∈ ker 6DV,i.

Via these isomorphisms we can regard T as a map τ1 ◦ T ◦ τ−1
0 : V → V .

The orientation transport is then the sign of its determinant. For t ∈ [0, 1]
define Ut : H0 ⊕ V ⊕ R → H1 by

h0 ⊕ v ⊕ µ 7→ St(h0 ⊕ µ) + v = Ltµ + 6DV,t(h0 ⊕ v) = Ltµ + v + 6Dth0.

There exist natural isomorphisms

It := ker 6DV,t ⊕ R → kerUt
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defined by

It := ker 6DV,t ⊕ R 3 (h0, v, µ) 7→ (h0, v, µ) − RV,t(Ltµ) ⊕ 0.

On the other hand, we have isomorphisms

Jt : V ⊕ Lt → ker U1
t

defined by

V ⊕ Lt 3 (v, h0, µ) 7→ (h0, v, µ) − (ht
0(v), 0, µt(v))

where (ht
0(v), µt(v)) is the element in H0 ⊕ R uniquely determined by

(ht
0(v), µt(v)) ∈ (kerSt)⊥, Ltµ

t(v) + 6Dth
t
0(v) = v.

Using (c0) we deduce that for t = 0, 1 ker St = R ⊕ 0 and we can be more
explicit, namely

µt(v) = 0, ht
0(v) = 6D−1

t v.

Thus, for t = 0, 1 we have

J−1
t (h, v, µ) = (v, 0, µ).

We thus get isomorphisms

I−1
t ◦ Jt : V ⊕ Lt → ker 6DV,t ⊕ R

depending smoothly upon t. Now look at the following diagram.

V ⊕ R V ⊕ R V ⊕ R V ⊕ R

ker 6DV,0 ⊕ R ker 6DV,1 ⊕ R

V ⊕ R V ⊕ L0 V ⊕ L1 V ⊕ R

V ⊕ R V ⊕ R

u

a0

u
τ0

u
1

w
?

u
τ1

w
1

u

a1w
1⊕T∇

u
J−1
0 I0

u
J−1
1 I1

�
ε0

u
φ0

u
ω−1

0
w

!!!

u
φ1

w
ω−1

1

w
1

A
A
A
A
A
AC

ε−1
1

The maps τi are defined by (1.5.20) and T∇ denotes the parallel transport
defined in (1.5.19). The dashed arrows are defined tautologically, to make
the diagram commutative. We are interested in the sign of the determinant
of the ?-arrow. The maps φi are determined by the orientation (trivializa-
tion) of the fibers Li induced by the orientation (a.k.a. trivialization) of
L.

The connection ∇ induces via J−1
t It a connection ∇′ on V ⊕ L with

parallel transport T ′. The (!!!)-arrow is precisely T ′.
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On the other hand, the orientation (trivialization) of Lt defines a canon-
ical connection ∇0 on V ⊕L with parallel transport T 0. Since ∇′ and ∇0 are
homotopic we deduce T 0 is homotopic to T ′ so that in the above diagram
the (!!!)-arrow is also equivalent to T 0. With respect to the trivializations
φi the map T 0 is the identity, thus explaining the bottom arrow.

The isomorphism ai : V ⊕R → V ⊕R is the identity. To see this observe
that (for i = 0) we have

a0(v ⊕ µ) = ω−1
0 J−1

0 I0τ0(v ⊕ µ) = ω−1
0 J−1

0 I0((−6D−1
0 v) ⊕ v ⊕ µ)

= ω−1
0 J−1

0 ( (−6D−1
0 v) ⊕ v ⊕ µ) = ω−1

0 (v ⊕ µ ⊕ 0) = v ⊕ µ.

The proposition is now obvious from the diagram and the above explicit
description of the maps ai. ¥

Exercise 1.5.4. Formulate and prove a generalization of the above propo-
sition where instead of maps Lt : R → H1 we have linear maps Lt : E → H1

in which E is a finite-dimensional oriented space.

1.5.2. Genericity results. Suppose X, Y and Λ are Hilbert manifolds
and

F : Λ × X → Y, (λ, x) 7→ y = F (λ, x)
is a smooth map. Fix y0 ∈ Y . We are interested in studying the dependence
upon the parameter λ of the solution sets

Sλ = {x ∈ X ; F (λ, x) = y0}.
More precisely, we are interested whether there exist values of the parameter
λ for which the solution sets Sλ are smooth submanifolds. According to the
implicit function theorem this will happen provided y0 is a regular value of
the map

Fλ : X → Y, x 7→ F (λ, x),
that is, for every x0 ∈ Sλ the differential

∂Fλ

∂x
: Tx0X → Ty0Y

is a bounded linear surjection. We will say that λ is a good parameter if
y0 is a regular value of Fλ. In this subsection we will address the following
question.

Is it possible that “most” parameters are good?

A result providing a positive answer to this question is usually known as a
genericity result.

Note first of all that if we expect genericity results it is natural to assume
the parameter space Λ is “sufficiently large”. More precisely, we will assume
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that y0 is a regular value of F . To understand why this is a statement about
the size of Λ introduce the “master space”

S = {(λ, x) ∈ Λ × X ; F (λ, x) = y0}.

Since y0 is a regular value of F this means that for all (λ, x) ∈ S the
differential

DF : T(λ,x)Λ × X → Ty0Y

is a bounded linear surjection. In particular, S is a smooth Hilbert manifold.
We see that if Λ is “too small” the above operator may not be surjective.

Denote by π the natural projection Λ × X → Λ. We obtain a smooth
map

π : S ↪→ Λ × X → Λ

and the solution sets Sλ can be identified with the fibers π−1(λ) of π. We
see that any regular value of π is necessarily a good parameter. Thus,
if “most” parameters are regular values of π then “most” of them must
be good and we have a genericity result. This looks more and more like
Sard’s theorem but there is one aspect we have quietly avoided so far: the
manifolds X, Y,Λ may be infinite dimensional and thus out of the range of
the standard Sard theorem. Fortunately, S. Smale [124] has shown that
under certain conditions, the Sard theorem continues to hold in infinite
dimensions as well. To formulate his result we need to introduce the notion
of nonlinear Fredholm maps.

Definition 1.5.16. A smooth map F : M → N between Hilbert manifolds
is said to be Fredholm if for every m ∈ M the differential

DmF : TmM → TF (m)N

is a bounded, linear Fredholm operator. If M is connected, the indices of
the operators DmF are independent of M and their common value is called
the index of F and is denoted by ind (F ).

A subset in a topological space is said to be generic if it contains the
intersection of an at most countable family of dense, open sets. Baire’s
theorem states that the generic sets in complete metric spaces or locally
compact spaces are necessarily dense. The expression “most x satisfy the
property ...” will mean that the set of x satisfying that property is generic.

Theorem 1.5.17. (Sard-Smale) Suppose F : M → N is a smooth Fred-
holm map between paracompact Hilbert manifolds, where M is assumed con-
nected.
(a) If ind (F ) < 0 then F−1(n) = ∅ for most n.
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(b) If ind (F ) ≥ 0 then most n ∈ N are regular values of F and for these n
the fibers F−1(n) are finite dimensional (possibly empty) smooth manifolds
of dimension ind (F ).

Let us now return to the original problem. We want to apply the Sard-
Smale theorem to the map π : S → Λ, so that we have to assume it is
Fredholm. The following result describes a condition on F which guarantees
that π is Fredholm.

Lemma 1.5.18. Suppose that both Λ and X are connected, y0 is a regular
value of F and for each λ ∈ Λ the map Fλ : X → Y is Fredholm. Then
π : S → Λ is Fredholm and

ind (π) = ind (Fλ), ∀λ ∈ Λ.

Exercise 1.5.5. Prove the above lemma.

The final result of this subsection summarizes the above considerations.

Theorem 1.5.19. Consider smooth, paracompact, connected Hilbert mani-
folds X, Y,Λ, a smooth map F : Λ × X → Y and a point y0 ∈ Y satisfying
the following conditions.
(i) y0 is a regular value of F .
(ii) The maps Fλ : X → Y are Fredholm for all λ ∈ Λ.
Then the following hold.
(a) If ind (Fλ) < 0 then Sλ = ∅ for most λ.
(b) If ind (Fλ) ≥ 0 then Sλ is a smooth (possible empty) manifold of dimen-
sion ind (Fλ) for most λ ∈ Λ.





Chapter 2

The Seiberg-Witten
Invariants

Get your facts first, and then distort them as much as you
please.

Mark Twain

2.1. Seiberg-Witten monopoles

This section finally introduces the reader to the central objects of these
notes, namely, the Seiberg-Witten monopoles. They are solutions of a non-
linear system of partial differential equations called the Seiberg-Witten equa-
tions. We will discuss several basic features of these objects.

2.1.1. The Seiberg-Witten equations. First we need to introduce the
geometric background. It consists of a connected, oriented, Riemannian four
dimensional manifold (M, g) equipped with a spinc structure σ. There are
two bundles naturally associated to this datum.

• The bundle of complex spinors Sσ = S+
σ ⊕ S−

σ ;
• The associated line bundle det(σ) which is equipped with an U(1)-structure.

Fix a Hermitian metric on det(σ) inducing this U(1)-bundle and denote by
Aσ = Aσ(M) the space of Hermitian connections on det(σ). Also, denote
by cσ the first Chern class of det(σ), cσ = c1(det(σ)).

We can now define the configuration space

Cσ = Cσ(M) = C∞(S+
σ ) × Aσ.

101
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Observe that this is an affine space. We will denote its elements by the
symbol C = (ψ, A) and by Gσ = Gσ(M) the group of smooth maps M → S1.
Given A ∈ Aσ we obtain a geometric Dirac structure (Sσ, c,∇A,∇), where ∇
denotes the Levi-Civita connection while ∇A is the connection induced by A
on Sσ which is compatible with the Clifford multiplication, the Levi-Civita
connection and the splitting S+

σ ⊕ S−
σ . As usual, we will denote by 6DA the

Dirac operator Γ(S+
σ ) → Γ(S−

σ ) induced by this geometric Dirac structure.
We can now conjugate ∇A with any element γ ∈ Gσ and, as shown

in Exercise 1.3.21, the connection γ∇Aγ−1 is induced by the connection
A − 2(dγ)γ−1 ∈ Aσ, that is,

γ∇Aγ−1 = ∇A−2dγ/γ .

We can regard the correspondence

Gσ × Cσ 3 (γ; ψ, A) 7→ (γψ, A − 2dγ/γ) ∈ Cσ

as a left action of Gσ on Cσ, (γ, C) 7→ γ · C. For each C ∈ Cσ we denote by
Stab(C) the stabilizer of C with respect to the above action

Stab(C) :=
{

γ ∈ Gσ ; γ · C = C
}

.

Definition 2.1.1. A configuration C is said to be irreducible if

Stab(C) = {1}.

Otherwise, it is said to be reducible. We will denote by Cσ,irr the set of
irreducible configurations and by Cσ,red the set of reducible ones.

Proposition 2.1.2.

Cσ,red =
{

C = (ψ, A) ; ψ ≡ 0
}

.

Moreover, if C = (ψ, A) is a reducible configuration, then Stab(C) is iso-
morphic to the subgroup S1 ⊂ Gσ consisting of constant maps.

Exercise 2.1.1. Prove the above proposition.

The quadratic map q introduced in Example 1.3.3 defines a map

q : C∞(S+
σ ) → End0(S+

σ ), q(ψ) = ψ̄ ⊗ ψ − 1
2
|ψ|2id.

End0(S+
σ ) denotes the space of traceless, symmetric endomorphisms of S+

σ .
More precisely,

C∞(S+
σ ) 3 φ

q(ψ)7→ 〈φ, ψ〉ψ − 1
2
|ψ|2φ ∈ C∞(S+

σ ).

We want to emphasize one working convention.
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We will always assume that a Hermitian metric 〈•, •〉 on a complex
vector space is complex linear in the first variable and complex conjugate-
linear in the second variable.

Definition 2.1.3. Fix a closed, real 2-form η ∈ Ω2(M). Then a (σ, η)-
monopole is a configuration C = (ψ, A) satisfying the Seiberg-Witten equa-
tions

(2.1.1) (SWσ,η)
{

6DAψ = 0
c(F+

A + iη+) = 1
2q(ψ)

where the superscript “+” denotes the self-dual part of a 2-form and c
denotes the Clifford multiplication by a form. The 0-monopoles will be
called simply monopoles. The closed 2-form η is called the perturbation
parameter.

A few comments are in order.

• Note first that the Seiberg-Witten equations (2.1.1) depend on the metric
g in several ways: the symbol of the Dirac operator depends on the metric,
the connection ∇A depends on the Levi-Civita connection of the metric and
the splitting Ω2(M) = Ω2

+(M) ⊕ Ω2
−(M) is also dependent on the metric.

• Notice also that the second equation in (2.1.1) is consistent with the iso-
morphism iΩ2

+(M) ∼= End0(S+
σ ) induced by the Clifford multiplication c.

We denote by Zσ = Zσ(g, η) the set of solutions of the Seiberg-Witten
equations and set

Zσ,irr = Zσ ∩ Cσ,irr.

Observe next that if C ∈ Zσ and γ ∈ Gσ then γ · C ∈ Zσ. Thus, Zσ is a
Gσ-invariant subset of Cσ. We set

Mσ = Mσ(g, η) = Zσ/Gσ

and
Mσ,irr = Zσ,irr/Gσ.

Mσ is known as the Seiberg-Witten moduli space.
Besides the huge G-symmetry, the Seiberg-Witten equations are equipped

with another special type of symmetry. The involution σ 7→ σ̄ on Spinc(M)
defines a bijection ϑ̂ : Cσ,η → Cσ̄,−η induced by the isomorphisms

ϑ : S̄+
σ → S+

σ̄ , det(σ̄) ∼= det(σ) ∼= det(σ)∗.

More precisely, ϑ̂(ψ, A) = (ϑ(ψ̄), A∗) where for any connection A on det(σ)
we have denoted by A∗ the connection it induces on det(σ)∗. The results
in Exercise 1.3.23 coupled with the equality FA∗ = −FA show that if C
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is a (σ, η)-monopole then ϑ̂(C) is a (σ̄,−η)-monopole. Also observe that
Gσ = Gσ̄ = G and, for all γ ∈ G, we have

(2.1.2) ϑ̂(γ · C) = γ−1 · ϑ̂(C).

This shows that we have a bijection

(2.1.3) ϑ̂ : Mσ(g, η) → Mσ̄(g,−η).

In the remainder of this chapter M will be assumed to be compact, con-
nected, oriented and without boundary.

The Seiberg-Witten equations are first order equations and thus cannot
be the Euler-Lagrange equations of any action functional. However, the
monopoles do have a variational nature.

Proposition 2.1.4. Define Eη : Cσ → R by

Eη(ψ, A) =
∫

M

(
|∇Aψ|2 +

s

4
|ψ|2 +

1
2

∣∣1
2
q(ψ) − c(iη+)

∣∣2 + |FA + 2iη+|2
)
dvg

where s denotes the scalar curvature of the metric g and for any endomor-
phism T : S+

σ → S+
σ we have denoted |T |2 := tr(TT ∗). Then

Eη(ψ, A) =
∫

M

(
|6DAψ|2 +

1
2
|c(F+

A + iη+) − 1
2
q(ψ)|2

)
dvg

+4
∫

M
|η+|2dvg − 4π2

∫
M

c2
σ

where cσ = c1(det(σ)). In particular, we deduce that

Eη(ψ, A) ≥ 4
∫

M
|η+|2dvg − 4π2

∫
M

c2
σ

with equality if and only if (ψ, A) is an η-monopole.

Proof The proof relies on the following elementary identities.

Lemma 2.1.5. Let α ∈ iΩ2
+(M), ψ ∈ C∞(S+

σ ) and T ∈ End0(S+
σ ). Then

we have the following pointwise identities:

|q(ψ)|2 := tr(q(ψ)2) =
1
2
|ψ|4,

|c(α)|2 = 4|α|2,

〈T, q(ψ)〉 def
= tr(Tq(ψ)) = 〈Tψ, ψ〉.
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Proof of the lemma All the computations are pointwise so it suffices to
prove they hold at a given arbitrary point x ∈ M . Set V = TxM . We now
use the notations and the computations in Example 1.3.3. Then

|q(ψ)|2 = tr

([
1
2(|α|2 − |β|2) αβ̄

ᾱβ 1
2(|β|2 − |α|2)

]2
)

=
1
2
(|α|2 − |β|2)2 + 2|α|2|β|2

=
1
2
(|α|2 + |β|2)2 =

1
2
|ψ|4.

The second equality follows from the identities

c(
s∑

k=0

xkηk)2 = −2(
2∑

k=0

x2
k)id, tr(id) = 2.

To prove the third identity we observe it is linear in T and since any
T ∈ End0(S+

σ |x) can be written as T =
∑2

k=0 tkc(iηk), tk ∈ R, it suf-
fices to prove it for T = c(iηk). The computations in Exercise 1.3.2 show
that

tr(q(ψ) · c(iηk)) = − i
4
〈ψ, c(ηk)ψ〉 · tr(c(iηk)2)

=
1
4
〈ψ, c(iηk)ψ〉 · |c(ηk)|2 = 〈ψ, c(iηk)ψ〉, k = 0, 1, 2.

The lemma is proved. ¥

We can now continue the proof of the proposition. First, an integration
by parts coupled with the Weitzenböck formula (1.3.16) gives∫

M
|6DAψ|2dvg =

∫
M
〈6D∗

A 6DAψ, ψ〉dvg

=
∫

M

(
〈(∇A)∗∇Aψ, ψ〉 +

s

4
|ψ|2 +

1
2
〈c(F+

A )ψ, ψ〉
)
dvg

(use Lemma 2.1.5)

=
∫

M

(
|∇Aψ|2 +

s

4
|ψ|2 +

1
2
〈c(F+

A ), q(ψ)〉
)

dvg.

Next observe that ∫
M

|c(F+
A + iη+) − 1

2
q(ψ)|2dvg

=
∫

M

(
|c(F+

A )|2 + |1
2
q(ψ)−c(iη+)|2

)
dvg −2

∫
M
〈c(F+

A ),
1
2
q(ψ)−c(iη+)〉dvg.

Hence ∫
M

(
|6DAψ|2 +

1
2
|c(F+

A + iη+) − 1
2
q(ψ)|2

)
dvg



106 2. The Seiberg-Witten Invariants

(use Lemma 2.1.5)

=
∫

M

(
|∇Aψ|2 +

s

4
|ψ|2 +

1
2
|1
2
q(ψ) − c(iη+)|2 + 2|F+

A |2 + 4〈F+
A , iη+〉

)
dvg.

The last two terms can be rewritten as

2
∫

M

(
|F+

A |2 + 2〈F+
A , iη+〉

)
dvg

= 2
∫

M

(
1
2
|FA|2 + 2〈FA, iη+〉 + |F+

A |2 − 1
2
|FA|2

)
dvg

= 2
∫

M

(
1
2
|FA + 2iη+|2 − 2|η+|2 +

1
2
(|F+

A |2 − |F−
A |2)

)
dvg

=
∫

M

(
|FA + 2iη+|2 − 4|η+|2

)
dvg −

∫
M

FA ∧ FA

=
∫

M

(
|FA + 2iη+|2 − 2|η+|2

)
dvg + 4π2

∫
M

c1(A) ∧ c1(A).

Thus ∫
M

(
|6DAψ|2 +

1
2
|c(F+

A + iη+) − 1
2
q(ψ)|2

)
dvg

=
∫

M

(
|∇Aψ|2 +

s

4
|ψ|2 +

1
2
|1
2
q(ψ) − c(iη+)|2 + |FA + 2iη+|2

)
dvg

+
∫

M

(
4π2c2

σ − 4|η+|2)
)
.

Proposition 2.1.4 is now obvious. ¥

2.1.2. The functional set-up. So far we have worked exclusively in the
smooth category. To define the Seiberg-Witten invariants we have to intro-
duce additional structures on the moduli space Mσ(g, η) and, in particular,
we need to topologize it. The best functional framework for such purposes
is supplied by the Sobolev spaces.

Pick a nonnegative integer m and a real number p ∈ (1,∞) such that

m + 2 − 4
p

> 0.

This condition guarantees that the Sobolev spaces Lm+2,p embed continu-
ously in some Hölder space.

Now fix a smooth Hermitian connection A0 on det(σ) and denote by
A

m+1,p
σ the space of Lm+1,p connections on det(σ). More precisely,

Am+1,p
σ =

{
A = A0 + ia ; a ∈ Lm+1,p(T ∗M)

}
, Am+1

σ := Am+1,2
σ ,

Cm+1
σ := Lk+1,2(S+

σ ) × Am+1
σ .
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Next, define

Ym,p = Ym,p
σ = Lm,p(S−

σ ) ⊕ Lm,p(iΛ2
+T ∗M), Yk := Yk,2.

where Λ2
+T ∗M denotes the bundle of self-dual 2-forms. We want to empha-

size that the Sobolev norms on the spaces of spinors are defined using the
fixed reference connection A0. Finally, define

Gm+2,p
σ =

{
γ ∈ Lm+2,p(M, C); |γ(x)| = 1, ∀x ∈ M

}
,

Gk+2
σ := Gk+2,2

σ .

We see that since any γ ∈ Lm+2,p(M, C) is continuous, the expression |γ(m)|
is well defined everywhere.

Using the isomorphism c : iΛ2
+T ∗M → End0(S+

σ ) we are free to identify
q(ψ) ∈ End0(S+

σ ) with the self-dual 2-form c−1(q(ψ)). When no confusion is
possible we will freely switch between the two interpretations of q(ψ) writing
q(ψ) instead of c−1(q(ψ)).

Lemma 2.1.6. For every k ≥ 1 the correspondence ψ 7→ q(ψ) defines a
C∞-map

q : Lk+1,2(S+
σ ) → Lk,2(iΛ2

+T ∗M).

Sketch of proof We consider only the case k = 1 and we begin by
showing that q(ψ) ∈ L1,2, ∀ψ ∈ L2,2.

Since ψ ∈ L2,2 it follows from the Sobolev embedding that ψ ∈ Lp for
all p ∈ (1,∞) so that, using Lemma 2.1.5, we deduce∫

M
|q(ψ)|2dvg =

1
2

∫
M

|ψ|4dvg ≤ ∞.

Next observe that there exists a constant C > 0 such that∫
M

|∇q(ψ)|2dvg ≤ C

∫
M

|∇A0ψ|2|ψ|2dvg.

Since ψ ∈ L2,2 we deduce from the Sobolev inequality that ∇A0ψ ∈ Lq for
some q > 2 restricted only by the inequality

0 = 2 − 4/2 > 1 − 4/q.

The Hölder inequality now implies∫
M

|∇q(ψ)|2dvg

≤ C

(∫
M

|∇A0ψ|
2
q dvg

)q/2 (∫
M

|ψ|2q/(q−2)dvg

)(q−2)/q

< ∞.

The stated regularity follows from the identity
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(2.1.4) q(ψ0 + ψ̇) = q(ψ0) + ˙̄ψ ⊗ ψ0 + ψ̄0 ⊗ ψ̇ − Re〈ψ0, ψ̇〉id + q(ψ̇)

for all ψ0, ψ̇ ∈ L2,2. The details are left to the reader. ¥

Suppose now that η ∈ Lk,2(Λ2T ∗M) is a fixed closed form (i.e. satisfies
dη = 0 weakly). Arguing similarly we deduce the following result.

Proposition 2.1.7. For every k ≥ 1 the correspondence

(ψ, A) 7→ 6DAψ ⊕ (F+
A + iη+ − q(ψ))

induces a C∞-map SWη : Ck+1
σ → Yk.

Exercise 2.1.2. Prove the above proposition.

The group Gk+2
σ also has a nice structure.

Proposition 2.1.8. For every k ≥ 1 the group Gk+2
σ is a Hilbert-Lie group

modeled by Lk+2,2(M, iR).

Proof Again we consider only the case k = 1. Observe first that G
3,2
σ ⊂

C0(M, S1). The space of continuous maps M → S1, topologized with the
compact-open topology, is an Abelian topological group. Since the target
S1 is a K(Z, 1)-space we deduce that the group of components of C0(M, S1)
is isomorphic to H1(M, Z). For any γ ∈ C0(M, S1) we denote by [γ] ∈
H1(X, Z) the component containing γ. The identity component ([γ] = 0)
consists of those maps γ which can be written as γ = exp(if) for some
continuous map f : M → R.

Define

Ĝσ =
{

γ ∈ G3,2
σ ; [γ] = 0

}
=

{
exp(if); f ∈ L3,2(M, R)

}
.

It is clear that it suffices to show that Ĝσ is a Hilbert-Lie group. This will
be achieved in several steps.
• Observe first that

Ĝσ ⊂ L3,2(M, C).

• Equip Ĝσ with the topology as a subset in the space of L3,2-maps M → C.
• We now construct coordinate charts. . The coordinate chart at the origin
is given by the Cayley transform

T : U1 := Ĝσ \ {−1} → L3,2(M, iR),

exp(if) 7→ T [eif ] =
1 − exp(if)
1 + exp(if)

=
−2i sin(f)

|1 + exp(if)|2 .
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Observe that T is a bijection onto L3,2(M, iR) since T = T−1, i.e.

eif =
1 − T [eif ]
1 + T [eif ]

.

For an arbitrary γ ∈ Ĝσ define

Tγ : Uγ := γ · U1 → L3,2(M, iR)

by
Tγ(ϕ) = T (γ−1ϕ).

To show that this is a smooth structure it suffices to show that the transition
maps Tγ ◦ T−1

β are smooth maps L3,2(M, iR) → L3,2(M, iR). This follows
immediately from the identity T = T−1 so that

Tγ ◦ T−1
β (if) = T (γ · β−1 · T (if)).

We leave the details to the reader. ¥.

Exercise 2.1.3. Finish the proof of the above proposition.

The tangent space of Gk+2
σ at 1 is Lk+2,2(M, iR). The exponential map

exp : T1G
k+2
σ → Gk+2

σ , if 7→ eif

is a local diffeomorphism, just as in the finite-dimensional case. Often,
we will refer to the elements in this tangent space as infinitesimal gauge
transformations.

Now observe that Gk+2
σ acts on Ck+1

σ and Yk by

Ck+1
σ 3 (ψ, A)

γ7→ (γ · ψ, A − 2dγ/γ) ∈ Ck+1
σ ,

Yk = Lk,2(S−
σ ) ⊕ Lk,2(iΛ2

+T ∗M) 3 (φ, ω)
γ7→ (γ · φ, ω) ∈ Yk.

The following result should be obvious.

Proposition 2.1.9. The above actions of Gk+2
σ on Ck+1

σ and Yk
σ are smooth

and, moreover, the map SWη : Ck+1
σ → Yk

σ is Gk+2
σ -equivariant, i.e.

SWη(γ · C) = γ · SWη(C), ∀C ∈ Ck+1
σ , γ ∈ Gk+2

σ .

The above proposition shows that every C ∈ Ck+1
σ defines a smooth map

Gk+2
σ → Ck+1

σ , γ 7→ γ · C.

Its differential at 1 ∈ Gk+2
σ is a linear map

LC : T1G
k+2
σ → TCCk+1

σ

explicitly described by

LC : T1G
k+2
σ 3 if 7→ (ifψ,−2idf)

where C = (ψ, A). We will often refer to LC as the infinitesimal action at C.
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As in the smooth case the stabilizer of a configuration C = (ψ, A) ∈ Ck+1
σ

is either trivial
Stab(C) = {1} ⇐⇒ ψ 6≡ 0

or
Stab(C) = S1 ⇐⇒ ψ ≡ 0.

Set
Ck+1

σ,irr =
{

C ∈ Ck+1
σ ; Stab(C) = {1}

}
and

Ck+1
σ,red =

{
C ∈ Ck+1

σ ; Stab(C) 6= {1}
}

Observe that
T1Stab(C) ∼= ker LC.

We have thus proved the following result.

Proposition 2.1.10. The following statements are equivalent.
(i) C = (ψ, A) ∈ Ck+1

σ is reducible.
(ii) ψ ≡ 0.
(iii) Stab(C) ∼= S1.
(iv) kerLC 6= {0}.

Define

Zk+1
σ (g, η) = SW−1

η (0), Mk+1
σ = Mk+1

σ (g, η), = Zk+1
σ /Gk+2

σ

Zk+1
σ,irr(g, η) = Zk+1

σ (g, η) ∩ Ck+1
σ,irr, Mk+1

σ,irr(g, η) = Zk+1
σ,irr/Gk+2

σ .

Proposition 2.1.11. Suppose η ∈ Lk,2(Λ2T ∗M), k ≥ 1. Then for every
C ∈ Z2

σ(g, η) there exists γ ∈ G
3,2
σ such that γ · C ∈ Ck+1

σ . In particular, if η
is smooth we deduce

M2
σ(g, η) ∼= Mk

σ(g, η), ∀k ≥ 2,

i.e. any L2,2-solution (ψ, A) of the Seiberg-Witten equations is gauge equiv-
alent to a smooth solution.

Proof The proof is a typical application of the elliptic bootstrap technique.
Suppose C = (φ, B) ∈ C

2,2
σ satisfies the Seiberg-Witten equations SWη(C) =

0. By definition ib = B − A0 ∈ L2,2(T ∗M).
Using the Hodge decomposition of Ω1(M) we can write

b = b0 + df + d∗β

where b0 denotes the harmonic part of b, f ∈ L3,2(M), β ∈ L3,2(Λ2T ∗M).
We now define

γ := exp(
i
2
f), (ψ, A) := γ · C = (exp(

i
2
f)φ, A0 + ib0 + id∗β).
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Set a = b0 + d∗β. The main point of this gauge transformation is that
d∗a = 0. Using Exercise 1.3.22 we can rewrite the Seiberg-Witten equations
for (ψ, A) as {

6DA0
ψ = −1

2c(ia)ψ
id+a = 1

2q(ψ) − iη+ − F+
A0

We can use the first equation to “boost” the regularity of ψ. Note that since
a, ψ ∈ L2,2 we deduce from the Sobolev embedding that a, ψ ∈ Lp for all
p ∈ (1,∞). This implies c(ia)ψ in Lp for all p ∈ (1,∞). Thus 6DA0ψ ∈ Lp,
∀p ∈ (1,∞) so that, by elliptic regularity ψ ∈ L1,p, ∀p < ∞. In particular
ψ is Hölder continuous. As in the proof of the Lemma 2.1.6 we deduce
q(ψ) ∈ L1,p, ∀p.

To proceed further we need to use the following elementary fact.

Exercise 2.1.4. The operator d+ + d∗ : Ω1(M) → Ω2
+(M) ⊕ Ω0(M) is

elliptic.

We can now combine the second equation and the condition d∗a = 0 to
obtain

(d+ + d∗)a + iη+ ∈ L1,p, ∀p < ∞.

Now observe that Lk,2 embeds continuously in Lk−1,4, ∀k ≥ 1. Hence η+ ∈
L1,p, ∀p < ∞ and thus

(d + d∗)a ∈ L1,p, ∀p < ∞.

Invoking the elliptic regularity results for the operator d+ + d∗ we deduce
a ∈ L2,4. This implies immediately that c(ia)ψ ∈ L1,p for all p < ∞ and
using this information back in the first equation we deduce ψ ∈ L2,p, ∀p < ∞.
This information improves the regularity of the right-hand side of the second
equation and, arguing as above, we gradually deduce the conclusion of the
proposition. ¥

The last result shows that by looking for monopoles (modulo gauge
equivalence) in the larger class of Sobolev objects, we do not get anything
new. However, the Sobolev setting is indispensable when dealing with struc-
tural issues.

2.2. The structure of the Seiberg-Witten moduli
spaces

So far we have defined the moduli spaces as abstract sets of orbits of Gσ.
In this section we show that these spaces, equipped with some natural
Hausdorff topologies, are smooth, compact, oriented finite-dimensional man-
ifolds.
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2.2.1. The topology of the moduli spaces. Fix a closed form

η ∈ Lk,2(T ∗M), k ≥ 1.

The moduli space Mk+1
σ (g, η) is a subset of the set of orbits

Bk+1
σ := Ck+1

σ /Gk+2
σ .

If Gk+2
σ were a compact Lie group then this quotient would have a natural

Hausdorff topology. In our situation Gk+2
σ is obviously noncompact. We

cannot a priori exclude the possibility that two orbits of Gk+2
σ on Ck+1

σ may
have arbitrarily close points and thus the quotient topology on Bk+1

σ may
not be Hausdorff.

In this subsection we will prove that a natural topology of Bk+1
σ is Haus-

dorff and Mk+1
σ (g, η) is in fact a compact subset of Bk+1

σ .
For any point C ∈ Ck+1

σ we denote by OC the orbit of Gk+2
σ containing C,

that is,
OC =

{
γ · C ∈ Ck+1

σ ; γ ∈ Gk+2
σ

}
.

Now define

δ(OC1 , OC2) = inf{‖γ1 · C1 − γ2 · C2‖; γ1, γ2 ∈ Gk+2
σ }

where for any configurations Ci = (ψi, Ai) ∈ Ck+1
σ , i = 1, 2, we set

‖C1 − C2‖2 :=
∫

M

(
|ψ1 − ψ2|2 + |A1 − A2|2

)
dvg.

Note that
‖γ · C1 − γ · C2‖ = ‖C1 − C2‖

for all C1, C2 ∈ Ck+1
σ and γ ∈ Gk+2

σ so that we can alternatively define

δ(OC1 , OC2) = inf{‖C1 − γ · C2‖; γ ∈ Gk+2
σ }.

Clearly δ defines a map δ : Bk+1
σ × Bk+1

σ → R+.

Proposition 2.2.1. For k ≥ 1 the pair (Bk+1
σ , δ) is a metric space.

Proof Again, we consider only the case k = 1. We only have to prove

δ(OC1 , OC2) = 0 ⇒ OC1 = OC2 .

Suppose δ(OC1 , OC2) = 0. Then there exists a sequence γn ∈ G
3,2
σ such that

(2.2.1)
∫

M

(
|γn(A1 −A2)+ 2dγn|2 + |ψ2 − γn ·ψ2|2

)
dvg = o(1) as n → ∞.

In particular, this implies

(2.2.2)
∫

M
|dγn|2dvg ≤ const ·

∫
M

|A1 − A2|2dvg + o(1) as n → ∞.

Since the sequence γn is obviously bounded in L2 we deduce from the above
inequality that the sequence γn is bounded in L1,2(M, C). We can now use
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the Sobolev embedding theorem to deduce that a subsequence of γn (which
we continue to denote by γn) converges weakly in L1,2 and strongly in Lp,
1 ≤ p < 4, to a map γ ∈ L1,2. Clearly |γ| = 1 almost everywhere on M .

Using the Sobolev embedding again we deduce that ψ2 ∈ Lq for all
q < ∞ so that γn · ψ2 converges strongly in L2 to γ · ψ2. By passing to the
limit in the inequality∫

M
|ψ1 − γn · ψ2|2dvg = o(1) as n → ∞

we deduce ψ1 = γ · ψ2.
On the other hand, since A1 − A2 ∈ Lq for all q < ∞ the functional

F : L1,2(M, C) 3 f 7→
∫

M
|f(A1 − A2) + 2df |2dvg ∈ R

is obviously convex and strongly continuous so that it is weakly lower semi-
continuous (see [19, Chap. 1,3]) which implies

0 ≤ F(γ) ≤ lim inf
n

F(γn)
(2.2.1)

= 0.

Hence γ is a weak solution of the partial differential equation

(2.2.3) 2dγ = γ(A2 − A1), γ ∈ L1,2(Λ0T ∗M ⊗ C).

Since the operator d + d∗ is elliptic and the right-hand side of the above
equation is in any Lq, q < ∞, we deduce γ ∈ L1,q for all q < ∞. Using
the Sobolev embedding L2,2 ↪→ L1,4 we can now deduce γ(A1 − A2) ∈ L1,4.
Plug this in (2.2.3) to deduce γ ∈ L2,4. Sobolev inequalities again imply
γ(A1−A2) ∈ L2,2 and putting this back in (2.2.3) we deduce γ ∈ L3,2. Thus
we have produced a γ ∈ G

3,2
σ such that

A1 = A2 − 2dγ/γ, ψ1 = γ · ψ2,

that is, C1 = γ · C2 and OC1 = OC2 . The proposition is proved. ¥

Clearly the canonical projection π : Ck+1
σ → (Bk+1

σ , δ), C 7→ OC is con-
tinuous since

δ(OC1 , OC2) ≤ ‖C1 − C2‖.
The moduli space Mk+1

σ (g, η) is a subset in the metric space Bk+1
σ and thus

it is equipped with a metric space structure as well. The induced topology
has other remarkable features.

Proposition 2.2.2. Fix the closed form η ∈ Lm,2(Λ2T ∗M), m = max(k, 4),
k ≥ 1. Then the metric space (Mk+1

σ (g, η), δ) is compact.
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Proof For simplicity we consider only the case k = 1. We have to show
that given any sequence Cn ∈ Z

2,2
η there exist a sequence γn ∈ G

3,2
σ and

C ∈ Z
2,2
η such that

‖γnCn − C‖ = o(1) on a subsequence nk → ∞.

To simplify the presentation we will denote the extracted subsequences by
the same symbols as the original ones. Using Proposition 2.1.11 we see
that modulo some gauge changes we can assume Cn = (ψn, An) ∈ C5

σ. In
particular, this means ψn and An are twice continuously differentiable.

Our next result presents the key estimate responsible for the compact-
ness property of the moduli space.

Lemma 2.2.3. (Key Estimate) Suppose C = (ψ, A) ∈ Z5
σ(g, η). Then

‖ψ‖2
∞ ≤ 2 max(0,−min s(x) + 4‖η+‖∞).

Proof of the lemma Using the Kato inequality (see Exercise 1.2.1) we
deduce that ∀x ∈ M

∆M |ψ|2(x) ≤ 2〈(∇A)∗∇Aψ, ψ〉x
(use the Weitzenböck identity)

= 2〈6D∗
A 6DAψ, ψ〉x − s(x)

2
|ψ(x)|2 − 〈c(F+

A )ψ, ψ〉x

(use 6DAψ = 0, c(F+
A ) = 1

2q(ψ) − ic(η+) and Lemma 2.1.5)

= −s(x)
2

|ψ(x)|2 − 1
4
|ψ(x)|4 − 〈c(iη+)ψ, ψ〉x

≤ −s(x)
2

|ψ(x)|2 − 1
4
|ψ(x)|4 + 2‖η+‖∞|ψ(x)|2.

Set u(x) = |ψ(x)|2. Thus u is a nonnegative C2-function satisfying the
differential inequality

∆Mu +
1
4
u2 +

s − 4‖η+‖∞
2

u ≤ 0.

If x0 is a maximum point of u then ∆Mu(x0) ≥ 0 so that

u(x0)
2

(1
2
u(x0) + s(x0) − 4‖η+‖

)
≤ 0

so that
u(x0) ≤ max(0,−2 min s(x) + 8‖η+‖∞).

The lemma is proved. ¥

To proceed further we need to introduce some notation.
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• Hk(M, g) := the space of harmonic k-forms on (M, g).
• Hk(M, Z) := the lattice in Hk(M, g) defined by the morphism

Hk(M, Z) → Hk(M, R).

Define

ρ(g) = sup
u

inf
v

{
‖u − v‖2/ u ∈ H1(M, g), v ∈ H1(M, Z)

}
.

In other words, ρ(g) measures how far away from the vertices of the lattice
H1(M, Z) one can place a point in H1(M, g). It is a finite quantity, bounded
above by the diameter of the fundamental parallelepiped of the lattice.

We leave the reader to check the following consequence of Hodge theory.

Exercise 2.2.1.

ker
(

(d+ + d∗) : Ω1(M) → (Ω2
+ ⊕ Ω0)(M)

)
= H1(M, g).

Now write An = A0 + ian and then use the Hodge decomposition

an = hn + 2dfn + d∗βn

where hn ∈ H1(M, g), fn ⊕ βn ∈ L6,2((Λ0 ⊕ Λ2)T ∗M). Now pick χn ∈
4πH1(M, Z) such that

‖χn − hn‖2 = inf
{
‖χ − hn‖2; χ ∈ 4πH1(M, Z)

}
≤ 4πρ(g).

Such a choice is possible since 4πH1(M, Z) is a lattice in H1(M, g).

Lemma 2.2.4. There exists γn ∈ C∞(M, S1) such that

iχn = 2dγn/γn.

Proof of the lemma Denote by χ̃n the pullback of χn to the universal
cover M̃ of M . Fix m̃0 ∈ M̃ and for any m̃ ∈ M̃ set

fn(m̃) :=
∫

c
χ̃n

where c denotes an arbitrary smooth path connecting m̃0 to m̃. Because the
integrals of χn along the closed paths in M belong to 4πZ the map

γ̃n := exp(if̃n/2) : M̃ → S1

descends to a map γn : M → S1. Since 2dγ̃n/γ̃n = iχ̃n we deduce iχn =
2dγn/γn. ¥

Denote by P : L2(T ∗M) → L2(T ∗M) the orthogonal projection onto
H1(M, g). Replace the configurations Cn with

C′
n := eifnγnCn = (ψ′

n, A0 + i(hn − χn) + id∗βn).
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These satisfy the additional conditions

d∗a′n = 0, ‖Pa′n‖2 ≤ 4πρ(g), ∀n.

Since we are interested in gauge equivalence classes of configurations we
could have assumed from the very beginning that Cn = C′

n. The Seiberg-
Witten equations for Cn and the above additional conditions can be rewrit-
ten as

(2.2.4)


6DA0

ψn = −1
2c(ian)ψn

i(d+ + d∗)an = 1
2q(ψn) − iη+ − F+

A0

‖Pan‖2 ≤ 4πρ(g)

Using the Key Estimate we deduce that

‖(d+ + d∗)an‖∞ = O(1) as n → ∞.

Since (d+ + d∗) is elliptic and ker(d+ + d∗) = H1(M, g) we deduce from
Theorem 1.2.18 (v) that

∀p < ∞ : ‖an − Pan‖1,p = O(1) as n → ∞.

The space H1(M, g) is finite dimensional so that all the Sobolev norms on
it are equivalent. The third condition in (2.2.4) implies

(2.2.5) ∀m ∈ Z+, p < ∞ : ‖Pan‖m,p = O(1)

so that

(2.2.6) ∀p < ∞ : ‖an‖1,p = O(1).

Coupling the Sobolev embedding theorem with the Key Estimate and (2.2.6)
we deduce

‖c(ian)ψn‖∞ = O(1).

Using this in the first equation of (2.2.4) we deduce from the elliptic esti-
mates

∀p < ∞ : ‖ψn‖1,p = O(1).

This implies
∀p < ∞ : ‖c(ian)ψn‖1,p = O(1)

and using again the elliptic estimates for the first equation in (2.2.4) we
deduce

(2.2.7) ∀p < ∞ : ‖ψn‖2,p = O(1).

Using this in the second equation of (2.2.4) we deduce

∀p < ∞ : ‖(d+ + d∗)an‖1,p = O(1).

Finally we invoke Theorem 1.2.18 and (2.2.5) to conclude

(2.2.8) ∀p < ∞ : ‖an‖2,p = O(1).
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The inequalities (2.2.7), (2.2.8) and the Sobolev embedding theorem imply
that a subsequence of Cn converges weakly in L2,p and strongly in L1,q to
a configuration C ∈ C

2,2
σ . Clearly C is a solution of the Seiberg-Witten

equations. The proposition is proved. ¥

Remark 2.2.5. We could have continued the above proof a step further
to conclude that the convergence Cn → C also takes place in the strong
topology of Lk+1,2. We leave the reader to fill in the missing details.

The Key Estimate has an important immediate consequence.

Corollary 2.2.6. Suppose the scalar curvature of M is nonnegative, s ≥ 0.
If the closed 2-form η ∈ L4,2(Λ2T ∗M) is such that

‖η+‖∞ ≤ 1
4

min
x∈M

s(x)

then any η-monopole is reducible.

2.2.2. The local structure of the moduli spaces. The space Bk+1
σ is

the quotient of an infinite-dimensional affine space Ck+1
σ modulo the smooth

action of Gk+2
σ . Moreover, the action of Gk+2

σ on Ck+1
σ,irr is free so it is natural

to expect that the quotient Bk+1
σ,irr := Ck+1

σ,irr/Gk+2
σ is a Hilbert manifold.

To discuss the local structure of Bk+1
σ we need to introduce a stronger

topology on Bk+1
σ . Define

δk+1(OC1 , OC2) := inf
{
‖γ1C1 − γ2C2‖k+1,2; γ1, γ2 ∈ Gk+2

σ

}
.

Since δ ≤ δk+1 we deduce that δk+1 is indeed a metric on Bk+1
σ . Remark

2.2.5 shows that Mk+1
σ (g, η) is compact in this topology as well.

Suppose now that C = (ψ, A) ∈ C2
σ. We can regard the infinitesimal

action LC as a real unbounded operator L2(M, iR) → L2(S+
σ ⊕ iT ∗M) with

domain L1,2(M, iR). Its L2-adjoint is the real unbounded operator

L∗
C : L2(S+

σ ⊕ iT ∗M) → L2(M, iR)

with domain L1,2(S+
σ ⊕ iT ∗M), uniquely determined by〈
LC(if), ψ̇ ⊕ iȧ

〉
L2

= 〈if,L∗
C(ψ̇ ⊕ iȧ)〉L2 ,

∀if ∈ L2(M, iR), ψ̇ ⊕ iȧ ∈ L1,2(S+
σ ⊕ iT ∗M).

More explicitly,〈
LC(if), ψ̇ ⊕ iȧ

〉
L2

:=
∫

M
fRe〈iψ, ψ̇〉 − 2〈df, ȧ〉 dvg

= −
∫

M
f
(
Im〈ψ, ψ̇〉 + 2d∗ȧ

)
dvg =

∫
M

Re〈if, (−2id∗ȧ − iIm〈ψ, ψ̇〉) 〉dvg.
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On the other hand,

〈if,L∗
C(ψ̇ ⊕ iȧ)〉L2 :=

∫
M

Re〈if,L∗
C(ψ̇ ⊕ iȧ)〉dvg.

Hence

(2.2.9) L∗
C(ψ̇ ⊕ iȧ) = −2id∗ȧ − iIm〈ψ, ψ̇〉.

Now define the local slice at C as

SC = Sk+1
C :=

{
Ċ ∈ TCC2

σ; L∗
CĊ = 0

}
=

{
(ψ̇, iȧ) ∈ Lk+1,2(Sσ ⊕ iT ∗M); L∗

C(ψ̇ ⊕ iȧ) = 0
}

.

Observe that if C is reducible then

SC =
{

ψ̇ ⊕ iȧ ∈ Lk+1,2; d∗a = 0
}

.

In this case Stab(C) = S1 acts on SC by complex multiplication on the
spinorial part

eit · (ψ̇ ⊕ iȧ) = (eitψ̇) ⊕ iȧ.

The slice has a simple geometric interpretation. It consists of the vectors in
TCC2

σ which are L2-orthogonal to the orbit OC.
Define an action of Stab(C) on Gk+2

σ × SC by

h · (γ, Ċ) = (γh−1, hĊ).

This action commutes with the obvious left action of Gk+2
σ on Gk+2

σ × SC so
that the quotient

(Gk+2
σ × SC)/Stab(C)

is equipped with a left Gk+2
σ -action.

Proposition 2.2.7. Let C = (ψ, A) ∈ Ck+2
σ , k ≥ 1. Then there exists a

smooth map F : Gk+2
σ × SC → C2

σ with the following properties.
(i) F(1, 0) = C.
(ii) F is Gk+2

σ equivariant.
(iii) F is Stab(C)-invariant.
(iv) There exists a Stab(C)-invariant neighborhood of 0 ∈ SC such that the
induced map

F̂ : (Gk+2
σ × U)/Stab(C) → C2

σ

is a diffeomorphism onto a Gk+2
σ -invariant open neighborhood of C in C2

σ.

Proof Again, for simplicity, we consider only the case k = 1. The general
case involves no new ideas. Define

F : G3
σ × SC → C2

σ,

(γ, ψ̇ ⊕ iȧ) 7→ (γψ + γψ̇, A + iȧ − 2dγ/γ).
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Clearly F is a smooth map. The conditions (i) – (iii) are obvious. To prove
(iv) we will rely on the following result.

Lemma 2.2.8. There exists a Stab(C)-invariant neighborhood W of (1, 0) ∈
G3

σ × SC with the following properties.
• P1 The restriction of F to W is a submersion. In particular, F(W ) is an
open neighborhood of C ∈ C2

σ.
• P2 Each fiber of the map F : W → F(W ) consists of a single Stab(C)-
orbit.

Proof of the lemma We will use the implicit function theorem. The
differential of F at (1, 0) ∈ Gk+2

σ × SC (k = 1) is the map

D(1,0)F : T(1,0)(G
3
σ × SC) = L3,2(iΛ0T ∗M) × SC → L2,2(S+

σ ⊕ iΛ1T ∗M)

given by

(if, ψ̇ ⊕ iȧ) 7→ (ifψ + ψ̇) ⊕ (iȧ − 2idf) = LC(if) + ψ̇ ⊕ iȧ.

We will prove several facts.

Fact 1 The kernel of D(1,0)F is isomorphic to the kernel of LC.

Fact 2 D(1,0)F is surjective.

These two facts are elementary when C = (ψ, A) is reducible, ψ ≡ 0 and
in this case they are left to the reader as an exercise.

Exercise 2.2.2. Prove Fact 1 and Fact 2 when C is reducible.

When ψ 6= 0 these facts require an additional analytical input.

Fact 3 If ψ 6= 0 then the correspondence

f
T7→ 4∆f + |ψ|2f

defines a continuous bijection L3,2(M) → L1,2(M).

We now prove Fact 1 and Fact 2 when ψ 6= 0 assuming Fact 3 which
will be proved later on.

Proof of Fact 1 We have to show that D(1,0)F is injective, that is, the
equation 

ifψ + ψ̇ = 0
iȧ − 2idf = 0

L∗
C(ψ̇ ⊕ iȧ) = 0

has only the trivial solution f = 0, ψ̇ = 0, ȧ = 0. The first equation implies

Im〈ψ, ψ̇〉 = |ψ|2f.
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Using the second and the third equations we deduce

0 = 2d∗ȧ + Im〈ψ, ψ̇〉 = 4∆f + |ψ|2f.

Fact 3 now implies that f = 0 and using this in the first and second
equations we deduce ψ̇ = 0 and ȧ = 0.

Proof of Fact 2 Let φ̇ ⊕ iḃ ∈ TCC2
σ = L2,2(S+

σ ⊕ iΛ1T ∗M). Then the
equality

D(1,0)F(if, ψ̇ ⊕ iȧ) = φ̇ ⊕ iḃ, (if ; ψ̇, iȧ) ∈ T(1,0)G
3
σ × SC

is equivalent to

(2.2.10)


ifψ + ψ̇ = φ̇

iȧ − 2idf = iḃ
L∗

C(ψ̇ ⊕ iȧ) = 0
.

Using the Hodge decomposition of Ω1(M) we can write ȧ = du + ċ where
u ∈ L3,2(M) and ċ ∈ L2,2(T ∗M) is co-closed. The second equality implies
that ċ equals the co-closed part in the Hodge decomposition of ḃ. The
exact part du is uniquely determined by ∆u which, according to the second
equation, is given by 2∆f + d∗ḃ. Thus it suffices to determine f and ψ̇. We
claim that f is the unique L3,2-solution of the equation

(2.2.11) 4∆f + |ψ|2f = −Im〈ψ, φ̇〉 − 2d∗ḃ

and

(2.2.12) ψ̇ = φ̇ − ifψ.

Fact 3 guarantees that (2.2.11) has a unique solution. We see that with
the above choices the first equation in (2.2.10) is automatically satisfied.
The second equation is satisfied as soon as we choose u as a solution of the
equation

∆u = 2∆f + 2d∗ḃ.

This equation has a solution u ∈ L3,2(M) because the right-hand side has
zero average, i.e. it is L2-orthogonal to the kernel of the selfadjoint Fredholm
operator ∆. We only need to show that the third equation is satisfied as
well, i.e.

(2.2.13) 2d∗ȧ + Im〈ψ, ψ̇〉 = 0.

To show this, note that, according to the second equation in (2.2.10), we
have

2d∗ȧ = 4∆f + 2d∗b
(2.2.11)

= −Im〈ψ, φ̇〉 − |ψ|2f (2.2.12)
= −Im〈ψ, ψ̇〉.

Fact 2 is proved.
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Proof of Fact 3 Arguing as in the proof of Lemma 2.1.6 we deduce that
there exists a constant C > 0 such that

‖4∆f + |ψ|2f‖1,2 ≤ C‖f‖3,2, ∀f ∈ L3,2(M)

so that T does indeed define a bounded linear operator L3,2 → L1,2. Note
also that if

4∆f + |ψ|2f = 0
then, multiplying both sides by f and integrating by parts, we deduce

4
∫

M
|df |2dvg +

∫
M

|ψ|2f2dvg = 0

which shows that df = 0 and f |ψ| = 0. Since ψ 6= 0 we conclude that f ≡ 0
showing that T is injective.

Now define T0 : L3,2(M) → L1,2(M), f 7→ 4∆f . T0 is a Fredholm
operator with index 0 since it is determined by a formally selfadjoint elliptic
operator. The difference T − T0 is the operator f 7→ |ψ|2f which, in view
of Sobolev embedding theorems, is compact. Thus T is Fredholm, injective
and has index 0. Hence it must be surjective as well.

We now return to the proof of Lemma 2.2.8. Using the implicit function
theorem we can find a Stab(C)-invariant open neighborhood of (1, 0) ∈
G3

σ × SC such that F(W ) is open. We are left to check P2. We distinguish
two cases.

A. C is irreducible. In this case ker D(1,0)F = kerLC = {0} and the assertion
P2 follows from the implicit function theorem.

B. C is reducible, C = (0, A). Denote by ~ the length of the shortest non-
zero vector in the lattice H1(M, 4πiZ). Now fix W small enough so that
‖iȧ‖2 ≤ ~

4 for all (γ, ψ̇ ⊕ iȧ) ∈ W .

Suppose (γj , ψ̇j ⊕ iȧj) ∈ W (j = 1, 2) are such that

F(γ1, ψ̇1 ⊕ iȧ1) = F(γ2, ψ̇2 ⊕ iȧ2)

and if we set γ = γ2/γ1 we deduce

ψ̇1 = γψ̇2 and iȧ1 − iȧ2 = −2dγ/γ.

The left-hand side of the second equality is co-closed while the right-hand
side is closed. Thus, the right hand side represents a harmonic form, more
precisely, an element in H1(M, 4πiZ). Since ‖iȧ1 − iȧ2‖ ≤ ~

2 we conclude
that dγ/γ = 0 so that iȧ1 = iȧ2 and there exists t ∈ R such that γ = eit,
that is, γ2 = eitγ1. The lemma is proved. ¥

Let us now prove (iv). Fix W0 as in the statement of the lemma. The
G3

σ-invariant open set G3
σ ·W0 can be written as a product G3

σ ×U0 where U0
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is a Stab(C)-invariant neighborhood of 0 in SC. Denote by ~ the L2-length
of the shortest nonzero vector in the lattice H1(M, 4πiZ).

Now pick Vr ⊂ U0 such that for all ψ̇ ⊕ iȧ ∈ Vr we have

(2.2.14) ‖iȧ‖2,2 + ‖ψ̇‖2,2 ≤ r <
~

2
.

Clearly F(G3
σ ×Vr) is an open set because it coincides with G3

σ ·F(Vr), which
is open. We will show that if r is sufficiently small the fibers of

F : G3
σ × Vr → C2

σ

are Stab(C)-orbits. Consider (ψ̇j ⊕ iȧj) ∈ Vr, j = 1, 2, and γ ∈ Gk+2
σ such

that
F(γ, ψ̇1 ⊕ iȧ1) = F(1, ψ̇2 ⊕ iȧ2),

This means

ψ + ψ̇2 = γ(ψ + ψ̇1) and iȧ2 = iȧ1 − 2dγ/γ.

Denote by ω the harmonic part of the closed form dγ/γ, so that

dγ/γ = ω + idf, f ∈ L3,2(M).

Then
~2

4
> ‖iȧ1 − iȧ2‖2

2 = 4‖ω‖2
2 + 4‖df‖2

2.

From the definition of ~ we deduce that ω = 0, so that γ = eif and

(2.2.15) ȧ2 = ȧ1 − 2df.

The conditions L∗
C(ψ̇j ⊕ iȧj) = 0 imply

2d∗ȧj + Im〈ψ, ψ̇j〉 = 0.

If C is reducible (ψ = 0) then the above equality shows that f = const. and
the condition (iv) is proved. Suppose ψ 6= 0 and set

ν := ‖ψ‖1.

Denote by f̂ the L2-orthogonal projection of f onto the kernel of ∆M , more
precisely

f̂ :=
1

vol(M)

∫
M

f.

Since f is defined only mod 2πZ we can assume

f̂ ∈ [0, 2π].

The equality (2.2.15) yields

‖df‖2,2 ≤ 1
2
(‖ȧ1‖2,2 + ‖ȧ2‖2,2).
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Using Theorem 1.2.18 we deduce that there is a constant C > 0, depending
only on the geometry of M , such that

‖f − f̂‖3,2 ≤ Cr.

Using the Sobolev embedding theorem we deduce

(2.2.16) ‖f − f̂‖∞ ≤ Cr

where we use the same letter to denote the constants depending only on the
geometric background.

On the other hand, from the equality (1− eif )ψ = eif ψ̇1 − ψ̇2 we deduce

Cr
(2.2.14)

≥
∫

M
|eif ψ̇1−ψ̇2|dvg =

∫
M

|(1−eif )ψ|dvg =
∫

M
|e−if̂ψ−ei(f−f̂)ψ|dvg

≥
∫

M
|1 − exp(−if̂)| · |ψ|dvg −

∫
M

|( 1 − exp(i(f − f̂)) ) · ψ|dvg

= |1 − exp(−if̂)|
∫

M
|ψ|dvg −

∫
M

|( 1 − exp(i(f − f̂)) ) · ψ|dvg

(2.2.16)

≥ |1 − exp(−if̂)|ν − Crν

so that

|1 − exp(−if̂)| ≤ (C + ν)r
ν

.

We conclude that

‖f‖3,2 ≤ (C + ν)r
ν

.

Suppose we fix r at the very beginning such that (eif , ψ̇ ⊕ iȧ) ∈ W0 as soon
as

‖f‖3,2 ≤ (C + ν)r
ν

, ‖ψ̇‖2,2 + ‖iȧ‖2,2 ≤ r.

This means
(1, ψ̇1 ⊕ iȧ1), (eif , ψ̇2 ⊕ iȧ2) ∈ W0

and
F(1, ψ̇1 ⊕ iȧ1) = F(eif , ψ̇2 ⊕ iȧ2).

Then Lemma 2.2.8 (with ψ 6= 0) implies that eif = 1. Proposition 2.2.7 is
proved. ¥

Consider C = (ψ, A) ∈ C2
σ and a neighborhood of 0 ∈ SC as in Proposi-

tion 2.2.7. Then the map U → (Bk+1
σ , δk+1) given by

ψ̇ ⊕ iȧ 7→ OC+(ψ̇,iȧ)

is continuous, maps open sets to open sets and its fibers are the orbits of
the Stab(C)-action. Hence it induces a homeomorphism Φ of U/Stab(C)
onto a neighborhood of OC in Bk+1

σ .
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Exercise 2.2.3. Show that Φ is a bi-Lipschitzian map, i.e. there exists
C > 0 such that

1
C
‖(ψ̇1 − ψ̇2) ⊕ (ȧ1 − ȧ2)‖k+1,2 ≤ δk+1(Φ(ψ̇1 ⊕ iȧ1), Φ(ψ̇2 ⊕ iȧ2) )

≤ C‖(ψ̇1 − ψ̇2) ⊕ (ȧ1 − ȧ2)‖k+1,2,

∀ψ̇j ⊕ iȧj ∈ U/Stab(C).

From Proposition 2.2.7 we deduce the following important consequence.
For any C ∈ C2

σ we denote by [C] the image of C in Bk+1
σ .

Corollary 2.2.9. The topological space (Bk+1
σ,irr, δk+1), k ≥ 2, has a natural

structure of smooth manifold. For every irreducible C ∈ C2
σ, the tangent

space to Bk+1
σ,irr at [C] can be naturally identified with SC.

Now fix the perturbation parameter η ∈ Lm,2(Λ2T ∗M), m = max(4, k)
and an η-monopole C = (ψ, A). Modulo a gauge change, we can assume
C ∈ C5

σ so that C is at least twice continuously differentiable. According
to Proposition 2.2.7, to study the structure of a neighborhood of [C] ∈
Mk+1

σ (g, η) it suffices to understand the structure of a neighborhood of C in
Zk+1

σ (g, η)∩SC. First, observe that the techniques in the proof of Proposition
2.1.11 imply the following result.

Exercise 2.2.4. Any C′ ∈ SC∩Zk+1
σ (g, η) has better regularity than Lk+1,2,

namely, C′ ∈ Cm+1
σ .

We have to understand the Lk+1,2-small solutions Ċ := (ψ̇, iȧ) of the
equation

(2.2.17)
{

SWη(C + Ċ) = 0
L∗

CĊ = 0
.

We follow the well traveled path of perturbation theory and linearize this
equation {

DCSWη(Ċ) = 0
LC(Ċ) = 0

.

At this point it helps to be more explicit. For ψ, ψ̇ ∈ Lk+1,2(S+
σ ) define

q̇(ψ, ψ̇) :=
d

dt
|t=0 q(ψ + tψ̇)

(2.1.4)
= ˙̄ψ ⊗ ψ + ψ̄ ⊗ ψ̇ − Re〈ψ, ψ̇〉.

More precisely, q̇(ψ, ψ̇) is the traceless, selfadjoint endomorphism of Sσ given
by

φ 7→ q̇(ψ, ψ̇)φ := 〈φ, ψ̇〉ψ + 〈φ, ψ〉ψ̇ − (Re〈ψ, ψ̇〉)φ.



2.2. The structure of the Seiberg-Witten moduli spaces 125

We will identify it with a purely imaginary 2-form via the isomorphism
induced by the Clifford multiplication. Then

D(ψ,A)SWη(ψ̇ ⊕ iȧ) =
(
6DAψ̇ +

1
2
c(iȧ)ψ

)
⊕

(
d+iȧ − 1

2
q̇(ψ, ψ̇)

)
.

Thus, the linearized equations (2.2.17) define a bounded linear operator

TC : Lk+1,2(S+
σ ⊕ iT ∗M) → Lk,2(S−

σ ⊕ iΛ2
+T ∗M ⊕ iΛ0T ∗M)

described by

(2.2.18)
[

ψ̇
iȧ

]
TC−→

 6DAψ̇ + 1
2c(iȧ)ψ

d+iȧ − 1
2 q̇(ψ, ψ̇)

−2id∗ȧ − iIm〈ψ, ψ̇〉

 .

Observe that TC = SWC + L∗
C, where the underline signifies linearization.

Lemma 2.2.10. The operator TC is Fredholm. Its real index is

d(σ) :=
1
4
(c2

σ − (2χ + 3τ))

where χ denotes the Euler characteristic of M , τ := b+
2 − b−2 denotes the

signature of M and

c2
σ :=

∫
M

cσ ∧ cσ.

Proof Set C0 := (0, A0) where A0 is the fixed, smooth reference connection
on det(σ). The Sobolev embedding theorem shows that the difference TC −
TC0 is a compact operator Lk+1,2 → Lk,2 because it is a zeroth order p.d.o.
Thus TC is Fredholm if and only if TC0 is Fredholm and both operators have
the same index. On the other hand,

TC0

[
iψ̇
iȧ

]
=

 6DA0
ψ̇

d+iȧ
−2id∗ȧ


which shows that TC0 is defined by the direct sum of two first order elliptic
operators with smooth coefficients

6DA0
: Γ(S+

σ ) → Γ(S−
σ )

and
d+ − 2d∗ : iΩ1(M) → i(Ω2

+ ⊕ Ω0)(M).
Thus TC0 is Fredholm. We deduce

indRTC = indRTC0 = 2indC 6DA0
+ indR(d+ − 2d∗)

(use the Atiyah-Singer index theorem)

=
1
4
(c2

σ − τ) + (b1 − b+
2 − b0) =

1
4
c2
σ +

4b1 − 4b0 − 2(b+
2 + b−2 ) − 3(b+

2 − b−2 )
4
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(χ = 2(b0 − b1) + b2)

=
1
4
( c2

σ − (4b0 − 4b1 + 2b2 + 3τ) ) =
1
4
(c2

σ − (2χ + 3τ) ). ¥

It is reasonable to hope we could extract information about the local
structure of Mk+1

σ (g, η) near [C] using the implicit function theorem. This
would require the surjectivity of TC and would imply that near [C] the moduli
space is a smooth manifold of dimension d(σ). Moreover, in this case, the
tangent space at [C] could be identified with kerTC.

It is thus natural to investigate the surjectivity of TC and, in case this
surjectivity is not there for us, to see how much of the implicit function
argument we can salvage.

Consider the following sequence of operators:

(KC) : 0 → T1Gk+2
σ

LC−→ TCC2
σ

SWη−→ Yk
σ → 0.

Because SWη is Gk+2
σ -equivariant and SWη(C) = 0 we deduce

d

dt
|t=0 SWη(eitf · C) = 0,

that is, SWη ◦LC = 0. Thus the sequence (KC) is a cochain complex called
the deformation complex at C. Its cohomology will be denoted by H∗

C.

Lemma 2.2.11. The deformation complex KC is Fredholm, that is, the
co-boundary maps have closed ranges and the cohomology spaces are finite
dimensional. Moreover

H0
C
∼= ker LC, H1

C
∼= ker TC

and
coker TC

∼= H0
C ⊕H2

C.

In particular,
d(σ) = indR(TC) = −χR(H∗

C).

Proof Clearly H0
C = ker LC. Moreover, Hodge theory shows that the

range of LC is closed in TCC2
σ. We now regard LC as an unbounded operator

L2(−) → L2(−) with domain L1,2(iΛ0T ∗M). Its range is closed in TCC0
σ =

L2(Sσ ⊕ iΛ1T ∗M) and we have an L2-orthogonal decomposition

L2(Sσ ⊕ iΛ1T ∗M) = Range (LC) ⊕ kerL∗
C.

Thus we have the isomorphism

H1
C
∼=

{
Ċ ∈ ker L∗

C; SWη(Ċ) = 0
}
∼= ker TC.
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Since TC is Fredholm it maps TCC2
σ onto a closed subspace of Yk

σ. Since
Range(TC) = Range(SWη) ⊕ Range(L∗

C) we deduce that the range of SWη

is Lk,2-closed. Moreover

coker TC
∼= cokerSWη ⊕ cokerL∗

C
∼= H2

C ⊕ ker LC.

This completes the proof of the lemma. ¥

Corollary 2.2.12. TC is surjective if and only if H0
C = H2

C = 0. In partic-
ular, TC can be surjective only if C is irreducible (⇐⇒ H0

C = 0).

Definition 2.2.13. An η-monopole C is said to be regular if H2
C = 0.

Exercise 2.2.5. Suppose C = (0, A) is a reducible η-monopole. Then C is
regular iff the operator 6DA : Lk+1,2(S+

σ ) → Lk,2(S−
σ ) is surjective and b+

2 = 0.

Corollary 2.2.14. If C ∈ C2
σ is a regular, irreducible η-monopole then a

small neighborhood of [C] in Mk+1
σ (g, η) can be given the structure of a

smooth manifold of dimension d(σ). The tangent space at [C] is naturally
isomorphic to H1

C.

Definition 2.2.15. The integer d(σ) is called the virtual dimension of the
moduli space Mk+1

σ (g, η).

We can provide some information about the structure of Mk+1
σ (g, η) near

irregular solutions as well. For simplicity set U := H1
C and denote by V the

L2-orthogonal complement of U in SC. We need to understand the small
solutions Ċ of the equation

(2.2.19) SWη(C + Ċ) = 0, Ċ ∈ SC.

Denote by P the L2-orthogonal projection onto U and by Q the L2-orthogonal
projection onto the L2-closure of Range(SWη). We rewrite the equation
SWη(C + Ċ) = 0 as {

QSWη(C + Ċ) = 0
(1 − Q)SWη(C + Ċ) = 0

Since QSWη : SC → Range (SWη) is onto and SWη is Stab(C)-equivariant
we deduce from the implicit function theorem that there exists a small
Stab(C)-invariant neighborhood N of 0 in U = kerSWη |SC

and a Stab(C)-
equivariant smooth map

f : N → V

so that the set{
Ċ; QSWη(C + Ċ) = 0, ‖Ċ‖k+1,2 is small

}
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can be described as the graph of f . More precisely, this means that

QSWη(C + u ⊕ v) = 0, u ∈ N , v ∈ V,

if and only if v = f(u). The small solutions of (2.2.19) can be all obtained
from the finite-dimensional equation

κ(u) = 0, u ∈ U,

where κ : N → (RangeSWη)⊥ ∼= H2
C,

u 7→ (1 − Q)SWη(C + u ⊕ f(u)).

The map κ is clearly Stab(C)-equivariant. It is called the Kuranishi map at
C. If C is regular then the Kuranishi map is identically zero. We have thus
proved the following result.

Proposition 2.2.16. There exist a small Stab(C)-invariant neighborhood
N of 0 ∈ H1

C and a Stab(C)-equivariant smooth map

κ : N → H2
C

such that a neighborhood of C on Mk+1
σ (g, η) is homeomorphic to the quotient

κ−1(0)/Stab(C).

For more information on how to piece these local descriptions to a global
picture we refer to the nice discussion in [29, Sec. 4.2.5] concerning the
similar problem for Yang-Mills equations.

2.2.3. Generic smoothness. The considerations in the previous subsec-
tion lead naturally to the following question:

Is it possible to choose the perturbation parameter η ∈ Lm,2 (m =
max(4, k)) so that for any η-monopole C we have H0

C = H2
C = 0?

If this question had an affirmative answer then for such η’s the moduli
space Mk+1

σ (g, η) would be a compact smooth manifold of dimension d(σ).
The vanishing of H0

C is easier to understand because H0
C = 0 if and only

if C is reducible. To formulate our next result we need to introduce some
notation. For every form α on M we denote by [α] its harmonic part in its
Hodge decomposition.

Proposition 2.2.17. The following conditions are equivalent.
(i) All η-monopoles are irreducible.
(ii) 2π[cσ]+ 6= [η]+.
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Proof (ii) ⇒ (i) We argue by contradiction. Suppose there exists a re-
ducible monopole C = (0, A). Then F+

A + iη+ = 0 so that 2π[cσ]+ =
i[FA]+ = [η]+. This contradicts (ii).

(i) ⇒ (ii) We argue again by contradiction. Suppose 2π[cσ]+ = [η]+. Since
η is closed we can write

η = [η] + dα, α ∈ Lm+1,2(Λ1T ∗M).

Hence
η+ = [η]+ +

1
2
(dα + ∗dα) = [η]+ +

1
2
(dα − ∗d ∗ (∗α) )

= [η]+ +
1
2
(dα + d∗(∗α) ).

Similarly we have FA = [FA] + dβ where [FA] = −2πi[cσ] so that

F+
A = −2πi[cσ]+ +

1
2
(dβ + d∗(∗β) ).

Since 2π[cσ]+ = [η]+ we deduce [FA]+ = −i[η]+. Now pick a connection
A ∈ Ak+1

σ such that FA = [FA] − idα. Then F+
A + iη+ = 0 so that (0, A) is

a reducible η-monopole. ¥

Define

N k
σ = N k

g,σ =
{

η ∈ Lk,2(Λ2T ∗M); dη = 0, [η]+ 6= 2π[cσ]+
}

.

Observe that N k
σ = ∅ if b+

2 = 0 while if b+
2 > 0, N k

σ is an open set in the
space ker d ∩ Lk,2(Λ2T ∗M). We deduce the following consequence.

Corollary 2.2.18. (a) If b+
2 = 0 then for any perturbation parameter η ∈

ker d ∩ Lk,2(Λ2T ∗M) there exist reducible η-monopoles.
(b) If b+

2 > 0 then N k
σ 6= ∅ and for any η ∈ N k

σ there are no reducible
η-monopoles.

In the sequel, if b+
2 > 0 the perturbation parameter will be assumed to

belong to some N k
σ where k ≥ 4. The original question is then equivalent to

the following

Fix k ≥ 4. Can we find η ∈ N k
σ such that H2

C = 0 for any η-monopole
C?

This is where the genericity results come in. We will need to use them
in a context slightly more general that the one in §1.5.2. We begin by
presenting this context.

Note first that it suffices to look at the restriction of SWη to Ck+1
σ,irr. The

map
SWη : C2

σ,irr → Yk
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can be regarded as a section of the trivial vector bundle

Uk : Yk × C2
σ,irr → C2

σ,irr.

This bundle is equipped with a Gk+2
σ -action covering the Gk+2

σ -action on the
base. More precisely, for every γ ∈ Gk+2

σ and (y, C) ∈ Uk we have

γ · (y, C) = (γ · y, γ · C).

Observe that SWη is a Gk+2
σ -equivariant section of this bundle. Thus SWη

descends to a section [SWη] of

[U]k := Uk/Gk+2
σ → Bk+1

σ,irr.

On the other hand, the trivial bundle is equipped with a Gk+2
σ -invariant

connection ∇̃ so that

∇̃ĊSWη |C= (SWη)(Ċ), ∀C ∈ C2
σ,irr, Ċ ∈ TCC2

σ,irr.

Now observe that for every γ ∈ Gk+2
σ we have

γ∗SC = Sγ·C ∼= T[C]Bk+1
σ,irr

where γ∗ denotes the differential of γ : C2
σ,irr → C2

σ,irr.

The above observation show that ∇̃ descends to a connection ∇ on
TBk+1

σ,irr and its action can be read off from the action of ∇̃ on SC. For every
Ċ ∈ TCC2

σ we will denote by [Ċ] the L2-orthogonal projection onto the L2-
closure of ker LC. A priori [Ċ] is only an L2-object but in fact we have the
following result.

Exercise 2.2.6. Prove that if Ċ ∈ TCC2
σ then [Ċ] ∈ Sk+1

C , that is,
[Ċ] ∈ Lk+1,2(S+

σ ⊕ iΛ1T ∗M).

The moduli space Mk+1
σ (g, η) is precisely the zero set of the section

[SWη] of [U]k. We leave it to the reader to prove the following fact.

Exercise 2.2.7. (a) Suppose that for all [C] ∈ [SWη]−1(0) the adjunction
map

aC : T[C]Bk+1
σ,irr → Vk

[C], [Ċ] 7→ ∇[Ċ][SWη]

is surjective. Then [SWη]−1(0) is a smooth submanifold of Bk+1
σ,irr.

(b) Let SWη(C) = 0. Then the adjunction map aC is surjective if and only
if the map DCSWη : TCC2

σ → Yk is surjective, i.e. H2
C = 0.

Definition 2.2.19. The parameter η ∈ N k
σ is said to be good if the adjunc-

tion map of every η-monopole is surjective.
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We can rephrase the initial question as follows:

Can we find good parameters?

We follow the approach sketched in §1.5.2. In that case the bundle [U]k

was trivial. We can regard the family of sections [SWη] as a section of the
bundle

E : [U]k ×N k
σ → Bk+1

σ,irr ×N k
σ , (C, η) 7→ SWη(C).

The connection ∇ on [U]k induces by pullback a connection on E which we
continue to denote by ∇. Set

Z =
{

([C], η) ∈ Bk+1
σ,irr ×N k

σ ; SWη(C) = 0
}

.

The space Z plays the same role as the “master space” introduced in §1.5.2.
We will prove two things.

Fact 1 For all ([C], η) ∈ Z the map

T([C],η)Bk+1
σ,irr ×N k

σ 3 ([Ċ], η̇) 7→ ∇[Ċ][SWη] + ∇η̇[SWη] ∈ E([C],η)

is surjective, so that Z is a smooth Banach manifold.

Fact 2 The natural projection

π : Z → N k
σ , (C, η) 7→ η

is a Fredholm map with index d(σ).

As shown in Lemma 1.5.18, Fact 2 is implied by Fact 1. In particular,
the regular values of π are all good parameters. Thus we only need to prove
Fact 1.

Proof of Fact 1 Let ([C], η) ∈ Z. Fix a representative C = (ψ, A) ∈ C2
σ of

C. Notice that since SWη is Gk+2
σ -equivariant we have

SWη(Ċ) = SWη([Ċ]) = ∇[Ċ][SWη] |[C]

because the vector Ċ− [Ċ] is tangent to the orbit of Gk+2
σ through C. Thus,

to establish Fact 1 it suffices to show that the map

S : T(C,η)C
2
σ ×N k

σ 3 (Ċ, η̇) 7→ DCSWη(Ċ) + DηSWη(η̇)

is onto. More explicitly,

S(Ċ, η̇) =
[

6DAψ̇ + 1
2c(iȧ)ψ

d+iȧ + iη̇+ − 1
2 q̇(ψ, ψ̇)

]
∈ Lk,2

 S−
σ

⊕
iΛ2

+T ∗M

 .

Since the linear map DCSWη : TCC2
σ → Yk has closed range we deduce

immediately that S has closed range as well. To establish the surjectivity it
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suffices to show that if φ ⊕ iω ∈ Yk is L2-orthogonal to the range of S then
φ ≡ 0 and ω ≡ 0. Consider such a (φ ⊕ iω). This means
(2.2.20)∫

M
〈6DAψ̇ +

1
2
c(iȧ)ψ, φ〉dvg +

∫
M

Re〈d+iȧ + iη̇+ − 1
2
q̇(ψ, ψ̇), iω〉dvg = 0

for all ψ̇ ∈ Lk+1,2(S+
σ ), ȧ ∈ Lk+1,2(Λ1T ∗M) and η̇ ∈ ker d ∩ Lk,2(Λ2

+T ∗M).
Set ȧ = 0 and ψ̇ = 0 in the above equation. We conclude that∫

M
〈η̇+, ω〉dvg = 0, ∀η̇ ∈ ker d ∩ Lk,2(Λ2T ∗M).

On the other hand, there exists η̇ ∈ ker d ∩ Lk,2(Λ2T ∗M) such that η̇+ = ω
(as in the proof of Proposition 2.2.17). This shows ω ≡ 0. Now set ȧ = 0 in
(2.2.20) so that

0 =
∫

M
〈6DAψ̇, φ〉dvg =

∫
M
〈ψ̇, 6D∗

Aφ〉dvg, ∀ψ̇ ∈ Lk+1,2(S+
σ ).

This implies

(2.2.21) 6D∗
Aφ = 0.

We can now conclude from (2.2.20) that

(2.2.22)
∫

M
〈c(iȧ)ψ̇, φ〉dvg = 0, ∀ȧ ∈ Lk+1,2(Λ1T ∗M).

Above, by density, we can assume the equality holds for all L2-forms ȧ. Fix
a point m0 ∈ M such that ψ(m0) 6= 0. Since ψ is at least C2 we deduce that
ψ stays away from zero on an entire neighborhood of m0. Using the explicit
description of the Clifford multiplication given in §1.3.1 we deduce that the
map

Λ1T ∗
mM 3 α 7→ c(α)ψ(m0) ∈ S−

σ |m
is a bijection for any m in a small neighborhood U of m0. We can use this
map to produce a continuous 1-form ȧ supported on U such that

c(iȧ(m))ψ(m) = φ(m), ∀m ∈ U.

Using this equality in (2.2.22) we deduce∫
U
|ψ(m)|2dvg = 0.

Thus ψ ≡ 0 on U and by unique continuation (see [16]) we deduce φ ≡ 0 on
M . Fact 1 is proved.

Using the genericity theorem, Theorem 1.5.19, we now obtain the fol-
lowing important result.
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Theorem 2.2.20. Suppose b+
2 > 0 and fix k ≥ 4.

(a) If d(σ) < 0 then Mk+1
σ (g, η) = ∅ for generic η.

(b) If d(σ) ≥ 0 then the set of good parameters η ∈ N k
σ is generic. For

such a parameter the moduli space Mk+1
σ (g, η) is either a compact, smooth

manifold of dimension d(σ) or it is empty.

The last result raises a natural question. Can the moduli spaces be
empty if their virtual dimension is ≥ 0? We will show that this is a frequent
occurrence and in fact it happens for most spinc structures except possibly
finitely many of them.

Proposition 2.2.21. Fix k ≥ 4 and C0 > 0. Then there exists a finite set
F ⊂ Spinc(M), depending on the metric g and the constant C0, such that
for any σ ∈ Spinc(M) \ F and any perturbation parameter η such that

‖η‖k,2 ≤ C0

the moduli space Mk+1
σ (g, η) is empty.

Proof Suppose σ ∈ Spinc(M) is such that d(σ) ≥ 0 and η is a perturbation
parameter such that ‖η‖k,2 ≤ C0. In the sequel we will use the same letter
C to denote constants depending only on C0 and the geometry of M . The
condition d(σ) ≥ 0 implies

(2.2.23) c2
σ ≥ 2χ + 3τ.

If C = (ψ, A) ∈ C2
σ is an η- monopole then using the Key Estimate in Lemma

2.2.3 we deduce

(2.2.24) ‖ψ‖∞ ≤ C.

Since C is a minimum of the energy functional Eη we deduce from Proposi-
tion 2.1.4 that

Eη(ψ, A) = 4‖η+‖2
2 − 4π2c2

σ

(2.2.23)

≤ C.

Using the description of Eη we deduce

‖FA + 2iη+‖2
2 ≤ C +

1
4

∫
M

|s| · |ψ|2dvg

(2.2.24)

≤ C.

This implies
‖[FA]‖2 ≤ C

where we recall that [α] denotes the harmonic part of the form α. Thus
the cohomology class cσ sits in a ball of radius C > 0 and in the lattice
H2(M, 2πiZ). Thus cσ belongs to a finite set. Since only finitely many spinc

structures σ determine the same class cσ ∈ H2(M, 2πiZ) the proposition is
proved. ¥
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The bijection ϑ̂ introduced in (2.1.3) interacts nicely with the additional
structures on the moduli spaces. Observe that if C ∈ Cσ is a (σ, η)-monopole
then we have an induced isomorphism between deformation complexes

(2.2.25)

0 T1Gσ TCCσ Yσ 0

0 T1Gσ̄ Tϑ̂(C)Cσ̄ Yσ 0

w

u

−id

w
LC

u

ϑ̂

w
SWη

u

ϑ̂
]

w

w w
Lϑ̂(C)

w
SW−η

w

In particular, this proves the following.

Proposition 2.2.22. If η is a good parameter for the spinc structure then
−η is a good parameter for the spinc structure σ̄ and the map

ϑ̂ : Mσ(g, η) → Mσ̄(g,−η)

is a diffeomorphism.

2.2.4. Orientability. Suppose now that b+
2 > 0 and η ∈ N k

σ , k ≥ 4, is a
good parameter. For brevity, when no confusion is possible, we will write
Mσ(η) instead of Mk+1

σ (η), etc. Then, if nonempty, the moduli space Mσ(η)
is a compact smooth manifold of dimension d(σ). It is very natural to inquire
whether it is orientable.

To understand what such a problem entails, observe that the family of
finite-dimensional vector spaces

ker T :=
{

ker TC; C ∈ Zσ(η)
}

defines a smooth vector bundle over the infinite-dimensional Banach mani-
fold Zσ(η) and more precisely, it is the pullback via the natural projection
π : Zσ(η) → Mσ(η) of the tangent bundle TMσ(η) . If we could prove
that kerT admits an orientation preserved by the action of Gσ then the
orientability of Mσ(η) would be clear. Note first that the bundle det kerT

can be formally identified with the determinant line bundle detT because
the elliptic operators TC are surjective for C ∈ Zσ(η). This is only a for-
mal identification because the base Zσ(η) is an infinite-dimensional manifold
and determinant line bundles were defined only in a compact context. For-
tunately Remark 1.5.10 provides a way out of this trouble.

Consider the space Mk of smooth maps

Zk+1
σ (η) → Lk+1,2(Hom (S+

σ ⊕ iT ∗M , S−
σ ⊕ iΛ2

+T ∗M ⊕ iΛ0T ∗M) ).

We leave it to the reader to verify the following fact.
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Lemma 2.2.23. Each Φ = (ΦC) ∈ Mk defines a morphism of Hilbert vector
bundles

Vk → Wk

where Vk denotes the Hilbert vector bundle(
Lk+1,2(S+

σ ⊕ iΛ1T ∗M) × Zk+1
η ³ Zk+1

σ (η)
)
∼= TCk+1

σ |Zk+1
σ (η)

while Wk denotes the vector bundle

(Yk ⊕ Lk,2(iΛ0T ∗M) ) × Zk+1
σ (η) ³ Zk+1

σ (η).

Moreover, for every C ∈ Zk+1
σ (η) the linear operator

ΦC : Vk
C → Wk

C

is compact.

The group Gk+2
σ acts on Wk, trivially on the factor Lk,2(iΛ0T ∗M). We

denote by M̂k the subspace of Mk consisting of Gσ-equivariant maps. For
example the map P = PC, C = (ψ, A), defined by

(2.2.26)
[

ψ̇
iȧ

]
7→

 1
2c(iȧ)ψ

−1
2 q̇(ψ, ψ̇)

−iIm〈ψ, ψ̇〉


belongs to M̂k.

The bundles Vk and Wk descend to Hilbert vector bundles over Mσ(η)
which we denote by [V]k and [W]k. The family TC descends to a morphism
T[C] of these bundles over Mσ(η). Moreover, for every [C] ∈ Mσ(η) the
induced linear operator T[C] : [V]k[C] → [W]k[C] is Fredholm. We can now use
Remark 1.5.10 to deduce that there is a determinant line bundle detT[C]

satisfying
det TMσ(η) = det(T[C]).

To assign an orientation to Mσ(η) (if any) we have to describe a trivialization
of det(T[C]).

Now define T0
C := TC − PC. More precisely

T0
C

[
ψ̇
iȧ

]
=

 6DAψ̇
d+iȧ

−2id∗ȧ

 .

Because of equivariance we deduce that T0
C descends to a morphism from

[V]k → [W]k. Now set Tt
[C] := T0

[C] + tP[C], t ∈ [0, 1]. Note that for all
[C] ∈ Mσ(η) and t ∈ [0, 1] the operator

Tt
[C] : [V]k[C] → [W]k[C]
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is Fredholm and T1
[C] = T[C]. The morphism (T0

[C]) can be written as a direct
sum

(6D•) ⊕ (d+ − 2d∗).
The first summand is complex and thus it is equipped with a natural ori-
entation. The second summand is independent of [C] ∈ Mσ(η) and thus
an orientation is determined by fixing orientations on ker(d+ − 2d∗) and
coker (d+ − 2d∗). Observe that

ker(d+ − 2d∗) ∼= H1(M, g)

and
coker(d+ − 2d∗) ∼= H2

+(M, g) ⊕ H0(M, g).
Observe that H0(M, g) is canonically isomorphic to R. Thus, we can fix an
orientation on det(d+ − 2d∗) by fixing orientations on H2

+(M, R), H1(M, R)
and then agreeing to equip coker (d+ − 2d∗) with the orientation induced by
ordered direct sum decomposition

coker (d+ − 2d∗) ∼= H0(M) ⊕ H2
+(M).

With these conventions in place, we obtain an orientation on det(T0
[C]) and,

via the homotopy Tt
•, an orientation on TMσ(η).

Definition 2.2.24. If M is a compact, closed, oriented smooth 4-manifold
then a homology orientation on M is a choice of orientations on H1(M, R)⊕
H2

+(M, R).

We have thus proved the following result.

Proposition 2.2.25. There is a canonical procedure to assign to each ho-
mology orientation ε on M an orientation o = o(ε) on Mσ(η).

Let us trace the effect of the involution ϑ̂ on the orientations. For each
C = (ψ, A) ∈ Mσ it induces maps

ker T0
C → ker T0

ϑ̂(C)
and cokerT0

C → coker Tϑ̂(C).

These act as complex conjugation on ker 6D• and coker 6D• while on
ker(d+ − 2d∗) and coker(d+ − 2d∗) they act as multiplication by (−1). Thus
the induced map detT0

C → detT0
ϑ̂(C)

changes the orientation by a factor
(−1)νσ ,

νσ = indC 6D• + ind(d+ − 2d∗) = dσ − indC 6D•.

We have thus proved the following result.

Proposition 2.2.26. The involution ϑ̂ induces an orientation preserving
diffeomorphism

ϑ̂ : Mσ → (−1)νσMσ̄.
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2.3. The structure of the Seiberg-Witten
invariants

2.3.1. The universal line bundle. We have seen that if b+
2 > 0 then, for

generic η ∈ N k
σ , the moduli space Mσ(η) is a smooth, compact, oriented

submanifold of Bσ,irr of dimension d(σ). The Banach manifold Bσ,irr is
cohomologically nontrivial. More precisely we have the following result.

Proposition 2.3.1. There exists an isomorphism of Z-graded commutative
rings with 1

H∗(Bσ,irr, Z) ∼= Z[u] ⊕ Λ∗H1(M, Z)
where deg u := 2.

Proof Observe that Cσ,irr is a contractible space since it is the complement
of an affine subspace of infinite codimension. Thus Bσ,irr is homotopically
equivalent to the classifying space of the gauge group Gσ. Its topology is
described in [4, Sect. 2]. More precisely BGσ is homotopically equivalent to
one connected component of the space Map (M, BS1). Since

BS1 ∼= CP∞ ∼= K(Z, 2),

we deduce from a result of R. Thom that we have the homotopy equivalence

Map(M, K(Z, 2)) ∼=
2∏

q=0

K(Hq(M, Z); 2 − q)

∼= H2(M, Z) × K(Zb1 , 1) × K(Z, 2).
The components of this space are parameterized by the first Chern class
c1 ∈ H2(M, Z) and are all homotopic to

K(Zb1 , 1) × K(Z, 2)

The proposition is now obvious. ¥

We will construct several integral cohomology classes on Bσ,irr which
upon integration along the moduli space Mσ(η) will lead to the Seiberg-
Witten invariants.

First, recall that if X and Y are two metric spaces there is a natural
operation

/ : Hn(X × Y, Z) × Hk(X, Z) → Hn−k(Y, Z), (c, α) 7→ α/c

called the slant product, defined dually by the equality

〈α/c, d〉 = 〈α, c × d〉, ∀α ∈ H∗(X × Y, Z), (c, d) ∈ H∗(X, Z) × H∗(Y, Z).

(Our definition differs by a sign, (−1)k(n−k) to be precise, from the definition
in [29, Chap. 5] or [126, Chap. 6]. We prefer this choice since it agrees
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with the “fiber-first” convention in [105, §3.4.5] which has certain mnemonic
advantages.)

Now consider the trivial line bundle C over M × Cσ,irr. It is equipped
with a natural free Gσ action. More precisely, for any (m,C) ∈ M × Cσ,irr

an element γ ∈ Gσ defines a linear map

γ : C(m,C) → C(m,γ·C), z 7→ γ(m)−1z.

This Gσ-equivariant line bundle defines a complex line bundle on the quotient
M ×Bσ,irr. We call this the universal Seiberg-Witten bundle and we denote
it by Uσ.

We can now use the slant product to define the µ-map

µ : Hj(M × Bσ,irr, Z) → H2−j(Bσ,irr, Z), a 7→ µ(a) := c1(Uσ)/a.

Set Ωσ := µ(1) ∈ H2(Bσ,irr).
There are more intuitive ways of viewing these cohomology classes.

1st interpretation Fix m0 ∈ M . Then Uσ defines by restriction a line
bundle Uσ(m0) over {m0} × Bσ,irr. This bundle can be alternatively de-
scribed as follows.

Consider the short exact sequence of Abelian groups

1 ↪→ Gσ(m0) ↪→ Gσ
evm0→ S1 → 1

where evm0 is the evaluation map

Gσ 3 γ 7→ γ(m0) ∈ S1

and Gσ(m0) is the kernel of evm0 . Then the quotient

B̃σ,irr(m0) := Bσ,irr/Gσ(m0)

is equipped with a residual free S1 ∼= Gσ/Gσ(m0)-action so that the projec-
tion B̃σ,irr(m0) → Bσ,irr defines a principal S1-bundle. The bundle Uσ(m0)
is associated to this principal bundle via the tautological representation
S1 → Aut(C). Then Ωσ is the first Chern class of Uσ(m0).

2nd interpretation The second interpretation adopts a dual point of
view. In other words, we want to regard c1(Uσ) as the “Poincaré dual”
of the zero locus of a generic section of Uσ. The Poincaré duality in this
infinite-dimensional context should be understood as follows. A codimension
2 submanifold Z of M × Bσ,irr will be called a Poincaré dual of c1(Uσ) if,
for every finite-dimensional, compact, oriented smooth submanifold X ↪→
M × Bσ,irr which intersects Z transversally, the restriction c1(Uσ) |X is the
Poincaré dual of Y := X ∩ Z with respect to the duality on the finite-
dimensional manifold X.
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Clearly, to produce Poincaré duals to c1(Uσ) is suffices to indicate a
procedure for constructing large quantities of sections of Uσ. The zero loci
of these sections when smooth will be the sought for Poincaré duals.

To construct sections of Uσ it suffices to produce Gσ-equivariant sections
of

C → M × Cσ,irr.

These will be smooth functions s : M × Cσ,irr → C such that

s(m, γ · C) = γ(m)−1 · s(m,C), ∀γ ∈ Gσ, (m,C) ∈ M × Cσ,irr.

There exists a very cheap way of constructing such functions. For every
φ ∈ C∞(Sσ) define sφ : M × Cσ,irr → C by

(m; ψ, A) 7→ 〈φ(m), ψ(m)〉m.

It clearly satisfies the required equivariance properties since we agreed that
a Hermitian metric will always be conjugate linear in the second variable.

Suppose there exists m0 ∈ M such that s−1
φ (0) intersects a moduli space

{m0}×Mσ,η transversally along a codimension-two submanifold Yφ,m0 . We
now see that the restriction of Ωσ to the moduli space is the Poincaré dual
of Yφ,m0 .

Exercise 2.3.1. Suppose b+
2 > 0 and fix an integer k ≥ 5. Show that for a

generic choice of m ∈ M , φ ∈ Lk+1,2(S+
σ ) and η ∈ Nσ the set

Yφ,m = s−1
φ (0) ∩ Mk+1

σ (η)

is either empty or a submanifold of dimension d(σ) − 2.

The involution ϑ̂ : Cσ → Cσ̄ reverses the S1-action and we thus deduce

(2.3.1) ϑ̂∗Ωσ̄ = −Ωσ.

2.3.2. The case b+
2 > 1. Suppose now that (M, g) is a compact, oriented

Riemannian 4-manifold such that b+
2 > 1. A spinc structure σ is said to

be feasible if d(σ) ≥ 0. If σ is not feasible we define the Seiberg-Witten
invariant of the pair (M, σ) by the equality

swM (σ) := 0.

If σ is feasible then the definition of this invariant requires additional work
and we need to distinguish two cases.

Case 1 d(σ) = 0. We want to mention here that this condition already im-
poses restrictions on the topological type of M . More precisely, this implies
that the equation x2 = 2χ + 3τ has a solution x ∈ H2(M, Z) and, according
to [55], this implies that the tangent bundle of M can be equipped with
an almost complex structure. In fact, all the spinc structures σ such that



140 2. The Seiberg-Witten Invariants

d(σ) = 0 are the spinc-structures determined by almost complex structures
on TM . With this topological aside behind us, let us choose a generic
η ∈ Nσ so that Mσ(g, η) is a finite collection of irreducible solutions. We
will show that a choice of orientations on H1(M) and H2

+(M) canonically
determines a map

ε : Mσ(g, η) → {±1}.
Here are the details.

For [C] = [(ψ, A)] ∈ Mσ(g, η) the operator TC is Fredholm, of index zero,
with trivial kernel. Thus detTC is equipped with a canonical orientation
Ocan(C). Now, as in Sec. 2.2.4, set T 0

C := TC − PC. Then

ker T 0
C
∼= ker 6DA ⊕ H1(M) and coker T 0

C
∼= 6D∗

A ⊕ H2
+(M) ⊕ H0(M).

Since ker 6DA and ker 6D∗
A are complex spaces they are equipped with natural

orientations. The space H0(M) is canonically isomorphic to R. Once we
have fixed orientations on H1(M) and H2

+(M) we deduce that det T 0
C is

equipped with a natural orientation.

We want to remind the reader (see §2.2.4) that the space H2
+(M) ⊕

H0(M) is oriented by the ordered direct sum

H0(M) ⊕ H2
+(M).

We will consistently use this ordering throughout the book.

We now transport this orientation on detT 0 using the deformation

T s
C := TC + sPC, s ∈ [0, 1],

to an orientation Oind(C) on det TC. The two orientations Ocan(C) and
Oind(C) differ by a sign ±1 which we denote by ε(C). Observe that in the
notation of §1.5.1 we have

(2.3.2) ε(C) = ε(TC, TC + sP, T 0
C ).

Now define
swM (σ, g, η) =

∑
C

ε(C).

Remark 2.3.2. We want to point out an equivalent definition of ε(C). First
observe that

T 0
C :

[
ψ̇
iȧ

]
7→

 6DAψ̇
d+iȧ

−2id∗ȧ


where C = (ψ, A) and

PC :
[

ψ̇
iȧ

]
7→

 1
2c(iȧ)ψ

−1
2 q̇(ψ, ψ̇)

−iIm〈ψ, ψ̇〉

 .
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Both T 0
C and PC are defined irrespective of whether C is a monopole or not.

If we now pick an arbitrary configuration C′ = (ψ′, A′) then the orientation
transport along the affine path

(1 − t)T 0
C′ + tT 0

C

is always positive because the only fashion in which the kernels of these
operators change is through the path of Dirac operators 6D(1−t)A′+tA which
are complex and thus with no effect on the orientation issue. Thus we can
define ε(C) as the orientation transport along an arbitrary path connecting
an operator T 0

C′ to the operator TC.

Case 2 d(σ) > 0. Again we choose a generic η ∈ Nσ so that Mσ(g, η) is
a smooth, compact orientable manifold of dimension d(σ). We can fix an
orientation on the moduli space by choosing orientations on H2

+(M) and
H1(M). Now define

swM (σ, g, η) =
〈
(1 − Ωσ)−1, [Mσ(g, η)]

〉
where 〈•, •〉 denotes the Kronecker pairing between cohomology and ho-
mology while (1 − Ωσ)−1 stands for the formal series

(1 − Ωσ)−1 = 1 + Ωσ + Ω2
σ + · · · .

We see that swM (σ, g, η) = 0 if d(σ) is odd while if d(σ) = 2k then

swM (σ, g, η) =
∫

Mσ(g,η)
Ωk

σ.

In the remainder of this subsection we will show that the quantity
swM (σ, g, η) is in fact independent of the additional data g and η provided
that b+

2 (M) > 1. Ultimately we will have to distinguish between the two
cases d(σ) = 0 and d(σ) > 0 but we will begin by describing a general set-up,
which applies to both situations.

Suppose we have two sets of parameters (gi, ηi), i = 0, 1, which are good
with respect to the fixed spinc structure σ. Choose a smooth path of metrics
g(s) on M such that

g(s) ≡ gi for |t − i| ≤ }, i = 0, 1,

where } is a fixed very small number. Fix the integer k ≥ 4. We can organize
the family

{N k
σ,g(s), s ∈ [0, 1]}

as a bundle
N → [0, 1]

whose fibers are connected when b+
2 > 1. In particular, the total space N

is connected. A smooth path s 7→ ηs ∈ N k
σ,g(s) can be viewed as a smooth
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M M

0 1

t

0 1

Mt

Figure 2.1. A 2-dimensional cobordism

section of the bundle N . Given such a section we get a family of moduli
spaces

M̃ :=
⋃
s

Mσ(g(s), ηs)

which can be thought of as defining a deformation of Mσ(g0, η0) to Mσ(g1, η1).
Clearly, some of the spaces Ms = Mσ(g(s), η(s)) may not be smooth but
the whole family may be organized as a smooth manifold with boundary
M0 ∪ M1 (see Figure 2.1). More rigorously, we hope the family M̃ forms a
cobordism from M0 to M1 inside Birr. We will show that we can choose the
path ηs wisely so that the family M̃ does indeed form a cobordism. In fact,
this cobordism will be oriented and we will have an orientation preserving
diffeomorphism

∂M̃ ∼= M1 ∪ −M0.

The existence of such a good path will be achieved using again the Sard-
Smale transversality theorem. First we need to define an appropriate set of
paths. We think of ηs as an object over I × M . More precisely it will be a
Lk+1,2- section of π∗Λ2

+T ∗M . Since k + 1 ≥ 5 we deduce from the Sobolev
embedding theorem that such a section will be of class at least C2 so that
its restrictions ηs to {s} × M are well defined and C2 (in fact they are at
least Lk,2 on M according to the trace theorems of [79]). We will denote by
P the subspace of such objects which additionally satisfy

ηs ≡ ηi for |s − i| ≤ }, i = 0, 1,



2.3. The structure of the Seiberg-Witten invariants 143

and
ηs ∈ N k

g(s),σ, ∀t ∈ [0, 1].

P is a Banach manifold modeled by the Banach space of Lk+1,2-sections of
π∗Λ2

+T ∗M which are identically zero on the closed set ([0, }]∪ [1−}, 1])×M .

Consider now the new configuration space C̃k+1
σ := [0, 1] × Ck+1

σ . Each
path η̃ ∈ P defines a new map S̃W = S̃Wη̃ : C̃k+1

σ → Yk given by

S̃W(s,C) = SWg(s),η̃(s)(C).

The gauge group continues to act on C̃σ in an obvious fashion and the
map S̃W is Gσ-equivariant. The desired cobordism M̃ can be alternatively
described as

M̃ = S̃W
−1

(0)/Gσ.

The structure problem for M̃ is very similar to that of M. It is in great
measure determined by the deformation complexes at configurations C̃ =
(s,C) satisfying S̃W(C̃) = 0. More explicitly, these are

(2.3.3) (K̃C̃) : 0 → T1Gσ
LC̃−→ TC̃C̃σ

S̃W−→ Yσ → 0

where the linearization S̃W is given by

S̃W(ṡ, Ċ) =
d

dt
|t=0 SWg(s+tṡ),η̃(s+tṡ)(C + tĊ).

This deformation complex is Fredholm because for every (s,C) ∈ M̃ we have
an obvious short exact sequence of complexes

0 → KC → K̃(s,C) → R → 0

where the residual complex R is finite dimensional and has index 1. The
space M̃ is a smooth manifold if Heven(K̃C̃) = 0 for all C̃ ∈ M̃. Since
η̃(s) ∈ Ng(s),σ we deduce H0(K̃s,C) = H0(KC) = 0 so we only need to worry
about H2. To deal with this issue we use the same approach as in §2.2.3,
based on the Sard-Smale transversality theorem.

Define
Z̃ :=

{
(η̃, C̃) ∈ P × C̃σ; S̃Wη̃(C̃) = 0

}
.

Again, it suffices to prove that the map

P × C̃σ 3 (η̃, C̃) 7→ S̃Wη̃(C̃) ∈ Yσ

is a submersion at the points in Z̃. Then the induced map

π : Z̃/Gσ → P

will be Fredholm of index indR(K̃(s,C)) = indR(KC) + 1 = d(σ) + 1.
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To establish the submersion condition we have to show that if

SWg(s),η̃(s)(C) = 0

then the linear map

T(η̃,s,C)(P × I × Cσ) 3 (η̃, ṡ, Ċ) 7→

7→ d

dt
|t=0 SWg(s+tṡ),(η̃+tη̃)(s+tṡ)(C + tĊ) ∈ T0Yσ

(2.3.4)

is onto. Arguing exactly as in the proof of Fact 1 in §2.2.3 one can show
that a stronger statement is true, namely the map

(2.3.5) T(η̃,s,C)(P × Cσ) 3 (η̃, Ċ) 7→ d

dt
|t=0 SWg(s),(η̃+tη̃)(s)(C + tĊ) ∈ T0Yσ

is onto. Observe that (2.3.5) is obtained by setting ṡ = 0 in (2.3.4).

Remark 2.3.3. The map in (2.3.5) has a major computational advantage
over the map in (2.3.4). More precisely, the map in (2.3.4) requires an
explicit understanding of how a Dirac operator and the Hodge operator
vary with the metric. While these variations are known (see [18, 37]) their
concrete descriptions are by no means pleasant. By setting ṡ = 0 we have
eliminated this computational nightmare and, remarkably, this restricted
differential continues to be onto.

We conclude that for a generic choice of η̃ ∈ P the parameterized moduli
space M̃σ(η̃) is a smooth manifold with boundary

∂M̃σ(η̃) = Mσ(g0, η0) t Mσ(g1, η1).

To study the orientability of this parameterized moduli space we need to
understand the family of Fredholm operatorsT̃(s,C), (s,C) ∈ S̃W

−1

η̃ (0) de-
scribed by

T(s,C)(I × Cσ,g(s)) 3 (ṡ, Ċ) 7→ T̃(s,C)(ṡ, Ċ)

= S̃W(ṡ, Ċ) ⊕ L∗s
C (Ċ) ∈ T0Yσ ⊕ T1Gσ.
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More explicitly, if C = (ψ, A) and Ċ = (ψ̇, iȧ) then
(2.3.6)

T̃(s,C) :

 ṡ

ψ̇
iȧ

 7→


6DA,g(s)ψ̇ + 1

2cg(s)(iȧ)ψ

d+g(s)iȧ − 1
2 q̇g(s)(ψ, ψ̇)

−2id∗g(s) ȧ − iIm〈ψ, ψ̇〉g(s)

+

ṡ


( d

dt |t=0 6DA,g(s+t))ψ + 1
2

d
dt |t=0 cg(s+t)(iȧ)

1
2( d

dt |t=0 ∗g(s+t))FA + ( d
dt |t=0 η̃+g(s+t)(s + t)) − 1

2( d
dt |t=0 qg(s+t))(ψ)

0


where a sub/superscript g(s) attached to an object signifies that object is
constructed in terms of the metric g(s). The second term in the right-hand
side of the above formula can be computed quite explicitly (see [18, 37])
but its exact expression is quite nasty. On the other hand, we will only use
a few facts about this term. First of all, observe that this term vanishes
for |s − i| ≤ }, i = 0, 1, since for such s the metric g(s) is independent of
s. Second, this term involves no derivatives of iȧ and ψ̇ so that, as far as
Fredholm properties are concerned, it is irrelevant. In fact, we will deform
it to zero by considering the family T̃ τ

(s,C), 0 ≤ τ ≤ 1, described by

 ṡ

ψ̇
iȧ

 7→


6DA,g(s)ψ̇

d+g(s)iȧ

−2id∗g(s) ȧ

 + τ


1
2cg(s)(iȧ)ψ

−1
2 q̇g(s)(ψ, ψ̇)

−iIm〈ψ, ψ̇〉g(s)

+

(2.3.7)

τ ṡ


( d

dt |t=0 6DA,g(s+t))ψ + 1
2

d
dt |t=0 cg(s+t)(iȧ)

1
2( d

dt |t=0 ∗g(s+t))FA + i( d
dt |t=0 η̃+g(s+t)(s + t)) + 1

2( d
dt |t=0 qg(s+t))(ψ)

0

 .

For s fixed, the operator T̃ 0
(s,C), restricted to the subspace ṡ = 0, coincides

with the operator T 0
C considered in §2.2.4. More accurately, if we set

(2.3.8) H0(s) := L2(Sσ,g(s) ⊕ iT ∗M, g(s)) (“ = ”TCCσ)

and

(2.3.9) H1(s) = L2(Sσ,g(s) ⊕ iΛ2
+g(s)

T ∗M, g(s)) ⊕ L2(iΛ0T ∗M, g(s))
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then T 0
C is an unbounded Fredholm operator H0(s) → H1(s) while T̃ 0

(s,C) is
an unbounded Fredholm operator R ⊕ H0(s) → H1(s). Moreover, we have
the block decomposition

(2.3.10) T̃ 0 = [0 T 0] : R ⊕ H0(s) → H1(s).

Observe that if |s−i| ≤ }, i = 0, 1, then for every τ ∈ [0, 1] we have a similar
block decomposition

(2.3.11) T̃ τ = [0 T τ ] : R ⊕ H0(s) → H1(s).

We have seen that the family det T 0 is orientable and we can specify an
orientation by choosing an orientation in H1(M)⊕H2

+(M). Since ker T̃ 0
• =

R ⊕ ker T 0
• we deduce that det T 0 is also orientable. The component R

is naturally oriented and the positive orientation is given by the tangent
vector ∂

∂s . Thus, by fixing an orientation on H1(M) ⊕ H2
+(M) we induce

an orientation on det T̃ 0
• which induces an orientation on det T̃• via the

homotopy T̃ τ . This last orientation induces an orientation on M̃σ(η̃). At
this point we have to discuss separately the two situations d(σ) = 0 and
d(σ) > 0.

• d(σ) > 0. The above considerations show that if we equip ∂M̃σ(η̃)
with the induced orientation (outer-normal-first convention) then ∂M̃σ(η̃) =
Mσ(η1) t −Mσ(η0) as oriented manifolds. This follows from the fact that
∂
∂s coincides at s = 1 with the outer normal along Mη1 while at s = 0 this
vector field is the inner normal.

Now we can regard M̃σ(η̃) as an oriented cobordism inside Bσ,irr between
Mσ(η0) and Mσ(η1). From Stokes’ theorem we deduce〈

(1 − Ωσ)−1, Mσ(η1)
〉
−

〈
(1 − Ωσ)−1, Mσ(η0)

〉
=

〈
(1 − Ωσ)−1, ∂M̃

〉
(d = exterior derivative)

=
∫

M̃
d(1 − Ωσ)−1 = 0.

This shows that swM (σ, g0, η0) = swM (σ, g1, η1).

• d(σ) = 0. In this case M̃ is a compact, oriented one-dimensional mani-
fold with boundary so that it consists of a finite family of embeddings (see
Figure 2.2)

pj = pj(t) : [0, 1] → B̃σ,irr = {(s,C); s ∈ [0, 1], C ∈ Cσ,irr(g(s))/G},

j = 1, · · · , ν, such that

sj(0), sj(1) ∈ {0, 1}, ∀j = 1, · · · , ν.
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Figure 2.2. A one-dimensional oriented cobordism

Above, sj denotes the composition

[0, 1]
pj→ B̃σ,irr

s→ [0, 1].

The integer (−1)sj(0)+sj(1) ∈ {±1} is called the parity of the path pj and
will be denoted by πj . The path pj is called even/odd if πj = +/−.

The end points of the path pj are irreducible monopoles C0
j , C1

j and, as
such, they come with signs attached ε0j = ε(C0

j ), ε1j = ε(C1
j ) ∈ {±1}.

Lemma 2.3.4. For every j = 1, · · · , ν we have (see Figure 2.2)

ε0jε
1
j + πj = 0.

Assume for the moment Lemma 2.3.4. Set swi := sw(M, σ, gi, ηi), i =
0, 1. Then (see Figure 2.2)

sw0 − sw1 =
ν∑

j=1

( (−1)sj(0)ε0j + (−1)sj(1)ε1j )

=
ν∑

j=1

(−1)sj(0)ε1j ( ε0jε
1
j + πj ) = 0.

Proof of Lemma 2.3.4 Fix j = 1, · · · , ν. Lift pj to a path p̃j(t) =(
sj(t), Cj(t)

)
. Cj(t) ∈ Cσ is a

(
g(sj(t)), η(sj(t))

)
-monopole. Denote by Tt
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the operator

Tt := SWg(sj(t)),Cj(t) + L
∗sj(t)

Cj(t)

described by (2.2.18) in §2.2. Denote by T 0
t the restriction of the operator

T̃ τ=0
sj(t),Cj(t)

(described in (2.3.7) with τ = 0) to the subspace ṡ = 0. Clearly,
the two families Tt and T 0

t are homotopic. The proof of the lemma will be
carried out in two steps.

Step 1
ε0jε

1
j = ε(T1, Tt, T0)

where on the right hand side we have the transport along the path Tt defined
as in §1.5.1.

Step 2
ε(T1, Tt, T0) = −πj .

Proof of Step 1 For t ∈ [0, 1] T 0
0 set Pt = Tt − T 0

t . Then according to
(2.3.2) we have

εi
j = ε(Ti, T 0

i + uPi, T 0
i , 0 ≤ u ≤ 1), i = 0, 1.

Denote by h the path of Fredholm operators which starts at T 0
0 , goes along

T 0
t to T 0

1 and then to T1 following the path T 0
1 + uP1. Then

ε(T1, h, T 0
0 ) = ε1j · ε(T 0

1 , T 0
t , T 0

0 ).

The path h is homotopic to the path λ which starts at T 0
0 , goes along

T 0
0 + uP0 to T0 and then to T1 along Tt:

(2.3.12)

T 0
0 T 0

1

T0 T1

w
T 0

t

u
ε0j

u
ε1j

w
Tt

We have (see (2.3.12))

ε(T1, h, T 0
0 ) = ε(T1, λ, T 0

0 ) = ε(T1, Tt, T0) · ε0j .

Hence
ε0jε

1
j = ε(T1, Tt, T0) · ε(T 0

1 , T 0
t , T 0

0 ).

Now observe that each operator T 0
t is the direct sum of the anti-self-duality

operator of the metric g(sj(t)) and a complex spinc Dirac operator. The
anti-self-duality operators have oriented kernel and cokernel of constant di-
mensions so they have no contribution to the orientation transport. The
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Dirac components also have no contribution since we can use complex sta-
bilizers for this family so that the parallel transport will be a complex map,
thus preserving orientations. Hence ε(T 0

1 , T 0
t , T 0

0 ) = 1 establishing Step 1.

Proof of Step 2 We will use Proposition 1.5.15 of §1.5.1. First, for t ∈ [0, 1]
define the operators

St : R ⊕ H0(t) → H1(t), Lt : R → H1(t)

described by (s = sj(t))

 µ

ψ̇
iȧ

 7→


6DA,g(s)ψ̇

d+g(s)iȧ

−2id∗g(s) ȧ

 +


1
2cg(s)(iȧ)ψ

−1
2 q̇g(s)(ψ, ψ̇)

−iIm〈ψ, ψ̇〉g(s)

+

(2.3.13)

µ


( d

dz |z=0 6DA,g(s+z))ψ + 1
2

d
dz |z=0 cg(s+z)(iȧ)

1
2( d

dz |z=0 ∗g(s+z))FA + i( d
dz |z=0 η̃+g(s+z)(s + z)) − 1

2( d
dz |z=0 qg(s+z))(ψ)

0


and

R 3 µ 7→ Lt(µ) =
( d

dz |z=0 6DA,g(s+z))ψ + 1
2

d
dz |z=0 cg(s+z)(iȧ)

1
2( d

dz |z=0 ∗g(s+z))FA + i( d
dz |z=0 η̃+g(s+z)(s + z)) − 1

2( d
dz |z=0 qg(s+z))(ψ)

0

 .

Observe several things.

• St = T̃s,Cj(t)(defined in (2.3.6) ).
• St = Lt + Tt.
• Lt = 0 for t near 0 and 1.
• The operators St have index 1 and the bundle L = ker S• is oriented as
the tangent bundle of the oriented path pj(t).

The above observations show that we are precisely in the conditions of
Proposition 1.5.15. We need to understand the orientations ωi and φi in
this special case.

Observe that kerSi = R ⊕ 0 ⊂ TCj(0)Cσ so that kerSi is tautologically
isomorphic to R. The orientation ωi is the tautological one, given by the
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vector 1 ∈ R. The orientation φi is the orientation induced from the ori-
entation of kerS• as tangent bundle of the oriented path pj(t) and thus is
given by the vector

dsj

dt
|t=i .

Thus the parallel transport along the path Tt is

sign (
dsj

dt
|t=0 ·dsj

dt
|t=1).

This number is clearly equal to −πj . ¥

The following theorem summarizes the results established so far.

Theorem 2.3.5. Suppose M is a compact, closed, oriented and homology
oriented smooth 4-manifold such that b+

2 (M) > 1. Then the correspondence

Spinc(M) 3 σ 7→ swM (σ, g, η) =: swM (σ) ∈ Z

is independent of the metric g and the perturbation η and is a diffeomorphism
invariant of M . More precisely, for every orientation preserving diffeomor-
phism f we have

swM (σ) = ε(f)swM (f∗σ)
where ε(f) = ±1 depending on whether f preserves/reverses the homology
orientation of M .

If M is as in the above theorem then the Seiberg-Witten invariant is the
map

swM : Spinc(M) → Z.

Denote by BM the support of sw. The elements of BM are called basic
classes . Observe that BM is finite since, according to Proposition 2.2.21,
for all but finitely many σ ∈ Spinc(M) the moduli space Mσ is empty.

Definition 2.3.6. A smooth manifold M with b+
2 > 1 is said to be of

SW -simple type if for every σ ∈ BM we have d(σ) = 0.

All known examples of smooth 4-manifolds with b+
2 > 1 are of SW -

simple type. This prompted E. Witten ([149]) to state the following

Conjecture. All smooth 4-manifolds with b+
2 > 1 are of SW -simple type.

Presently (January 2000) the validity of this conjecture has been estab-
lished for very large families of 4-manifolds but a general argument is yet to
be discovered.

Denote by ΓM the set of path components of the diffeomorphism group
of M . ΓM is itself a group. It acts on Spinc(M) and |sw| is ΓM -invariant.
(sw may change signs under the action of ΓM which can affect the chosen
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orientations of H1(M) or H2
+.) In particular, we deduce that BM is a finite

ΓM -invariant set. Note that BM is also invariant under the natural invo-
lution σ 7→ σ̄. Moreover, using Proposition 2.2.26 of §2.2.4 and (2.3.1) of
§2.3.1 we deduce after some simple manipulations

(2.3.14) swM (σ̄) = (−1)d(σ)/2+νσswM (σ) = (−1)κswM (σ)

where κ = κM := 1
2(b+

2 + 1 − b1).

Remark 2.3.7. For many smooth manifolds M (with b+
2 > 1) the group ΓM

is infinite and thus one expects that many of the orbits of ΓM on Spinc(M)
are infinite. The above observations show that only the finite ones are
potentially relevant in Seiberg-Witten theory. Observe that if σ belongs to a
finite orbit of ΓM then the stabilizers of σ in ΓM must be very large (infinite)
and thus we deduce that the basic classes live amongst very symmetric spinc

structures.

Using Corollary 2.2.6 in §2.2.1 we deduce the following remarkable con-
sequence.

Corollary 2.3.8. Suppose M is a smooth 4-manifold with b+
2 > 1 which

admits a metric g0 with positive scalar curvature. Then BM = ∅, i.e.
swM (σ) = 0 for all σ ∈ Spinc(M).

Proof To compute the Seiberg-Witten invariants we can use the metric g0

and a small η such that there are no reducible (g0, η)-monopoles. According
to Corollary 2.2.6 if η is sufficiently small there are no irreducible ones as
well. ¥

The above corollary shows that in dimension four the Seiberg-Witten in-
variant is an obstruction to the existence of positive scalar curvature metrics.
It is known (see [50], [130]) that in dimensions ≥ 5 the existence of such
a metric is essentially a homotopy theoretic problem. As we will see later,
the Seiberg-Witten invariant is a smooth invariant, i.e. there exist (many)
homeomorphic smooth four-manifolds with distinct Seiberg-Witten invari-
ants (thus nondiffeomorphic). The corollary shows another “pathology” of
the 4-dimensional world: the existence of a positive scalar curvature metric
is decided not just by the homotopy type of the manifold but it depends in
mysterious ways on the smooth structure.

2.3.3. The case b+
2 = 1. Suppose now that M is a compact smooth

4-manifold with b+
2 = 1. In this case N k

σ,g is not connected. Its connected
components are easy to describe. Recall (see §2.2.3) that

N k
σ,g =

{
η ∈ Lk,2(Λ2T ∗M); dη = 0, [η]+g 6= 2π[cσ]+g

}
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where [•]g denotes the g-harmonic part of a differential form. When b+
2 = 1

the space H2
+(M, g) of harmonic, self-dual 2-forms is one-dimensional. Fix

an orthonormal basis ω of this space. Then

[η]+g = 〈η, ω〉ω
where

〈η, ω〉 :=
∫

M
(η, ω)gdvg =

∫
M

η ∧ ∗ω =
∫

M
η ∧ ω.

Thus the condition [η]+g = 2π[cσ]+g is equivalent to

〈η, ω〉 = 2π〈cσ, ω〉.
The above equation describes a hyperplane in the linear space of closed 2-
forms and its complement is precisely N k

σ,g. We see that it consists of two
connected components called chambers. The above hyperplane is called the
separating g-wall and we will denote it by Wσ,g.

Fix a spinc structure σ on M and a Riemannian metric g. We can still
pick a generic η ∈ Nσ,g such that Mσ(g, η) is a smooth, compact, oriented
manifold of dimension d(σ) and define as usual

swM (σ, g, η) = 〈(1 − Ωσ)−1, [Mσ(g, η)]〉
(or a signed count if d(σ) = 0). When trying to imitate the argument in
§2.3.2 establishing the independence of this number on (g, η) we encounter
an obstacle. The correspondence

Nσ,g 3 η 7→ g ∈ Met(M) = the space of Riemannian metrics on M

defines a fibration

Ñ k
σ :=

⋃
g∈Met(M)

Nσ,g → Met(M).

Since the fibers Nσ,g are not connected the total space Ñσ is not connected.
It consists of two components separated by the wall

W̃σ =
⋃

g∈Met(M)

Wσ,g.

This means that if we pick (gi, ηi) ∈ Ñσ (i = 0, 1) in different connected
components then any smooth path

[0, 1] 3 t 7→ (gt, ηt) ∈ (Metrics on M) × {η ∈ Ω1(M); dη = 0}
connecting the (gi, ηi) will, at certain instants τ , cross the wall W̃σ. This
means there are reducible (σ, gτ , ητ )-monopoles and by putting together all
the (σ, gt, ηt)-monopoles for t ∈ [0, 1], as we did in the previous section,
we can never get a smooth cobordism. The reducibles are at fault. To
salvage something we need to understand how the wall crossing affects the
cobordism. We will do this in a special yet quite general situation. More
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precisely, in the remaining part of this subsection we will assume
M is simply connected.

To define the Seiberg-Witten invariants we had to fix an orientation on
(H1⊕H2

+)(M). In this case this is equivalent to fixing an orientation on the
one-dimensional space H2

+(M, g). This orientation canonically determines
an orthonormal basis.

Remark 2.3.9. Suppose (M, ω) is a symplectic 4-manifold satisfying b+
2 =

1, and g is a metric adapted to ω (see Exercise 1.4.2 of §1.4.1). Then ω is
g-self-dual and since it is also closed it is harmonic. In particular, it defines
an orientation on H2

+(M, g). In the symplectic case we will exclusively work
with this orientation.

Suppose we have fixed an orientation of H2
+(M). For any metric g

we denote by ωg the oriented orthonormal basis of H2
+(M, g). The two

components of Nσ,g are

N±
σ,g = {η ∈ Lk,2(Λ2T ∗M) ; dη = 0, ±〈η − 2πcσ, ωg〉 > 0}.

We will refer to them as the positive/negative chambers. We get a corre-
sponding decomposition

Ñσ = Ñ+
σ ∪ Ñ−

σ .

The above discussion shows that the map

Ñσ 3 (g, η) 7→ sw(σ, g, η) ∈ Z

is continuous and thus it is constant on each of the two chambers. We will
denote by sw±

M (σ, g, η) the value on the ± chamber.
Before we enter into the details of wall crossing let us first observe that

we can make certain simplifying assumptions. Suppose (gi, ηi), i = 0, 1, are
in different chambers of Ñσ. To study what happens when crossing a wall we
can assume g0 = g1 because we can find η̂0 such that the pairs (g0, η̂0) and
(g1, η1) live in the same chamber so that the corresponding Seiberg-Witten
invariants are equal, as proved in the previous sections.

Let us now take η±1 ∈ N±
σ,g. We will consider paths (η(s))|s|≤1 such that

η(±1) = η±1, crossing the wall Wg only once and we will study the singular
cobordism

M̃σ =
⋃
s

Mσ(g, η(s))

from Mσ(g, η−1) to Mσ(g, η1). We can assume that η±1 are good perturba-
tions so that Mσ(g, η±1) are compact, smooth oriented manifolds of dimen-
sion d(σ) ≥ 0. In this case we have

χ = b0 + b2 + b4 = 3 + b−2 , τ = 1 − b−2
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so that

d(σ) =
1
4
(c2

σ − (2χ + 3τ) ) =
1
4
(c2

σ − 9 + b−2 ).

Observe also that the index of a Dirac operator associated to the spinc

structure σ is

(2.3.15) indR 6Dσ =
1
4
(c2

σ − τ) =
1
4
(c2

σ − 1 + b−2 ) = d(σ) + 2.

The local structure of the parameterized moduli space M̃σ at C̃ = (s,C),
C ∈ Mσ(g, η(s)) is again described by the deformation complex (2.3.3)

(K̃C̃) : 0 → T1Gσ
LC̃−→ TC̃C̃σ

S̃W−→ Yσ → 0.

Arguing exactly as in §2.3.2 we can slightly perturb the path η(s) (keeping
its endpoints fixed) such that for every C̃ ∈ M̃σ(η(s)) the second cohomology
group of this complex vanishes, that is,

(2.3.16) H2(K̃C̃) = 0, ∀C̃ ∈ M̃σ(g, η(s)).

The perturbation of η(s) (which we will continue to call η(s) can be chosen so
that it crosses the wall Wg at a single point as well. Suppose for simplicity
that this happens at s = 0. Since the path η(s) goes from the negative
chamber to the positive chamber we deduce

(2.3.17)
d

ds
|s=0 〈η(s), ωg〉 ≥ 0.

At this point it is wise to break the flow of the argument to point out a
significant fact. The above condition H2 = 0 is equivalent to

coker T̃C̃

def
= coker (S̃W ⊕ L∗s

C ) = H0(K̃C̃)

where T̃ is defined as in (2.3.6) with g(s) independent of s, more precisely

T̃(s,C) :

 ṡ

ψ̇
iȧ

 7→

 6DAψ̇ + 1
2c(iȧ)ψ

d+iȧ − 1
2 q̇(ψ, ψ̇)

−2id∗ȧ − iIm〈ψ, ψ̇〉



(2.3.18) + ṡ


0

i( d
dt |t=0)η+(s + t)

0

 .
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At a configuration (s,C) with C reducible, C = (0, A) this has the form

T̃(s,C) :

 ṡ

ψ̇
iȧ

 7→

 6DAψ̇
d+iȧ

−2id∗ȧ

 + ṡ


0

+i( d
dt |t=0)η+(s + t)

0

 .

We see that H2(K̃(s,0,A)) = 0 if and only if 6DA is surjective and the har-
monic part of ( d

dt |t=0 η̃+(s + t)) is a nonzero multiple of the generator
ωg of H2

+(M, g). This contrasts with the similar, unparametrized situation
described in Exercise 2.2.5 of §2.2.2. That exercise shows that when b+

2 = 1
no reducible can be regular. However the reducibles can be regular in the
parameterized moduli space!!! Observe that (2.3.17) can be improved to

(2.3.19)
d

ds
|s=0 〈η(s), ωg〉 > 0.

If (s,C) ∈ M̃σ and s 6= 0 then C is a (g, η(s))-monopole and, since η(s) ∈
Nσ,g, it must be irreducible. This implies the 0-th cohomology of the com-
plex K̃(s,C) is trivial and thus (s,C) is a smooth point of the parameterized
moduli space.

The configurations (0, C) ∈ M̃σ arising when the wall is crossed require
special considerations. If C is irreducible then, again, (0, C) is a smooth point
of the parameterized space. If C is reducible then using the Kuranishi local
description as in Proposition 2.2.16 of §2.2.2 we deduce that a neighborhood
of (0, C) in M̃σ is homeomorphic to the quotient B/S1, where B is a small
ball centered at the origin of H1(K̃(0,C)) and S1 is the stabilizer of C. The
“cobordism” M̃σ has singularities, one for each reducible (0, C). Figure 2.3
illustrates such a singular cobordism.

To proceed further we need to know some more about the structure of
the singularities of the “cobordism” M̃σ. Observe first that there exists a
unique reducible point (0, C) = (0; (0, A)) ∈ M̃σ. Indeed C = (0, A) is a
(g, η(0))-monopole iff

(2.3.20) F+
A + iη(0)+ = 0.

Since M is simply connected the group Gσ is connected and thus every
γ ∈ Gσ can be written as exp(if), f : M → R. This means that, up to gauge
equivalence, there exists a unique connection A0 such that FA0 = −2πi[cσ]g.
Arguing as in the proof of Proposition 2.2.17 of §2.2.3 we deduce that any
connection satisfying (2.3.20) has the form

A = A0 − iα
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The link
near a reducible

Reducible

Figure 2.3. A singular cobordism

where α is any 1-form such that η(0) = [η(0)]g + dα. Again, since M is
simply connected A is uniquely determined up to a gauge transformation.

The singularity of M̃σ at the unique reducible point (0, C) = (0; (0, A))
is now easy to describe. Observe first that

H1(K̃(0,C)) = ker T̃(0,C) = V := ker 6DA.

It is a complex vector space of dimension

indC 6DA
(2.3.15)

=
1
2
d(σ) + 1.

The stabilizer S1 ⊂ C acts on this complex vector space tautologically, by
complex multiplication. If B is a small ball in V centered at the origin then
B/S1 is a cone on the projective space CPd(σ)/2, where CP0 def

= {pt.}. The
boundary L of B/S1 is called the link of the singularity (see Figure 2.3).

Denote by X the manifold M̃σ with a small neighborhood N of
the reducible point removed, X = M̃σ \ B/S1. The orientation on
(H1 ⊕ H2

+)(M) = H2
+(M) induces an orientation on X. As in the previous

subsection, the induced orientation on the boundary component Mσ(g, η±1)
of X is ± the orientation as a moduli space. Understanding the induced
orientation on the link ∂X is a considerably more delicate issue. We have
to distinguish two cases.

• d(σ) > 0. Let us first point out the source of complications when un-
raveling the orientation of the link. Denote by (0, C0) the unique reducible
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point along the cobordism. As we have already indicated ker T̃(0,C0) is a
complex space of dimension d(σ)/2 + 1 and the cokernel is the oriented
one-dimensional space H0(M, g). Thus

L0 := det T̃(0,C0)

is naturally oriented. We will refer to this orientation as the tautological
orientation. On the other hand, this line is a fiber of the line bundle{

L(s,C) := det T̃(s,C); (s,C) ∈ M̃σ

}
and, as indicated in the previous subsection, this line bundle is equipped
with a natural orientation, induced by an orientation on (H1 ⊕ H2

+)(M).
In turn, this induces an orientation on L0 which we will call the Seiberg-
Witten orientation. We will denote by L̂0 the line bundle equipped with the
tautological orientation and by Lsw

0 the line bundle L0 equipped with the
Seiberg-Witten orientation. These two orientations differ by a sign ε ∈ {±1}.

Similarly, the neighborhood N ∼= B/S1 of (0, C0) has two orientations:
the Seiberg-Witten orientation, Osw, as a subset of the moduli space, and the
tautological orientation, Ô, as a quotient of a complex vector space modulo
the action of S1. (To orient such quotients we use the fiber-first conven-
tion: orientation of total space = orientation orbit ∧ orientation quotient.)
These two orientations differ exactly by the same sign ε.

Observe that the induced orientation on L = ∂(N, Ô) is precisely the
opposite orientation of CPd(σ)/2 as a complex manifold. (This follows after
a little soul-searching using the fiber-first and outer normal-first orienta-
tion conventions.) Thus, the orientation of L as a boundary component of
(X, Osw) is ε× { the canonical orientation on CPd(σ)/2}. To compute ε we
have to recall in detail the constructions of Lsw

0 and L̂0.

• Constructing Lsw
0 . Consider the one-parameter family of Fredholm op-

erators

T̃ τ : R ⊕ Γ(S+
σ ⊕ T ∗M) → Γ(S−

σ ⊕ Λ2
+ ⊕ Λ0T ∗M), τ ∈ [0, 1]

given by

(2.3.21)

 ṡ

ψ̇
ȧ

 7→

 6DA0
ψ̇

d+ȧ
−2d∗ȧ

 + τ ṡ


0

η̇+

0


where η̇ := d

ds |s=0 η(s), and C0 = (0, A0). Notice that, up to an obvious
factor of i, we have T̃ 1 = T̃(0,C0).

To obtain the Seiberg-Witten orientation on L0 we proceed as follows.
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1. Orient ker T̃ 0 = ker 6DA0
and coker T̃ 0 = ker 6D∗

A0
⊕ (H2

+ ⊕ H0)(M, g)
to obtain an orientation on det T̃ 0. The spinor components are canonically
oriented as complex vector spaces while H2

+ ⊕H0 is oriented by the ordered
basis 1 ∧ ωg ∈ det(H2

+ ⊕ H0).

2. Transport the above orientation along the path T̃ τ to obtain the Seiberg-
Witten orientation on L0 = det T̃ 1.

The orientation transport at Step 2 above is performed concretely as in
Example 1.5.11 in §1.5.1. To begin with, observe the following fact.

ker T̃ 0 = R ⊕ ker 6DA0
, ker T̃ τ = ker 6DA0

, ∀τ ∈ (0, 1]

(the component R corresponds to ṡ) and

coker T̃ 0 = ker 6D∗
A0

⊕ H2(M) ⊕ H0(M),

coker T̃ τ = ker 6D∗
A0

⊕ H0(M), ∀τ ∈ (0, 1].
Since the components ker 6DA0

and ker 6D∗
A0

are even-dimensional, oriented
and stay unchanged along the deformation, they have no effect on the ori-
entation transport so we can neglect them. To simplify the presentation we
redefine T̃ τ to denote the operator

T̃ τ : R ⊕ Ω1(M) → Ω2
+(M) ⊕ Ω0(M), (ṡ, ȧ) 7→ (d+ȧ + τ ṡη̇+,−2d∗ȧ).

With this new convention we have

ker T̃ 0 = R, ker T̃ τ = {0}, τ ∈ (0, 1],

coker T̃ 0 = H2
+(M) ⊕ H0(M), coker T̃ τ = H0(M), τ ∈ (0, 1].

We can now perform the orientation transport.

2a. Choose an oriented stabilizer V for the family T̃ τ . In this case V =
H0 ⊕ H2

+, with orientation 1 ∧ ωg, will do the trick.

2b. Determine the compatible orientation on ker T̃ 0
V by describing an or-

dered basis. We follow the prescriptions in §1.5.1. In the notations of that
section we have

V0 = coker T̃ 0 = H0 ⊕ H2
+ = V

and V̂ —the orthogonal complement of V0 in V — is trivial. We have a
natural isomorphism

ker T̃ 0 ∼= ker T̃ 0
V , v 7→ (v, 0).

More precisely, the one-dimensional space ker T̃ 0 is oriented by the vector

u0 = (1, 0) ∈ R ⊕ Ω1

so that the one-dimensional space ker T̃ 0
V0

is oriented by the vector

û0 = (1, 0, 0, 0) ∈ R ⊕ Ω1(M) ⊕ H0 ⊕ H2
+.
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2c. We now parallel transport the orientation on ker T̃ 0
V to an orientation

on det T 1
V . Observe that

T̃ τ
V : R ⊕ Ω1(M) ⊕ V → Ω2

+(M) ⊕ Ω0(M)

is given by
(ṡ, ȧ, v, uωg) 7→ (d+ȧ + τ ṡη̇+ + uωg, v).

To determine the kernel of T̃ τ
V observe that the harmonic part of η̇+ is a

scalar multiple of ωg:
[η̇+]g = µωg.

According to (2.3.19) we have µ > 0. Denote by ȧ0 the unique 1-form such
that

(2.3.22) d+ȧ0 = −(η̇+ − [η̇+]g), d∗ȧ0 = 0.

We can now describe

Lτ := ker T̃ τ
V = {(ṡ, τ ṡȧ0, 0, uωg) ∈ R ⊕ Ω1(M) ⊕ H0 ⊕ H2

+ ; τµṡ + u = 0}.

The orthogonal projections of these lines to the plane R ⊕H2
+ can be visu-

alized as a family of lines in the plane (u, ṡ) described by the equations

τµṡ + u = 0

as in Figure 2.4. The line Lτ=0 projects to the horizontal axis and the
projection of the vector û0 induces the canonical positive orientation. The
projection of the line Lτ=1 has negative slope −µ and the parallel transport
equips it with the “downhill” orientation.

• Constructing L̂0. Recall that L̂0 is the line det T̃ 1 equipped with the nat-
ural orientation induced by the canonical orientations on ker T̃ 1 = ker 6DA0

and coker T̃ 1 = ker 6D∗
A0

⊕ H0(M). To compare it with Lsw
0 we need to

describe the canonical orientation in terms of the stabilizer V used above.
Again we can neglect the spinor components in the definition of T̃ 1 and we
will think of T̃ 1 as an operator

T̃ 1 : R ⊕ Ω1(M) → Ω2
+(M) ⊕ Ω0(M).

We use the notation and orientation construction in §1.5.1. In this case
V0 := coker T̃ 1 = H0 and its orthogonal complement in V = H0 ⊕ H2

+ is
V̂ = H2(M). We see that the orientation on V̂ compatible with 1 ∧ ωg

determined by the split exact sequence

0 → V0 → V → V̂ → 0

is the orientation defined by the basis ωg. Denote by

RV0 : Ω2
+(M) ⊕ Ω0(M) → (ker T̃ 1

V0
)⊥ ⊂ R ⊕ Ω1(M) ⊕ H0
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Figure 2.4. Orientation transport

the canonical right inverse of the surjective operator T̃ 1
V0

. The compatible
orientation on ker T̃ 1

V is determined from the split exact sequence

0 → ker T̃ 1
V0

→ T̃ 1
V → (V/V0) = V̂ → 0.

More explicitly, it is given by the basis

(0 ⊕ 0 ⊕ 0) ⊕ ωg − RV0(ωg) ⊕ 0 ∈ (R ⊕ Ω1(M) ⊕ H0) ⊕ H2
+.

To determine RV0ωg observe that

T̃ 1
V0

: R ⊕ Ω1(M) ⊕ H0 → Ω2
+(M) ⊕ Ω0(M)

is given by
(ṡ, ȧ, v) 7→ (d+a + ṡη̇+,−2d∗a + v).

A simple computation shows that

RV0ωg = (
1
µ

,
1
µ

ȧ0, 0) ∈ R ⊕ Ω1(M) ⊕ H0

where ȧ0 is defined by (2.3.22). Thus, the oriented basis of ker T̃ 1
V is

ν := (− 1
µ

,− 1
µ

ȧ0, 0, ωg) ∈ R ⊕ Ω1(M) ⊕ H0 ⊕ H2
+.

By looking again at the projection onto the plane R ⊕ H2
+ we see that the

canonical orientation of Lτ=1, defined by the above vector, is the opposite
of the Seiberg-Witten orientation discussed before. (The projection of ν is
the “uphill” vector in Figure 2.4.) This shows ε = −1.
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Using Stokes’ theorem we deduce

0 =
∫

X
dΩd(σ)/2

σ =
∫

∂X
Ωd(σ)/2

σ

=
∫

Mσ(g,η1)
Ωd(σ)/2

σ −
∫

Mσ(g,η−1)
Ωd(σ)/2

σ + ε

∫
CPd(σ)/2

Ωd(σ)/2
σ

= swM (σ, g, η1) − swM (σ, g, η0) + 〈Ωd(σ)/2
σ , CPd(σ)/2〉.

To compute the last integral observe that the restriction of Uσ to the link
L is the tautological line bundle over CPd(σ)/2. We conclude that

sw+
M (σ) − sw−

M (σ) = swM (σ, g, η1) − swM (σ, g, η0) = (−1)d(σ)/2.

• d(σ) = 0. We make the simplifying assumption that η±1 are very close to
the wall so that we have the approximation

(2.3.23) ‖ η(s) − (η(0) + sη̇) ‖k,2 ¿ s2‖η̇(0)‖k,2, ∀s ∈ [−1, 1].

The above inequality is a very fancy way of saying that, modulo negligible
errors, we can assume the path η(s) is affine, very very short and crosses
the wall transversely only once, at s = 0, coming from the negative chamber
and going to the positive one.

In this case, the singular cobordism M̃σ is a finite union of smooth
oriented arcs in Bσ

pj : [−1, 1] → [−1, 1] × Bσ, t 7→ (sj(t), Cj(t)) j = 0, 1, · · · , n,

where
Cj(t) ∈ Mσ(g, η(sj(t)) ).

Again there is a unique reducible point (0, C0) and a neighborhood N is
homeomorphic to C/S1 (see Figure 2.5).

Suppose that the path is p0 so that p0(1) = C0. As in the previous
subsection we set

ε±j = ε(Cj(±1)), j = 1, . . . , n,

and
ε0 = ε(C0(−1)).

We have

swM (σ, g, η1) − swM (σ, g, η−1) =
n∑

j=1

(sj(−1)ε−j + sj(1)ε+j ) + s0(−1)ε0.

The arguments in the previous subsection show that the first sum, corre-
sponding to the smooth part of the cobordism, is zero. We claim that

(2.3.24) ε0s0(−1) = 1.
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Figure 2.5. A singular one-dimensional cobordism

The proof of this equality requires a refined perturbation analysis. Suppose
s0(−1) = −1 (the case s0(−1) = 1 is analyzed in a similar fashion).Since

(s0(t), C0(t)) → (0, C0) as t → 1

then, modulo gauge transformations, we can write

(s0(1 − h), C0(1 − h)) = (0, C0) + h(ṡ, Ċ0) + h2(s̈, C̈0) + O(h3)

= (0, C0) + h(ṡ, ψ̇, iȧ) + h2(s̈, ψ̈, iä) + O(h3)

where Ċ0, C̈0 are vectors in the local slice at C0 and ṡ, s̈ are scalars. More-
over, we can assume (ṡ, Ċ0) 6= 0. Differentiating twice with the respect to h
(at h = 0) the equality

SWη(s(1−h))(C0(1 − h)) = 0

we deduce

(2.3.25) 6DA0
ψ̇ = 0, id+ȧ + ṡη̇+ = 0,

(2.3.26) 6DA0
ψ̈ +

1
2
c(iȧ)ψ̇ = 0, id+ä + is̈η̇+ +

i
2
ṡ2.η̈(0)+ − 1

2
q(ψ̇, ψ̇) = 0

Since Ċ0 and C̈0 belong to the local slice at C0 we deduce

(2.3.27) d∗ȧ = d∗ä = 0.
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Recall that 6DA0
has index 1 and is onto. ψ̇ is a vector in its one-dimensional

kernel. On the other hand, since [η̇]+ 6= 0 the second equality in (2.3.25) is
possible iff ṡ = 0 and ȧ = 0. (In drawing this conclusion we have used the
fact that ȧ is co-closed and b1(M) = 0.) Thus ψ̇ must be a nontrivial vector
in ker 6DA0

. The equalities in (2.3.26) further simplify to

(2.3.28) 6DA0
ψ̈ = 0, c(id+ä + is̈η̇+(0)) − 1

2
q(ψ̇, ψ̇) = 0.

In particular, taking the inner product with c(iωg) we deduce

(X) 4s̈µ =
∫

M
〈 c(iωg) , q(ψ̇, ψ̇) 〉dvg =

∫
M
〈 c(iω)ψ̇, ψ̇ 〉dvg

where we recall that the positive number µ was determined by the equality
[η̇(0)]+ = µωg.

Observe that since we assumed the wall crossing takes place coming
from the negative chamber and going towards the positive one, and since
the oriented path s0(t) ends at the reducible we conclude s0(t) < 0 for t < 1.
This implies s̈ ≤ 0. Using this in the last equality we conclude∫

M
〈 c(iω)ψ̇, ψ̇ 〉dvg ≤ 0

since µ > 0.
At this point we need the following generic nondegeneracy result whose

proof will be given later on.

Lemma 2.3.10. In the very beginning we could have chosen the path η(s)
so that besides the conditions (2.3.16), η(0) ∈ Wσ,g, (2.3.19) and (2.3.23) it
also satisfies

(2.3.29)
∫

M
〈 c(iωg)ψ̇, ψ̇ 〉dvg < 0

where (s = 0;ψ = 0, A0) is the unique reducible on M̃σ(η(s)) and ψ̇ ∈
ker 6DA0

\ {0}.

From the lemma we deduce

(2.3.30) −1 = s0(−1) = sign s̈.

Now consider the path of configurations

C(t) = C0(−t), t ∈ [−1, 1].

Denote by Tt the linearization of SWg,η(s0(−t)) at C(t), i.e.

Tt = SWg,η(s0(−t)) ⊕ L∗
C(t).
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The explicit form of Tt is

T̃t :

 ψ

ia

 7→


6DAψ + 1

2c(ia)ψ

id+a − 1
2 q̇(ψ, ψ)

−2id∗a − iIm〈ψ, ψ〉


where ψ ∈ Γ(S+

σ ), a ∈ Γ(Λ1T ∗M) and

C(t) = (ψ, A) = (ψ(t), A(t)) :=
(
ψ(s0(−t)), A(s0(−t))

)
.

Observe that with the above notation

Ċ0 =
d

dt
|t=−1 C(t), C̈0 =

d2

dt2
|t=−1 C(t)

so that

ψ̇ =
d

dt
|t=−1 ψ(t), iȧ :=

d

dt
|t=−1 A(t) = 0.

We set

C =

 ψ

ia


and we define

Ṫ C :=
d

dt
|t=−1 TtC.

Observe that

Ṫ C =


1
2c(iȧ)ψ + 1

2c(ia)ψ̇

−1
2 q̇(ψ̇, ψ)

−iIm〈ψ̇, ψ〉

 .

Let us now point out several things.

• The assumption that η±1 are very close to the wall so that (2.3.23) holds
implies that the zero index operators Tt are actually nondegenerate (i.e.
invertible) for t 6= −1.
• According to Remark 2.3.2 the sign ε0 is exactly the parallel transport
ε(T1, Tt, T−1).

Using the above remarks and (1.5.9) of §1.5.1 we now deduce that

ε0 = (−1)dsignR

where d = dimR ker T−1 and if we denote by P the orthogonal projection
onto coker T−1 then

R : ker T−1 → coker T−1, C 7→ P Ṫ |t=−1 C.
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Recall that sign (R) = ±1 depending on whether R preserves/reverses ori-
entations.

Now observe that ker T−1 = ker 6DA0
and an oriented real basis is given

by e1 := ψ̇, e2 := iψ̇. Moreover, coker T−1 = H0 ⊕H2
+ and an oriented basis

is given by f2 = i · 1, f2 := iωg.
Using (X) we deduce

Re1 = −s̈µiωg

and
Re2 = −iIm〈ψ̇, iψ̇〉 = i‖ψ̇‖2.

Since s̈ < 0 we deduce sign (R) = −1. On the other hand, d = 2 so that
ε0 = 1. Using the equality s0(−1) = −1 we reach the desired conclusion
that ε0s0(−1) = 1.

We can now formulate the main result of this section.

Theorem 2.3.11. (Wall crossing formula) Suppose M is a compact,
oriented smooth 4-manifold such that b1 = 0 and b+

2 = 1. Then for every
σ ∈ Spinc(M) such that d(σ) ∈ 2Z+ we have

sw+
M (σ) − sw−

M (σ) = (−1)d(σ)/2.

Sketch of proof of Lemma 2.3.10 We will use the Sard-Smale theorem.
Consider the smooth map

F : Ck+1
σ → Lk,2(S−

σ ) × R, F (ψ, A) =
(
6DAψ,

∫
M
〈c(iωg)ψ , ψ〉dvg

)
.

Now set
Z = F−1(0,−1).

Arguing as in §2.2.3 we deduce that for all (ψ, A) ∈ Z the differential

D(ψ,A)F : Tψ,ACk+1
σ → T(0,−1)L

k,2(S−
σ ) × R

is onto, so that Z is a smooth manifold. Denote by π the natural projection
Ck+1

σ → Ak+1
σ . Its restriction

π : Z → Ak+1
σ

is Fredholm and has the same real index as the map

Lk+1,2(Sσ) 3 ψ 7→ (6DAψ,

∫
M
〈c(iωg)ψ , ψ〉dvg) ∈ Lk,2(Sσ) × R.

The above map has real index 1. Thus by Sard-Smale for “most” A ∈ Aσ

the map π is a Fredholm submersion along the fiber ΨA := π−1(A) ∩ Z.
In particular, this shows that the fiber ΨA is a smooth one-dimensional
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manifold. If (ψ, A) ∈ ΨA then dimC 6DA = indC 6DA = 1 so that 6DA is onto.
Moreover, ΨA can be identified with the circle{

ψ ∈ ker 6DA ;
∫

M
〈c(iωg)ψ, ψ〉dvg = −1

}
.

Now pick (ψ, A) as above and let η0 ∈ Wg,σ be defined by F+
A + iη+

0 = 0.
We will find the path η(s) by looking amongst the paths

η = η(s) : (−ε, ε) → Nσ,g,

at least C2 in s, such that

η(s) ∈ N±
σ,g if ± s > 0,

η(0) = η0

and ∫
M

η̇(0) ∧ ωg > δ

where δ is a fixed small positive constant. The path is detected using the
Sard-Smale theorem, where as space of parameters we take the space of
paths η(s) with the properties listed above. ¥

Remark 2.3.12. There is a wall crossing formula in the case b1(M) > 0 as
well. However, both the formulation and its proof are much more involved.
For more details we refer to [23, 76, 112, 119].

2.3.4. Some examples. We interrupt in this subsection the flow of general
theoretical results to illustrate on two simple but revealing examples the
power and the limitations of the wall crossing formula. The importance of
these examples is not just purely academic.

Example 2.3.13. (Seiberg-Witten invariants of CP2) The complex
projective plane CP2 is a complex manifold, so that its tangent bundle is
naturally equipped with an integrable almost complex structure. In par-
ticular, this canonically defines a spinc structure σ0 whose associated line
bundle det(σ0) is isomorphic to K−1 = K∗ – the dual of the canonical line
bundle of CP2. Any other spinc structure σ on CP2 has the form

σ = σ0 ⊗ L

where L is a complex line bundle. Moreover

det(σ) = 2L − K

where we use additive notation for the tensor product operation on line
bundles and where −K := K−1 = K∗. In this case

Pic∞(CP2) ∼= H2(CP2, Z) ∼= Z
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so that Spinc(CP2) is a Z-torsor. To determine the chamber structure we
need to understand the cohomology class c1(K). Since we will need it later
and it requires no additional effort, we will solve this problem for all projec-
tive spaces CPn. We will follow the approach in [17].

We will freely use Poincaré duality to identify

H2(CPn, Z) = H2n−2(CPn, Z).
The positive generator of H2(CPn, Z) is represented by the homology class
carried by a hyperplane in CPn and we will denote it by H. Denote by τ the
tautological line bundle over CPn. Since any hyperplane can be represented
as the zero set of a holomorphic section of τ∗ we deduce

c1(τ) = −H.

To follow the tradition of algebraic geometry we will denote τ∗ by H when
no confusion is possible. (This amounts to identifying τ∗ with ctop

1 (τ∗) =
H.) Observe that we have the following exact sequence of complex vector
bundles:

(2.3.31) 0 → C → H⊕(n+1) → TCPn → 0.

To see this, consider the exact Euler sequence

(2.3.32) 0 → τ → Cn+1 → Q := Cn+1/τ → 0.

The tangent space to CPn at ` ∈ CPn consists of infinitesimal deformations
of the line ` ⊂ Cn+1, which can be described as linear maps ` → Cn+1/`.
Thus

TCPn ∼= Hom(τ, Q) ∼= τ∗ ⊗ Q = H ⊗ Q.

Thus, by tensoring (2.3.32) with H we obtain (2.3.31). This implies

ct(H⊕(n+1)) = ct(C)ct(TCPn) = ct(TCPn)

where ct(E) denotes the Chern polynomial 1+c1(E)t+c2(E)t2 + · · · . Hence

(2.3.33) ct(TCPn) = (ct(H))n+1 = (1 + Ht)n+1, Hn+1 = 0.

Hence

(2.3.34) c1(K) = c1(−detCTCPn) = −c1(TCPn) = −(n + 1)H.

In particular, we deduce

d(σ0) =
1
4
(c(σ0)2 − (2χ + 3τ)) =

1
4
(9 − (6 + 3)) = 0.

Now consider CP2 with the Fubini-Study metric g0. This metric has positive
scalar curvature and moreover, up to a positive constant, the symplectic form
ω0 associated to the Kähler structure on CP2 is harmonic and carries the
cohomology class of H.
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Thus

Wσ0,g0 = {η ∈ Nσ0 ;
∫

CP2
(η − 2πc(σ0)) ∧ ω0 = 0}

and since c(σ0) = −K = 3H we deduce

N±
σ0,g0

= {η ∈ Nσ0 ±
∫

CP2
η ∧ ω0 > ±6π}.

In particular η = 0 belongs to the negative chamber. Since g0 has positive
scalar curvature the (g0, η = 0) monopoles must be reducible and since
η = 0 belongs to the negative chamber there are no such monopoles. Hence
Mσ0(g0, η = 0) = ∅ so that

sw−(σ0) = sw(σ0, g0, η = 0) = 0.

Using the wall crossing formula we deduce

sw+(σ0) = 1.

If Ln denotes the line bundle with c1(Ln) = nH (n ∈ Z) and σn = σ0 ⊗ Ln

then
c(σn) = c(det σn) = (2n + 3)H

and
d(σn) = n2 + 3n ∈ 2Z.

We have to exclude the cases n = −1,−2 which lead to negative virtual
dimensions and thus to trivial invariants.

Next observe that

Wσn,g0 =
{

η ∈ Nσn ;
∫

CP2
η ∧ H = 2(2n + 3)π

∫
M

H ∧ H
}

Thus

η = 0 ∈
{

N−
σn

if n ≥ −1
N+

σn
if n < −1

.

Arguing as before we deduce

sw+(σn) =
{

0 if n ≤ −1
(−1)n(n+1)/2 if n > −1

.

Example 2.3.14. (Seiberg-Witten invariants of CP2#kCP
2
) The smooth

manifold
M = CP2#kCP

2

is a smooth realization of the algebraic construction known as the blow-up
at k points (see the next chapter). It is simply connected and b2 = k + 1. If
we denote by H the generator of H2(CP2, Z) ∼= H2(CP2, Z) and by Ei the
generator of H2 of the i-th copy of CP

2 in M then the collection{
H, Ei, i = 1, . . . , k

}
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ωg

Figure 2.6. The cone of vectors of nonnegative self-intersection in H2(M, R)

is a Z-basis of H2(M, Z). Observe that

H · H = 1, H · · ·Ei = 0, Ei · Ej = −δij

so that the intersection form has signature (1, k). The intersection form
defines a cone C in H2(M, R) consisting of real cohomology classes of non-
negative self-intersection. The space C \{0} has two connected components.
An orientation on H2

+(M, R) is equivalent to declaring one of the components
as the positive cone, C+. In this case we denote by C+ the connected
components containing the class H.

A metric g on M produces two things on H2(M, R). First, it equips
it with a Euclidean metric via the isomorphism with H2(M, g). Second, it
selects a linear subspace H2

+(M, g) ⊂ H2(M, g). The form ωg is defined as
the unique vector of length 1 in H2

+(M) ∩ C+ (see Figure 2.6).

In contrast to CP2, there is no natural, unique way of defining a metric
on M but there are a few metric choices which we would like to discuss
because of their future relevance.

• The 1st choice. Think of CP2 and each copy of CP
2 as equipped with

the Fubini-Study metric. Now delete a small ball from each copy of CP
2 and

k small balls from CP2 and connect the resulting holed manifolds by short,
thin tubes (see Figure 2.7, k = 2). As explained in [50], this construction
leads to a metric g1 of positive scalar curvature.

Denote by ω1 the unique self-dual harmonic form of length 1 in C+. If
we let the sizes of the connecting necks go to zero then in the limit ω1 will
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converge to self-dual harmonic forms on the summands of M . Since CP
2

does not support such forms we see that the part of ω1 on the summands
CP

2 is very small. Hence we can approximate ω1 with the restriction to
H on CP2 which is the symplectic form supported on CP2 induced by the
Fubini-Study metric. Hence in cohomology we have

(2.3.35) ω1 ≈ H.

The manifold M is equipped with a complex structure (which is by
no means compatible with the above metric). Again this defines a spinc

structure σ0 with det(σ0) = −KM , where again −KM denotes the dual of
the canonical line bundle on M . One can show that (see Exercise 3.1.1)

KM = −3H +
∑

i

Ei.

Since χM = 3k + 3, τM = 1 − k and KM · KM = 9 − k we deduce

d(σ0) = 0.

Using (2.3.35) we deduce∫
M

c(σ0) ∧ ω1 ≈ (3H −
∑

i

Ei) · H = 3 > 0

which shows that η = 0 ∈ N−
σ0,g1

. Arguing as in the previous example we
deduce

(2.3.36) sw−(σ0) = 0, sw+(σ0) = 0.

• 2nd choice ([71]). Let us assume k is a perfect square k = d2 and d > 3.
Consider first a smooth embedded curve

Σ ↪→ CP2

such that [Σ] = dH in H2(CP2, Z). Hence

Σ · Σ = d2 = k.

Now blow-up CP2 in k points. The surface Σ sits in M . Each of the
homology classes −Ei is represented by an embedded 2-sphere which we
continue to denote by −Ei. Denote by Σ̃ the surface obtained by connecting
Σ with each of the −Ei by very thin tubes carrying no homology so that in
H2(M, Z) we have the equality

[Σ̃] = dH −
∑

i

Ei.

In particular we deduce
Σ̃ · Σ̃ = 0
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H

E E1 2

Figure 2.7. CP2#2CP
2

so there exists a small tubular neighborhood U of Σ̃ ↪→ M diffeomorphic to
D2 × Σ̃ where D2 denotes the unit disk in R2. Hence

N := ∂U ∼= S1 × Σ̃.

Now choose a metric gL on M (L À 1) so that a tubular neighborhood of
N ↪→ M is isometric with

[−L, L] × S1 × (Σ̃, h)

where h is a constant curvature metric on Σ̃. Denote by ωL the unique
gL-harmonic self-dual form in C+ such that

ωL · H =
∫

M
ωl ∧ H = 1.

Observe that
‖ωL‖L2(gL) ≤ 1.

Indeed, if we pick an orthonormal basis ω0, ω1, · · · , ωk with ω0 self-dual, of
norm 1 and in C+ then

ωL = x0ω0, H = h0ω0 +
∑

i

hiωi, x0, h0, hi ∈ R.

Then
ωL · H = x0h0 = 1

so that ‖ωL‖ = x0 = 1/h0. On the other hand, 1 = H · H = h2
0 −

∑
i h

2
i so

that h0 ≥ 1.
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N
M

M

-

+

-L L

Σ∼

Figure 2.8. Stretching the neck

We want to figure out the sign of

ε(L) :=
∫

M
ωL ∧ c(σ0)

for L → ∞. First observe that

c(σ0) = 3H −
∑

i

Ei = Σ̃ − (d − 3)H.

The hypersurface N divides M into two parts M± as in Figure 2.8 where
M− is the part containing the surface Σ̃ (hence M− ∼= U). Denote by ω±(L)
the restriction of ωL to M±. As L → ∞, since ‖ωL‖L2(gL) ≤ 1, the form
ω−(L) converges to a L2-harmonic, self-dual form ω−(∞) on M+ with a half-
infinite cylinder attached. According to the results of [6] (see also Section
4.1), the cohomology class carried by ω−(∞) belongs to the image of the
morphism

H2(U, ∂U ; R) → H2(U, R).

This image is trivial since H2(U, ∂U ; R) ∼= R is generated by the Thom class
of the trivial line bundle C × Σ̃ → Σ̃. In particular, ω+(∞) = 0 and

lim
L→∞

ωL · [Σ̃] =
∫

Σ̃
ω−(∞) = 0.

We conclude that

lim
L→∞

c(σ0)ωL = lim
L→∞

([Σ̃] · ωL − (d − 3)H · ωL) = −(d − 3) < 0.
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Hence, for large L, the trivial closed 2-form lives in the positive chamber
Nσ0,gL because

〈0 − 1
‖ωL‖

ωL, 2πc(σ0)〉 > 0.

Since sw+(σ0) 6= 0 the above conclusion implies that for all large L there
exist (gL, 0)-monopoles.

2.4. Applications

The theory developed so far is powerful enough to produce nontrivial topo-
logical and geometric applications. The goal of this section is to present
some of them. More precisely we will present Kronheimer and Mrowka’s
proof of the Thom conjecture [71] for the projective plane and a proof of
Donaldson’s Theorem A on smooth, negative definite 4-manifolds [28, 29].
Because of its relevance in this section and later on as well, we have also
included a separate technical subsection describing a few properties of the
Seiberg-Witten equations on cylinders.

2.4.1. The Seiberg-Witten equations on cylinders. Suppose (N, g)
is a compact, oriented, Riemannian 3-manifold. We want to describe a
few particular features of the Seiberg-Witten equations on the 4-manifold
N̂ = [a, b] × N equipped with the product metric.

Some conventions are in order for this subsection. We will denote by
t the longitudinal coordinate on N̂ and we will identify N with the slice
{b} × N of the cylinder N̂ . To distinguish objects of similar nature on N

and N̂ we will use a hat “ˆ” to denote the objects on the 4-manifold. Thus
d will denote the exterior derivative on N while

d̂ = dt ∧ ∂t + d

will denote the exterior derivative on N̂ . The metric on N̂ will be denoted by
ĝ and the corresponding Hodge operator by ∗̂. Denote by t the contraction
by the tangent vector ∂t.

Any differential form ω on N̂ can be uniquely written as

ω = dt ∧ f + a, f := tω, a := ω − dt ∧ f.

Above, f and a are paths of forms on N . Observe that

(2.4.1) d̂(dt ∧ f0 + a1) = dt ∧ (ȧ1 − df0) + da1

and

(2.4.2) ∗̂ω2 := ∗̂(dt ∧ f1 + a2) = dt ∧ ∗a2 + ∗f1

where the dot stands for t-differentiation. Then

d̂+(dt ∧ f0 + a) =
1
2
(d̂ + ∗̂d̂)(dt ∧ f0 + a1)
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=
1
2
dt ∧ (ȧ1 − df0 + ∗da1) +

1
2
∗ (ȧ1 − df0 + da1)

and
d̂∗(dt ∧ f0 + a1) = −∗̂d̂∗̂(dt ∧ f0 + a1) = −(ḟ0 − d∗a1).

Fix a spinc structure on N . It induces by pullback a spinc structure σ̂ on
N̂ with associated bundle of complex spinors

Ŝσ = Ŝ+
σ ⊕ Ŝ−

σ .

Denote by ĉ the Clifford multiplication on Ŝσ. We set J := ĉ(dt) : Ŝ+
σ → Ŝ−

σ .
Observe that J produces an isomorphism between the restrictions of Ŝ±

σ to
N . We set

Sσ := Ŝ+
σ |N∼= Ŝ−

σ |N .

The bundle Sσ is equipped with a Clifford structure given by the Clifford
multiplication

c(α) = J ĉ(α) : Ŝ+
σ |N→ Ŝ+

σ |N .

Sσ is precisely the bundle of complex spinors associated to the spinc struc-
ture on the odd-dimensional manifold N .

For any 2-form α̂ on N̂ we have ĉ(α̂ − ∗α̂) = 0 on Ŝ+
σ̂ so that, using

(2.4.2), we deduce

(2.4.3) c(α) = c(∗α), ∀α ∈ Ω1(N)

and

(2.4.4) c(dv(g)) = −1.

Set det(σ) = det Sσ = det(σ̂) |N and fix a smooth Hermitian connection
A0 on det(σ). It induces by pullback a Hermitian connection on det(σ̂) which
we denote by Â0. A Hermitian connection Â on det(σ̂) is called temporal if

t(Â − Â0) = 0,

that is,
Â = Â0 + ia(t)

where a(t) is a path of 1-forms on N . We set A(t) = A0 + ia(t) so that Â
can be regarded as a path of Hermitian connections on det(σ). Using the
identities (2.4.1) and (2.4.2) we deduce

(2.4.5) FÂ = idt ∧ ȧ + FA(t)

and

(2.4.6) 2F+

Â
= dt ∧ (iȧ + ∗FA(t)) + ∗(iȧ + ∗FA(t)).



2.4. Applications 175

Lemma 2.4.1. If Â is a smooth Hermitian connection on det(σ̂) then there
exists a smooth map

f̂ : N̂ → R

such that the connection exp(if̂) · Â := Â − 2id̂f̂ is temporal.

Proof We write
Â = Â0 + idt ∧ g(t) + ia(t)

where g(t) ⊕ a(t) is a path of sections of (Λ0 ⊕ Λ1)T ∗N . Any function
f̂ : N̂ → R can be viewed as a path f(t) of 0-forms on N . The condition

t( exp(if̂)(Â − Â0) ) = 0

is equivalent to
i(g(t) − 2ḟ(t)) = 0.

We can define

f̂(t, x) =
1
2

∫ t

a
g(s, x)ds, ∀t ∈ [a, b], x ∈ N. ¥

Suppose now that Ĉ = (ψ̂, Â) is a ĝ-monopole on N̂ . Modulo a Ĝσ̂-
change we can assume Â is temporal so we can identify it with a path A(t)
of connections on det(σ). The spinor ψ̂ can be viewed as a path ψ(t) of
sections in Sσ. The connection ∇̂Â induced by Â on Ŝσ̂ has the form

∇̂Â = dt ⊗ ∂t + ∇A(t)

where ∇A(t) is the connection induced by A(t) on Ŝσ̂ |N∼= Sσ ⊕ Sσ. If (ei) is
a local orthonormal frame on N and (ei) denotes is dual coframe then we
have

ˆ6DÂ = ĉ ◦ ∇̂Â = ĉ(dt)∂t +
∑

i

ĉ(ei)∇A(t)
ei

= J

(
∂t −

∑
i

c(ei)∇A(t)
ei

)

= J
(
∂t − DA(t)

)
where DA(t) denotes the geometric Dirac operator induced by the connection
A(t). Using the above identity, (2.4.3) and (2.4.6) we deduce that Ĉ =
(ψ(t), A(t) = Â0 + ia(t)) satisfies the “evolution” equations

(2.4.7)


dψ
dt = DA(t)ψ(t)

iȧ = 1
2c−1( q(ψ(t)) ) − ∗FA(t)

.

To proceed further we imitate the four-dimensional situation and consider

Cσ = Γ(Sσ) × Aσ
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where Aσ denotes the affine space of Hermitian connections on det(σ). Now
define

Eσ : Cσ → R,

by

(2.4.8) Eσ(ψ, A) =
1
2

∫
N

(A − A0) ∧ (FA + FA0) +
1
2

∫
N

Re〈DAψ, ψ〉dvg

We claim that the gradient of this functional (with respect to the L2-metric
on Cσ) is given by precisely the right-hand side of (2.4.7).

The proof of this claim relies on the following technical result.

Exercise 2.4.1. Prove that for any real 1-form α on N we have

2|α(x)|2 = 2| ∗ α(x)|2 = |c(α(x))|2 := −tr (c(α(x))2), ∀x ∈ N.

(Note the factor of 2 and compare to the analogous identity in Lemma
2.1.5 in §2.1.1 concerning self-dual forms.)

To verify this claim set ia := A − A0 ∈ iΩ1(N) (so that DA = DA0 +
1
2c(ia)) and write Eσ(ψ, a) instead of Eσ(ψ, A). We have

d

dt
|t=0 Eσ(ψ + tψ̇, a + tȧ) =

1
2

∫
N

iȧ ∧ (ida + 2FA0) +
1
2

∫
N

ia ∧ diȧ

+
1
2

∫
N

(1
2
〈c(iȧ)ψ, ψ〉 + 2Re 〈DAψ, ψ̇〉

)
dvg

(use Stokes’ theorem in the second integral)

=
1
2

∫
N

iȧ ∧ (ida + 2FA0) +
1
2

∫
N

iȧ ∧ ida

+
∫

N
Re〈DAψ, ψ̇〉dvg +

1
4

∫
N
〈c(iȧ)ψ, ψ〉dvg

(use 〈c(iȧ)ψ, ψ〉 = Re tr (c(iȧ)q(ψ)) := 〈q(ψ), c(iȧ)〉

=
∫

N
iȧ ∧ FA +

∫
N

Re〈DAψ, ψ̇〉dvg +
1
4

∫
N
〈c(iȧ), q(ψ)〉dvg

= −
∫

N
〈iȧ, ∗FA〉dvg +

∫
N

Re〈DAψ, ψ̇〉dvg +
1
4

∫
N
〈c(iȧ), q(ψ)〉dvg

(∗ denotes the complex linear Hodge operator, and we use Exercise 2.4.1 in
the last integral above)

=
∫

N
〈iȧ,

1
2
c−1(q(ψ)) − ∗FA〉dvg +

∫
N

Re〈DAψ, ψ̇〉dvg.

The functional Eσ is not Gσ = Map (N, S1)-invariant. In fact ∀γ ∈ Gσ

and C ∈ Cσ we have

Eσ(γ · C) = Eσ(C) −
∫

N

dγ

γ
∧ (FA + FA0)
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= Eσ(C) − 4π2

∫
M

1
2πi

dγ

γ
∧ i

2π
(FA + FA0)

(2.4.9) = Eσ(C) − 8π2

∫
N

deg γ ∧ c1(det(σ))

where deg γ ∈ H1(N, Z) is the cohomology class γ∗( 1
2πdθ). In particular, we

deduce that Eσ is Gσ-invariant if and only if c1(det σ) is a torsion class.

Definition 2.4.2. The critical points of the functional Eσ are called g-
monopoles on N corresponding to the spinc structure σ.

Remark 2.4.3. We want to point out a curious and somewhat confusing
fact. More precisely, observe that the energy functional Eσ is orientation
sensitive. By changing the orientation of N respecting the normalization
(2.4.4) the energy function changes to −Eσ.

Inspired by the results in §2.1.1 we define the energy of a configuration
Ĉ = (ψ̂, Â) on N̂ by

E(Ĉ) :=
∫

N̂
(|∇̂Âψ̂|2 +

ŝ

4
|ψ̂|2 +

1
8
|q(ψ̂)|2 + |FÂ|

2)dv(ĝ)

where ŝ denotes the scalar curvature of ĝ. If Â is temporal, Â = A(t) =
Â0 + ia(t) then using (2.4.5) and the identity |q(ψ)|2 = 1

2 |ψ|4 we deduce

E(ψ̂, Â) =
∫ b

a
dt

∫
N

(|ψ̇|2 + |ȧ|2)dv(g)

+
∫ b

a

∫
N

(|∇A(t)ψ(t)|2 +
s

4
|ψ(t)|2 +

1
16

|ψ(t)|4 + |FA(t)|2)dv(g)

where s denotes the scalar curvature of g. (Observe that on the cylinder N̂
we have s = ŝ.)

Lemma 2.4.4. (Main energy identity) Suppose Ĉ = (ψ̂, Â) is a mono-
pole on N̂ such that Â is temporal, Â = A(t) = A0 + ia(t). Then∫ b

a
dt

∫
N

(
|ψ̇(t)|2 + |ȧ(t)|2

)
dv(g)

=
∫ b

a
dt

∫
N

(
|∇A(t)ψ|2 +

s

4
|ψ|2 +

1
16

|ψ|4 + |FA(t)|2
)
dv(g)

=
1
2
E(ψ̂, Â).
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Proof For brevity, we will write A instead of A(t) and ψ instead of ψ(t).
Using the first equation in (2.4.7) we deduce∫

N
|ψ̇|2dv(g) =

∫
N
|DAψ|2dv(g)

(use the Weitzenböck formula for DA and integration by parts )

=
∫

N

(
|∇Aψ|2 +

s

4
|ψ|2 +

1
2
Re〈 c(FA)ψ, ψ 〉

)
dv(g).

Using the second equation in (2.4.7) and Exercise 2.4.1 we deduce

2
∫

N
|ȧ|2dv(g) =

∫
N
|c(ȧ)|2dv(g) =

∫
N
|1
2
q(ψ) − c(FA)|2dv(g)

=
∫

N

(
|1
2
q(ψ)|2 + |c(FA)|2 − Re〈 q(ψ), c(FA) 〉

)
dv(g)

(use Exercise 2.4.1 again )

=
∫

N

( 1
8
|ψ|4 + 2|FA|2 − 〈 c(FA)ψ, ψ 〉

)
dv(g).

The energy identity is now obvious. ¥

Remark 2.4.5. We want to point out a nice feature of the main energy
identity. Its right-hand side is manifesly gauge independent while the left-
hand side is apparently gauge dependent since the configuration (ψ̂, Â) was
chosen so that Â is temporal.

The functional Eσ has nice variational properties, reminiscent of the
Palais-Smale condition.

Proposition 2.4.6. Suppose Cn = (ψn, An) is a sequence of smooth config-
urations such that

(2.4.10) ‖ψn‖∞ = O(1), as n → ∞

and

(2.4.11) ‖∇Eσ(Cn)‖L2 = o(1), as n → ∞.

Then there exists a sequence γn ∈ Gσ such that γn · Cn converges in any
Sobolev norm to a critical point C∞ of Eσ

∇Eσ(C∞) = 0.
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Proof The condition (2.4.11) implies

(2.4.12) ‖DAnψn‖2 = o(1)

and

(2.4.13) ‖FAn‖2 = ‖1
2
q(ψn)‖2 + o(1).

Using the sup-bound on ψn in the last inequality we deduce

‖FAn‖2 = O(1).

Modulo changes of gauge, which can be used to reduce the size of the har-
monic part of FAn below a fixed, geometrically determined constant, the
last inequality leads to L1,2-bounds for ian := An − A0.

Throw this information back in (2.4.12) to obtain

DA0ψn = −c(ian)ψn + o(1).

The elliptic estimates coupled with the sup-bound on ψn and the L1,2-bound
on an lead to L1,2-bounds on ψn. Bootstrap to obtain bounds on (an, ψn) in
arbitrary norms. These coupled with compact Sobolev embeddings allows
us now to conclude that a subsequence of Cn converges in any Sobolev norm
to some smooth C∞ ∈ Cσ. The conclusion in the proposition now follows
using (2.4.11) once again. ¥

The last proposition has an important consequence.

Corollary 2.4.7. Suppose Ĉ = (ψ̂, Â) is a smooth finite energy monopole
on N̂∞ := R × N such that Â is temporal and

‖ψ̂‖∞ < ∞.

Then there exists a sequence tn → ∞ such that, modulo Gσ, the configura-
tions (ψ(tn), A(tn)) converge in any Sobolev norm to a critical point of Eσ.

Proof Using the main energy identity we deduce∫ ∞

−∞
dt

∫
N

(
|ψ̇(t)|2 + |ȧ(t)|2

)
dv(g) < ∞

so that there exists a sequence tn → ∞ such that∥∥∥∇Eσ

(
ψ(tn), A(tn)

)∥∥∥2

L2
=

∫
N

(
|ψ̇(tn)|2 + |ȧ(tn)|2

)
dv(g) = o(1).

The desired conclusion now follows from Proposition 2.4.6. ¥
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2.4.2. The Thom conjecture. To put the Thom conjecture in the proper
context we begin by recalling a classical algebraic-geometry result. We will
denote the tensor multiplication of line bundles additively, by +.

Proposition 2.4.8. (Adjunction formula) Suppose (X, J) is an almost
complex manifold of dimension 2n and Y ⊂ X is a submanifold of dimension
2(n − 1) such that the natural inclusion

TY ↪→ TX |Y
is a morphism of complex bundles. Then

KY = KX |Y +NY

where NY denotes the complex normal line bundle, NY := TX |Y /TY
determined by the embedding Y ↪→ X, and K denotes the canonical line
bundle, KM = det(T ∗M)1,0 = det(T 0,1M).

Proof Along Y ↪→ X we have the isomorphism of complex vector bundles

TX1,0 |Y ∼= TY 1,0 ⊕ NY .

By passing to determinants we deduce

−KX |Y = −KY + NY . ¥

Suppose now that (X, ω) is a Kähler manifold of complex dimension two
and Σ ↪→ X is a smooth complex curve on X , i.e. a compact, connected,
complex submanifold of X. Using the adjunction formula we deduce

KΣ = KX |Σ +NΣ.

Again we identify the complex line bundles with their first Chern class ctop
1 .

Integrating (=Kronecker pairing) the above equality over Σ we deduce

〈KΣ, Σ〉 = 〈KX , Σ〉 + Σ · Σ
since, according to the Gauss-Bonnet theorem, the pairing 〈NΣ, Σ〉 is the
self-intersection of Σ ↪→ X. Using Gauss-Bonnet again we deduce

〈KΣ, Σ〉 = 2g(Σ) − 2

where g(Σ) is the genus of the Riemannian surface Σ. This yields the genus
formula

(2.4.14) g(Σ) = 1 +
1
2
(KX · Σ + Σ · Σ).

We specialize further and we assume X = CP2 and Σ → CP2 is a
smooth complex curve of degree d, i.e.

[Σ] = dH, in H2(CP2, Z).
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Using the equality KCP2 = −3H established in §2.3.4 we deduce

(2.4.15) g(Σ) = 1 +
d(d − 3)

2
.

Kervaire and Milnor (see [56, 62]) have shown that if the homology class
dH ∈ H2(CP2, Z) is characteristic for the intersection form (i.e. d is odd)
and can be represented by an embedded sphere then

1 = τ(CP2) ≡ d2 mod 16.

In particular this shows that the class 3H cannot be represented by an
embedded sphere.

To connect this fact with the genus formula (2.4.15) we introduce

gmin : H2(CP2, Z) → Z+

where gmin(dH) denotes the minimum of the genera of smoothly embedded
Riemann surfaces Σ ↪→ CP2 carrying the homology class dH. The above
result of Kervaire and Milnor implies

gmin(dH) ≥ 1, d = 3.

The equality is optimal for d = 3 since according to (2.4.15) the curves of
degree 3 on CP2 have genus 1. In particular this shows that

gmin(dH) = 1 +
d(d − 3)

2
, d = 1, 2, 3.

A famous conjecture, usually attributed to R. Thom, states that the above
equality holds for all d ≥ 0. Using the genus formula we can rephrase this by
saying that the complex curves are genus minimizing amongst the smoothly
embedded surfaces within a given homology class. The methods developed
so far are powerful enough to offer a solution to this conjecture.

Theorem 2.4.9. For every d ≥ 0 we have the equality

gmin(dH) = 1 +
d(d − 3)

2
.

Proof We follow closely the ideas of Kronheimer and Mrowka [71]. The
above observations show that it suffices to consider only the case d > 3.

Suppose Σ ↪→ CP2 is a smoothly embedded surface such that [Σ] = dH,
d > 3. Then

Σ · Σ = k := d2.

We blow up CP2 k times CP2 99K CP2#kCP
2 and denote by π the natural

projection
M := CP2#kCP

2 → CP2.
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As in Example 2.3.36 denote by Ei, i = 1, · · · , k the homology classes carried
by the exceptional divisors. Consider the proper transform Σ̃ in the blow-
up in the sense of algebraic geometry. Topologically this means Σ̃ is the
connected sum with the k spheres representing the classes −Ei. Thus

Σ̃ · Σ̃ = 0.

We now follow closely the geometric situation in Example 2.3.14. Denote by
U a small tubular neighborhood of Σ̃ ↪→ M diffeomorphic to D2× Σ̃ and set
N = ∂U ∼= S1 × Σ̃. Equip Σ̃ with a metric g0 of constant scalar curvature
s0. The Gauss-Bonnet theorem implies

1
4π

∫
Σ̃

s0dv(g0) = 2 − 2g(Σ̃) = 2 − 2g(Σ)

so that

(2.4.16) s0 =
8π

volg0(Σ̃)
( 1 − g(Σ) ).

When no confusion is possible we will continue to denote by g0 the product
metric on N = S1 × Σ̃.

Now consider again the metric gn, n À 1, of Example 2.3.14 so that a
tubular neighborhood of N ↪→ M is isometric to the metric dt2 + dθ2 + g0

on [−n, n] × S1 × Σ̃. Set N̂n := [−n, n] × N . Again denote by σ̂0 the
spinc structure induced by the natural complex structure on M so that
det(σ̂0) = −KM = 3H −

∑
i Ei. Denote by σ0 the restriction of σ̂0 to

N . We saw in that example that there exist (smooth) (σ̂0, gn, 0)-monopoles
Ĉn = (ψ̂n, Ân) for all n À 1.

Lemma 2.4.10. There exists a constant C > 0, such that ∀n À 1 we have

(2.4.17) ‖ψ̂n‖L∞(M) < C

and

(2.4.18) E(Ĉn |N̂n
) < C.

Proof Denote by sn(x) the scalar curvature of the metric gn. Along the
long neck sn(x) is comparable to s0 while away from the neck it is bounded
above by a constant independent of n since the metric gn varies very little
in that region. The inequality (2.4.17) is thus a consequence of the Key
Estimate in §2.2.1.

To prove the second inequality denote by R the complement of the neck
in M and let En denote the energy of Ĉn on M . Since Ĉn is a (σ0, gn, 0)-
monopole we deduce from Proposition 2.1.4 that

En = −2π2

∫
M

c2
σ̂0

= −2π2K2
M = 2π2(k − 9).
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We deduce

E(Ĉn |N̂n
) = En − E(Ĉn |R) ≤ En −

∫
R

sn(x)
4

|ψ̂n(x)|2dv(gn).

Since sn(x) and |ψ̂n(x)| are bounded independent of n and R has finite
volume, independent of n, we deduce that the right-hand side of the above
inequality is bounded from above by a constant independent of n. This
concludes the proof of the lemma. ¥

Modulo a gauge transformation we can assume Ĉn = (ψ̂n, Ân) is tempo-
ral so that we can write

ψ̂n |N̂n
= ψn(t) and Ân = Â0 + ian(t).

Since
E(Ĉn |N̂n

) < C

there exists |kn| < n such that

E(Ĉn |[kn,kn+1]×N ) < C/2n.

Using the main energy identity we deduce∫ kn+1

kn

dt

∫
N
|ψ̇n(t)|2 + |ȧn(t)|2dv(g0) < C/n.

Thus there exists tn ∈ [kn, kn + 1] such that

(2.4.19)
∫

N
|ψ̇n(tn)|2 + |ȧn(tn)|2dv(g0) < C/n.

Set
Cn = Ĉn(tn) = (ψn(tn), A0 + ian(tn)).

Lemma 2.4.10 and (2.4.19) show that the sequence Cn satisfies all the as-
sumptions in Proposition 2.4.6. This leads to the conclusion that

¦ there exist g0-monopoles on N = S1 × Σ̃ corresponding to the spinc struc-
ture σ0 = σ̂0 |N .

To conclude the proof of Theorem 2.4.9 we will show that the existence
of monopoles on N imposes restrictions on g(Σ̃).

Observe first that any spinc structure σ on Σ̃ induces by pullback via
p : N → Σ̃ a spinc structure p∗σ on N . Next observe that

σ0 = σ̂0 |N= p∗σ̂0 |Σ̃
so that

det(σ0) = p∗
(
det(σ̂0 |Σ̃)

)
= p∗(−KM |Σ̃).
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The surface Σ̃ can be naturally viewed as a submanifold in N which is the
total space of a trivial S1-bundle over Σ̃. The above equality implies
(2.4.20)∫

Σ̃
cσ0 = −KM · Σ̃ = (3H −

k∑
i=1

Ei) · (dH −
k∑

i=1

Ei) = 3d − k = d(3 − d).

If C = (ψ, A) is a g0-monopole on N

(2.4.21)
{

DAψ = 0
c(∗FA) = 1

2q(ψ)

then arguing exactly as in the proof of the Key Estimate in §2.2.1 we
deduce

‖ψ‖2
∞ ≤ −2 min

x∈N
s̄0(x)

where s̄0(x) denotes the scalar curvature of the metric g0 on N . Now observe
that since N = S1 × Σ̃ is equipped with the product metric the scalar
curvature s̄0 at (θ, z) ∈ S1 × Σ̃ is equal to s0(z) and using (2.4.16) we
conclude

(2.4.22) ‖ψ‖2
∞ ≤ 16π

volg0(Σ̃)
(g(Σ) − 1).

Using Exercise 2.4.1 and (2.4.22) in the second equation of (2.4.21) we
deduce

√
2|FA| = |c(∗FA)| =

1
2
|q(ψ)| =

1
2
√

2
|ψ|2 ≤ 4

√
2π

volg0(Σ̃)
(g(Σ) − 1)

so that

(2.4.23) |FA| ≤
4π

volg0(Σ̃)
(g(Σ) − 1).

Using (2.4.20) and the assumption d > 3 we deduce

d(d − 3) =
∣∣∣∣∫

Σ̃
cσ0

∣∣∣∣ ≤ 1
2π

∫
Σ̃
|FA|dv(g0)

(2.4.23)

≤ 2(g(Σ) − 1).

This is exactly the content of Theorem 2.4.9. ¥

Remark 2.4.11. (a) Presently the validity of the genus minimizing conjec-
ture of Thom has been established in its full generality in the more general
context of symplectic manifolds; see [97, 114] or the discussion at the end
of §4.6.2. In this case the genus minimizing surfaces in a given homology
class are precisely the symplectically embedded ones.

(b) In [97, 101] one can find a detailed and explicit description of the
monopoles on S1 × Σ. For the more general case of circle bundles over a
Riemann surface we refer to [106].
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2.4.3. Negative definite smooth 4-manifolds. To help the reader bet-
ter enjoy the beauty and the depth of the main result of this subsection we
begin by surveying some topological facts. For more details we refer to [29,
Chap. 1], [51, 87].

The world of topological 4-manifolds is very unruly and currently there
is no best way to organize it, and not for lack of trying.

The fundamental group, which does wonders in dimension two and is
sufficiently powerful in dimension three, is less effective in dimension four
for a simple reason: every finitely presented group is the fundamental group
of a smooth manifold (even symplectic, according to [51]). This shows that
the algorithmic classification of 4-manifolds is more complicated than that
of finitely presented groups, which is impossible. It is thus reasonable to try
to understand first the simply connected 4-manifolds and in this dimension
we have to be very specific whether we talk about topological or smooth
ones.

The intersection form of simply connected topological 4-manifolds is a
powerful invariant: it classifies them up to homotopy equivalence (according
to J.H.C. Whitehead [147]) and almost up to a homeomorphism according to
the award winning results of M. Freedman [38]. Recall that the intersection
form of a closed 4-manifold is a symmetric, unimodular, bilinear map

q : Zn × Zn → Z.

Unimodularity in this case means that the matrix describing q with respect
to some integral basis of Zn has determinant 1.

To each intersection form one can associate three invariants: its rank,
n in this case, its signature and its type. The signature, τ(q), is defined as
the difference between the number of positive eigenvalues and the number
of negative eigenvalues of the symmetric matrix representing q with respect
to some basis of Zn. The intersection forms are of two types: even, if

q(x, x) ≡ 0 mod 2, ∀x ∈ Z

and odd, if it’s not even. Observe that q is even if and only if the matrix
representing q with respect to an arbitrary basis of Zn has even diagonal
entries. A quadratic form q is called positive/negative if τ(q) = ±rank q and
indefinite otherwise.

Two integral quadratic forms q1, q2 of the same rank n are isomorphic
if there exists T ∈ GL(n, Z) such that

q1(Tx, Tx) = q2(x, x), ∀x ∈ Zn.

The quadratic forms over Q or R are completely classified up to isomorphism
by their rank and signature. The situation is considerably more complicated
in the integral case.
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Example 2.4.12. The diagonal definite form of rank n is the quadratic
form q = 〈1〉n whose matrix with respect to the canonical basis of Zn is
the identity matrix. More generally, a quadratic form is said to be diago-
nal(izable) if it is isomorphic to the direct sum 〈1〉n ⊕ 〈−1〉m. The form
E8 is the positive definite quadratic form of rank 8 given by the symmetric
matrix

(2.4.24) E8 =



2 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
0 0 1 2 1 0 0 0
0 0 0 1 2 1 0 1
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 1
0 0 0 0 1 0 1 2


.

A more efficient and very much used way of describing this matrix is through
its Dynkin diagram (see Figure 2.9). The •’s describe a basis v1, · · · , v8 of Z8.

2 2 2 2 2 2 2

2

Figure 2.9. The Dynkin diagram of E8

The 2’s indicate that q(vi, vi) = 2 and the edges indicate that q(vi, vj) = 1
if and only if vi and vj are connected by an edge. E8 is even and positive
definite. E8 is not diagonalizable over Z. We also want to point out that
often E8 is described by a matrix very similar to the one in (2.4.24) where the
1’s are replaced by −1’s. The two descriptions are equivalent and correspond
to the change of basis vi → (−1)ivi.

Another important example of quadratic form is the hyperbolic form H
given by the matrix

H =
(

0 1
1 0

)
.

It is even, indefinite, has zero signature and it is not diagonalizable.

The examples presented above generate a large chunk of the set of iso-
morphism classes of integral, unimodular, quadratic forms. More precisely,
we have the following result, whose proof can be found in [121].

Theorem 2.4.13. (a) Any odd, indefinite quadratic form is diagonalizable.
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(b) Suppose q is an even form. Then

τ(q) ≡ 0 mod 8.

(c) If q is even, indefinite and τ(q) ≥ 0 then

q ∼= aE8 ⊕ bH := (E8 ⊕ · · · ⊕ E8︸ ︷︷ ︸
a

) ⊕ (H ⊕ · · · ⊕ H︸ ︷︷ ︸
b

)

where τ(q) = 8a and 8a + 2b = rank (q). (When τ(q) < 0 use −q instead.)

The classification of definite forms is a very complicated problem. It
is known that the number of nonisomorphic definite quadratic, unimodular
forms of rank n goes very rapidly to ∞ as n → ∞ (see [121]). The diagonal
one however plays a special role. To describe one of its special features we
need to introduce a new concept.

Suppose q is a quadratic unimodular form of rank n. A vector x0 ∈ Zn

is called a characteristic vector of q if

q(x0, y) ≡ q(y, y) mod 2, ∀y ∈ Zn.

If we represent q by a symmetric matrix S using a basis of Zn then a vector
x is characteristic if its coordinates (xi) with respect to the chosen basis
have the same parity as the diagonal elements of S, i.e.

xi ≡ sii mod 2, ∀i = 1, · · · , n.

We see that q is even if and only if 0 is a characteristic vector.

Example 2.4.14. (Wu’s formula) Suppose M is a closed, compact ori-
ented smooth 4-manifold with intersection form qM . A special case of Wu’s
formula (see [93]) shows that the mod 2 reduction of any characteristic vec-
tor x of qM is precisely the second Stiefel-Whitney class w2(M). In particu-
lar, this implies that any smooth 4-manifold admits spinc structures (since
any such structure corresponds to an integral lift of w2(M)) and moreover,

〈w2(M), α〉 ≡ qM (α, α) mod 2, ∀α ∈ H2(M, Z).

As explained in [51, Sec. 1.4], the last identity should be regarded as a mod
2 version of the adjunction formula.

The congruence (b) in Theorem 2.4.13 admits the following generaliza-
tion (see [121]).

Proposition 2.4.15. If q is an integral, unimodular, quadratic form and x
is a characteristic vector of q then

q(x,x) ≡ τ(q) mod 8.
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Following [32] we introduce the Elkies invariant Θ(q) of a negative def-
inite quadratic form q as

Θ(q) := rank (q) + max{q(x,x); x a characteristic vector}.
Observe that since q is negative definite Θ(q) ≤ rank (q) = −τ(q) with
equality if and only if q is even. Moreover, by Proposition 2.4.15 we have
Θ(q) ∈ 8Z. We have the following nontrivial result.

Theorem 2.4.16. (Elkies, [32]) For any negative definite quadratic form
q we have

Θ(q) ≥ 0

with equality if and only if q is diagonal.

Roughly speaking, this theorem says that if q is not diagonal then the
positive form −q has short characteristic vectors.

We now return to topology. Michael Freedman’s classification theorem
states that given any even quadratic form there exists a unique, up to home-
omorphism, simply connected (s.c.) topological 4-manifold with this inter-
section form. Moreover he showed that given any odd quadratic form there
exist exactly two nonhomeomorphic topological s.c. 4-manifolds with this
intersection form and at most one of them is smoothable (that is it admits
smooth structures). We deduce the following remarkable consequence.

Corollary 2.4.17. Two simply connected smooth 4-manifolds are homeo-
morphic if and only if they have isomorphic intersection forms.

In the early 50’s, Vladimir Rohlin ([118]) has showed that if the even
form q is the intersection form of a smooth s.c. 4-manifold then

τ(q) ≡ 0 mod 16.

According to Michael Freedman’s classification, there exists a unique s.c.
topological 4-manifold with intersection form E8. The signature of E8 is 8 =
rank (E8). This topological 4-manifold cannot support smooth structures!!!

In the early 80’s, Simon Donaldson ([28]) showed that this surprising
fact is not singular.

Theorem 2.4.18. (Donaldson, [28, 29]) If M is a smooth, compact,
oriented 4-manifold with negative definite intersection form qM then qM is
diagonal.

This theorem shows that of the infinitely many negative definite qua-
dratic forms only the diagonal ones can be the intersection forms of some
smooth 4-manifold. Thus any negative definite topological 4-manifold with
nondiagonalizable intersection form does not admit smooth structures !!!
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Proof of Theorem 2.4.18 We will argue by contradiction. Assume qM

is not diagonal. We distinguish two cases.

• Assume first that b1(M) = dimH1(M, R) = 0. Then χ(M) = 2 + b2,
τ(M) = −b2 so that for all σ ∈ Spinc(M) we have

d(σ) =
1
4
(c2

σ + b2 − 4) =
1
4
(qM (cσ, cσ) + rank (qM )) − 1.

By Wu’s formula cσ is a characteristic vector. Since qM is not diagonal we
deduce from Elkies’ theorem that Θ(qM ) > 0 and we can find σ ∈ Spinc(M)
such that d(σ) = 1

4Θ(qM ) − 1 > 0. Since Θ(qM ) ∈ 8Z we deduce d(σ) ∈
2Z + 1.

For any closed 2-form η on M and any metric g there exist reducible
(g, η)-monopoles corresponding to the σ. They are determined by the con-
dition

(2.4.25) F+
A + iη+ = 0.

As in §2.2.3 we write η = [η] + dα and fix a connection A0 such that

[FA0 ] = −2πi[cσ].

Any solution of (2.4.25) can be written as A = A0 − iα + iβ where β is a
closed 1-form. (Observe that such an A satisfies FA = FA0 − idα. Since
M is negative definite it automatically satisfies (2.4.25) because there are
no self-dual harmonic 2-forms.) On the other hand, since b1(M) = 0 any
closed 1-form is exact so that β = −2df . This shows that all the solutions
of (2.4.25) are Gσ equivalent.

Using the Sard-Smale theorem as in §2.2.3 we can pick η so that any
(g, η)-monopole C is regular, i.e. the second cohomology group H2

C of the
deformation complex at C is trivial. Denote by C0 = (0, A0) the unique (mod
Gσ) reducible (g, η)-monopole. In this case, using the Kuranishi picture we
deduce that away from C0 the moduli space is a smooth manifold while a
neighborhood of C0 in the moduli space Mσ(g, η) is homeomorphic to

H1
C0

/S1.

In this case H1
C0

∼= ker 6DA0
. Since coker 6DA0

= H2
C0

= 0 we deduce

dimC 6DA0
= indC 6DA0

=
1
8
(c2

σ − τ(M)) =
1
8
Θ(qM ) =

d(σ) + 1
2

.

Thus, if d(σ) = 1 near C0 the moduli space is homeomorphic to the segment
[0, 1) while if d(σ) > 1 it looks like a cone over ±CP

d(σ)−1
2 .

If we chop out a small neighborhood of C0 in Mσ(g, η) we obtain a
smooth, compact, orientable manifold X with boundary ±CP

d(σ)−1
2 .
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If d(σ) = 1 then X is a smooth, compact oriented one-dimensional man-
ifold with boundary consisting of only one component. This is plainly im-
possible.

If d(σ) > 1 observe that the restriction of the universal line bundle Uσ to
∂X is ± the tautological line bundle over ±CP

d(σ)−1
2 and thus is nontrivial.

More precisely (Ωσ = c1(Uσ))∫
∂X

Ω
d(σ)−1

2
σ = ±1.

The last equality is impossible since Uσ extends over X and by Stokes’
theorem we have ∫

∂X
Ω

d(σ)−1
2

σ =
∫

X
dΩ

d(σ)−1
2

σ = 0.

This contradiction completes the proof of Theorem 2.4.18 in the case b1(M) =
0.

• b1(M) > 0. We will reduce this case to the previous situation by a simple
topological trick.

Choose a basis c1, · · · , cb1 of H1(M, Z)/Tors and represent each of these
cycles by smoothly embedded S1’s. We can “kill” the homology class carried
by each of these cycles by surgery (see [51]). This operation can be briefly
described as follows.

Observe first that a tubular neighborhood N of a smoothly embedded
S1 ↪→ M is diffeomorphic to D3 × S1 where Dk denotes the unit ball in
Rk. Fix such a diffeomorphism so that ∂N ∼= S2 × S1. Now remove N to
obtain a manifold with boundary S2×S1 to which we attach the handlebody
H = S2 × D2 (which has ∂H = S2 × S1). This operation will kill each of
the classes ci but will not affect H2/Tors and the intersection form of M
since the classes ci are not torsion classes (use the Poincaré duals of ci to see
this). In the end we obtain a smooth manifold with the same intersection
form but with b1 = 0. This places us in the previous situation. The proof
of Theorem 2.4.18 is now complete. ¥

Exercise 2.4.2. Prove that the above sequence of surgeries does not affect
the intersection form, as claimed.

Remark 2.4.19. Donaldson’s theorem states that a smooth, simply con-
nected, negative definite 4-manifold X cannot be too complicated arithmeti-
cally: its intersection form is the simplest possible.

If we remove the negativity assumption, so that the intersection form
qX is indefinite, then qX has a much simpler from. If X is not spin then qX
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is odd and thus diagonal.1 If X is spin then qX is even and thus it has the
form

qX = aE8 + bH, a =
1
8
τ(q), 8|a| + 2b = rank (q).

In this case the integers (a, b), b > 0, represent a measure of the complexity of
qX . Rohlin’s theorem states there are restrictions on (a, b). More precisely,
a must be an even integer. The celebrated 11/8-th conjecture states that
there are even more drastic restrictions in this case, more precisely

11|a| =
11
8
|τ(q)| ≤ rank (qX) = 8|a| + 2b.

This inequality is optimal because equality is achieved when X is the K3
surface (see the next chapter). Using Seiberg-Witten theory M. Furuta has
proved a 10/8-th theorem (see [45], or the simpler approach in [22]). More
precisely, he showed that

10|a| + 1 ≤ rank (q) = 8|a| + 2b.

1The example mCP2#nCP2
shows that any odd form is the intersection form of a smooth,

s.c. 4-manifold.





Chapter 3

Seiberg-Witten
Equations on Complex
Surfaces

Anybody who is not shocked by this subject has failed to
understand it.

Niels Bohr

The Seiberg-Witten equations are very sensitive to the background geom-
etry. In this chapter we study some of the effects a complex structure has
on the Seiberg-Witten equations and, in particular, on the Seiberg-Witten
invariants.

We will see that, very often, the complex structure leads to information
so detailed about monopoles that we will be able to explicitly describe all of
them and, in particular, count them.

3.1. A short trip in complex geometry

This section surveys some basic facts of complex geometry which are ab-
solutely necessary in our study of monopoles. This survey is by no means
complete or balanced but it is targeted to the applications we have in mind.
It should motivate the reader not familiar with this subject to consult the
references [9, 10, 39, 49, 54, 59] which served as sources of inspiration.

3.1.1. Basic notions. Suppose M is a, compact complex n-dimensional
manifold without boundary and E → M is a holomorphic vector bundle as
defined in Section 1.4. We denote by OM (E) the sheaf of local holomorphic

193
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sections of E, by Op
E the sheaf of holomorphic local sections of Λp,0T ∗M ⊗E

and by H∗(M,Op
M (E)) the Čech cohomology of the sheaf Op

M (E). When
p = 0 we will write Hq(M, E) instead of Hq(M,OM (E)) and when E is the
trivial holomorphic line bundle we will drop E from the notation.

A divisor on M is intuitively a codimension-1 complex subvariety. More
rigorously a divisor is defined by an open cover (Uα) of M and nontrivial
meromorphic functions fα : Uα 99K C (i.e. holomorphic maps fα : Uα →
CP1) such that fα/fβ is a nowhere vanishing holomorphic function on Uαβ .
The loci ord(fα) := f−1

α ({0,∞}) patch-up to a codimension-1 subvariety in
M called the support of the divisor and denoted by supp (D).

We consider two descriptions (Uα, fα) and (Va, ga) to be equivalent if
there is a cover (Wi) finer then both covers (U•) and (V•) with the following
property. For every i, α, a such that Wi ⊂ Uα ∩ Va there exists a nowhere
vanishing holomorphic function h : Wi → C so that fα = h · ga. We denote
by Div (M) the space of divisors on M .

The previous definition captures the subtle notion of multiplicity. For
example, if the divisor D is given by the collection (fα) then the collec-
tion (f2

α) defines (in general a different) divisor, denoted by 2D, which has
identical support.

A divisor described by the cover of M by itself and a (nontrivial) mero-
morphic function f : M 99K C is called principal. We will denote this divisor
by (f) and by PDiv (M) the subspace of principal divisors.

If D is a divisor given by a collection (Uα, fα) then we can regard the
collection of holomorphic functions

gβα = fβ/fα : Uαβ → C∗

as a gluing cocycle for a holomorphic line bundle over M . Two equivalent
descriptions of the divisor D lead to isomorphic line bundles. We will denote
this isomorphism class by [D]. With this interpretation, we can regard the
collection (fα) as a meromorphic section fD of [D]. Two equivalent descrip-
tions lead to meromorphic sections which differ by a nonzero multiplicative
constant. We see that the converse statement is true: any divisor can be
viewed as described by a meromorphic section of a holomorphic line bundle.

We can define an operation on Div (M) as follows. If Di, i = 1, 2,
are divisors given by the same cover (Uα) (this can always be arranged by
passing to finer covers) and meromorphic functions fα,i : Uα 99K C then
D1 + D2 is the divisor given by the cover Uα and functions fα,1fα,2. We let
the reader check that (Div (M), +) is an Abelian group.

One can give a more geometric description of the notion of divisor. First
define a hypersurface of M to be a closed subset V locally defined as the zero
set of a holomorphic function. A hypersurface may or may not be a smooth



3.1. A short trip in complex geometry 195

Singular and reducible

Singular and irreducible

Figure 3.1. Singular hypersurfaces

manifold. A point p on a hypersurface V is called smooth if there exists a
holomorphic function f defined in a neighborhood U of p such df(p) 6= 0
and U ∩ V = f−1(0). We denote by V ∗ the set of smooth points of V . V is
said to be irreducible if V ∗ is connected (see Figure 3.1).

Let us point out a subtlety of this definition. The line z2 = 0 in C2

can be defined by many equations: z2 = 0, z3
2 = 0 etc. These equations

define different divisors. The origin (0, 0) is not a smooth point for the
defining equation z3

2 = 0 but according to the definition it is a smooth
point of this hypersurface since there exists a defining equation, z2 = 0, for
which the origin is a smooth point. In modern language, when we think of
a hypersurface as a subscheme, we assume it is reduced. In less rigorous
terms, we do not consider defining equations of the type

fn = 0.

We will always “reduce” them to f = 0. For more details we refer to [31,
49]. The hypersurfaces behave in many respects like smooth submanifolds:
the compact ones carry nontrivial homology classes and have finite volume.
Moreover, we have the following important fact ([75]) .

Proposition 3.1.1. Suppose V is a hypersurface in a compact Kähler man-
ifold M of complex dimension n. Then V defines a nontrivial homology class
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in H2n−2(M, Z) which is not torsion and, moreover,

〈ωn−1, V 〉 =
∫

V
ωn−1 = (n − 1)! vol (V ) > 0.

Putting together the (reduced) local equations of V we obtain a divisor
on M which we continue to denote by V . We have the following result (see
[49]).

Proposition 3.1.2. The group Div (M) is isomorphic to the free abelian
group generated by the irreducible hypersurfaces in M .

Thus we can think of a divisor as a collection of irreducible hypersurfaces
with attached multiplicities. The divisors on a curve (complex dimension
1) are finite collections of points with multiplicities while on a surface the
divisors are finite collections of curves with multiplicities. (A curve on a
surface is by definition an irreducible hypersurface.)

If f : M 99K C is a meromorphic function then the divisor associated
to the hypersurface f−1(0) (resp. f−1(∞)) is called the zero divisor (resp.
the polar divisor) of f and is denoted by (f)0 (resp. (f)∞). The difference
(f) := (f)0 − (f)∞ is called the divisor determined by f . All principal
divisors have the form (f) for some meromorphic function f .

Two divisors D1 and D2 are said to be linearly equivalent, and we write
this D1 ∼ D2, if the corresponding holomorphic line bundles [D1] and [D2]
are isomorphic. We let the reader check that this agrees with the classical
definition D1 ∼ D2 ⇔ D1 − D2 ∈ PDiv (M).

If we introduce the Picard group Pic (M) of isomorphism classes of holo-
morphic line bundles over M we see that we have constructed an injective
morphism of Abelian groups

Div (M)/PDiv (M) → Pic (M).

For a proof of the following result we refer to [49].

Proposition 3.1.3. If M is algebraic, i.e. it is a complex submanifold of
a projective space CPN then the morphism

Div (M)/PDiv (M) → Pic (M)

is an isomorphism.

The elements of Pic (M) are described by holomorphic gluing cocycles
and thus can be identified with the Čech cohomology group H1(M,O∗)
where O∗ denotes the multiplicative sheaf of nowhere vanishing holomorphic
functions. The short exact sequence of sheaves

0 → Z → O → O∗ → 0
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leads to a long exact sequence

· · · → Pic (M) ∼= H1(M,O∗) δ→ H2(M, Z) → · · · .

For any holomorphic line bundle L the class δ(L) is precisely the topological
first Chern class c1(L).

A divisor D is called effective (and we write this D ≥ 0) if the corre-
sponding section fD of [D] is holomorphic. Equivalently, this means that D
is described by an open cover (Uα) and holomorphic functions fα : Uα → C.
Any effective divisor can be written as a sum

∑
i niVi where ni are nonneg-

ative integers and Vi are divisors associated to irreducible hypersurfaces.

Example 3.1.4. Suppose V is a hypersurface. Continue to denote by V the
homology class in H2n−2(M, Z) determined by V . The divisor V canonically
defines a holomorphic section fV of [V ] satisfying (fV ) = (fV )0 = V . The
Gauss-Bonnet-Chern theorem shows that the homology class carried by V is
the Poincaré dual of c1([V ]). That is why when no confusion is possible we
will simultaneously denote by V both the line bundle [V ] and the cohomology
class c1([V ]).

For any divisor D on M we denote by L(D) the space of meromorphic
functions f such that (f) + D ≥ 0. (By definition the identically zero
function is included in L(D).) Observe that we have a map

iD : L(D) → H0(M, [D])(= the space of holomorphic sections of [D])

described by
f 7→ f · fD.

This map is injective, on account of the unique continuation principle. It
is also surjective because for every holomorphic section s of [D] the ratio
s/fD, defined in the obvious way, is a meromorphic section of the trivial line
bundle (hence a meromorphic function). Now observe that

(s/fD) + D = (s) − (fD) + D = (s) ≥ 0.

We denote by |D| the projective space P(L(D)). Equivalently,

|D| = P
(
H0(M, [D])

)
.

|D| is called the complete linear system generated by D. A projective sub-
space of |D| is called a linear system. A linear system of dimension 1 is
called a pencil. The complete linear system can be geometrically described
as the space of effective divisors linearly equivalent to D. The base locus of
a linear system L ⊂ |D| consists of all points p ∈ M which belong to the
supports of all divisors in L. Equivalently, if we think of L as a subspace
of P( H0(M, [D]) ) then the base locus is the intersection of the zero loci of
the sections in L. We will denote the base locus by B(L).
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Any point p ∈ M \ B(L) defines a hyperplane Hp in L consisting of the
divisors containing p, or equivalently, of the holomorphic sections in L which
vanish at p. The correspondence p → Hp defines a holomorphic map

iL : M \ B(L) → L∗ = the dual of the projective space L.

Definition 3.1.5. A divisor D on a complex manifold M is called very
ample if B(|D|) = ∅ and the map i|D| : M → |D|∗ is an embedding. D is
called ample if kD is very ample for k À 0.

Example 3.1.6. Consider a hyperplane H in CPN . Its associated line
bundle [H] is the dual of the tautological line bundle. For every positive
integer d, the holomorphic sections of d[H] can be viewed as homogeneous
complex polynomials of degree d in N + 1 variables. Thus

dimH0(M, d[H]) =
(

d + N

d

)
so that

dim |dH| =
(

d + N

d

)
− 1.

We can construct a pencil in |dH| by choosing two linearly independent
homogeneous polynomials A, B of degree d. The pencil is the projective
line L defined by the linear space

{αA + βB; α, β ∈ C}.

The pair [α : β] defines projective coordinates on L∗. The base locus is the
variety

A−1(0) ∩ B−1(0) ⊂ CPN .

The map

iL : CPN \ B(L) → CP1

is described explicitly as follows: iL(p) = [α : β] if and only if αA(p) +
βB(p) = 0. We can visualize the pencil as a “fibration” CPN 99K CP1.

Suppose V is a codimension-1 submanifold of M . The associated holo-
morphic section fV of [V ] vanishes in a nondegenerate fashion precisely along
V . If ∇ is a connection on [V ] then we get an adjunction map

a : TM |V → [V ] |V , X 7→ ∇XfV

vanishing precisely along the tangent bundle of V because fV is nondegen-
erate so that a induces an isomorphism of real bundles

a : NV → [V ] |V
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where NV denotes the normal bundle to V ↪→ M . Since fV is holomorphic
the adjunction map preserves the complex structures so that we have an
isomorphism of holomorphic line bundles

(3.1.1) [V ] |V ∼= NV .

We can now rewrite the adjunction formula of §2.4.2 as

(3.1.2) KV
∼= (KM ⊗ [V ]) |V .

where KM denotes the canonical line bundle of M , KM = Λn,0T ∗M .
A large amount of information about the embedding V ↪→ M is con-

tained in the following structural short exact sequence:

0 → OM
fV ⊗−→ OM ([V ]) r→ OV ([V ] |V ) → 0

where the last arrow is the restriction map. If L is a holomorphic line bundle
we can take the tensor product of the above sequence with the line bundle
L ⊗ [−V ] and we obtain

(3.1.3) 0 → OM (L ⊗ [−V ])
fV ⊗−→ OM (L) r→ OV (L |V ) → 0

As in Sec. 1.4 set
Ωp,q(E) := C∞(Λp,qT ∗M ⊗ E).

We can form the Dolbeault complex

0 → Ωp,0(E) ∂̄E−→ Ωp,1(E) ∂̄E−→ · · · ∂̄E−→ Ωp,n(E) → 0

whose cohomology is denoted by Hp,∗
∂̄

(M, E).

Theorem 3.1.7. (Dolbeault) There exist natural isomorphisms

Hq(M,Op
M (E)) ∼= Hp,q

∂̄
(M, E), q = 0, 1, · · · , n.

Fix a Hermitian metric g = gM on TM and a Hermitian metric h = hE

on E. Then we can form the formal adjoints of the operators

∂̄E : Ωp,q(E) → Ωp,q+1(E).

The formal adjoint can be explicitly described in terms of the conjugate
linear Hodge operator

∗E : Ωp,q(E) → Ωn−p,n−q(E∗)

defined as in (1.4.20) of §1.4.2. More precisely we have (see [49])

∂̄∗
E = − ∗E ∂̄E∗ ∗E .

We can form the Laplacian

∆∂̄ := ∆∂̄E
:= ∂̄E ∂̄∗

E + ∂̄∗
E ∂̄E .

Since ∂̄2
E = (∂̄∗

E)2 = 0 we have

∆∂̄ = (∂̄E + ∂̄∗
E)2
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and a simple integration by parts shows that

∆∂̄ω = 0 ⇔ ∂̄Eω = ∂̄∗
Eω = 0, ω ∈ Ω∗,∗(M).

A differential form satisfying one of the equivalent conditions above is called
∂̄-harmonic. We will denote by Hp,q

∂̄
(M, E) the space of ∂̄-harmonic E-

valued (p, q)-forms. We want to emphasize that this space depends on the
metrics gM and gE . However, its dimension depends only on the complex
structure of M ! More precisely, we have the following important result.

Theorem 3.1.8. (Hodge) All the spaces Hp,q

∂̄
(M, E) are finite-dimensional

and the natural maps

Hp,q

∂̄
(M, E) → Hp,q

∂̄
(M, E)

are isomorphisms. In particular, the space of holomorphic global sections of
E is finite-dimensional since it is isomorphic to H0,0

∂̄
(M, E).

We set

hp,q(E) = hp,q
M (E) := dimC Hp,q

∂̄
(M, E), hp(E) := dimC H0,p

∂̄
(M, E)

and

χp(E) :=
∑

q

(−1)qhp,q
M (E).

When p = 0 we write χ(E) instead of χ0(E). When E is the trivial holo-
morphic line bundle, we write hp,q

M instead of hp,q
M (E) and we set

χhol(M) := χ0(M, E) =
n∑

q=0

(−1)qh0,q
M .

The integer h0,1
M is denoted by q(M) and is called the irregularity. The

integer (−1)n(χhol(M)− 1) is called the arithmetic genus and is denoted by
pa(M).

The numbers Pk(M) = h0(M, Kk
M ) are called the plurigenera of M .

P1(M) is usually denoted by pg(M) and is called the geometric genus of M .
Observe that

pg(M) = hn,0(M).

Theorem 3.1.9. (Riemann-Roch-Hirzebruch)

χ(E) =
∫

M
td(M) ∧ ch(E)

where td(M) denotes the Todd class of the complex bundle TM while ch(E)
denotes the Chern character of E.
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In the above integral only the degree 2n part of the nonhomogeneous
form td(M) ∧ ch(E) is relevant. We present a few examples particularly
important in the sequel. We consider only the case when E is a complex
line bundle. We will use additive notation for the tensor products and the
duals of line bundles and we will frequently identify a line bundle with its
(topological) Chern class or its Poincaré dual.

• dimC M = 1. Thus M is a Riemann surface of genus g. Then

td(M) = 1 +
1
2
c1(M) = 1 − 1

2
KM , ch(E) = 1 + c1(E)

so that
χ0(M, E) =

∫
M

c1(E) +
1
2

∫
M

c1(M).

The first integral is an integer called the degree of E and denoted by deg E
and the second integral is equal to (2 − 2g) by the Gauss-Bonnet theorem.
We conclude

(3.1.4) χ0(M, E) = deg E + 1 − g.

• dimC M = 2. In this case

td(M) = 1 +
1
2
c1(M) +

1
12

(c1(M)2 + c2(M)),

ch(E) = 1 + c1(E) +
1
2
c1(E)2.

Identifying ci(M) with −KM and c1(E) with E we deduce

χ0(M, E) :=
1
2
E(E − KM ) +

1
12

∫
M

c1(M)2 + c2(E).

Using the Gauss-Bonnet-Chern formula∫
M

c2(M) = χM (= Euler characteristic of M),

the Hirzebruch signature formula

τM =
1
3

∫
M

p1(M)

and the universal identity

p1(M) = c1(M)2 − 2c2(M),

we conclude that

(3.1.5) K2
M = 2χM + 3τM

and
χ0(M, E) =

1
2
E(E − KM ) + χhol(M)
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(3.1.6) =
1
2
E(E − KM ) +

1
12

(K2 + χM ) =
1
2
E(E − KM ) +

1
4
(χM + τM ).

(Above, the multiplication denotes the intersection pairing on the 4-manifold
M .)

Observe that there is a natural, complex bilinear pairing

〈•, •〉 : Ω0,q(E) × Ωn,n−q(E∗) → C

defined by

〈η ⊗ u, ω ⊗ v〉 =
∫

M
〈u, v〉η ∧ ω,

∀u ∈ C∞(E), v ∈ C∞(E∗), η ∈ Ω0,q(M), ω ∈ Ωn,n−q(M). The above
pairing can be regarded as a pairing

〈•, •〉 : Ω0,q(E) × Ω0,n−q(KM ⊗ E∗) → C.

Clearly this map induces a bilinear pairing

(3.1.7) 〈•, •〉 : H0,q

∂̄
(M, E) × H0,n−q

∂̄
(M, KM ⊗ E∗) → C

and thus natural complex linear maps

(3.1.8)


H0,q

∂̄
(M, E) → H0,n−q

∂̄
(M, KM ⊗ E∗)∗

H0,n−q

∂̄
(M, KM ⊗ E∗) → H0,q

∂̄
(M, E)∗.

Theorem 3.1.10. (Serre duality) The pairing (3.1.7) is a duality, i.e.
the natural maps (3.1.8) are isomorphisms.

Using the natural metric on Hp,q

∂̄
to identify

H0,n−q

∂̄
(M, KM ⊗ E∗) ∼= H0,n−q

∂̄
(M, KM ⊗ E∗)∗,

H0,q

∂̄
(M, E) ∼= H0,q

∂̄
(M, E)∗

we observe that the maps in (3.1.8) are precisely the complex linear maps
induced by ∗E ,

∗E : H0,q

∂̄
(M, E) → H0,n−q

∂̄
(M, KM ⊗ E∗) etc.

Observe that Serre duality implies

(3.1.9) h0,q
M (E) = h0,n−q

M (KM ⊗ E∗).

If E is the trivial line bundle the above equality becomes

(3.1.10) h0,q
M = h0,n−q

M (KM ) = hn,n−q
M

and in particular
pg(M) = hn,0

M = h0,n
M .
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Instead of the Cauchy-Riemann operators ∂̄E : Ωp,q(E) → Ωp,q+1(E) we
can use their conjugates

∂E : Ωp,q(E) → Ωp+1,q(E).

We can form similar complexes

0 → Ω0,q(E) ∂E−→ Ω1,q(E) ∂E−→ · · · ∂E−→ Ωn,q(E) → 0.

Their cohomology spaces are denoted by Hp,q
∂ (M, E). Again, by choosing

Hermitian metrics on TM and E we can form the Laplacian

∆∂E
= ∂E∂∗

E + ∂∗
E∂E = (∂E + ∂∗

E)2

whose kernel we denote by Hp,q
∂ (M, E).

In the remainder of this section we will assume the metric on TM is
Kähler unless otherwise indicated.

Assume E is the trivial line bundle equipped with the trivial Hermitian
metric. Using the Kähler identities of Sec. 1.4 we deduce

∆∂ = ∆∂̄ on Ωp,q(M)

which implies

Hp,q
∂̄

(M) = Hp,q
∂ (M) = Hq,p

∂̄
(M)

so that

(3.1.11) hp,q
M = hq,p

M , ∀p, q.

If ∆d denotes the Hodge-deRham Laplacian on (complex valued) forms on
M then

1
2
∆d = ∆∂̄

so that any ∂̄-harmonic (p, q)-form on M is also a d-harmonic form of degree
(p + q). This implies

(3.1.12) Hk
d(M) ⊗ C =

⊕
p+q=k

Hp,q

∂̄
(M).

If bk(M) denotes the k-th Betti number of M then the last identity implies

(3.1.13) bk(M) =
∑

p+q=k

hp,q
M .
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The identities (3.1.10) and (3.1.11) lead to the Hodge diamond of a Kähler
manifold. We describe it only in the case dimC M = 2.

h0,0

h0,1
... h1,0

h0,2 · · · h1,1 · · · h2,0

h2,1
... h1,2

h2,2

The above configuration is symmetric with respect to the two diagonals,
vertical and horizontal.

The Kähler identities discussed in Sec. 1.4 introduce additional, finer
structure on the spaces Hp,q

∂̄
(M). Instead of discussing the general situation,

presented beautifully in [54], we will consider only the case of interest to us,
namely dimC M = 2.

Fix a point p ∈ M . Since M is Kähler we can choose normal coordinates
(x1, y1, x2, y2) near p so that dz̄i = dxi−idyi form a local holomorphic frame
of Λ0,1T ∗

p M . Denote by ω the symplectic form determined by the Kähler
metric g = gM , i.e.

ω(X, Y ) = −Im g(X, Y ), X, Y ∈ Vect (M).

As shown in Example 1.3.3 the range of the restriction map

H2
+(M, R) ⊗ C → Λ2T ∗

p M ⊗ C

is contained in the subspace Cωp ⊕ Λ2,0T ∗
p M ⊕ Λ0,2T ∗

p M while the range of
the restriction map

H2
−(M, R) ⊗ C → Λ2T ∗

p M

is contained in the orthogonal complement of Cωp in Λ1,1T ∗
p M . This or-

thogonal complement can be defined as the kernel of the contraction map
(the dual of L - the exterior multiplication by ω)

Λp : Λ1,1T ∗
p M → Λ0T ∗

p M.

The Kähler identities in Sec. 1.4 show that the direct sum⊕
p,q

Hp,q

∂̄
(M)

is an invariant subspace of Λ so that these pointwise inclusions lead to global
ones

H2
−(M, R) ⊗ C ⊂ H1,1

ω (M) := ker( Λ : H1,1

∂̄
(M) → H0,0

∂̄
(M) )

and
H2

+(M, R) ⊗ C ⊂ LH0,0

∂̄
(M) ⊕ H2,0

∂̄
(M) ⊕ H0,2

∂̄
(M)

= Cω ⊕ H2,0
∂̄

(M) ⊕ H0,2
∂̄

(M).
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From the identity

H2(M, R) ⊗ C = Cω ⊕ H1,1
ω (M) ⊕ H2,0

∂̄
(M) ⊕ H0,2

∂̄
(M)

we deduce that the above inclusions are equalities:

(3.1.14) H2
+(M, R) ⊗ C = Cω ⊕ H2,0

∂̄
(M) ⊕ H0,2

∂̄
(M),

(3.1.15) H2
−(M, R) ⊗ C = H1,1

ω (M).

Observing that pg(M) = h2,0(M) = h0,2(M) we deduce from (3.1.14) that

(3.1.16) b+
2 (M) = 2pg(M) + 1.

The identities (3.1.14), (3.1.15) have another important consequence. Ob-
serve that the space of (1, 1)-forms is invariant under conjugation and we
can speak of real, harmonic (1, 1)-forms.

Corollary 3.1.11. (Hodge index theorem) The restriction of the in-
tersection pairing on the space of real, harmonic (1, 1)-forms on a Kähler
surface has signature (1, b−2 ).

In the case of algebraic surfaces the Hodge index theorem can be formu-
lated equivalently in more geometric terms.

According to the results of §1.4.2, given a Hermitian line bundle L → M ,
we can describe the holomorphic structures on L in terms of Hermitian
connections A such that F 2,0

A = F 0,2
A = 0. Thus the first Chern class of a

holomorphic line bundle over a Kähler surface is a real (1, 1)-class.
On the other hand, if M is also algebraic then the holomorphic line

bundles can also be described in terms of divisors, so that we have a map

(3.1.17) Div (M) → H1,1

∂̄
(M)R, D 7→ c1([D]).

Suppose now that c ∈ H2(M, Z) is such that its harmonic part lies in
H1,1

∂̄
(M). Then there exists a Hermitian line bundle L → M such that

ctop
1 (L) = c. Now we can find a Hermitian connection on L whose curvature

is harmonic and thus must be a (1, 1)-class. This shows that the image of
the map (3.1.17) is the lattice H1,1

∂̄
(M)∩H2(M, Z). Its rank, denoted by ρ,

is called the Picard number of M . Observe that ρ ≤ h1,1
M .

According to the Hodge index theorem the restriction of the intersection
form to this lattice has signature (1, ρ − 1). This implies the following.

Corollary 3.1.12. (Geometric version of the Hodge index theorem)
Suppose M is an algebraic surface. If D, E are divisors on M such that

D2 := D · D > 0 and D · E = 0

then either
E2 < 0
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or E · D′ = 0 for any divisor D′.

Definition 3.1.13. A divisor D on an algebraic surface is said to be numer-
ically equivalent to 0, and we write D ∼n 0, if D · E = 0 for any divisor E.
Two divisors D1, D2 are called numerically equivalent if D1 −D2 ∼n 0. We
denote by Num (M) the space of numerical equivalence classes of divisors.

Observe that the principal divisors are numerically equivalent to zero.
The Hodge index theorem shows that the intersection form restricts to a
nondegenerate quadratic form on Num (M). Observe that Num (M) is a
free Abelian group. It coincides with H1,1

∂̄
(M) ∩ H2(M, Z) and thus its

rank is the Picard number of M . The restriction of the intersection form to
Num (M) has signature (1, ρ − 1).

Unraveling the structure of algebraic surfaces requires a good under-
standing of the “cone” Num+(X), consisting of those divisors with positive
self-intersection.

Definition 3.1.14. A divisor D on an algebraic surface is called big if
D2 > 0.

A big divisor is not far from being effective. In fact, we have the following
result.

Proposition 3.1.15. If D is a big divisor then there exists a positive integer
such that either nD or −nD is effective.

We present the proof (borrowed from [59]) since it relies on a simple but
frequently used argument in the theory of algebraic surfaces.

Proof For every integer n we have

χ(nD) = h0(nD) + h0,2(nD) − h0,1(nD)

=
1
2
nD · (nD − K) +

1
4
(χM + τM ).

Since D2 > 0 we deduce χ(nD) → ∞ as |n| → ∞ so that, using Serre
duality, we deduce

h0(nD) + h0(KM − nD) → ∞.

If nD is not effective for any n 6= 0 we deduce from the above that

(3.1.18) h0(KM ± nD) → ∞, as |n| → ∞,

is effective for any n À 0. Choose a nontrivial holomorphic section sn of
KM − nD. This leads to an injection

H0,0(M, KM + nD) ⊗sn→ H0,0(M, 2KM )
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so that
dimC H0,0(KM + nD) ≤ dimH0,0(2K), ∀n À 0.

This is clearly impossible in view of (3.1.18). ¥

We see that there is a built-in positivity in the notion of effectiveness.
The reason behind it is essentially explained in the following simple observa-
tion: if the smooth complex curves C1, C2 embedded in an algebraic surface
M intersect transversely then they have positive intersection number

C1 · C2 > 0.

A similar result is true without the smoothness and/or the transversality
assumption. More precisely we have the following result (see [10, 39]).

Proposition 3.1.16. Suppose D1 and D2 are two effective divisors on an
algebraic surface such that their supports intersect in finitely many points.
Then

D1 · D2 ≥ 0
with equality iff their supports are disjoint.

To proceed further we need to introduce new notions.

Definition 3.1.17. A holomorphic Hermitian line bundle L → M on a
complex manifold M is called positive if there exists a Hermitian metric g
on TM such that

iFA = −Im g

where FA denotes the curvature of the Chern connection on L. L is called
negative if −L is positive.

Theorem 3.1.18. (Kodaira vanishing theorem) Suppose L is a negative
line bundle on a complex manifold M . Then

h0,q(L) = 0, ∀0 ≤ q < n.

Theorem 3.1.19. (Kodaira embedding theorem) A complex manifold
M admits positive line bundles if and only if it is algebraic. More precisely,
L is a positive line bundle if and only if there exists an ample divisor D such
that L = [D].

It follows from the Kodaira embedding theorem that the self-intersection
number of an ample divisor E on an algebraic surface M is always positive.
In fact, given any effective divisor D we have

D · E > 0

To see this observe that the divisor nE is very ample for n À 0 and so it
defines an embedding

f : M → |nE|∗.
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Then f(supp (D)) contains at most finitely many lines in |nE|∗. Now pick
a hyperplane H ⊂ |nE|∗ not containing any of these lines but containing
a point in f(supp (D)). This hyperplane intersects f(supp (D)) in finitely
many points. This hyperplane corresponds to a nontrivial section s of [nE]
whose zero set intersects D in finitely many points. This implies

(s) · D > 0.

Now observe that (s) ∼n nE so that

n(E · D) = nE · D > 0.

This extreme positivity of ample divisors characterizes them. More pre-
cisely, we have the following result.

Theorem 3.1.20. (Nakai-Moishezon) A divisor D on an algebraic sur-
face M is ample if and only if D2 > 0 and D ·E > 0 for any effective divisor
E.

For a proof we refer to [53].

Definition 3.1.21. A divisor D on an algebraic surface M is said to be
numerically effective (or nef) if D · E ≥ 0 for any effective divisor E.

Thus the ample divisors are both big and nef. However not all big and
nef divisors are ample.

Algebraic geometers are interested in a rougher classification of complex
manifolds, that given by bimeromorphisms. We present this notion only in
the case of interest to us.

Definition 3.1.22. Suppose M1 and M2 are compact complex surfaces. A
bimeromorphic map

f : M1
∼99K M2

is a surjective holomorphic map

f : M1 → M2

such that there exist analytic proper subsets Si ⊂ Mi, i = 1, 2, so that

f : M1 \ S1 → M2 \ S2

is biholomorphic. Two surfaces are called bimeromorphic if there exists
a bimeromorphic map between them. A surface is called rational if it is
bimeromorphic to CP2.

Example 3.1.23. (Complex blow-up) Suppose M is a complex surface.
Fix a point p ∈ M and local coordinates (z1, z2) in a neighborhood U of p
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so that we can identify p with the origin of C2 and U with the unit disk
D ⊂ C2 centered at the origin. We can regard U \ {p} as an open subset of

Ũ := {(z, `) ∈ U × CP1; z ∈ `} ⊂ C̃2

where C̃2 is the total space of the tautological line bundle over CP1 and Ũ
is an open neighborhood of the zero section. There is a natural holomorphic
map

π : Ũ → U \ {p}, (z, `) 7→ z

such that E := π−1(0) coincides with the zero section. Moreover π : Ũ \E →
U \ {p} is biholomorphic. The blow-up of M at p, denoted by M̃p, is the
manifold obtained by gluing Ũ \ E to M \ {p} using the map π. Observe
that π extends to a natural surjection

π : M̃p → M.

This map is bimeromorphic and it is called the blow-down map. Its inverse
(defined only on M \ {p}) is called the blow-up map. The zero section E is
a smooth rational curve (i.e. a holomorphically embedded CP1 ↪→ M̃p) with
self-intersection −1. E is called the exceptional divisor of the blow-up.

If C is a complex curve on M then the closure of π−1(C \ {p}) is called
the proper transform of C and is denoted by π∗(C). One can show that

π∗(C)2 = C2 − multp(C).

The nonnegative integer multp(C) is called the multiplicity of C at p. It is
0 if p 6∈ C, it is 1 if C is smooth at p and, in general, it is equal to the order
of vanishing at p of a defining equation for C near p.

The blown-up manifold M̃p can itself be blown-up and so on. Iterating
this procedure we obtain an iterated blow-up manifold X and a natural
surjection

π : X → M

called the iterated blow-down map.

Exercise 3.1.1. Suppose M is a complex manifold and M̃ is the blow-up
of M at some point. If σ : M̃ → M denotes the natural projection then

KM̃ = σ∗KM + [E]

where E ⊂ M̃ denotes the exceptional divisor.

In some sense, the above example captures the structure of any bimero-
morphic map. More precisely, we have the following important result (see
[10, 49]).
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Theorem 3.1.24. (Zariski) If M1 → M2 is a bimeromorphic map between
algebraic surfaces then there exist an algebraic surface X and surjective holo-
morphic πi : X → Mi with the following properties.
(i) The diagram below is commutative.

X

M1 M2

[
[]π2�

��
π1

w
f

(ii) X is an iterated blow-up of both M1 and M2 and both maps π1 and π2

are iterated blow-down maps.

The above result shows that the blow-up operation plays a special role in
the theory of algebraic surfaces. It is therefore important to know if a given
surface is a blow-up of another. Example 3.1.23 shows that for an algebraic
surface to be a blow-up it is necessary that there exists a holomorphically
embedded CP1 ↪→ X with self-intersection −1. The next remarkable result
shows that this condition is also necessary. For a proof we refer to [10, 49].

Theorem 3.1.25. (Castelnuovo-Enriques) Suppose X is an algebraic
surface containing a smooth rational curve with self-intersection −1. Denote
by E′ the image of this embedding. Then there exist an algebraic surface M ,
a point p ∈ M and holomorphic maps

F : X → M̃p, f : X → M

such that the following hold.
(i) The diagram below is commutative.

X M̃p

M

w
F

[
[
[[]f
u
π .

(ii) F is biholomorphic and f−1(p) = E′.
The manifold M is called the blow-down of X.

Definition 3.1.26. A complex surface is called minimal if it contains no
smooth rational curves (i.e. holomorphically embedded CP1’s) with self-
intersection (−1).

Thus, an algebraic surface is minimal if it cannot be blown down, i.e. it
is not the blow-up of any surface.

We conclude our short survey in complex geometry with an important
topological result due to S. Lefschetz.
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Theorem 3.1.27. (Lefschetz hypersurface theorem) Suppose M ↪→
CPN is an algebraic manifold of (complex) dimension n and F is a hyper-
surface in CPN intersecting M transversely. Then the inclusion induced
morphisms

Hq(M ∩ F, Z) → Hq(M, Z), πq(M ∩ F ) → πq(M)

are isomorphisms for i < n − 1 and surjections for q = n − 1.

For a very nice presentation of this theorem we refer to [73].

Corollary 3.1.28. Any smooth hypersurface in CPn, n ≥ 3, is simply con-
nected.

Exercise 3.1.2. Suppose X is Kähler manifold of dimension n ≥ 3 and
L → X is an ample line bundle. Suppose there exists a holomorphic section
u of L with transversal zero set Y = u−1(0). Show that the inclusion

Y ↪→ X

induces isomorphisms Hk(Y, Z) ∼= Hk(X, Z) and πk(Y ) ∼= πk(X) for k ≤
n − 2.

3.1.2. Examples of complex surfaces. To give the reader a feeling about
the general notions discussed in the previous subsection, we will, for a while,
take a side road and present some beautiful algebraic geometric landscapes.
In the sequel we write Pn for CPn.

So far, the only examples of complex surfaces we know are the projective
plane P2, its iterated blow-ups and the products of pairs of Riemann surfaces.
There is another unlimited source of examples: complex surfaces as zero sets
of families of homogeneous polynomials.

Example 3.1.29. (Quadrics in P3) The space of quadratic homogeneous
polynomials in four variables has dimension

(
5
2

)
= 10 and each such poly-

nomial can be viewed as a holomorphic section of the line bundle 2H on
P3.

If Q(z0, · · · , z3) is such a polynomial, the implicit function theorem im-
plies that the zero set Q = 0 is a smooth submanifold of P3 if and only if
Q is nondegenerate as a quadratic form. On the other hand, all complex
nondegenerate quadratic forms in four variables have the same canonical
(diagonal) form. This implies that all quadrics in P3 are projectively equiv-
alent, meaning that any two are related by a projective isomorphism of the
ambient space P3. We thus have the freedom of choosing Q in any way we
want. Let

Q = z0z3 − z1z2.
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The zero set S of Q is the image of the Segre embedding

P1 × P1 → P3, ([s0 : s1], [t0 : t1]) 7→ [s0t0 : s0t1 : s1t0 : s1t1]

which shows that the quadric Q = 0 is biholomorphic to P1 × P1. This is
a special example of a ruled surface. Observe that S is spanned by two
families of lines: the A-lines

A[t0:t1] = P1 × [t0 : t1], [t0 : t1] ∈ P1,

and the B-lines

B[s0:s1] = [s0 : s1] × P1, [s0 : s1] ∈ P1.

These lines have a nice intersection pattern. No two distinct lines of the
same type meet while any A-line intersects any B-line in a unique point.

The quadrics are rational surfaces. To see this consider again the above
quadric S ⊂ P3 and p = [1 : 0 : 0 : 0] ∈ S. The projective tangent plane to
S at p intersects the quadric S along the lines

`1 := [s0 : 0 : s1 : 0] = A[1:0], [s0 : s1] ∈ P1,

and
`2 := B[1:0] = [t0 : t1 : 0 : 0], [t0 : t1] ∈ P1.

Now project S from p onto a plane H ⊂ P3. This means that to each q 6= p
we associate the point π(q) ∈ H, the intersection of the line pq with H. The
map π : S \ {p} → H is holomorphic but does not extend as a holomorphic
map S → H. Denote by qi the point where the line `i intersects H.

If we blow up S at p the points on the exceptional divisor correspond
to the lines through p tangent to S and each of these lines intersects H in
a unique point. This shows that the projection S \ {p} → H leads to a well
defined holomorphic map

π̃ : S̃p → H.

Denote by ˆ̀
i the proper transform of `i in the blow-up. Observe that ˆ̀

i are
smooth rational curves of self-intersection −1. The restriction

π̃ : S̃p \ (ˆ̀1 ∪ ˆ̀
2) → H

is one-to-one while π̃(ˆ̀i) = qi. Using the Castelnuovo-Enriques theorem we
can blow down the curves ˆ̀

i. Denote by X the resulting surface. π̃ descends
to a biholomorphism X → H. Thus we arrived at H ∼= P2 by blowing up
once and blowing down twice, which shows that S is rational.

Exercise 3.1.3. Show that any line on a quadric is either an A- or a B-line.

Example 3.1.30. (Hirzebruch surfaces) We have seen that a quadric
can be viewed as the total space of a holomorphic family of lines (P1’s) pa-
rameterized by P1. The Hirzebruch surfaces Fn, n ≥ 0, are twisted versions
of such families.
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Define F0 := P1×P1 and F1 = F1(`) as the graph of the projection from
a point p0 ∈ P2 to a line ` ⊂ P2 not containing p0. More precisely

F1 = {(x, y) ∈ P2 × `; x ∈ p0y}

where p0y denotes the line determined by the points p0 and y. Observe
that F1 coincides with the blow-up of P2 at p0. We denote by E ↪→ F1 the
exceptional divisor. There is a natural map

π : F1(`) ∼= P̃2
p0

→ E ∼= P1

defined as follows. If p ∈ E then set π(p) = p. If p is not on the exceptional
divisor then it corresponds to a unique point on P2 not equal to p0; we
continue to denote by p this point on P2. The line p0p defines a unique
point on E which we denote by π(p). π is holomorphic and its fibers are
all lines, more precisely, the proper transforms of the lines through p0. The
proper transform of ` is a line ˜̀ on F1 with self-intersection 1. We will
say that E is the 0-section of the fibration π : F1 → P1 and that ˜̀ is the
∞-section.

More generally, for n ≥ 0 consider the line bundle −nH → P1. We
denote by Fn the projectivization of the rank-2 vector bundle

En = C ⊕ (−nH) → P1

meaning the bundle over P1 whose fiber over p ∈ P1 is the projective line
P(En(p)). By definition, Fn is equipped with a holomorphic map

πn : Fn → P1

whose fibers are projective lines. The section 1 ⊕ 0 of En defines a section
of Fn called the 0-section and denoted by D0. Observe that if s is a section
of nH it defines a section of

P((nH) ⊕ C) ∼= P(C ⊕ (−nH))

called the ∞-section and denoted by D∞. D0 and D∞ are divisors and we
will denote the classes they determine in H2(Fn, Z) by the same symbols.
Also, we denote by F the cohomology class carried by a fiber. Since D0 and
D∞ are sections we have

D0 · F = D∞ · F = 1.

Clearly
F · F = 0.

Since D0 comes from the zero section of −nH which has degree −n we have

D2
0 = −n.
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The homotopy exact sequence of a fibration shows that Fn is simply con-
nected while Gysin’s exact sequence shows that H2(Fn, Z) = ZF ⊕ZD0, so
that the intersection form of Fn is

qn =
[

0 1
1 −n

]
.

The intersection form is even iff n is even, so that Fn is spinnable iff n is
even.

From a differentiable point of view the Hirzebruch surfaces are S2-
bundles over S2 and these bundles are classified by π1(SO(3)) = Z2. This
shows that Fn is diffeomorphic to Fm if and only if n and m have the same
parity.

It is easy to compute the canonical class K of Fn. It can be written as

K = xF + yD0

so that
K · F = y, K · D0 = x − ny.

Using the adjunction formula we deduce

0 = g(F ) = 1 +
1
2
F · (F + K) = 1 +

y

2
,

0 = g(D0) = 1 +
1
2
D0 · (D0 + K) = 1 +

x − ny − n

2
.

This shows y = −2 and x = n − 2 so that

K = (n − 2)F − 2D0.

Let us observe that the zero section D0 is the unique smooth irreducible
curve on Fn with negative self-intersection. Indeed, if D were another such
curve, D 6= D0,

D = aF + bD0

then
0 ≤ D · D0 = a − nb, 0 ≤ D · F = b

and
0 > D · D = −nb2 + 2ab = b(2a − nb).

The above inequalities are clearly impossible. Thus the Hirzebrúch surfaces
Fn are minimal for n ≥ 2 and Fn is not biholomorphic to Fm if m 6= n.

If we now blow up Fn at a point p not situated on D0 we obtain a surface

F̃n → Fn.

The proper transform of the fiber F through p is a rational curve F̃ of self-
intersection −1 which can be blown down and we get a new surface F. The
pencil of fibers of Fn is transformed into a pencil of smooth rational curves of
self-intersection 0 which cover each point of F exactly once. This shows that
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F is also a ruled surface, i.e. a holomorphic fiber bundle over P1 with fibers
P1. On the other hand, the curve D0 in Fn is mapped to a smooth rational
curve R in F with self-intersection R2 = D2

0 + 1 = −n + 1. This shows that
F is biholomorphic to Fn−1 and all Hirzebruch surfaces are bimeromorphic,
and thus rational. One can show (see [49]) that any minimal rational surface
is biholomorphic to either P2 or one of the Hirzebruch surfaces Fn, n ≥ 2.

Example 3.1.31. (Cubics) Consider six points p1, · · · , p6 in general posi-
tion in P2, meaning

¦ no three are collinear and
¦ no five are on the same conic.
The space of homogeneous cubic polynomials in three variables z0, z1, z2

is
(
5
3

)
= 10-dimensional. The above six points define a four-dimensional

subspace V consisting of polynomials vanishing at the pi. Each P ∈ V
defines a cubic curve {P = 0} ⊂ P2 containing all these six points.

Any point q ∈ P2 \ {p1, · · · , p6} determines a hyperplane

Hq = {P ∈ V ; P (q) = 0}
so we get a holomorphic map

f : P2 \ {p1, · · · , p6} 3 q 7→ Hq ∈ P(V ∗).

This map can be equivalently described as follows. Fix a basis Z0, · · · , Z3

of V . Then f is the map

q 7→ [Z0(q) : · · · : Z3(q)] ∈ P3.

This map has singularities at the points pi but, by blowing up at these points
we hope to obtain a well defined map,

f̃ : P̃2
p1,··· ,p6

→ P3.

We refer the reader to [10] or [49] where it is shown that this map is well
defined, its image is a smooth degree-3 surface S in P3 and f is a biholomor-
phic map P̃2

p1,...,p6
→ S. Conversely, one can show that any smooth cubic

in P3 is biholomorphic to the blow-up of P2 at six points, not necessarily in
general position. For details we refer to [49].

The surfaces presented so far were all rational and it took some ingenuity
to establish that. Fortunately there is a very general method of deciding the
rationality of a surface.

Theorem 3.1.32. (Castelnuovo) If M is an algebraic surface such that
q(M) := h0,1(M) = 0 and p2(M) := h0(2KM ) = 0 then M can be obtained
by iterated blow-up from P2 or one of the Hirzebruch surfaces. In particular,
M is rational.
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For a proof we refer to [10] or [49].

Example 3.1.33. (Hypersurfaces in P3) The homogeneous polynomials
of degree d ≥ 1 in the variables z0, · · · , z3 form a vector space Vd of dimension

dimC Vd :=
(

d + 3
3

)
=

(d + 3)(d + 2)(d + 1)
6

.

For a generic F ∈ Vd the zero locus {F = 0} is a smooth hypersurface
X = Xd of degree 3 in the projective space P3. According to Lefschetz’
theorem Xd is simply connected for each d. Hence

q(X) =
1
2
b1(X) = 0.

To compute the main invariants of Xd we will rely on the adjunction formula.
Xd can be viewed as the zero set of a section of the line bundle dH → P3.
The adjunction formula holomorphically identifies (dH) |Xd

with the normal
bundle of Xd ↪→ P3 from which we deduce

TP3 |Xd
= TX ⊕ (dH) |X ,

ct(P3) |X= ct(X)
(
1 + (dH)t

)
|X

where ct denotes the Chern polynomial. Using the computations in §2.3.4
we deduce

(1 + tH)4 |X= ct(TX)
(
1 + (dH)t

)
|X , H4 = 0.

By setting HX := H |X and observing that H2
X = d (= the number of

intersection points of a line with X) and H3
X = 0 we obtain

1 + c1(TX)t + c2(TX)t2 = (1 + HXt)4
(
1 + (dHX)t

)−1

= (1 + HXt)4
(
1 − (dHX)t + (d2H2

X)t2
)

=
(
1 + (4HX)t + (6HX)t2

)(
1 − (dHX)t + d3t2

)
= 1 + (4 − d)HXt + (d3 − 4d2 + 6)t2.

Thus
KX = −c1(TX) = (d − 4)HX

and
K2

X = (d − 4)2H2
X = d(d − 4)2.

On the other hand, c2(TX) is the Euler class of TX and thus

χ = d(d2 − 4d + 6)

where χ denotes the Euler characteristic of X. Using the signature formula

K2
X = 2χ + 3τ
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(τ = signature) we deduce

τ =
d(4 − d2)

3
= b+

2 − b−2 .

In this case χ = b1(X) + b2(X) + b4(X) = 2 + b2(X) so that

b2(X) = d3 − 4d2 + 6d − 2 = b+
2 + b−2 .

Hence

b+
2 =

1
2
(b2 + τ) =

(d − 1)(d − 2)(d − 3)
3

+ 1

and

pg =
b+
2 − 1

2
=

(
d − 1

3

)
.

Observe that KX = w2(X) mod 2 and since X is simply connected we
deduce that the intersection form of X is even iff d is even. Equivalently,
this means Xd is spinnable iff d is even. Using the Classification Theorem
2.4.13 of §2.4.3 we can now describe explicitly the intersection form of X.

Observe that for d > 4 the line bundle KX is ample so that according
to the Kodaira vanishing theorem

Hj(X, nKX) = 0, ∀k, j > 0.

Thus, using the Riemann-Roch-Hirzebruch formula we deduce

Pn(X) = h0(nKX) = χ0(nKX) =
1
4
(χ + τ) +

1
2
n(n − 1)K2

X

=
d(d − 4)2

2
n(n − 1) +

1
4
(χ + τ).

For d < 4 we deduce that KX = (d − 4)HX is negative, as the dual of
the positive line bundle (4 − d)H |X . Using the Kodaira vanishing theorem
we deduce that the line bundles nKX , n > 0, do not admit holomorphic
sections. Hence q(X) and P2(X) = 0. Castelnuovo’s Theorem 3.1.32 once
again shows that the hypersurfaces of degree < 4 in P3 are rational.

The case d = 4 deserves special consideration and will be discussed in a
more general context in the next example. Observe only that

Pn(X4) = 1, ∀n > 0.

Example 3.1.34. (K3 surfaces) A K3 surface is a compact complex
Kähler surface X such that b1(X) = 0 and whose canonical line bundle
is topologically trivial.

Suppose X is a K3 surface. Then

q(X) =
1
2
b1 = 0.

Also
pg = dimH0(KX) = 1 = h2,0(X) = h0,2(X)
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so that

b+
2 = 2pg + 1 = 3.

Using the signature formula we deduce

2χ + 3τ = K2
X = 0

so that

2(2 + b+
2 + b−2 ) = 3(b−2 − b+

2 ).

Since b+
2 = 3 we deduce b−2 = 19 so that τ = −16. The intersection form

qX of X is even since w2(X) ≡ KX mod 2 so that, according to the
Classification Theorem 2.4.13, we deduce that

qX
∼= 3H ⊕−2E8.

M. Freedman’s theorem shows that all K3 surfaces are homeomorphic to
each other.

The smooth quartics (degree 4) in P3 are K3 surfaces. The space of
degree-4 homogeneous polynomials in variables z0, · · · , z3 form a space of
dimension 35 and thus we get a 34-dimensional family of K3 surfaces. Not
all quartics in this family are different. The group PGL4(C) (which has di-
mension 15 = 16−1) acts by change of variables on this space of polynomials
leading to isomorphic surfaces. If we mod out this action we are left with
a 19-dimensional family of K3-surfaces. We only want to mention that not
all K3 surfaces can be obtained in this manner (they form a 20-dimensional
family).

Remark 3.1.35. All K3 surfaces are diffeormorphic to each other although
not biholomorphic. In particular, all are simply connected. For more details
we refer to [9, 59].

Exercise 3.1.4. Suppose X is a K3 surface. Then KX is also holomorphi-
cally trivial.

Example 3.1.36. (Elliptic surfaces) An elliptic surface is a triple
(X, f, C) where X is a complex surface, C is a smooth complex curve (i.e.
Riemann surface) and f : X → C is a holomorphic map such that there
exists a finite set F ⊂ C with the following properties:
¦ f : X \ f−1(F ) → C \ F is a submersion.
¦ For any x ∈ C \ F the fiber f−1(x) is biholomorphic to a smooth elliptic
curve (i.e. biholomorphic to a smooth cubic in P2).

We want to present two fundamental examples of elliptic surfaces. For
a detailed presentation of this important class of complex surfaces we refer
to [40].
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Vanishing cycle Singular fiber

in a nearby fiber

Figure 3.2. A node singularity

A. Consider two smooth cubic curves C1, C2 ⊂ P2 intersecting in nine dis-
tinct points, p1, · · · , p9. Thus Ci are described as the zero sets of two ho-
mogeneous polynomials Pi, i = 1, 2, in the variables (z0, z1, z2). We get a
map

f : P2 \ {p1, · · · , p9} → P1, p 7→ [P1(p), P2(p)].

Observe that f(p) = [λ : µ] if and only if µP1(p) + λP2(p) = 0. This map
induces a well defined map

F : X = P̃2
p1,··· ,p9

→ P1

whose generic fiber is a smooth elliptic curve (i.e. a biholomorphic to a
smooth cubic on P2). The discriminant locus ∆F ⊂ P1, i.e. the set of critical
values of F , is finite. In fact, the polynomials P1, P2 can be generically
chosen so that the critical points of F are nondegenerate, i.e. near such a
point F behaves like the function z1z2 near 0 ∈ C2. Such singular fibers
have a node singularity and look like Figure 3.2. The Euler characteristic of
such a singular fiber is 1 (see Figure 3.3 for a Mayer-Vietoris based proof).

It is an elementary exercise in topology to prove that if F : S → C is
a holomorphic map whose fibers, except for finitely many F1, · · · , Fν , are
smooth complex curves of genus g then

(3.1.19) χ(S) = χ(C)χ(F ) +
ν∑

i=1

(χ(Fi) − χ(F ))

where F denotes a generic fiber. In our case χ(F ) = 0 since the generic
fibers are tori, so that

χ(X) =
ν∑

i=1

(χ(Fi) − χ(F )) = ν
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=

Figure 3.3. Chopping the node

where ν is the number of singular fibers of the fibration F : X → P1. Thus

ν := χ(X) = 12.

The canonical class of X is KX = −3H +
∑9

i=1 Ei so that, using the
Riemann-Roch theorem, we deduce

χhol(X) =
1
12

(K2
X + χ(X)) = 1.

Observe that each of the nine exceptional divisors intersects each of the
fibers of F in exactly one point and thus they can be regarded as sections of
the fibration F : X → P1. Notice that the self-intersection numbers of these
sections are all equal to −1. We will denote by E(1) the smooth 4-manifold
supporting the complex manifold X.

B. Consider two homogeneous cubic polynomials A0 and A1 in the variables
(z0, z1, z2). The equation

tn0A0(z0, z1, z2) + tn1A1(z0, z1, z2) = 0

defines a hypersurface Vn in X = P1×P2. For generic A0, A1 this is a smooth
hypersurface. The natural projection

P1 × P2 → P1

defines a holomorphic map Fn : Vn → P1. Its fiber over the point [t0 : t1] is
the cubic

C[t0:t1] = {[z0 : z1 : z2] ∈ P2; tn0A0(z0, z1, z2) + tn1A1(z0, z1, z2) = 0}.

Hence Vn is equipped with a structure of elliptic fibration. To compute
some of its invariants we will use the adjunction formula. Denote by Hi the
hyperplane class in H2(Pi, Z), i = 1, 2. The classes define by pullback classes
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in H2(X, Z) which we continue to denote by Hi. The Künneth formula shows
that

H2(X, Z) = ZH1 ⊕ ZH2, H4(X, Z) = ZH1 · H2 ⊕ ZH2
2

and
H2

1 = 0 = H3
2 , H1 · H2

2 = 1.

We have

ct(TX) = ct(TP1)ct(TP2) = (1 + H1t)2(1 + H2t)3.

The normal bundle NVn to Vn ↪→ X is (nH1+3H2) |Vn and thus it has Chern
polynomial

ct(NVn) =
(
1 + (nH1 + 3H2)t

)
|Vn .

Hence

ct(TVn) = (1 + H1t)2 |Vn (1 + H2t)3 |Vn

(
1 + (nH1 + 3H2)t

)−1
|Vn

=
(
1 + (2H1)t

)
|Vn

(
1 + (3H2)t + (3H2

2 )t2
)
|Vn

×
(
1 − (nH1 + 3H2)t + (nH1 + 3H2)2t2

)
|Vn

=

(
1 +

(
2H1 + 3H2

)
t +

(
6H1H2 + 3H2

2

)
t2

)
|Vn

×
(

1 −
(
nH1 + 3H2

)
t +

(
6nH1H2 + 9H2

2

)
t2

)
|Vn

= 1 + (2 − n)H1 |Vn t

+

(
(6n + 6)H1 · H2 + 12H2

2 − (2H1 + 3H2)(nH1 + 3H2)

)
|Vn t2

= 1 + (2 − n)H1 |Vn t +
(
3nH1H2 + 3H2

2

)
|Vn t2.

Thus

c2(TVn) = (3nH1H2 + 3H2
2 ) |Vn= ( 3nH1H2 + 3H2

2 ) · (nH1 + 3H2) = 12n.

Moreover
KVn = (n − 2)H1 |Vn

so that
K2

Vn
= 0.

Observe that the Poincaré dual of the cohomology class H1 |Vn∈ H2(Vn, Z)
is precisely the homology class carried by a fiber of Fn : Vn → P1. Using the
Riemann-Roch formula we deduce

χhol(Vn) = n.

Let us now notice that V1 is precisely the surface we considered in A since the
natural projection Vn → P2 has 9 singular fibers Fi = P1×{pi}, i = 1, · · · , 9,
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corresponding to the intersection points of the cubics A0 = 0 and A1 = 0
on P2. Each of these fibers has self-intersection −1 (why?) in Vn and thus
can be blown down.

Denote by fn : P1 → P1 the natural branched cyclic n-cover given by

[t0 : t1] 7→ [tn0 : tn1 ].

The map fn × 1 : P1 × P2 → P1 × P2 induces a holomorphic map
gn : Vn → V1 such that the diagram below is commutative

Vn V1

P1 P1
u

Fn

w
gn

u
F1

w
fn

Thus, we can regard the fibration Fn : Vn → P1 as a pullback of the fibration
F1 : V1 → P1. A simple argument involving Lefschetz’ hypersurface theorem
implies π1(Vn) = 0 (see [40, Sec. 2.2.1] for a different explanation). In
particular, this shows V2 is a K3 surface. Moreover, using the equality

χhol(Vn) = 1 + pg(Vn) (q(Vn) =
b1

2
= 0)

we deduce
pg(Vn) = n − 1

so that
b+
2 (Vn) = 2pg(Vn) + 1 = 2n − 1.

Using any section of F1 : V1 → P1 we obtain by pullback a section
Sn : P1 → Vn which defines a holomorphic embedding of P1 in Vn, that is, a
smooth rational curve Sn on Vn. Using the genus formula we deduce

0 = g(Sn) = 1 +
1
2
Sn · (KVn + Sn).

On the other hand, we have KVn = (n− 2)F where F denotes the Poincaré
dual of the homology class of a fiber of Fn : Vn → P1. Observe that Sn ·F = 1
since Sn is a holomorphic section. Hence

0 = 1 +
1
2
(n − 2 + Sn · Sn)

so that
Sn · Sn = −n.

In particular, on the K3 surface V2 we have S2 · S2 = −2. We will denote
by E(n) the smooth 4-manifold Vn. We refer to [51, Chap. 3,7] for different
C∞-descriptions of these important examples.

Exercise 3.1.5. Prove the identity (3.1.19).
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Exercise 3.1.6. Show that the homology class F carried by a fiber of Fn :
Vn → P1 is primitive , i.e. it cannot be written as nF ′, n > 1, F ′ ∈
H2(E(n), Z). Use this information to describe the intersection form of E(n)
and then to conclude that E(n) is spin if and only if n is even.

Exercise 3.1.7. Prove that Vn is simply connected using Lefschetz’ hyper-
surface theorem.

Exercise 3.1.8. Suppose X is an algebraic K3 surface which contains a
smooth complex curve C such that C2 = 0. Prove the following:
(a) Show that g(C) = 0.
(b) Show that dimH0([C]) = 2 and the complete linear system determined
by C has no base points.
(c) Conclude that X admits a natural structure of elliptic fibration.
(d) Show that a quartic X ⊂ P3 which contains a projective line ` also
contains a curve C as above. What is the self-intersection number of ` ↪→ X?

3.1.3. Kodaira classification of complex surfaces. The Riemann sur-
faces (i.e. complex curves) naturally split into three categories: rational
(genus 0), elliptic (genus 1) and general type (genus ≥ 2). This classifica-
tion is natural from many points of view. From a metric standpoint these
three types support different types of Riemannian metrics. From a com-
plex analytic point of view, the canonical line bundles of these three classes
display different behaviours.

A similar point of view can be adopted for complex surfaces as well.
Recall that the plurigenera Pn(X) of X are the dimensions of the spaces of
holomorphic sections of the line bundle K⊗n

X .
It can be shown that for any complex surface X the sequence of integers

(Pn(X)) displays one of the following asymptotic behaviors.

−∞ Pn(X) = 0 ∀n ≥ 1.

0 There exists C > 0 such that Pn(X) < C ∀n À 1 but Pn(X) is not
identically zero.

1 There exists C > 0 such that
1
C

n < Pn(X) < Cn, ∀n À 1.

2 There exists C > 0 such that
1
C

n2 < Pn(X) < Cn2, ∀n À 1.

Accordingly, the surface X is said to have Kodaira dimension −∞, 0, 1 or
2. The Kodaira dimension is denoted by kod (X). A complex surface of
Kodaira dimension 2 is said to be of general type.
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The plurigenera are invariant under blow-up, so that they are bimero-
morphic invariants of a complex surface. In particular, the Kodaira dimen-
sion of a complex surface is a bimeromorphic invariant.

Example 3.1.37. (a) kod (P2) = kod (V1) = −∞. Since the Hirzebruch
surfaces Fn are rational, they too have Kodaira dimension −∞.
(b) kod (V2) = 0. More generally, any K3 surface has Kodaira dimension
zero.
(c) kod (Vn) = 1, ∀n ≥ 3.
(d) Any hypersurface in P3 of degree d ≥ 5 has Kodaira dimension 2.

Exercise 3.1.9. Prove the claims (c) and (d) in the above example.

In the remainder of this subsection we will focus our attention on alge-
braic surfaces. For the proofs of the following theorems and for more details
we refer to [39, 59] and the references therein.

The Kodaira dimension contains a significant amount of information, as
witnessed by the following result.

Theorem 3.1.38. (a) If the algebraic surface X has Kodaira dimension
−∞ then it is bimeromorphic to P2 or a geometrically ruled surface, i.e. a
surface biholomorphic to a product P1 × C, C smooth complex curve.
(b) If an algebraic surface has Kodaira dimension 0 then Pn(X) ∈ {0, 1},
∀n ≥ 1.
(c) An algebraic surface of Kodaira dimension 1 is necessarily an elliptic
surface.

According to Theorems 3.1.24 and 3.1.25 each algebraic surface is bimero-
morphic to a minimal one called a minimal model.

A bimeromorphism class of surfaces may contain several, minimal,
nonbiholomorphic models. For example P2, Fn, n ≥ 2 are all minimal
models of rational surfaces which are not biholomorphic.

The above example is in some sense an exception. More precisely, we
have the following result.

Theorem 3.1.39. An algebraic surface X has a unique (up to biholomor-
phism) minimal model if and only if kod (X) ≥ 0.

There is a simple intersection theoretic way of deciding which minimal
surfaces have nonnegative Kodaira dimension. More precisely, we have the
following result.

Theorem 3.1.40. Suppose X is a minimal algebraic surface. Then
kod (X) ≥ 0 if and only if the canonical divisor KX is nef.
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Thus any minimal algebraic surface X with KX nef can have Kodaira
dimension 0, 1 or 2. The exact value of the Kodaira dimension is also decided
by the intersection theoretic properties of the canonical divisor.

Theorem 3.1.41. Suppose X is a minimal algebraic surface with KX nef.
Then K2

X ≥ 0 and the following hold.
(a) kod (X) = 0 if and only if KX is numerically equivalent to zero.
(b) kod (X) = 1 if and only if K2

X = 0 but KX is not numerically equivalent
to zero.
(c) kod (X) = 2 if and only if KX is big, i.e. K2

X > 0. In this case

Pn(X) =
n(n − 1)

2
K2

X + χhol(X).

3.2. Seiberg-Witten invariants of Kähler
surfaces

The Seiberg-Witten equations simplify considerably in the presence of a
Kähler metric. This section is devoted to the study of this interaction,
Seiberg-Witten equations ↔ Kähler metrics and some of its remarkable con-
sequences.

3.2.1. Seiberg-Witten equations on Kähler surfaces. Consider a Kähler
surface M and denote by ω the associated symplectic form. Observe that
the Kähler structure leads to several canonical choices on M .

• The complex structure on M defines a canonical spinc structure σ0 with
associated line bundle det(σ0) = K−1

M . K−1
M is naturally a holomorphic line

bundle equipped with a natural Hermitian metric. Moreover

S+
0 = Λ0,0T ∗M ⊕ Λ0,2T ∗M = C ⊕ K−1

M

and
S−

0 = Λ0,1T ∗M.

This choice allows us to identify the spinc structures on M with the space
of complex line bundles via the correspondence

L 7→ σ0 ⊗ L.

Observe that
det(σ0 ⊗ L) = K−1

M ⊗ L2.

Additionally, the associated bundles of complex spinors are

S+
L := L ⊕ L ⊗ K−1

M , S−
L = Λ0,1T ∗M ⊗ L.
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Thus, any even spinor ψ ∈ Γ(S+
L ) canonically splits as

(3.2.1) ψ = α ⊕ β, α ∈ Γ(L), β ∈ Γ(L ⊗ K−1
M ).

In the new “coordinates” on Spinc(M) the involution σ 7→ σ̄ has the form

L 7→ KM − L.

• The Kähler structure on M produces a Chern connection on TM which
induces a connection A0 on K−1

M compatible both with the canonical metric
and the canonical holomorphic structure.

• The metric and connection A0 on K−1
M canonically define a Dirac operator

6D0 : S+
0 → S−

0 which, according to the computations in Sec. 1.4, is none
other than the Dolbeault-Hodge operator

√
2(∂̄ + ∂̄∗) : Λ0,evenT ∗M → Λ0,oddT ∗M.

Now observe that any Hermitian connection A on det(S+
L ) can be uniquely

written as a tensor product

(3.2.2) A := A0 ⊗ B⊗2

where B is a Hermitian connection on L. Since

(3.2.3) FA = FA0 + 2FB

we will use the less rigorous but more suggestive notation

A = A0+̇2B.

The computations in 1.4.3 show that the Dirac operator induced by A is

(3.2.4) 6DA =
√

2(∂̄B ⊕ ∂̄∗
B).

• Using the symplectic form ω we can associate to any complex line bundle
L → M a real number degω(L) defined by

degω(L) =
i

2π

∫
M

FA ∧ ω

where A is an arbitrary Hermitian connection on L. Observe that the above
integral is independent of L because ω is closed and the cohomology class of
i

2πFA is independent of A.

• The deRham cohomology space H1(M, R) is naturally equipped with a
complex structure.

To describe it recall that by Hodge duality there is a complex conjugate
linear isomorphism

H0,1
∂̄

(M) → H1,0
∂̄

(M), ϕ 7→ ϕ̄.

Since
H1(M, R) ⊗ C ∼=C H0,1

∂̄
(M) ⊕ H1,0

∂̄
(M)
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there exists an R-linear isometry

T : H0,1

∂̄
(M) → iH1(M, R)

defined by

H0,1

∂̄
(M) 3 ϕ 7→ i√

2
(ϕ + ϕ̄) ∈ iH1(M).

T induces a natural orientation on H1(M, R).

• The Kähler structure defines a natural orientation on H2
+(M). More

precisely, observe that we have a natural R-linear isomorphism

iRω ⊕ H0,2

∂̄
(M) → iH2

+(M)

defined by the correspondences

iω 7→ iω, H0,2

∂̄
3 β 7→ i√

2
(β + β̄) ∈ iH2

+(M).

The natural orientation on Rω⊕H0,1

∂̄
(M) induces via the above isomorphism

an orientation on H2
+(M).

Let us point out a very confusing fact. Denote by ∗c the Hodge operator
Ωp,q(M) → Ω2−p,2−q(M). Recall that ∗c is conjugate linear. A complex
valued 2-form Ω on M is said to be self-dual if

∗cΩ = Ω̄

where the correspondence

Ωp,q(M) 3 Ω 7→ Ω̄ ∈ Ωq,p(M)

is given by the Hermitian metric on TM . For example the 2-form Ω = iω is
self-dual but

∗cΩ = −i ∗ ω = Ω̄ = −Ω.

Now observe that any purely imaginary self-dual 2-form Φ decomposes as

Φ = Φ0ω + Φ0,2 + Φ2,0

where

Φ0 ∈ Ω0(M, iR), Φ0,2 ∈ Ω0,2(M), Φ2,0 = −Φ0,2 ∈ Ω2,0(M)

and

(3.2.5) Φ0 =
1
2
ΛΦ.

Recall that Λ is the adjoint of the exterior multiplication by ω and Λω =
2 = dimC M .



228 3. Seiberg-Witten Equations on Complex Surfaces

For any complex line bundle L → M and any ψ = α⊕β ∈ Γ(S+
L ) we can

regard the endomorphism q(ψ) of S+
L as a purely imaginary self-dual 2-form,

so that it has a decomposition

q(ψ) = q(ψ)0ω + q(ψ)0,2 + q(ψ)2,0

as above. The identity (1.3.5) in Example 1.3.3 of §1.3.1 shows that

(3.2.6) q(ψ)0 =
i
4
(|α|2 − |β|2),

(3.2.7) q(ψ)0,2 =
1
2
ᾱβ :=

1
2
ᾱ ⊗ β ∈ Γ(L−1 ⊗ L ⊗ K−1

M ) ∼= Ω0,2(M).

• The Kähler form on M also suggests a special family of perturbation
parameters η. Fix µ ∈ H0,2

∂̄
(M) so that µ̄ is a holomorphic section of KM .

For every t ∈ R define

(3.2.8) ηt = ηt(µ) := iFA0 +
t

8
ω + 2(µ + µ̄).

Now fix a spinc structure on M or, equivalently, a complex Hermitian
line bundle L → M . Denote by CL the space of configurations determined
by this spinc structure. Using the identifications (3.2.1) and (3.2.2) we can
alternatively describe CL as

CL = {(α, β; B) ∈ Γ(L) × Γ(L ⊗ K−1
M ) × A(L)}

so that
C = (ψ, A) = (α ⊕ β; A0+̇2B).

The ηt-perturbed Seiberg-Witten equations for C{
6DAψ = 0

c(F+
A + iη+

t ) = 1
2q(ψ)

are equivalent to

(3.2.9)


∂̄Bα + ∂̄∗

Bβ = 0

ΛFB = i
8(|α|2 − |β|2 − t)

F 0,2
B + iµ = 1

8 ᾱβ

.

The first equation in (3.2.9) is clear in view of (3.2.4). Let us explain the
remaining two.

Observe first that

F+
A + iηt = 2F+

B +
i
8
tω + 2i(µ + µ̄)



3.2. Seiberg-Witten invariants of Kähler surfaces 229

and

ΛΩ = ΛΩ+, ∀Ω ∈ Ω2(M) ⊗ C.

Thus

Λ(F+
A + iη+

t ) = 2ΛFB +
i
4
t.

Using the identity (3.2.6) we deduce

Λq(ψ) =
i
2
(|α|2 − |β|2).

The second equation in (3.2.9) is precisely the equality Λ(F+
A +iηt) = Λq(ψ).

Next observe that

(FA + iηt)0,2 = F 0,2
A0

+ 2F 0,2
B + 2iµ +

i
8
tω0,2 = 2F 0,2

B + 2iµ

because ω is a (1, 1)-form and F 0,2
A0

= 0 since A0 is the Chern connection
defined by a Hermitian metric and a holomorphic structure on K−1

M . The
last equality in (3.2.9) is now a consequence of (3.2.7).

The virtual dimension of the moduli space corresponding to the spinc

structure L is

d(L) =
1
4
{(2L − KM )2 − (2χM + 3τM )}

=
1
4
{(4L2 − 4L · KM + K2

M ) − K2
M} = L · (L − K).

Remark 3.2.1. Suppose b+
2 (M) = 1 i.e. pg(M) = 0. Then µ can only be

0. To decide in which chamber ηt lies we have to understand the sign of∫
M

(ηt − 2πc1(det σ ⊗ L) ) ∧ 1√
2
ω

or, equivalently, the sign of

t

8

∫
M

ω ∧ ω + i
∫

M
FA0 ∧ ω − 2π degω(K−1

M ⊗ L2).

Now observe that the second integral is precisely 2π degω(K−1
M ) so we have

to decide the sign of
tvol (M)

4
− 4π degω L.

We deduce that for t > 16π
vol (M) degω(L) the perturbation ηt lies in the positive

chamber with respect to the Kähler metric while for t < 16π
vol (M) degω(L) it

lies in the negative chamber.
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Definition 3.2.2. A complex line bundle L → M is said to have type (1, 1)
with respect to the Kähler metric if its first Chern class is of type (1, 1) with
respect to the Hodge decomposition

H2(M, C) = H1,1

∂̄
(M) ⊕ H0,1

∂̄
(M) ⊕ H2,0

∂̄
(M).

Observe that if b+
2 (M) = 1 then all classes have type (1, 1) since pg =

dimH2,0

∂̄
(M) = 0.

We have the following vanishing result.

Proposition 3.2.3. If L → M is a complex line bundle over M which is
not of type (1, 1) then the Seiberg-Witten invariant of M corresponding to
the spinc structure determined by L is zero,

swM (L) = 0.

Proof We consider the equations (3.2.9) corresponding to µ = 0 and
t = 0. Applying ∂̄B to the first equation we deduce

∂̄2
Bα + ∂̄B ∂̄∗

Bβ = 0

so that
F 0,2

B α + ∂̄B ∂̄∗
Bβ = 0.

Take the inner product with β and integrate by parts to obtain∫
M
〈F 0,2

B α, β〉dv +
∫

M
|∂̄∗

Bβ|2 = 0.

Now use the third equation of (3.2.9) in the first integral above. We get

1
8

∫
M

|ᾱβ|2 +
∫

M
|∂̄∗

Bβ|dv = 0.

This shows α · β = 0 so that F 0,2
B = 0. Since F 2,0

B = F 0,2
B we deduce FB is

a (1, 1)-class so that L must be a (1, 1)-line bundle. This shows that (3.2.9)
has no solution in this case. ¥

3.2.2. Monopoles, vortices and divisors. As was observed from the
very beginning by Edward Witten in [149], the solutions of the equations
(3.2.9) are equivalent to the complex analytic objects called vortices. These
can then be described quite explicitly in terms of divisors on M . In partic-
ular, this opens the possibility of completely and explicitly describing the
moduli spaces of monopoles.

Since we are interested only in Seiberg-Witten invariants then, according
to Proposition 3.2.3, it suffices to consider only the case when L has type
(1, 1). To obtain further information about the solutions of (3.2.9) we will
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refine the technique used in the proof of Proposition 3.2.3. We follow closely
the approach in [13].

Observe that since L has type (1, 1) it follows from the third equation
of (3.2.9) that iµ is the ∂̄-harmonic part of the (0, 2)-form 1

8 ᾱβ. Denote by
[ᾱβ] the ∂̄-harmonic part of ᾱβ. Again, applying ∂̄B to the first equation in
(3.2.9) we deduce as in the proof of Proposition 3.2.3(1

8
ᾱβ − iµ

)
α = ∂̄B ∂̄∗

Bβ = 0

or equivalently
1
8
(
ᾱβ − [ᾱβ]

)
α + ∂̄B ∂̄∗

Bβ = 0.

Taking the inner product with β and integrating by parts we get

1
8

∫
M
〈ᾱβ − [ᾱβ], ᾱβ〉dv + ‖∂̄∗

Bβ‖2
L2 = 0.

Since [ᾱβ] is L2-orthogonal to ᾱβ − [ᾱβ] we deduce

1
8
‖ᾱβ − [ᾱβ]‖2

L2 + ‖∂̄∗
Bβ‖2

L2 = 0.

Thus
∂̄∗

Bβ = 0, ᾱβ = [ᾱβ] = 8iµ

and

F 0,2
B =

1
8
(ᾱβ − [ᾱβ]).

Using the equality ∂̄∗
Bβ = 0 in the first equation of (3.2.9) we conclude that

∂̄Bα = 0.

We have thus proved the following result.

Proposition 3.2.4. Any solution (α, β, B) of (3.2.9) satisfies the conditions

(3.2.10a) F 0,2
B = 0,

(3.2.10b) ∂̄Bα = ∂̄∗
Bβ = 0,

(3.2.10c) ᾱβ = 8iµ,

(3.2.10d) ΛFB =
i
8
(|α|2 − |β|2 − t).

Definition 3.2.5. The solutions of the system (3.2.10a) – (3.2.10d) are
called (µ, t)-vortices. When µ = 0 we will call them simply vortices.
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Obviously, any (µ, t)-vortex is also an ηt-monopole.
The condition (3.2.10a) shows that B induces an integrable complex

structure on L. The equalities (3.2.10b) show that α is a holomorphic sec-
tion of L (with respect to the above holomorphic structure) and β is an
antiholomorphic section of K−1

M ⊗ L = L − KM . Hence β̄ is a holomorphic
section of KM − L. The equality (3.2.10c) can be rewritten as

(3.2.11) αβ̄ = −8iµ̄.

In the above new formulation, µ̄ is a holomorphic section of KM . To proceed
further we have to distinguish two cases.

A. The case µ = 0. Thus, αβ̄ = 0. Since both α and β̄ are holomorphic
sections the unique continuation principle implies that at least one of them
must be identically zero.

Now let us observe that if a holomorphic line bundle E → M admits a
nontrivial holomorphic section s then degω(E) ≥ 0 because degω(E) can be
interpreted as the integral of ω over the (possibly singular, possibly empty)
complex curve s−1(0) on M . According to Proposition 3.1.1, this integral is
none other than the area of this curve . Thus,

α 6= 0 ⇒ degω(L) ≥ 0 and β = 0

while
β 6= 0 ⇒ degω(KM − L) ≥ 0 and α = 0.

On the other hand, observe that

degω(L) =
i

2π

∫
M

FB ∧ ω =
i

2π

∫
M

ΛFB
1
2
ω2

=
i

2π

∫
M

ΛFBdvM
(3.2.10d)

=
1

16π

∫
M

(|β|2 + t − |α|2)dvM .

If we fix t such that

t 6= 16π

vol (M)
degω(L)

then the above equality shows that at least one of α or β must be nontrivial.
Moreover, when t < 16π

vol (M) degω(L) then α = 0 and β 6= 0 because otherwise
we would obtain

β = 0 and degω(L) =
1

16π

∫
M

(t − |α|2)dvM ≤ tvol (M)
16π

.

Similarly, when t > 16π
vol (M) degω(L) we must have β = 0 and α 6= 0. Using

Remark 3.2.1 we obtain the following vanishing result.
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Proposition 3.2.6. (a) If b+
2 (M) > 1 and swM (L) 6= 0 then

0 ≤ degω L ≤ degω KM .

(b) If b+
2 (M) = 1 and sw+

M (L) 6= 0 then

0 ≤ degω(L)

while if sw−
M (L) 6= 0 then

degω(L) ≤ degω(KM ).

The above discussion also shows that for t À 0 the vortices are found
amongst pairs (E, α) where E is a holomorphic line bundle topologically
isomorphic to L and α is a holomorphic section. The metric on L imposes
an additional condition on α through (3.2.10d) in which β = 0. The pairs

(holomorphic structure on L, holomorphic section of L)

are precisely the effective divisors D on M such that

c1([D]) = c1(L).

Can we reverse this process? More precisely, given an effective divisor [D]
such that c1([D]) = c1(L), can we find a solution (α, β = 0; B) of (3.2.10a)
– (3.2.10d) such that D is the divisor determined by α, D = α−1(0)? To
formulate an answer to this question let us first fix a Hermitian metric h0

on L.

Proposition 3.2.7. Suppose L → M has type (1, 1) and degω(L) ≥ 0. Fix

(3.2.12) t >
16π

vol (M)
degω(L).

Given an integrable CR operator ϑ on L and a ϑ-holomorphic section α of
L,

ϑα = 0,

there exists a unique function u ∈ C∞(M) such that the following hold.
(a) If ϑu := euϑe−u then αu = euα is ϑu-holomorphic.
(b) If Bu denotes the h0-Hermitian connection on L induced by the CR-
operator ϑu then

(3.2.13) ΛFBu =
i
8
(|αu|2 − t),

that is , (αu ⊕ 0; Bu) satisfies (3.2.10a)-(3.2.10d) with µ = 0.
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Proof Observe first that, for any u ∈ C∞(M), the CR-operators ϑ and ϑu

define the same holomorphic structure on L and that in fact the condition
(a) above is tautological. Denote by B0 the Chern connection determined
by ϑ and h0. Let u ∈ C∞(M). As shown in Example 1.4.19 of §1.4.2 the
Chern connection Bu determined by euϑe−u and h0 is

Bu = B0 + ∂u − ∂̄u.

Its curvature is

(3.2.14) FBu = FB0 + ∂̄∂u − ∂∂̄u.

We have to find u so that (αu, Bu) satisfy (3.2.13), i.e.

ΛFBu =
i
8
(|αu|2 − t).

Using (3.2.14) we can rewrite this as an equation in u:

(3.2.15) Λ(∂̄∂u − ∂∂̄u) − i
8
|α|2h0

e2u = − it
8
− ΛFB0 .

On the other hand, according to Corollary 1.4.11 of §1.4.1 we have

Λ∂̄(∂u) = −i∂̄∗∂u = − i
2
∆du

and

Λ∂∂̄u = i∂∗∂u =
i
2
∆d.

The equation (3.2.15) can now be rewritten as

(3.2.16) ∆du +
1
8
|α|2h0

e2u = (
t

8
− iΛFB0) =: f.

This equation was studied in great detail by J. Kazdan and F. Warner in
[61] (see also [105] for a different approach). They proved the following
result.

Theorem 3.2.8. (Kazdan-Warner, [61, Thm. 10.5]) Suppose k is a
positive real number and w(x) is a smooth function which is positive outside
a set of measure zero in M . Then the equation

∆Mu + w(x)eku = g ∈ C∞(M)

has a solution (which is unique) if and only if∫
M

gdvM > 0.
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Using the above existence theorem we deduce that the equation (3.2.16)
has a solution (and no more than one) if and only if∫

M
fdvM > 0.

In our case this means

tvol (M) > 8
∫

M
iΛFB0dvM = 16π

∫
M

i
2π

ΛFBdvM = 16π degω(L)

which is precisely the condition (3.2.12). The proposition is proved. ¥

We have the two-way correspondences

t À 0
ηt(µ = 0)-monopoles ↔ effective divisors D such that c1([D]) = c1(L).

t ¿ 0
ηt(µ = 0)-monopoles ↔ effective divisors D such that

c1([D]) = c1(KM − L).

Notation The symbol sw(±)
M (σ) will denote sw±

M (σ) if b+
2 (M) = 1 and

swM (σ) if b+
2 (M) > 1.

From the above correspondences we deduce immediately the following
consequences.

Corollary 3.2.9. Suppose M is a Kähler surface and L is a Hermitian line
bundle.
(a) If sw(+)

M (L) 6= 0 then L admits holomorphic structures with nontrivial
holomorphic sections.

(a) If sw(−)
M (L) 6= 0 then KM − L admits holomorphic structures with non-

trivial holomorphic sections.

Corollary 3.2.10. Suppose M is a Kähler surface and L is a Hermitian
line bundle.
(a) If degω L = 0 and sw(+)

M (L) 6= 0 then L is the (topologically) trivial line
bundle.
(b) If degω(L) = degω(KM ) and sw(−)

M (L) 6= 0 then L is (topologically)
isomorphic to KM .

Proof We prove only (a). Part (b) follows from (a) using the involution
σ 7→ σ̄ on Spinc(M).
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We use the perturbation ηt, with µ = 0 and t À 0. The condition
sw(+)

M (L) 6= 0 implies that there exists a holomorphic structure on L admit-
ting holomorphic sections. If such a section does not vanish anywhere we
deduce that L is trivial. If it vanishes somewhere its zero locus defines an
effective divisor D and

degω([D]) = degω(L) = 0.

This contradicts Proposition 3.1.1, which states that degω([D]) is a positive
number expressible in terms of the area of supp (D). The corollary is proved.

¥

Clearly, gauge equivalent monopoles lead to identical divisors, so that
the set of gauge equivalence classes of monopoles can be identified with the
above set of divisors. This identification goes deeper. The set of effective
divisors carrying the homology class Poincaré dual to c1(L) can be given a
(Hilbert) scheme structure. This structure can be described in terms of the
deformation complexes of the monopoles. If M is algebraic this allows one
to cast in an algebraic-geometric context the entire problem of computing
the Seiberg-Witten invariants. We will not follow this approach but we refer
the reader for details to [21, 41, 42].

B. The case µ 6= 0. Suppose (α ⊕ β, B) is a (µ, t)-vortex. Thus α defines
an effective divisor D such that

c1([D]) = c1(L)

and
D ≤ (µ̄)

where (µ̄) denotes the effective divisor determined by the zeroes holomorphic
section µ̄. More precisely, the effective divisor D is the divisor determined
by the holomorphic section β̄. As in the case µ = 0 we have the following
result.

Proposition 3.2.11. (O. Biquard, [13]) Suppose L is a complex line
bundle over M such that

0 ≤ degω L ≤ degω(KM ).

Fix a Hermitian metric h0 on L. Suppose there exist an integrable CR
operator ϑ on L and holomorphic sections α ∈ Γ(L) and γ ∈ Γ(KM − L)
such that

αγ = −8iµ̄.
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Then there exists a unique function u ∈ C∞(M) such that if Bu denotes the
Chern connection determined by h0 and ϑu = euϑe−u then

(αu, βu, Bu) := (euα, e−uγ̄, Bu)

is a (µ, t)-vortex.

Observe that if ϑ∗ is the CR operator induced by ϑ on L∗ then

(euϑe−u)∗ = e−uϑ∗eu.

This explains the definition of βu.

Proof Clearly, for any smooth u the collection (αu, βu, Bu) defined as
in the statement of the propositions automatically satisfies the conditions
(3.2.10a) – (3.2.10c) in the definition of a (µ, t)-vortex. Thus, it suffices to
find u such that (αu, βu, Bu) satisfies (3.2.10d).

Denote by B0 the Chern connection on L determined by h0 and ϑ.
Arguing exactly as in the proof of Proposition 3.2.7 we deduce that u must
be a solution of the equation

(3.2.17) ∆du +
1
8
|α|2h0

e2u − 1
8
|γ|2h0

e−2u = f :=
( t

8
− iΛFB0

)
.

We have to show that the above equation admits a unique smooth solution.

Existence We will use the method of sub/supersolutions. For an approach
based on the continuity method we refer to [13].

The method of sub/super-solutions is based on the following very general
result.

Theorem 3.2.12. Suppose F : M ×R → R is a smooth function and there
exist two smooth functions u, U : M → R such that

(3.2.18) u ≤ U on M,

(3.2.19) ∆Mu ≤ F (x, u(x)), ∀x ∈ M,

and

(3.2.20) ∆MU ≥ F (x, U(x)) ∀x ∈ M.

Then there exists a smooth solution v of the partial differential equation

(3.2.21) ∆Mv = F (x, v)

such that u ≤ v ≤ U .

The function u (resp. U) is said to be a sub-(resp. super)-solution of
(3.2.21). An outline of the proof of this theorem can be found in [105,
§9.3.3]. For complete details we refer to [1, 61]. The proof is based on a
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very important principle in the theory of second order elliptic p.d.e.’s which
will also play an important role in our existence proof.

Comparison Principle Suppose g : M × R → R is a smooth function
such that for all x outside a set of measure zero the function

u 7→ g(x, u)

is strictly increasing. Then

∆Mu + g(x, u) ≥ ∆Mv + g(x, v) =⇒ u ≥ v.

Exercise 3.2.1. Prove the comparison principle. (Hint: Consult [105,
§9.3.3].)

Using Kazdan-Warner’s Theorem 3.2.8 we deduce that for every s À 0
there exist smooth functions Us and vs on M such that

∆MUs +
1
8
|α|2e2Us = f + s,

∆Mvs +
1
8
|γ|2e2vs = s

where f is the function on the right-hand side of (3.2.17). Set

a =
1
8

sup
x∈M

|α(x)|2, b =
1
8

sup
x∈M

|γ(x)|2,

fmin := min
x∈M

f(x).

Observe that if cs is the constant function defined by

ae2cs = fmin + s

then
∆Mcs + |α|2e2cs ≤ fs = ∆Us + |α|2e2Us .

Using the comparison principle we deduce

(3.2.22) Us ≥ cs → ∞ as s → ∞.

In particular, this shows that for s sufficiently large Us is a super-solution
of (3.2.17) because

∆MUs +
1
8
|α|2e2Us − 1

8
|γ|2e−2Us ≥ f + s − be−2cs = f + s − ab

fmin + s
> f

for s À 0. Similarly, if we denote by ds the constant function defined by

be2ds = s

we deduce
∆ds +

1
8
|γ|2e2ds ≤ s
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so that

(3.2.23) vs ≥ ds.

Set us := −vs. Then

∆Mus +
1
8
|α|2e2us − 1

8
|γ|2e−2us = −s + |α|2e2us

≤ −s + ae−2ds = −s +
ab

s
≤ f

for s À 0. Thus us is a sub-solution of (3.2.17). Using (3.2.22) and (3.2.23)
we deduce that for s À 0 we have

us ≤ −ds < cs ≤ Us.

Using Theorem 3.2.12 we conclude that (3.2.17) has a smooth solution u
such that

us ≤ u ≤ Us

for s À 0.

Uniqueness It follows immediately from the comparison principle in
which g(x, u) = 1

8 |α(x)|2e2u − 1
8 |γ(x)|2e−2u. The proof of Proposition 3.2.11

is now complete. ¥

The above proposition has an immediate interesting geometric conse-
quence.

Proposition 3.2.13. Suppose M is a Kähler surface such that pg(M) > 0
and KM is not holomorphically trivial. Fix µ ∈ H2,0

∂̄
(M) \ {0} and denote

by (µ) the effective divisor determined by this section. Then for all t ∈ R
there exists a bijection between the set of orbits of ηt(µ)-monopoles and the
set Sµ(M) of divisors D on M with the following properties.
¦ 0 ≤ D ≤ (µ).
¦ c1([D]) = c1(L) in H2(M, Z).

3.2.3. Deformation theory. Now that we have an idea of the nature of
monopoles we want to investigate whether the cohomology of the deforma-
tion complex associated to a monopole on a Kähler surface can be described
in complex analytic terms.

Fix µ ∈ H0,2

∂̄
(M), t ∈ R and L → M a type-(1, 1) Hermitian bundle over

M . Suppose (α ⊕ β, B) is a (µ, t)-vortex corresponding to L.
The corresponding monopole is C = (ψ, A) where

ψ = α ⊕ β, A := A0+̇2B.

The tangent space to CL at C is

TCCL = Γ(SL ⊕ iΛ1T ∗M)
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where, for simplicity, we omitted the Sobolev labels. We will represent a
tangent vector Ċ = (ψ̇, iḃ) (where iȧ = 2iḃ) in complex analytic terms. Thus

iḃ =
i√
2
(ϕ + ϕ̄), ϕ ∈ Ω0,1(M),

and
ψ̇ = α̇ ⊕ β̇ ∈ Ω0,0(L) ⊕ Ω0,2(L).

Recall that (see §2.2.2)

TC

[
ψ̇

iḃ

]
=

 6DAψ̇

2d+iḃ
−4id∗ḃ

 +

 c(iḃ)ψ
−1

2 q̇(ψ, ψ̇)
−iIm〈ψ, ψ̇〉

 .

We now proceed to express each of the objects in the above expression in
terms of ϕ, α̇ and β̇.

First, we have

6DAψ̇ + c(iḃ)ψ =
√

2[∂̄B ∂̄∗
B] ·

[
α̇

β̇

]
+

1√
2
[c(iϕ) c(iϕ̄)] ·

[
α
β

]
=

√
2(∂̄Bα̇ + ∂̄∗

Bβ̇) +
1√
2
c(iϕ)α +

1√
2
c(iϕ̄)β

(use the computations in Example 1.3.3 in §1.3.1)

=
√

2(∂̄Bα̇ + ∂̄∗
Bβ̇) + i(ϕ ∧ α − ϕ̄ β)

where ϕ̄ denotes the contraction by a (1, 0)-form.
Next observe that the self-dual part of a complex 2-form θ, defined by

θ̄+ = ∗cθ
+, is explicitly given by

θ+ = θ0ω + θ0,2 + θ2,0 =
1
2
Λθω + θ0,2 + θ2,0.

In our case

θ = 2idḃ = i
√

2d(ϕ + ϕ̄) = i
√

2(∂ + ∂̄)(ϕ + ϕ̄)

so that

2id+ḃ =
i√
2
Λ(∂ϕ + ∂̄ϕ̄)ω + i

√
2(∂̄ϕ + ∂ϕ̄).

Since

q(ψ) = q(α ⊕ β) =
i
4
(|α|2 − |β|2)ω +

1
2
(ᾱβ − αβ̄)

we deduce

q̇(ψ, ψ̇) =
i
2
(Re〈α, α̇〉 − Re〈β, β̇〉)ω +

1
2
( ˙̄αβ + ᾱβ̇ − α̇β̄ − α ˙̄β).

Next observe that

4d∗ḃ = 2
√

2(∂ + ∂̄)∗(ϕ + ϕ̄) = 2
√

2(∂̄∗ϕ + ∂∗ϕ̄)
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and
Im〈ψ, ψ̇〉 = Im〈α, α̇〉 + Im〈β, β̇〉.

Thus
(α̇, β̇, ϕ) ←→ (ψ̇, iḃ =

i√
2
(ϕ + ϕ̄) ) ∈ ker TC

if and only if

(3.2.24a)
√

2(∂̄Bα̇ + ∂̄∗
Bβ̇) + i(ϕ ∧ α − ϕ̄ β) = 0,

(3.2.24b) Λ(∂ϕ + ∂̄ϕ̄) =
1

2
√

2
(Re〈α, α̇〉 − Re〈β, β̇〉),

(3.2.24c) i∂̄ϕ =
1

4
√

2
( ˙̄αβ + ᾱβ̇),

(3.2.24d) 2
√

2(∂̄∗ϕ + ∂∗ϕ̄) + Im〈α, α̇〉 + Im〈β, β̇〉 = 0.

These equations can be further simplified using the Kähler-Hodge iden-
tities in §1.4.1

Λ∂ϕ = i∂̄∗ϕ, Λ∂̄ϕ̄ = −i∂∗ϕ̄, ∀ϕ ∈ Ω0,1(M).

Using these identities in (3.2.24b) we deduce

iIm ∂̄∗ϕ =
1
2
(∂̄∗ϕ − ∂∗ϕ̄) = − i

4
√

2
(Re〈α, α̇〉 − Re〈β, β̇〉).

The equation (3.2.24d) can be rewritten as

iRe ∂̄∗ϕ =
i
2

(
∂̄∗ϕ + ∂∗ϕ̄

)
= − i

4
√

2
(Im〈α, α̇〉 + Im〈β, β̇〉).

Thus (3.2.24b) + (3.2.24d) are equivalent to a single equation

(3.2.25) i∂̄∗ϕ =
1

4
√

2

(
〈α, α̇〉 − 〈β, β̇〉

)
.

Proposition 3.2.14. (α̇, β̇, ϕ) ∈ ker TC if and only if they satisfy the equa-
tions

(3.2.26a) ∂̄ϕ = 0,

(3.2.26b) ∂̄Bα̇ +
i√
2
ϕ ∧ α = 0,

(3.2.26c) ∂̄∗
Bβ̇ − i√

2
ϕ̄ β = 0,

(3.2.26d) α̇β̄ + α ˙̄β = 0,

and (3.2.25).
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Proof Clearly, if (α̇, β̇, ϕ) satisfy the equations (3.2.25), (3.2.26a) – (3.2.26d)
then they satisfy (3.2.24a), (3.2.24c) and thus they must lie in the kernel of
TC. To prove the converse statement we follow the approach in [13].

Rewrite (3.2.24a) as

−(
√

2∂̄∗
Bβ̇ − iϕ̄ β) =

√
2∂̄Bα̇ + iϕ ∧ α

and observe that the operator −i ϕ̄ on Ω∗,∗(L) is the adjoint of iϕ∧. We
deduce

0 ≥ −‖
√

2∂̄∗
Bβ̇ − iϕ̄ β‖2

L2 =
∫

M
〈
√

2∂̄Bα̇ + iϕ ∧ α,
√

2∂̄∗
Bβ̇ + (iϕ∧)∗β〉dvM

=
∫

M
〈
√

2∂̄Bα̇,
√

2∂̄∗
Bβ̇〉dvM +

∫
M
〈iϕ ∧ α, (iϕ∧)∗β〉dvM

+
∫

M
〈
√

2∂̄Bα̇, (iϕ∧)∗β〉dvM +
∫

M
〈iϕ ∧ α,

√
2∂̄∗

Bβ̇〉dvM .

The first integral vanishes. This can be seen integrating by parts and using
the equality ∂̄2

B = F 0,2
B = 0 which follows from the fact that (α, β, B) is

a vortex. We deduce similarly that the second integral vanishes because
(iϕ∧)2 = 0. We conclude that

0 ≥
∫

M
〈iϕ ∧ ∂̄Bα̇, β〉dvM +

∫
M
〈∂̄B(iϕ ∧ α), β̇〉dvM

(∂̄Bα = 0)

= −
√

2
∫

M
〈∂̄B(iϕ∧ α̇), β〉dvM +

√
2

∫
M
〈(i∂̄ϕ)α̇, β〉dvM +

∫
M
〈(i∂̄ϕ)α, β̇〉dvM

(∂̄∗
Bβ = 0)

=
√

2
∫

M
〈 (i∂̄ϕ)α̇, β 〉dvM +

√
2

∫
M
〈 (i∂̄ϕ)α, β̇ 〉dvM

(3.2.24c)
=

1
4

∫
M
〈 ( ˙̄αβ + ᾱβ̇)α̇, β 〉dvM +

1
4

∫
M
〈 ( ˙̄αβ + ᾱβ̇)α, β̇ 〉dvM

=
1
4

∫
M

| ˙̄αβ + ᾱβ̇|2dvM .

Hence
˙̄αβ + ᾱβ̇ = 0 =

√
2∂̄Bα̇ + iϕ ∧ α =

√
2∂̄∗

Bβ̇ − iϕ̄ β

and using (3.2.24c) we deduce

∂̄ϕ = 0. ¥
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3.3. Applications

The theory developed so far is powerful enough to allow the computation of
the Seiberg-Witten invariants of many and wide classes of Kähler surfaces.
In this section we will present such computations and some of their surprising
topological consequences. We will conclude with a discussion of the Seiberg-
Witten invariants of almost Kähler manifolds.

3.3.1. A nonvanishing result. Consider a Kähler surface M . We want
to compute the Seiberg-Witten invariant determined by the canonical spinc

structure σ0 on M . In this case

S0 = C ⊕ K−1
M .

We will use the perturbation ηt introduced in §3.2.1 in which µ = 0 and
t = λ2 À 0 where λ > 0. If b+

2 (M) = 1 then, according to Remark 3.2.1
the perturbation parameter ηt lies in the positive chamber defined by the
Kähler metric.

In this case the ηt-monopoles are t-vortices (α ⊕ β, B) where
α is a section of C,
β is a section of K−1

M and
B is a Hermitian connection on C.

The discussion in §3.2.2 shows that for λ2 À 0 we have β ≡ 0 and (α, B)
satisfy

(3.3.1a) F 0,2
B = 0,

(3.3.1b) ΛFB =
i
8
(|α|2 − λ2),

(3.3.1c) ∂̄Bα = 0.

Observe that if B0 denotes the trivial connection on C and α0 is the constant
section α0 ≡ λ of C then (α0, B0) is a solution of (3.3.1a) – (3.3.1c). Notice
also that the virtual dimension of the space of monopoles is 0 in this case.

Proposition 3.3.1. Modulo Gσ0 there is a unique ηt-monopole which is also
nondegenerate.

Proof To prove the uniqueness part we will rely on Proposition 3.2.7.
The set of orbits of ηt-monopoles can be identified with the set of effective
divisors D such that

c1([D]) = c1(C) = 0.
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There is only one such divisor, namely the trivial divisor since, according
to Proposition 3.1.1 a nontrivial effective divisor carries a nontrivial homol-
ogy class. This establishes the uniqueness claim in the proposition. Thus,
modulo Gσ0 , the configuration

C0 = (α0 ⊕ 0, A0+̇2B0)

is the unique ηt-monopole. Observe that in this case we can write ∂̄ instead of
∂̄B0 Since the virtual dimension is 0 and C0 is nondegenerate (i.e. H2

C0
= 0)

it suffices to show H1
C0

= 0, i.e.

ker TC0 = 0.

We will use Proposition 3.2.14.
Suppose (ψ̇, iḃ) = (α̇ ⊕ β, i(ϕ + ϕ̄) ∈ ker TC0 . Then (α̇, β̇, ϕ) satisfy

the equations (3.2.25) – (3.2.26d). These further simplify because of the
additional assumption β(= β0) = 0. More precisely, we have

(3.3.2a) 4
√

2i∂̄∗ϕ = λ ˙̄α,

(3.3.2b) ∂̄ϕ = 0,

(3.3.2c)
√

2∂̄α̇ + iλϕ = 0,

(3.3.2d) λβ̇ = 0, ∂̄∗β̇ = 0.

Applying ∂̄∗
B0

to (3.3.2c) we obtain

0 = 2∂̄∗∂̄α̇ + i
√

2λ∂̄∗ϕ
(3.3.2a)

= 2∂̄∗∂̄α̇ +
λ2

4
α̇ = ∆M α̇ + λ2α̇.

Taking the inner product with α̇ and integrating by parts we deduce in
standard fashion that α̇ = 0. The equality (3.3.2c) now implies ϕ = 0. ¥

The above proposition shows that swM (σ0) = ±1 if b+
2 > 1 and sw+

M (σ0) =
±1 if b+

2 = 1. To decide which is the correct sign we will use its definition
as an orientation transport. Form as usual

T τ
C0

[
ψ̇

iḃ

]
=

 6DAψ̇

2d+iḃ
−4id∗ḃ

 + τ

 c(iḃ)ψ
−1

2 q̇(ψ, ψ̇)
−iIm〈ψ, ψ̇〉

 ,

τ ∈ [0, 1], A := B0+̇2A0.

Then the sign is given by the orientation transport along the path T τ
C0

,
ε(TC0 , T τ

C0
, T 0

C0
).

To compute the orientation transport we will rely on (1.5.9) in §1.5.1.
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Arguing exactly as in the proof of Proposition 3.2.14 we deduce that
(ψ̇, iḃ) = (α̇ ⊕ β̇, ϕ) ∈ ker T τ

C0
if and only if

(3.3.3a) 4
√

2i∂̄∗ϕ = τλ ˙̄α,

(3.3.3b) ∂̄ϕ = 0,

(3.3.3c)
√

2∂̄α̇ + iτλϕ = 0,

(3.3.3d) τλβ̇ = 0, ∂̄∗β̇ = 0.

To see this, replace c(iḃ) with τc(iḃ), q̇ with τ q̇ and Im〈ψ, ψ̇〉 with τIm〈ψ, ψ̇〉
in the proof of Proposition 3.2.14 keeping in mind that α = λ and β = 0.
Arguing exactly as in the proof of Proposition 3.3.1 we deduce kerT τ

C0
= 0

if τ > 0. Moreover

ker T 0
C0

∼=
{

(α̇, β̇, ϕ) ∈ Γ(C) × Γ(K−1
M ) × Ω0,1(M); ∂̄α̇ = 0 = ∂̄∗β̇, ϕ ∈ H0,1

∂̄
(M)

}
∼= ( C ⊕ H0,2

∂̄
(M) ) ⊕ H0,1

∂̄
(M).

The first summand corresponds to the spinor part of the kernel and the
second summand corresponds to infinitesimal deformations of connections.
The kernel is naturally oriented as a complex vector space.

To find the cokernel of T 0
C0

we use the representation Ω0,0 ⊕ ω0,2(M)
⊕

iΩ0,1(M) ∼= iΩ1(M)

 3
[

ψ̇

iḃ

]

T 0
C0−→

 6DAψ̇

2d+iḃ
−4id∗ḃ

 ∈

Ω0,1(M) ∼= S−
0

⊕
iω ⊗ Ω0 ⊕ Ω0,2(M) ∼= iΩ2

+(M)
⊕

iΩ0(M)

and the computations in the beginning of §3.2.3. Recall that the isomor-
phism

iω ⊗ Ω0 ⊕ Ω0,2(M) ∼= iΩ2
+(M)

is given by the isometric identifications

iω ⊕ Φ ←→ iω +
i√
2
(Φ + Φ̄) =

1√
2
(iΦ − iΦ).
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This leads to the identification

iΩ2
+(M) 3 1

2
q̇(ψ, ψ̇) =

i
4
(Re〈α, α̇〉 − Re〈β, β̇〉)ω

+
1
4
( ˙̄αβ + ᾱβ̇ − α̇β̄ − α ˙̄β)

=
1
2
q̇(ψ, ψ̇) ←→ i

4
(Re〈α, α̇〉 − Re〈β, β̇〉)ω ⊕ 1

2
√

2i
( ˙̄αβ + ᾱβ̇).

(3.3.4)

Consider a vector

 φ
iuω ⊕ θ

if

 ∈

Ω0,1(M) ∼= S−
0

⊕
iω ⊗ Ω0 ⊕ Ω0,2(M) ∼= iΩ2

+(M)
⊕

iΩ0(M)

in the cokernel of T 0
C0

. We deduce

φ ∈ coker 6DA = H0,1

∂̄
(M),

iuω + i(θ + θ̄) ∈ iH2
+(M)

and
if ∈ H0(M) ∼= iR.

Thus u must be constant and θ ∈ H0,2
∂̄

(M). We conclude

coker T 0
C0

= H0,1

∂̄
(M) ⊕ H0,2

∂̄
(M) ⊕ H0(M) ⊕ Rω.

The vector space in the right hand-side of the above isomorphism is naturally
oriented (here the order is essential) and it induces on coker TC0 precisely
the orientation discussed in §3.1.1.

To compute the orientation transport we need to determine the reso-
nance operator

P
d

dτ
|τ=0 T τ

C0
: ker T 0

C0
→ coker T 0

C0

where P denotes the orthogonal projection onto cokerT 0
C0

. Observe that

d

dτ
|τ=0 T τ

C0

[
ψ̇

iḃ

]
=

 c(iḃ)ψ
−1

2 q̇(ψ, ψ̇)
−iIm〈ψ, ψ̇〉


where ψ = λ ⊕ 0, iḃ = i(ϕ + ϕ̄) and ψ̇ = α̇ ⊕ β̇. Using the computations in
§3.2.3 and (3.3.4) we deduce

d

dτ
|τ=0 T τ

C0

[
ψ̇

iḃ

]
=

 λiϕ
− iλ

4 (Re α̇)ω + λ i
2
√

2
β̇

iλIm α̇

 .
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Clearly, d
dτ |τ=0 T τ

C0
maps ker T 0

C0
bijectively onto coker T 0

C0
and it does so

in an orientation preserving fashion. Formula (1.5.9) now shows that the
orientation transport is 1. We have thus proved the following result.

Theorem 3.3.2. Suppose M is a Kähler surface and σ0 is the canonical
spinc structure. If b+

2 > 1 we have

swM (σ0) = 1

while if b+
2 = 1 we have

sw+
M (σ0) = 1.

The above nonvanishing result has immediate geometric consequences.

Corollary 3.3.3. If M is a K3 surface then σ0 = σ̄0 is the only basic class
of M and swM (σ0) = 1.

Proof Suppose L is a Hermitian line bundle on M such that swM (L) 6= 0.
Then

0 ≤ degω(L) ≤ degω(KM ) = 0
so that by Corollary 3.2.10 we deduce that L is the trivial line bundle. ¥.

Corollary 3.3.4. Suppose M is a Kähler surface such that pg(M) > 0.
Then there exist no Riemannian metrics on M with positive scalar curvature.

Suppose M is a Kähler surface such that pg(M) > 0 (so that b+
2 (M) > 1).

Using (2.3.14) of 2.3.2 we deduce

swM (σ̄0) = swM (KM ) = (−1)κswM (0) = swM (σ0)

where

κ =
1
2
(b+

2 + 1 − b1) =
1
2
(2 − b1 + 2pg) = 1 − q + pg = χhol(M).

Thus σ0(= 0) and σ̄0(= KM ) are basic classes of a Kähler surface with
pg > 0. If M is an algebraic surface of general type we can be even more
precise.

Theorem 3.3.5. Let M be a minimal algebraic surface of general type such
that pg > 0. Then σ0 and σ̄0 are the only basic classes of M .

Proof Suppose L → M is a Hermitian line bundle such that swM (L) 6= 0.
We want to show that (topologically) L ∼= C or L ∼= KM . According to
Corollary 3.2.10 it suffices to show

degω(L) ∈ {0, degω KM}.
We argue by contradiction. This means c1(L) and c1(KM ) are linearly
independent in H1,1

∂̄
(M) and we denote by V the two-dimensional space
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spanned by KM and L. We will show that the intersection form is positive
definite on V , thus contradicting the Hodge index theorem.

Since M is a minimal algebraic surface of general type we deduce

• KM is nef and
• K2

M > 0.

According to Corollary 3.2.9 the condition swM (L) 6= 0 implies several
things.

¦ The virtual dimension d(L) = L · (KM − L) ≥ 0 so that L2 ≥ KM · L.
¦ There exists a holomorphic structure on L which admits a nontrivial holo-
morphic section u.
¦ There exists a holomorphic structure on KM −L which admits a nontrivial
holomorphic section v.

Observe that D := u−1(0) 6= ∅ since L is not the trivial line bundle.
Hence D is an effective divisor.

Since KM is nef we deduce

KM · D = KM · L ≥ 0.

In fact
KM · L > 0.

Indeed, if KM · L = 0 then the conditions K2
M > 0 coupled with the Hodge

index theorem would imply that c1(L) = c1([D]) = 0. This is impossible
since D is an effective divisor. Thus

(3.3.5) L2 ≥ KM · L > 0.

Replacing L → KM − L in the above arguments (which is equivalent to
using the canonical involution σ 7→ σ̄ on Spinc(M)) we deduce

(3.3.6) KM · (KM − L) > 0 ⇐⇒ K2
M > KM · L > 0.

We can represent the restriction of the intersection form to V using the basis
(KM , L). We obtain the 2 × 2 symmetric matrix

Q :=
[

K2
M KM · L

KM · L L2

]
.

Clearly tr (Q) = K2
M + L2 > 0 and, using (3.3.5) + (3.3.6) we deduce

det(Q) > 0. Thus Q is positive definite, contradicting the Hodge index
theorem. ¥

The last proposition has a surprising topological consequence.
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Corollary 3.3.6. Suppose M is a minimal algebraic surface of general type
and f : M → M is a diffeomorphism. Then f∗(KM ) = ±KM .

Proof It follows from the fact that the set of basic classes of M is a
diffeomorphism invariant of M : for any σ ∈ BM we have f∗σ ∈ BM . ¥

Thus the pair of holomorphic objects (KM ,−KM ) of the minimal, general
type surface M is a diffeomorphism invariant of M !!!

3.3.2. Seiberg-Witten invariants of simply connected elliptic sur-
faces. The elliptic surfaces have a much richer structure than the surfaces
of general type. They have more complex curves and thus we can expect a
more sophisticated Seiberg-Witten theory.

We begin with a warm-up result showing that, as in the case of surfaces of
general type, the basic classes of a minimal elliptic surfaces lie on the segment
determined by the canonical classes σ0 and σ̄0. If we use the language of
line bundles this means the basic classes of such a surface lie on the segment
in H2(M, Z) determined by the trivial line bundle and KM .

Definition 3.3.7. A proper elliptic surface is a minimal algebraic elliptic
surface M such that kod (M) > 0.

Proposition 3.3.8. Suppose M is a proper elliptic surface such that pg(M) >
0. If L is a (1, 1), Hermitian line bundle on M such that swM (L) 6= 0 then
there exists t ∈ [0, 1] such that

c1(L) = tc1(KM ) in H1,1

∂̄
(M).

Proof Since M is a proper elliptic surface we deduce that KM is nef,
nontrivial and K2

M = 0. Moreover, the metric ω is defined by an ample
divisor H and thus, for any line bundle E, we have degω(E) = H · E.

Suppose L 6∼= C, KM . It suffices to prove L̂ = KM − L and L are
collinear, for then the inequality

0 < H · L < H · KM

will force L to lie on the segment going from 0 to KM . We argue by con-
tradiction. Suppose c1(L) and c1(KM ) are linearly independent (as classes
in H1,1

∂̄
(M)).

Using Proposition 3.2.13 we deduce that there exist effective divisors D′

and D′′ such that

[D′] + [D′′] = KM , c1([D′]) = c1(L) in H2(M, Z).

Since KM is nef we deduce

KM · L = KM · D′ ≥ 0, KM · L̂ = KM · D′′ ≥ 0
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so that
KM · L = 0.

On the other hand, since d(L) = d(L̂) = L · L̂ ≥ 0 we deduce

L2 ≥ KM · L ≥ 0, L̂2 ≥ KM · L̂ ≥ 0

so that L2, L̂2 ≥ 0. From the identity

0 = K2
M = (L + L̂)2 = L2 + 2L · L̂ + L̂2 ≥ 0

we can now conclude L2 = L̂2 = L · L̂ = 0.
Set

t := (H · L)/H2 > 0,

s := (H · L̂)/H2 > 0
and

T := tH − L, S := sH − L̂.

Observe that
H · T = H · S = 0.

The vectors H, S, T are linearly independent in H1,1

∂̄
(M) and thus span a

three-dimensional space V . We can now represent the restriction to V of
the intersection form as a symmetric 3 × 3 matrix using the basis H, T , S.
An elementary computation shows this matrix is

Q = H2

 1 0 0
0 −t2 −(t2 + s2 + st)
0 −(t2 + s2 + st) −s2

 .

The 2 × 2 minor in the lower right hand corner has negative determinant
and thus Q has two positive eigenvalues. This contradicts the Hodge index
theorem and completes the proof of the proposition. ¥

To get more detailed information about the Seiberg-Witten invariants
of an elliptic surface we need to have a deeper look into the structure of
these surfaces. This is a very fascinating and elaborate subject. We want
to present to the reader a few facts about elliptic surfaces which are needed
in the computation of the Seiberg-Witten invariants. For more details we
refer to [9, 40] or the original articles of K. Kodaira [65].

An important concept in the theory of elliptic surfaces is that of multiple
fiber.

Suppose π : M → B is an algebraic elliptic surface over the smooth
complex curve B. The fiber Fb of π at b ∈ B is said to have multiplicity m
if there exists a holomorphic coordinate w defined on a disk neighborhood
∆ of b such that

¦ w(b) = 0.
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¦ There exists a holomorphic function g : π−1(∆) → ∆ ⊂ C such that
π = gm on π−1(∆).
¦ The set Cg of critical points of g is finite.

The hypersurface Fb = g−1(0) is called the reduction of the fiber π−1(b).
The multiple fiber is said to have smooth reduction if Cg = ∅ or, equivalently,
if Fb is smooth. Using the open cover U0 = π−1(∆), U1 = M \ Fb and the
holomorphic function

f0 = π : U0 → ∆ ⊂ C, f1 ≡ 1 : U1 → C

we obtain a divisor Mb on M . Observe that

Mb = mFb.

The multiple fibers are not just theoretically possible. There is a simple way
to construct elliptic surfaces with multiple fibers having smooth reductions.
It relies on the logarithmic transform.

Let us first describe a simple procedure of constructing a smooth family
of elliptic curves. Denote by H+ the half-plane {Im τ > 0} ⊂ C. Each
τ ∈ H+ defines a lattice

Λτ = {m + nτ ; m, n ∈ Z}.

It is known that any elliptic curve is biholomorphic to a quotient Cτ :=
C/Λτ . If X is a complex manifold and τ : X → H+ is a holomorphic map we
can form a holomorphic family of smooth elliptic curves Cτ := (C/Λτ(x))x∈X .
More precisely, Cτ is defined as the quotient

Cτ := C × X/(Z ⊕ Z)

where (m, n) ∈ Z ⊕ Z acts on (z, x) ∈ C × X by

(m, n)(z, x) = (z + m + nτ(x), x).

We denote by πτ the natural projection Cτ → X.
Suppose π : M → B is an elliptic surface and b ∈ B is a regular value

of π so that the fiber π−1(b) is a smooth elliptic curve. Choose a small
neighborhood ∆ of b ∈ B and a local coordinate w on ∆ such that w(b) = 0.
For simplicity we assume that w identifies ∆ with the unit disk in C. Then
there exist1 a holomorphic map τ : ∆ → H and a biholomorphic map

F : π−1(∆) → Cτ

1This claim needs a proof and we refer to [49] for details.



252 3. Seiberg-Witten Equations on Complex Surfaces

such that the diagram below is commutative.

π−1(∆) Cτ

∆ ∆
u

π

w
F

u

πτ

w
1∆

Define Σ ⊂ Cτ × ∆ by

Σ := {(z, w, ζ); w, ζ ∈ ∆, z ∈ Cτ(w), ζm = w}.

More intuitively, Σ is the pullback of the fibration πτ : Cτ → ∆ via the
m-fold branched cover

∆ → ∆, ζ 7→ w := ζm.

The natural map

ζ : Σ → ∆, (z, w, ζ) 7→ ζ ∈ ∆

defines a structure of elliptic fibration on Σ. The fibers over ζ and e2πi/mζ
are biholomorphic to Cτ(ζm) = Cτ(w). This means we have a commutative
diagram

Σ Cτ

∆ ∆

w
G

u
ζ

u
w=πτ

w
w=ζm

and we can also think of Σ as the total space of the family of smooth elliptic
curves (Cτ(ζm))ζ∈∆. We can now construct an automorphism φ : Σ → Σ
(3.3.7)

Cτ(ζm) × ∆ 3 (z, ζ) 7→
( (

z +
τ(ζm)

m

)
mod Λτ(ζm), e2πi/mζ

)
∈ Cτ(ζm) × ∆.

Observe that the iterates of φ generate a cyclic group with m elements which
acts freely on Σ. We can form the quotient

Σ̃ := Σ/(φ).

The natural map ζm : Σ → ∆ is invariant with respect to the action of this
cyclic group and thus descends to a holomorphic map

u = ζm : Σ̃ → ∆.

It clearly induces a structure of elliptic fibration on Σ̃ and the fiber over
0 ∈ ∆ is multiple, with multiplicity m. Its reduction is smooth and is
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biholomorphic to Cτ(0). The fiber over u ∈ ∆ \ {0} is smooth, it has multi-
plicity 1 and is biholomorphic to Cτ(u). Moreover, there is a biholomorphic
map

Lm : Σ̃ \ u−1(0) → Cτ \ Cτ(0)

induced by the φ-invariant map

Σ \ ζ−1(0) → Cτ \ Cτ(0), (z, ζ) 7→
(

(z − τ(ζm)
2πi

log ζ) mod Λτ(ζm), ζ
m

)
.

Observe that the 2πiZ-ambiguity of log ζ vanishes when we mod out the
Λτ -action.

The logarithmic transform can now be described explicitly as follows.

. Remove the fibered neighborhood set π−1(∆1/2) of the fiber of π over
w(b) = 0 where ∆1/2m denotes the disk with the same center as ∆ but with
radius 1/2m.

. Glue back the elliptic fibration Σ̃ using the biholomorphism

Lm : Σ̃ |∆\∆̄1/2
→ π−1(∆ \ ∆̄1/2m).

We will denote the resulting manifold by LmM , or by Lm(b)M if the
point b where the logarithmic transform was performed is relevant. It is
often useful to have a C∞-interpretation of this operation.

The fibered neighborhood Y := π−1(∆) is a 4-manifold with boundary
diffeomorphic to T 2×∆. Its boundary is a three-dimensional torus T 2×∂∆.
We will denote by w the complex coordinate on ∆ and by ξ1, ξ2 the angular
coordinates on T 2. When working in the C∞-category we can assume that
the map τ : ∆ → H+ is constant τ(w) ≡ i.

Denote by ∆̂ another copy of ∆ coordinatized by ζ = reiθ ∈ C. We pull
back this T 2-fibration using the m-fold branched cover

pm : ∆̂ → ∆, ζ 7→ w = ζm

and we obtain another T 2-fibration Ŷ = p∗mY → ∆̂. Set ω := e2πi/m and
identify the cyclic group Zm with the subgroup of S1 generated by ω.

We can now define two Zm-actions on Ŷ :

ω ? (ξ1, ξ2, ζ) = (ξ1, ξ2, ωζ)

and
ω ◦ (ξ1, ξ2, ζ) = (ξ1, ωξ2, ωζ).

The ◦-action corresponds to the holomorphic action described by the map
φ in (3.3.7).

These two actions are not isomorphic and lead to two quotients

Y ∼= Ŷ /(ω, ?)
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and
Ỹ := Ŷ /(ω, ◦).

On the other hand, the restrictions of these actions to T 3 ∼= ∂Ŷ are isomor-
phic. To see this pick a matrix A ∈ SL(3, Z) such that

A ·

 0
0
1

 =

 0
1
1

 .

This means the last column of A is the vector in the right-hand side of the
above equality. For example, we can pick

A =

 1 0 0
0 1 1
0 0 1

 .

Using the angular coordinates (ξ1, ξ2, θ) on ∂Ŷ we can write the above
two actions as

ω ?

 ξ1

ξ2

θ

 =
2π

m

 0
0
1

 +

 ξ1

ξ2

θ

 ,

ω ◦

 ξ1

ξ2

θ

 =
2π

m

 0
1
1

 +

 ξ1

ξ2

θ

 .

It is now clear that

A(ω ? ~v) = ω ◦ A~v, ∀~v ∈ R3 mod (2πZ)3.

Thus A induces a diffeomorphism

Ā : ∂Y → ∂Ỹ .

This diffeomorphism does not extend to a diffeomorphism Ỹ → Y although
Ỹ and Y are diffeomorphic.

We will produce a diffeomorphism Ỹ → T 2 × ∆ by constructing a map
T : Ỹ → T 2 × ∆ whose fibers are precisely the orbits of the (ω, ◦) action.
More precisely, set

T : Ŷ → T 2 × ∆, (ξ1, ξ2, ζ) 7→ (ξ1, ξ
m
2 , ξ−1

2 ζ).

To understand the effect of Ā we need to introduce angular coordinates on
∂Y and ∂Ỹ .

On ∂Y a natural choice is given by

(ξ1, ξ2, ξ3) = (ξ1, ξ2, ζ
m)

while on ∂Ỹ a natural choice is suggested by the definition of T

(ξ̃1, ξ̃2, ξ̃3) = (ξ1, ξ
m
2 , ξ−1

2 ζ).



3.3. Applications 255

The map Ā can be computed from the diagram

(ξ1, ξ2, ζ) (ξ1, ξ2ζ, ζ)

(ξ1, ξ2, ζ
m) (ξ1, (ξ2ζ)m, ξ−1

2 )

w
A

u
(ξ1,ξ2,ξ3)

u
(ξ̃1,ξ̃2,ξ̃3)

w
Ā

Thus Ā is given by

ξ̃1 = ξ1, ξ̃2 = ξm
2 ξ3, ξ̃3 = ξ−1

2

or, in matrix notation,

Ā =

 1 0 0
0 m 1
0 −1 0

 ∈ SL(3, Z).

Its inverse is

Gm =

 1 0 0
0 0 1
0 −1 m

 .

Thus, in the C∞-category, the logarithmic transform is obtained by remov-
ing a fibered neighborhood T 2 × ∆ of a smooth fiber and then attaching it
back in a new fashion, using the gluing map Gm.

We collect below some basic topological and geometric facts about ellip-
tic surfaces admitting multiple fibers.

Proposition 3.3.9. Suppose π : M → B is an elliptic surface with r multi-
ple fibers, with smooth reductions F1, · · · , Fr and multiplicities m1, · · · , mr.
Then, there exists a holomorphic line bundle L → B of degree deg L =
2g(B) − 2 + χhol(M) = 2g(B) − 2 + 1

12χM such that

KM
∼= π∗L +

r∑
i=1

(mi − 1)Fi.

For proofs of the above proposition we refer to [9, 49]. When B ∼= P1

we can be more specific because in this case two holomorphic line bundles
over P1 are holomorphically isomorphic if and only if they are topologically
isomorphic, that is, they have the same degree. A holomorphic line bundle
of degree d over P1 can thus be described by any divisor b1 + · · ·+ bd, where
the points bi are pairwise distinct.
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Corollary 3.3.10. Suppose π : M → P1 is an elliptic fibration with r
multiple fibers F1, · · · , Fr with multiplicities m1, · · · , mr. Then

KM =

χhol(M)−2∑
j=1

Mbj +
r∑

i=1

(mi − 1)Fi


where the points bj ∈ P1 are pairwise distinct regular values of π and Mbj :=
π−1(bj).

Denote by E(n; m1, · · · , mr) the smooth manifold obtained from the
elliptic surfaces E(n) by performing logarithmic transforms of multiplicities
m1, · · · , mr on r nonsingular fibers

E(n : m1, · · · , mr) = Lm1 · · ·LmrVn.

Denote by F1, · · · , Fr the multiple fibers in E(n; m1, · · · , mr). For a proof
of the following nontrivial result we refer to [40].

Theorem 3.3.11. Suppose π : M → P1 is an elliptic surface such that

I χhol(M) = n > 0.
I There is no smooth rational curve C ↪→ M entirely contained in a fiber
of π and such that C2 = −1.
I There are r multiple fibers, with multiplicities m1, · · · , mr and smooth
reductions F1, · · · , Fr.

Then the following hold.
(a) M is diffeomorphic to E(n; m1, · · · , mr).
(b) M is simply connected if and only if either r ≤ 1 or r = 2 and the
multiplicities m1, m2 are coprime.
(c) Denote by m the least common multiple of m1, · · · , mr and by F ∈
H2(M, Z)/Tors the homology class carried by a nonsingular fiber of π. Then
there exists a primitive class f ∈ H2(M, Z)/Tors such that

F = mf , Fi =
m

mi
f , ∀i = 1, · · · , r.

Using the above proposition we can now determine the homeomorphism
type of the simply connected surfaces E(n; m1, m2), where we allow mi = 1.

In this case the least common multiple of m1, m2 is m1m2. H2(M, Z)
has no torsion and can be identified with H2(M, Z) via Poincaré duality.
We deduce

χM = 12n, b2 = 12n − 2,

pg = (n − 1), b+
2 = 2n − 1,
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(3.3.8) KM = m

{
(n − 2) +

∑
i

(1 − 1
mi

)

}
f .

Using Wu’s formula we deduce that the intersection form of M is even if
and only if

ν(n; m1, m2) =

{
(n − 2) +

∑
i

(1 − 1
mi

)

}
is even. This happens if and only if

n ≡ m1 + m2 ≡ 0 mod 2.

Using Corollary 2.4.17 we deduce the following result.

Corollary 3.3.12. Two simply connected elliptic surfaces E(n; m1, m2) and
E(n′; m′

1, m
′
2) are homeomorphic if and only if

n = n′

and either

n ≡ 0 mod 2, m1 + m2 ≡ m′
1 + m′

2 mod 2.

or,
n ≡ 1 mod 2.

We now have all the information we need to compute the Seiberg-Witten
invariants of the elliptic surface M = E(n; m1, m2), (m1, m2) = 1, n ≥ 3.
Denote by F1 and F2 the multiple fibers of M and pick (n − 2) pairwise
disjoint generic fibers, Mb1 , · · · , Mbn−2 . The line bundle determined by the
effective divisor

C0 :=
∑

j

Mbj + (m1 − 1)F1 + (m2 − 1)F2

is precisely the canonical line bundle KM . D determines a holomorphic
section s of KM such that D coincides with the zero divisor determined
by s. Using Proposition 3.2.13 we deduce that if the line bundle L → M
determines a basic class of M then there exists a divisor D on M such that

c1([D]) = c1(L) and 0 ≤ D ≤ C0.

This means D must have the form

D = D(J, a1, a2) =
∑
j∈J

Mbj + a1F1 + a2F2
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where J ⊂ {1, 2, · · · , (n − 2)} and 0 ≤ ai < mi, i = 1, 2. Observe that with
D as above we have

c1([D]) = m(|J | + a1

m1
+

a2

m2
)f .

Since m1 and m2 are relatively prime we deduce

c1([D(J, a1, a2)]) = c1([D(J ′, a′1, a
′
2)]) ⇐⇒ |J | = |J ′|, a1 = a′1, a2 = a′2.

Thus, if L determines a basic class then c1(L) is collinear with c1(KM ) in
H2(M, Z), the virtual dimension D(L) is zero and moreover

(3.3.9) c1(L) = (mk + m1a2 + m2a1)f , 0 ≤ k ≤ (n − 2), 0 ≤ ai < mi.

Thus the set of basic classes of M has cardinality ≤ m1m2(n − 1). We will
denote by L(k, a1, a2) the complex line bundle such that

c1(L) = (mk + m1a2 + m2a1)f .

Suppose L = L(k, a1, a2). Then, according to Proposition 3.2.13, the set
of orbits of monopoles corresponding to the spinc structure σ0 ⊗ L and the
perturbation tω + s + s̄ can be identified with the set of effective divisors
D(J, a1, a2) such that |J | = k. There are exactly

(
n−2
|J |

)
such divisors.

Given a divisor D as above there exists a monopole

C = CD = (ψ = α ⊕ β, A = A0+̇2B)

such that B induces a holomorphic structure on L, α = αD is a holomorphic
section of L, β̄ = β̄D is a holomorphic section of KM − L, D coincides with
the zero divisor determined by α

αβ̄ = −8is, ΛFB =
i
8
(|α|2 − |β|2 − t).

Proposition 3.3.13. (O. Biquard [13]) Each of the above monopoles
C = CD is nondegenerate.

Proof The idea of proof is inspired by [13]. Since the virtual dimension
d(L) = 0 it suffices to show ker TC = {0}. Let

(ψ̇, iḃ) ∈ ker TC.

As in §3.2.3 we write

ψ̇ = α̇ ⊕ β̇ ∈ Ω0,0(L) ⊕ Ω0,2(L) = Ω0,0(L − KM )

and

iḃ =
i√
2
(ϕ + ϕ̄), ϕ ∈ Ω0,1(M).
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Then (see Proposition 3.2.14) α̇, β̇ and ϕ satisfy the equations

(3.3.10)



4
√

2i∂̄∗ϕ − 〈α, α̇〉 + 〈β, β̇〉 = 0
∂̄ϕ = 0√

2∂̄Bα̇ + iϕ ∧ α = 0√
2∂̄∗

Bβ̇ − iϕ̄ β = 0
α̇β̄ + α ˙̄β = 0

.

The last equation shows α̇/α = − ˙̄β/β̄ on M \
(
α−1(0) ∪ β−1(0)

)
. We

denote by f this smooth function on M \
(
α−1(0)∪β−1(0)

)
. Since αβ̄ = −8is

we deduce

(β̄) = C0 − (α) = C0 − D =
∑
j∈J̄

Mbj + (m1 − a1 − 1)F1 + (m2 − a2 − 1)F2

where J̄ := {1, 2, · · · , (n − 2)} \ J . Since α̇ = αf and ˙̄β = −β̄f are smooth
objects we deduce that f extends to a smooth function on M \ (F1 ∪ F2).

Lemma 3.3.14. The function f extends to a smooth function on M .

We will complete the proof of the proposition assuming the validity of
the above lemma.

Observe that since ∂̄Bα = 0 we have (on M \ α−1(0))

∂̄f = ∂̄(α̇/α) = (α∂̄Bα̇)/α2) = − i√
2
ϕ

where at the last step we used the third equation in (3.3.10). Since
M \ α−1(0) is dense in M and f is smooth we can conclude that the last
equality is valid everywhere on M .

Using this identity in the first equation of (3.3.10) we obtain

0 = −8∂̄∗∂̄f − 〈α, fα〉 − 〈β, f̄β〉 = −(8∂̄∗∂̄ + |α|2 + |β|2)f.

Multiplying by f and integrating by parts we deduce f = 0. This implies
ϕ = 0, α̇ = fα = 0 and ˙̄β = −β̄f = 0. This concludes the proof of the
proposition. ¥

Proof of Lemma 3.3.14 We will show that f extends smoothly over F1.
Suppose F1 is the fiber of π : M = E(n; m1, m2) → P1 over 0 ∈ C ⊂ P1.

We denote by w the coordinate on C. Denote by ∆ the unit disk centered at
0. By possibly rescaling we can assume that the restriction of π to π−1(M)
has the form

π = um1

where u : π−1(∆) → ∆ is a submersive holomorphic map.
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Now fix a point q ∈ F1 and a local holomorphic coordinate on F1 near
q. Then the pair of functions (z, u) forms a local holomorphic coordinate
system on a small neighborhood U of q in M . In this coordinate system F1

is locally defined by u = 0 and the section α has the local description

α = ua1α0

where α0 is a nowhere vanishing holomorphic function on U .
Since ∂̄ϕ = 0 we can choose U sufficiently small so that there exists

g ∈ C∞(U) such that ϕ =
√

2∂̄g. The second equation in (3.3.10) can be
rewritten over U as

∂̄(α̇ + iαg) = 0.
Thus

h := α̇ + iua1α0g

is holomorphic on U . We now write

(3.3.11) α̇ = h − iua1α0g

and use this in the last equation of (3.3.10). This yields

(h − iua1α0g)β̄ + ua1α0
˙̄β = 0

so that
h = ua1α0(igβ̄ − ˙̄β).

The last equality shows that the smooth function h0 = α0(igβ̄ − ˙̄β) is holo-
morphic on U \F1 (where it equals h/ua1) and thus it must be holomorphic
everywhere on U . This allows us to write

h = ua1h0

where h0 is holomorphic on U . Using this in (3.3.11) we deduce

α̇ = ua1(h0 − iα0g)

so that
f = α̇/α =

h0 − iα0g

α0
.

This proves that f is bounded on U since α0 does not vanish anywhere. ¥

We now know that if L = L(k, a1, a2) then there are precisely
(
n−2

k

)
G-orbits of nondegenerate irreducible monopoles corresponding to the spinc

structure σ0 ⊗ L. To compute the Seiberg-Witten invariant we have to
determine the signs attached to these monopoles.

Consider a monopole C = CD = (α⊕β, A0+̇2B) as in Proposition 3.3.13.
We begin by rewriting the operator TC using the identifications

Ω0,1 3 ϕ ←→ iḃ =
i√
2
(ϕ + ϕ̄) ∈ iΩ1(M),
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Ω0,2(M) ⊕ iω ⊗ Ω0(M) 3 θ ⊕ uω ←→ i√
2
(θ + θ̄) ⊕ iuω ∈ iΩ2

+(M),

Γ(S+
L ) 3 ψ̇ ←→ α̇ ⊕ β̇ ∈ Ω0,0(L) ⊕ Ω0,0(L − KM ),

Γ(S−
L ) = Ω0,1(L).

Using the computations in §3.2.3 and the identification (3.3.4) we deduce

TC

 α̇

β̇
ϕ

 =


√

2(∂̄Bα̇ + ∂̄∗
Bβ̇)

2∂̄ϕ

−i
√

2Im ∂̄∗ϕ)ω
−4

√
2iRe ∂̄∗ϕ

 +


i(ϕ ∧ α − ϕ̄ β)

i
2
√

2
( ˙̄αβ + ᾱβ̇)

− i
4(Re〈α, α̇〉 − Re〈β, β̇〉)ω
−iIm〈α, α̇〉 − iIm〈β, β̇〉

 .

Define the isomorphism

Υ :
(
iΩ0(M) ⊕ iω ⊗ Ω0(M)

)
⊕ Ω0,2(M) →

(
Ω0(M) ⊗ C

)
⊕ Ω0,2(M),

if0 ⊕ if1ω ⊕ γ ←→
( 1

4
√

2
f0 +

1√
2
f1i

)
⊕ 1

2
γ.

Using these last isomorphisms we can further rewrite TC ←→ ΥTC

TC

 α̇

β̇
ϕ

 =

 √
2(∂̄Bα̇ + ∂̄∗

Bβ̇)
∂̄ϕ

−∂̄∗ϕ

 +


i(ϕ ∧ α − ϕ̄ β)

i
4
√

2
( ˙̄αβ + ᾱβ̇)

− i
4
√

2
( 〈α̇, α〉 − 〈β, β̇〉 )



=

 √
2(∂̄Bα̇ + ∂̄∗

Bβ̇)
∂̄ϕ

−∂̄∗ϕ

 + i


ϕ ∧ α

1
4
√

2
ᾱβ̇

− 1
4
√

2
〈α̇, α〉

 + i


−ϕ̄ β

1
4
√

2
˙̄αβ

1
4
√

2
〈β, β̇〉

 .

Observe that

T 0
C

[
ψ̇

iḃ

]
= T 0

C

 α̇

β̇
ϕ

 =

 √
2(∂̄Bα̇ + ∂̄∗

Bβ̇)
∂̄ϕ

−∂̄∗ϕ


and our orientation conventions for kerT 0

C and coker T 0
C coincide with the

orientations induced by the above identification of these spaces with complex
spaces.

To determine the sign associated to the monopole C we will compute
the orientation transport along a cleverly chosen deformation of T 0

C to TC,
suggested by [13]. We will get the same result since it will be clear from the
description of this deformation that it is homotopic to the deformation T τ

C

we have used so far.
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The new deformation is a composite of two deformations. We first follow
the path (t ∈ [0, 1])

Ut

 α̇

β̇
ϕ

 =

 √
2(∂̄Bα̇ + ∂̄∗

Bβ̇)
∂̄ϕ

−∂̄∗ϕ

 + ti


ϕ ∧ α

1
4
√

2
ᾱβ̇

− 1
4
√

2
〈α̇, α〉

 ,

and then the path

Vt

 α̇

β̇
ϕ

 =

 √
2(∂̄Bα̇ + ∂̄∗

Bβ̇)
∂̄ϕ

−∂̄∗ϕ

 + i


ϕ ∧ α

1
4
√

2
ᾱβ̇

− 1
4
√

2
〈α̇, α〉

 + ti


−ϕ̄ β

1
4
√

2
˙̄αβ

1
4
√

2
〈β, β̇〉

 .

Observe first that the operators Ut are complex linear so the orientation
transport along this path is 1. Thus we only have to determine the orienta-
tion transport along Vt. Let us first point out a very useful fact.

Lemma 3.3.15. kerVt = 0 for all t ∈ (0, 1].

The proof is word for word the proof of Proposition 3.3.13 (which cor-
responds to t = 1) and can be safely left to the reader. Denote by P the
orthogonal projection onto cokerV0 and set

R0 = P
d

dt
|t=0 Vt : kerV0 → cokerV0.

Observe that

V̇0

 α̇

β̇
ϕ

 :=
d

dt
|t=0 Vt

 α̇

β̇
ϕ

 = i


−ϕ̄ β

1
4
√

2
˙̄αβ

1
4
√

2
〈β, β̇〉


is complex conjugate linear. Thus R0 is complex conjugate linear and if it is
an R-linear isomorphism, then the orientation transport will be

(−1)d0 , d0 = dimC kerV0.

We will spend the remainder of this subsection proving that R0 is indeed
an isomorphism and determining d0.

Lemma 3.3.16. There exists a natural short exact sequence

0 → C → H0,0([L, B]) = H0,0([D(J, a1, a2)]) → kerV0 → 0
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where [L, B] denotes the line bundle L equipped with the holomorphic struc-
ture defined by the Hermitian connection B. In particular,

d0 = h0([D(J, a1, a2)]) − 1.

Proof Let (α̇, β̇, ϕ) ∈ kerV0, that is,

(3.3.12)



∂̄Bα̇ + ∂̄∗
Bβ̇ + i√

2
ϕ ∧ α = 0

∂̄ϕ + i
4
√

2
ᾱβ̇ = 0

∂̄∗ϕ + i
4
√

2
〈α̇, α〉 = 0

.

We use the same strategy as in the proof of Proposition 3.2.14. Using the
first equality in (3.3.12) we deduce

0 ≥ −‖∂̄∗
Bβ̇‖2

L2 = 〈∂̄N α̇ +
i√
2
ϕ ∧ α, ∂̄∗

Bβ̇〉L2

(use ∂̄Bα = 0)

= 〈 i√
2
∂̄ϕ ∧ α, β̇〉L2

(use the second equation in (3.3.12)

=
1
8
‖ |α| · |β̇| ‖2

L2 .

This implies β̇ ≡ 0 and thus ∂̄ϕ = 0, according to the second equation in
(3.3.12). Since h0,1(M) = 0 there exists a smooth complex valued function
f on M such that

√
2∂̄f = ϕ.

The first equation in (3.3.12) can now be rewritten

∂̄B(α̇ + ifα) = 0

so that
h := α̇ + ifα ∈ H0,0

∂̄
([L, B])

and
α̇ = h − ifα.

Using these last equalities in the third equation of (3.3.12) we deduce

(∂̄∗∂̄ +
1
8
|α|2)f = − i

8
hᾱ.

Since the positive operator ∂̄∗∂̄ + 1
8 |α|2 has bounded inverse we deduce

(3.3.13) f = fα(h) := − i
8
(∂̄∗∂̄ +

1
8
|α|2)−1(hᾱ).
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It is now clear that the correspondence

H0,0

∂̄
([L, B]) 3 h 7→ (α̇, β̇, ϕ) = (h − ifα(h)α, 0,

√
2∂̄fα(h) )

produces a C-linear surjection

H0,0
∂̄

([L, B]) → kerV0.

Observe that its kernel is generated by

h0 := iα.

Lemma 3.3.16 is proved. ¥

Lemma 3.3.17. R0 is a complex conjugate linear isomorphism.

Proof Let
(α̇0, β̇0 = 0, ϕ0) ∈ kerV0.

We will show that if

V̇0

 α̇0

0
ϕ0

 = i


−ϕ̄0 β

1
4
√

2
˙̄α0β

0

 ∈ Range (V0)

then α̇0 = 0 and ϕ0 = 0.
Suppose there exists (α̇, β̇, ϕ) ∈ Ω0,0(L) × Ω0,2(L) × Ω0,1(M) such that

V0

 α̇

β̇
ϕ

 + V̇0

 α̇0

0
ϕ0

 =

 0
0
0

 .

This means

(3.3.14)



∂̄Bα̇ + ∂̄∗
Bβ̇ + i√

2
ϕ ∧ α − i√

2
ϕ̄0 β = 0

∂̄ϕ + i
4
√

2
ᾱβ̇ + i

4
√

2
˙̄α0β = 0

∂̄∗ϕ + i
4
√

2
α̇ᾱ = 0

and

(3.3.15)



∂̄Bα̇0 + i√
2
ϕ0 ∧ α = 0

∂̄ϕ0 = 0

∂̄∗ϕ0 + i
4
√

2
〈α̇0, α〉 = 0

.
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Again we rely on the idea in the proof of Proposition 3.2.14. We have

0 ≥ −‖∂̄∗
Bβ̇ − i√

2
ϕ̄0 β‖2

L2 = 〈∂̄Bα̇ +
i√
2
αϕ, ∂̄∗

Bβ̇ − i√
2
ϕ̄0 β〉L2

= 〈 i√
2
∂̄B(αϕ), β̇〉L2 + 〈 i√

2
ϕ0 ∧ ∂̄Bα̇, β〉L2 + 〈( i√

2
)2αϕ0 ∧ ϕ, β〉L2

(use ∂̄ϕ0 = 0, ∂̄∗
Bβ = ∂̄Bα = 0)

= 〈 i√
2
α∂̄ϕ, β̇〉L2 + 〈 i√

2
αϕ0 ∧

i√
2
ϕ, β〉L2

(use i√
2
αϕ0 = −∂̄Bα̇0)

=
i√
2
〈α∂̄ϕ, β̇〉L2 − i√

2
〈∂̄Bα̇0 ∧ ϕ, β〉L2

=
i√
2
〈α∂̄ϕ, β̇〉L2 − i√

2
〈∂̄B(α̇0ϕ) − α̇0∂̄ϕ, β〉L2

(use ∂̄∗
Bβ = 0)

=
i√
2
〈α∂̄ϕ, β̇〉L2 +

i√
2
〈α̇0∂̄ϕ, β〉L2

= 〈∂̄ϕ,− i√
2
(ᾱβ̇ + ˙̄α0β)〉L2

(3.3.14)
=

1
8
‖ᾱβ̇ + ˙̄α0β‖2

L2 .

This shows

(3.3.16)



∂̄∗
Bβ̇ − i√

2
ϕ̄0 β = 0

∂̄Bα̇0 + i√
2
αϕ0 = 0

∂̄ϕ0 = 0

∂̄∗ϕ0 + i
4
√

2
α̇0ᾱ = 0

ᾱβ̇ + ˙̄α0β = 0

The above system of equations is very similar to (3.3.10). We can now con-
clude exactly as in the proof of Proposition 3.3.13 that the system (3.3.16)
has only the trivial solution

α̇0 = 0, β̇ = 0, ϕ0 = 0.

This shows that R0 is an isomorphism as claimed. ¥
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Observe that all divisors D(J, a1, a2), |J | = k are linearly equivalent.
Indeed, for any two sets J, J ′ ⊂ {1, · · · , n − 2} with |J | = |J ′| the divisors

C =
∑
j∈J

Mbj , C ′ =
∑
j∈J ′

Mbj

are linearly equivalent since the divisors∑
j∈J

bj ,
∑
j∈J ′

bj

on P1 are linearly equivalent. Thus

d(J, a1, a2) := dimC H0,0

∂̄
([D(J, a1, a2)])

depends only on k = |J |, a1 and a2. We will denote this dimension by
d(k, a1, a2). This shows that the Seiberg-Witten invariant of the spinc struc-
ture σ0 ⊗ L(k, a1, a2) is nontrivial and more precisely

swM = (−1)d(k,a1,a2)−1

(
n − 2

k

)
.

In particular, M = E(n, m1, m2) has precisely m1m2(n − 1) basic classes.
We can be even more precise.

Proposition 3.3.18. d(k, a1, a2) = k + 1.

Proof The key ingredient in the proof is the following fact concerning
multiple fibers. Its proof can be found in [49].

Lemma 3.3.19. Denote by Ni the holomorphic normal bundle of Fi ↪→ M ,
i = 1, 2. Then Ni is an element of order mi in the group Pic (Fi).

The proof of Proposition 3.3.18 will be completed in several steps. As
in §3.1.1, for any effective divisor D on M , we denote by fD one of the
nontrivial holomorphic sections of [D] canonically determined by D. Fix k
distinct regular fibers Mb1 , · · · , Mbk

and denote by D0 the divisor

D0 =
k∑

j=1

Mbj .

We can identify D0 with a smooth (reducible) curve on M . Now set T =
a1F1 + a2F2 and D = D0 + T .

Step 1 The proposition is true if a1 = a2 = 0. To see this consider the
structural sequence

0 → OM

fD0
·

→ OM ([D0]) → OD0([D0]) → 0
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which leads to the long exact sequence

0 → H0(OM ) → H0
(
OM ([D0])

)
→ H0

(
OD0([D0])

)
→ H1(OM ) → · · · .

Since M is simply connected we deduce dimC H1(OM ) = h0,1
M = 0. Thus we

have the short exact sequence of complex vector spaces

0 → H0(OM ) → H0
(
OM ([D0])

)
→ H0

(
OD0([D0])

)
→ 0.

Hence
H0

(
OM ([D0])

)
∼= H0(OM ) ⊕ H0

(
OD0([D0])

)
∼= H0(OM ) ⊕

(⊕
j

H0
(
OMbj

([D0])
))

.

The holomorphic normal bundle to Mbj ↪→ M is (holomorphically) trivial
and, by the adjunction formula, it coincides with [D0]|Mbj

. Thus

H0(OMbj
([D0])) ∼= C.

Step 1 is now complete.

Step 2 If a1 + a2 > 0 then

H0
(
OM ([T ])

)
∼= C, H1

(
OM ([T ])

)
∼= 0.

We will distinguish two cases: a1 + a2 = 1 and a1 + a2 > 1.
In the first case, assume a1 = 1, a2 = 0 so that T = F1. Using the

structural sequence

0 → OM → OM ([F1]) → OF1(N1) → 0

we obtain the long exact sequence

0 → H0(OM ) → H0
(
OM ([F1])

)
→ H0

(
OF1(N1)

)
→ H1(OM ) → H1

(
OM ([F1])

)
→ H1

(
OF1(N1)

)
→ · · · .

(∗)

From Lemma 3.3.19 we deduce that the degree zero line bundle N1 → F1

has no holomorphic sections so that

H0
(
OF1(N1)

)
∼= 0.

The first portion of the long exact sequence now implies

H0
(
OM ([F1])

)
∼= H0(OM ) ∼= C.

The Riemann-Roch theorem for the line bundle N1 → F1 implies

dimC H0
(
OM ([F1])

)
− dimC H1

(
OF1(N1)

)
= χ(N1) = deg(N1) + 1 − g(F1) = 0
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so that
H1

(
OF1(N1)

)
∼= 0.

Using this in the second portion of the long exact sequence (∗) we deduce

H1
(
OM ([F1])

)
∼= H1(OM ) ∼= 0.

This completes Step 2 in the case a1 + a2 = 1.

The general case follows by induction. Suppose d := a1 + a2 > 1 and
assume a1 > 0. Set T0 := T −F1 = (a1−1)F1 +a2F2. We use the structural
sequence

0 → OM ([T0]) → OM ([T ]) → OF1([T ]) → 0

with associated long exact sequence

0 → H0
(
OM ([T0])

)
→ H0

(
OM ([T ])

)
→ H0

(
OF1([T ])

)
→ H1

(
OM ([T0])

)
→ H1

(
OM ([T ])

)
→ H1

(
OF1([T ])

)
→ · · · .

(∗∗)

The induction assumption implies

H0
(
OM ([T0])

)
∼= C, H1

(
OM ([T0])

)
∼= 0.

Now observe that [T ]|F1
∼= a1N1 and since 0 < a1 < m1 we deduce from

Lemma 3.3.19 that the degree zero line bundle a1N1 is holomorphically
nontrivial so that

H0
(
OF1([T ])

)
∼= 0.

Invoking again the Riemann-Roch theorem for a1N1 → F1 we deduce

H1
(
OF1([T ])

)
∼= 0.

The conclusions of Step 2 now follow from the sequence (∗∗).

Step 3 Conclusion. Consider the structural sequence

0 → OM ([T ])
fD0

·
−→ OM ([D]) → OD0([D]) → 0

with associated long exact sequence

0 → H0
(
OM ([T ])

)
→ H0

(
OM ([D])

)
→ H0

(
OD0([D])

)
→ H1

(
OM ([T ])

)
→ H1

(
OM ([D])

)
→ H1

(
OD0([D])

)
→ · · · .

(∗ ∗ ∗)

Observe that the restriction of [D] to the disconnected curve D0 is the
holomorphically trivial line bundle. Thus

H0
(
OD0([D])

)
∼= Ck.
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Using Step 2 we deduce H1
(
OM ([T ])

)
∼= 0 so that the first part of (∗ ∗ ∗)

reduces to a short exact sequence

0 → H0
(
OM ([T ])

)
→ H0

(
OM ([D])

)
→ H0

(
OD0([D])

)
→ 0.

Using Step 2 again we deduce that the first space in the above sequence is
one-dimensional. Proposition 3.3.18 is now clear. ¥

The next theorem collects the results proved so far.

Theorem 3.3.20. The simply connected elliptic surface M = E(n; m1, m2),
(m1, m2) = 1, n ≥ 2 has exactly m1m2(n − 1) basic classes

σ(k, a1, a2) = σ0 ⊗ Lk,a1,a2

where 0 ≤ k ≤ n − 2, 0 ≤ a1 ≤ m1 − 1, 0 ≤ a2 ≤ m2 − 1 and Lk,a1,a2 is the
complex line bundle determined by

c1(Lk,a1,a2) = (m1m2k + m1a2 + m2a1)f .

Moreover,

swM (σ(k, a1, a2)) = (−1)k

(
n − 2

k

)
.

Remark 3.3.21. For different approaches to Theorem 3.3.20 we refer to
[21, 35, 42].

The above theorem has a truly remarkable consequence.

Corollary 3.3.22. ([82, 95, 129]) Two simply connected elliptic surfaces
M = E(n; m1, m2) and M ′ = E(n′; m′

1, m
′
2) are diffeomorphic if and only if

(3.3.17) n = n′ and {m1, m2} = {m′
1, m

′
2}.

Proof Clearly, (3.3.17) implies that the two surfaces are diffeomorphic.
Conversely, suppose the two surfaces are diffeomorphic. In particular, they
are homeomorphic and Corollary 3.3.12 implies

n = n′.

Since they are diffeomorphic they have the same number of basic classes so
that

m1m2 = m′
1m

′
2 := m.

Denote by f and f ′ the corresponding primitive classes on M and M ′. Since
BM = BM ′ we deduce that there exist k1, k2, x1, y1, x2, y2 ∈ Z such that

m′
1f

′ = (mk1 + m1x2 + m2x1)f , m′
2f

′ = (mk2 + m1y2 + m2y1)f
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and

0 ≤ k1, k2 ≤ n − 2, 0 ≤ x1, y1 ≤ m1 − 1, 0 ≤ x2, y2 ≤ m2 − 1.

We deduce

m′
1 = mk1 + (m1x2 + m2x1) ≥ m1x2 + m2x1,

m′
2 = mk2 + (m1y2 + m2y1) ≥ m1y2 + m2y1

and
m′

1|(m1x2 + m2x1), m′
2|(m1y2 + m2y1).

Thus,
m′

1 = m1x2 + m2x1, m′
2 = m1y2 + m2y1.

This implies

m1m2 = m′
1m

′
2 = (m1x2 + m2x1) · (m1y2 + m2y1)

= m1m2(x1y2 + x2y1) + m2
1x2y2 + m2

2x1y1.

We conclude
x1y1 = x2y2 = 0, x1y2 + x2y1 = 1.

Some elementary manipulations now imply

{m1, m2} = {m′
1, m

′
2}. ¥

Using Corollary 3.3.12 we can draw the following surprising conclusion.

Corollary 3.3.23. There exist infinitely many smooth 4-manifolds home-
omorphic to E(n; m1, m2) but not diffeomorphic to it !!!

Proof We can construct these manifolds of the form E(n; m′
1, m

′
2) such

that
{m′

1, m
′
2} 6= {m1, m2}

but still m1 + m2 ≡ m′
1 + m′

2 mod 2 if n ≡ 0 mod 2. ¥

Remark 3.3.24. We have seen that the Seiberg-Witten invariants contain
nontrivial information about the Kähler surfaces of Kodaira dimension ≥ 0.

The Seiberg-Witten equations contain nontrivial information about the
remaining case as well. C. Okonek and A. Teleman have used these equations
in [113] to give a new, very short proof of van de Ven’s conjecture stating
that an algebraic surface diffeomorphic to a rational surface must in fact be
rational. We refer to [88, 113] for more information.
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3.3.3. The failure of the h-cobordism theorem in four dimensions.
Recall that two compact, closed, smooth manifolds X± are called h-cobordant
if there exists a smooth manifold W with boundary ∂W = X− ∪ X+ such
that the natural inclusions

X± ↪→ W

are homotopy equivalences. W is also called an h-cobordism between X−
and X+. An h-cobordism W is said to be trivial if it is diffeomorphic to a
cylinder [0, 1] × X. The h-cobordism W is said to be topologically trivial if
it is homeomorphic to a cylinder.

In the award winning work [125], S. Smale has proved the following
remarkable result.

Theorem 3.3.25. (The h-cobordism theorem) Any h-cobordism be-
tween two simply connected smooth manifolds of dimension n ≥ 5 is trivial.
In particular, two smooth, compact, h-cobordant, simply connected manifolds
of dimension ≥ 5 are diffeomorphic.

As explained in [51], the proof of Theorem 3.3.25 fails in dimension 4.
Still, the h-cobordism relation is very restrictive.

Theorem 3.3.26. (C.T.C. Wall, [145]) (a) Any h-cobordism W between
two smooth, simply connected 4-manifolds X and Y induces an isomorphism

fW : (H2(X, Z), qX) → (H2(Y, Z), qY ).

(b) If X and Y are two smooth simply connected 4-manifolds and

g : (H2(X, Z), qX) → (H2(Y, Z), qY )

is an isomorphism then there exists an h-cobordism W such that g = fW .

This theorem suggests the introduction of the following object. Suppose
X is a smooth, simply connected 4-manifold. Denote by O(qX) the group
of automorphisms of the intersection form qX . If ΓX denotes the group
of components of the diffeomorphism group Diff (M) then there exists a
natural map

ΓX → O(qX)

with image GX . Theorem 3.3.26 implies that if an h-cobordism W is trivial
then fW ∈ GX , i.e. the automorphism fW is induced by a diffeomorphism
of X. This shows that the index

δX := [O(qX) : GX ]

is a measure of the “size” of the set of nontrivial h-self-cobordisms of X. In
particular, if there exists a smooth manifold X such that δX > 1 then we
can produce smoothly nontrivial cobordisms.
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After considerable effort, M. Freedman succeeded in [38] in proving that
a weaker version h-cobordism theorem continues to hold in four dimensions.

Theorem 3.3.27. (M. Freedman) Any smooth cobordism between two,
smooth, compact, simply connected 4-manifolds is topologically trivial.

The weaker conclusion in the above theorem is not due to a limitation
of the proof. It has deep and still mysterious roots. Yet, the mathematical
world was taken completely by surprise when S. Donaldson announced the
following result.

Theorem 3.3.28. There exist smoothly nontrivial h-cobordisms.

Proof We follow the approach in [51, Chap. 9]. Let X be the K3 elliptic
surface E(2) . We will show that δX > 1 by proving that the automorphism
(−1) of qX is not induced by any diffeomorphism. We argue by contradiction.

Suppose there exists such a diffeomorphism f . Since X has a unique
basic class σ0 we deduce

f∗σ0 = σ0

and
swX(f∗σ0) = swX(σ0) = 1.

On the other hand, since f acts as −1 on H2(M, Z) and b+
2 (X) = 3 we

deduce that f changes the orientation of H2
+(X) by −1 and thus changes

the Seiberg-Witten invariant by the same factor. ¥

3.3.4. Seiberg-Witten equations on symplectic 4-manifolds. We hope
that by now we have convinced the reader of the powerful impact of the
Kähler condition on the Seiberg-Witten equations.

This condition can be relaxed in two ways. We can require the manifold
to be complex but not Kähler or we can drop the integrability condition on
the almost complex structure but preserve the symplectic form. Surprisingly,
most of the consequences continue to hold under these weaker assumption.

The first situation was considered in great detail in [13] and involves no
new analytical difficulties. By contrast, the symplectic situation is consid-
erably more difficult. In a remarkable tour de force, C.H. Taubes has shown
in [134, 135, 136, 137, 138] that the essential features of the Seiberg-
Witten equations in the presence of a Kähler form survive when the Kähler
condition is relaxed to a symplectic one.

It is beyond the scope of these notes to even attempt to survey Taubes’
remarkable results. We have a much more modest goal in mind. We want
to prove that the nonvanishing result of §3.3.1 has a symplectic counterpart.
Our presentation will rely heavily on the results in Section 1.4.
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Consider a symplectic 4-manifold (M, ω) equipped with a compatible
metric g and associated almost complex structure J so that

ω(X, Y ) = g(JX, Y ), ∀X, Y ∈ Vect (M).

The almost complex structure canonically defines a spinc structure σ0 with
associated line bundle

det(σ0) ∼= K−1
M .

Any other spinc structure has the form

σL = σ0 ⊗ L, det(σL) = K−1
M ⊗ L2

where L is a Hermitian line bundle. Moreover,

Γ(S+
L ) = Ω0,0(L) ⊕ Ω0,2(L), Γ(S−

L ) ∼= Ω0,1(L).

Thus, any spinor ψ ∈ Γ(S+
L ) naturally decomposes as

ψ = α ⊕ β ∈ Ω0,0(L) ⊕ Ω0,2(L).

The Chern connection on TM induces a connection A0 on K−1
M . Any

Hermitian connection A on det(σL) can be written as

A = A0+̇2B,

where B is a Hermitian connection on L. From Proposition 1.4.25 we deduce
that, exactly as in the Kähler case, we have

6DA =
√

2(∂̄B + ∂̄∗
B).

Imitating the situation in §3.2.1 we choose the perturbation parameter of
the form

ηt := iFA0 +
t

8
ω.

Again, we can rewrite the Seiberg-Witten equations in terms of (α, β, B)
and, exactly as in §3.2.1 we deduce

(3.3.18)


∂̄Bα + ∂̄∗

Bβ = 0

ΛFB = i
8(|α|2 − |β|2 − t)

F 0,2
B = 1

8 ᾱβ

.

The virtual dimension of the space of σL-monopoles is computed by the
same formula as in 3.2.1

(3.3.19) d(σL) = L · (KM − L).

As in the Kähler case, for any Hermitian line L → M , we denote by
degω(L) the quantity

degω(L) :=
i

2π

∫
M

FB ∧ ω
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where B is an arbitrary Hermitian connection on L. Since ω is closed we
deduce that the above expression is independent of B.

If b+
2 (M) = 1 then ηt belongs to the ± chamber if

±(t − 16π

vol (M)
degω(L)) > 0.

Theorem 3.3.29. (Taubes, [134, 135]) (a)

sw(+)
M (0) = ±sw(−)

M (KM ) = ±1.

(b) If sw(+)
M (L) 6= 0 then degω(L) ≥ 0 with equality if and only if L is trivial.

(c) If sw(−)
M (L) 6= 0 then degω(L) ≤ degω(KM ) with equality if and only if

L is isomorphic to KM .

Proof We follow the approach in [69]. Using the involution σ 7→ σ̄ we
see that it suffices to prove only that sw(+)

M (σ0) = ±1 and (b).
Notice first that if L is trivial then (3.3.18) has a nontrivial solution

with B the trivial connection, β = 0 and α = t1/2. Suppose now that
sw(+)

M (σL) 6= 0. Fix t À 0 and consider an ηt-monopole

(ψ, A) = (α, β, A = A0+̇2B)

corresponding to the spinc structure σL.
Using Proposition 1.4.22 we deduce

2∂̄∗
B ∂̄Bα = (∇B)∗∇Bα − iΛ(FB)α

Taking the inner product with α and integrating by parts we deduce

(3.3.20)
∫

M
|∇Bα|2dvM =

∫
M

(
2〈∂̄∗

B ∂̄Bα, α〉 + iΛ(FB)|α|2
)
dvM .

Now use the first equation in (3.3.18) to deduce∫
M
〈2∂̄∗

B ∂̄Bα, α〉dvM = −2
∫

M
〈∂̄∗

B ∂̄∗
Bβ, α〉dvM = −2

∫
M
〈β, ∂̄2

Bα〉dvM

(use (1.4.19) in 1.4.2)

= −2
∫

M

(
〈β, F 0,2

B α〉 − 〈β, (∂Bα) ◦ N〉
)
dvM

(use the third equation in (3.3.18))

=
∫

M

(
−1

4
|α|2|β|2 + 2〈β, (∂Bα) ◦ N〉

)
dvM .

On the other hand, using the second equation in (3.3.18) we deduce∫
M

iΛ(FB)|α|2dvM = −1
8

∫
M

(|α|2 − |β|2 − t)|α|2dvM .
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Substituting this in (3.3.20) we obtain∫
M

(
|∇Bα|2 +

|α|2
8

(|α|2 + |β|2 − t)|α|2
)
dvM = 2

∫
M
〈β, (∂Bα) ◦ N〉dvM

or, equivalently,∫
M

(
|∇Bα|2 +

1
8
|α|2|β|2 +

1
8
(|α|2 − t)2 +

t

8
(|α|2 − t)

)
dvM

= 2
∫

M
〈β, (∂Bα) ◦ N〉dvM .

(3.3.21)

The right-hand side of (3.3.21) can be estimated using the interpolation
inequality

|ab| ≤ ε

2
a2 +

1
2ε

b2

and we obtain∫
M

(
|∇Bα|2 +

1
8
|α|2|β|2 +

1
8
(|α|2 − t)2 +

t

8
(|α|2 − t)

)
dvM

≤ 1
2

∫
M

|∇Bα|2dvM + C

∫
M

|β|2dvM

where C is some positive constant which depends only on the size of the
Nijenhuis tensor N . Thus,∫

M

(1
2
|∇Bα|2 +

1
8
|α|2|β|2 +

1
8
(|α|2 − t)2 +

t

8
(|α|2 − t)

)
dvM

≤ C

∫
M

|β|2dvM .

(3.3.22)

Now, using the identity

degω(L) =
i

2π

∫
M

FB ∧ ω =
i

2π

∫
M

ΛFBdvM

= − 1
16π

∫
M

(
|α|2 − |β|2 − t

)
dvM

we deduce
t

8

∫
M

(|α|2 − t)dvM =
t

8

∫
M

|β|2dvM − 2πt degω(L).

Substituting this equality in (3.3.22) we obtain

∫
M

(1
2
|∇Bα|2 +

1
8
|α|2|β|2 +

1
8
(|α|2 − t)2 +

t

8
|β|2

)
dvM − 2πt degω(L)

≤ C

∫
M

|β|2dvM .

(3.3.23)
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Since t À 0 we can assume t > 8C. The last inequality then implies

2πt degω(L)

≥
∫

M

(
1
2
|∇Bα|2 +

1
4
|α|2|β|2 +

1
8
(|α|2 − t)2 +

( t

8
− C

)
|β|2

)
dvM ≥ 0.

Hence
degω(L) ≥ 0.

Moreover, we see that degω(L) = 0 if and only if |α| ≡ t1/2, ∇Bα ≡ 0 and
β ≡ 0. This shows that L must be trivial.

If L is trivial the above inequality shows that for all t > 4C there exists
a unique (up to Gσ0) ηt-monopole

C0 = (α0 = t1/2, β0 = 0, A0).

In this case, the twisting connection B on the trivial line bundle is the trivial
connection. To complete the proof of Theorem 3.3.29 we only need to show
C0 is nondegenerate. We follow a strategy very similar to the one employed
in §3.3.1. Set λ := t1/2.

As in §3.2.3 we can write

Ċ = (α̇ ⊕ β̇, iḃ =
i√
2
(ϕ + ϕ̄))

and we deduce Ċ ∈ ker TC0 if and only if

(3.3.24a)
√

2(∂̄α̇ + ∂̄∗β̇) + i(ϕ ∧ α0 − ϕ̄ β0) = 0,

(3.3.24b) Λ(∂ϕ + ∂̄ϕ̄) =
1

2
√

2
(Re〈α0, α̇〉 − Re〈β0, β̇〉),

(3.3.24c) i∂̄ϕ =
1

4
√

2
( ˙̄αβ0 + ᾱ0β̇),

(3.3.24d) 2
√

2(∂̄∗ϕ + ∂∗ϕ̄) + Im〈α0, α̇〉 + Im〈β0, β̇〉 = 0.

(Recall that above α0 = λ, β0 = 0.) Using the Kähler-Hodge identities in
Proposition 1.4.10 of §1.4.1 we deduce as §3.2.3 that (3.3.24b) and (3.3.24d)
are equivalent to

∂̄∗ϕ = − λi
4
√

2
α̇.

We deduce that Ċ ∈ ker TC0 if and only if

(3.3.25a)
√

2(∂̄α̇ + ∂̄∗β̇) + λiϕ = 0,

(3.3.25b) i∂̄ϕ =
λ

4
√

2
β̇,
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(3.3.25c) ∂̄∗ϕ = − λi
4
√

2
α̇.

Using the identities

6DA0
=

√
2(∂̄ + ∂̄∗) : Ω0,0(M) → Ω0,2(M) → Ω0,1(M)

and
6D∗

A0
=

√
2(∂̄∗ ⊕ ∂̄) : Ω0,1(M) → Ω0,0(M) ⊕ Ω0,2(M)

we can rewrite the above equalities as

6DA0
ψ̇ = −λi

4
ϕ, 6D∗

A0
ϕ = −λi

4
ψ̇, ψ̇ =

[
α̇

β̇

]
.

Thus

6D∗
A0

6DA0
ψ̇ = −λ2

16
ψ̇.

Using the Weitzenböck presentation of the generalized Laplacian 6D∗
A0

6DA0

we can rewrite the above equation as

(3.3.26)
(
∇∗∇ + R +

λ2

16
)
ψ̇ = 0

where R is a zeroth order operator independent of λ. If λ is sufficiently
large we deduce that the selfadjoint operator R + λ2 is positive definite so
the only solution of (3.3.26) is ψ̇ ≡ 0. This forces ϕ ≡ 0 and thus

ker TC0 = 0, ∀λ À 0.

The proof of Theorem 3.3.29 is now complete. ¥

Remark 3.3.30. We have not discussed if there is a natural way of deter-
mining the sign of the unique monopole C0. This issue is equivalent to the
existence of natural orientations on H1(M) and H2

+(M). Such choices are
still possible and lead to the conclusion that sw(+)

M (σ0) = 1. For details we
refer to [57, 119].

Remark 3.3.31. The above nonvanishing result implies that any symplectic
(Kähler) 4-manifold admits almost complex structures which are not homo-
topic to an almost complex structure compatible with a symplectic (Kähler)
structure; see [27].

Remark 3.3.32. One can use the information contained in Taubes’ theorem
to produce a very ingenious invariant of a symplectic 4-manifold, (M, ω).

Observe first that the symplectic structure determines a canonical spinc

structure σ0 which allows us to identify Spinc(M) with H2(M, Z). Using
the morphism H2(N, Z) → H2(M, Z) we can map the set of basic classes
BM to a finite collection of lattice points in H2(M, R). (The lattice is the
image of H2(M, Z) → H2(M, R).) The image of σ0 is the origin of H2(M, R)
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while the image of σ̄can coincides with the image of c1(KM ). For simplicity,
we will denote by KM this image.

The symplectic form ω defines by integration a linear functional Lω :
H2(M, R) → R. Denote by PM,ω the convex hull of BM ⊂ H2(M, R). PM,ω

is a convex polyhedron. Taubes’ theorem imposes several restrictions on
PM,ω.

• Since σ ∈ BM ⇐⇒ σ̄ ∈ BM we deduce that PM,ω is symmetric with respect
to the point 1

2KM .
• The minimum (resp. maximum) of Lω on PM,ω is achieved at precisely
one point, 0 (resp. KM ) which must be a vertex of PM,ω.
• The group ΓM = (group orientation preserving diffeomorphisms)/(subgroup
of diffeomorphisms homotopic to 1) acts on BM thus inducing an (affine)
action on PM,ω which must leave invariant the finite set of vertices of PM,ω.

Let us define a special polyhedron to be a ΓM -invariant convex polyhe-
dron P in the affine space H2(M, R) together with the following additional
structure.

◦ The vertices of P are lattice points.
◦ P admits a center of symmetry O.
◦ There exist an affine map L : P → R and a pair of O-symmetric vertices
P± of P such that ±L achieves its maximum exactly at P±.

We will denote the special polynomials by (P, O, P−, P+, L). Clearly,
(PM,ω, 1

2KM , σ0, σ̄can, Lω) is a special polyhedron.
Two symplectic forms ω0 and ω1 are called isotopic if there exists a

smooth path ωt of symplectic forms connecting them. Two isotopic sym-
plectic forms determine the same special polyhedron.

The group ΓM acts on the set of special polyhedra according to the rule

γ · (P, O, P−, P+, L) = (γP, γO, γP−, γP+, γLγ−1)

and two special polyhedra are said to be equivalent if they belong to the
same ΓM -orbit.

Two symplectic forms ω0 and ω1 are called equivalent if there exists an
orientation preserving diffeomorphism ϕ of M such that ϕ∗ω0 is isotopic to
ω1. Taubes’ theorem implies that two equivalent symplectic forms determine
equivalent special polyhedra.

It is very easy to construct invariants of equivalence classes of special
polyhedra,

(P, O, P−, P+, L).
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More precisely, the number deg(P−) of 1-faces of P which have P− as one
end point is such an invariant. In particular, if ω is a symplectic form on M
then the integer

ν(ω) := deg(σ0(ω))
is an invariant of the equivalence class of ω. At a first glance, ν(ω) may look
like a very difficult to compute weak invariant.

In a recent stunning work [90], C.T. McMullen and C.H. Taubes have
very elegantly constructed compact smooth 4-manifolds admitting symplec-
tic structures with distinct ν-invariant. They have thus given a positive
answer to a longstanding question in symplectic topology: do there exist
compact smooth manifolds admitting non-equivalent symplectic forms?

Theorem 3.3.29 has a nice topological consequence.

Corollary 3.3.33. Suppose M is a smooth, compact, closed oriented man-
ifold such that b+

2 (M) > 1.
(a) If swM (σ) = 0 for all σ ∈ Spinc(M) then M cannot admit symplectic
structures. In particular, if M admits metrics of positive scalar curvature it
cannot admit symplectic structures.
(b) If |swM (σ)| 6= 1 for all σ ∈ Spinc(M) then M cannot admit symplectic
structures.

Remark 3.3.34. Part (b) of Corollary 3.3.33, combined with some very
ingenious topological constructions, was used in [36, 131] to produce many
families of smooth 4-manifolds which admit no symplectic structures, and
yet they have many of the known topological features of symplectic mani-
folds.





Chapter 4

Gluing Techniques

Treat nature in terms of the cylinder, the sphere, the cone,
all in perspective.

Paul Cézanne

4.1. Elliptic equations on manifolds with
cylindrical ends

This section includes some basic analytic facts absolutely necessary in the
understanding of the gluing problem. The main references for all of the
following results are [6, 74]. We will follow the “ˆ” conventions of §2.4.1.

4.1.1. Manifolds with cylindrical ends. A cylindrical (n + 1)-manifold
is an oriented Riemannian (n + 1)-manifold (N̂ , ĝ) with a cylindrical end
modeled by R+ × N where (N, g) is an oriented compact Riemannian n-
manifold (see Figure 4.1). In more rigorous terms, this means that the
complement of an open precompact subset of N̂ is isometric in an orientation
preserving fashion to the cylinder R+ × N . This isometry is part of the
structure of a cylindrical manifold. We will denote the canonical projection
R+ × N → N by π while t will denote the outgoing longitudinal coordinate
along the neck. We will regularly denote the “slice” N by ∂∞N̂ and the
metric g by ∂∞ĝ. For each t ≥ 0 we set N̂t := N̂ \ (t,∞) × N .

A cylindrical structure on a vector bundle Ê → N̂ consists of a vector
bundle E → N and a bundle isomorphism

ϑ̂ : Ê |R+×N→ π∗E.

We will use the notation E := ∂∞Ê.
A cylindrical vector bundle will be a vector bundle together with a cylin-

drical structure (ϑ̂, E). A section û of a cylindrical vector bundle is said to

281
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t

N

N̂

Figure 4.1. Manifold with a cylindrical end

be cylindrical if there exists a section u of ∂∞Ê such that along the neck
û = π∗u. We will use the notation u := ∂∞û.

Given any cylindrical vector bundle (Ê, ϑ̂, E) there exists a canonical
first order partial differential operator P , defined over the cylindrical end,
uniquely determined by the conditions

P (fu) =
df

dt
u + fPu, ∀f ∈ C∞(R+ × N), u ∈ Ê |R+×N

and Pv = 0 for any cylindrical section v of Ê |R+×N . We will denote this
operator by ∂t.

Example 4.1.1. The cotangent bundle of a cylindrical manifold (N̂ , ĝ) has
a natural cylindrical structure with ∂∞T ∗N = R ⊕ T ∗N , where R denotes
the trivial real line bundle spanned by dt. The isomorphism ϑ̂ is given by

ϑ̂α = α(∂t) ⊕ (α − α(∂t)dt), ∀α ∈ Ω1(N̂).

It is now clear that we can organize the set of cylindrical bundles over a
given cylindrical manifold as a category. Moreover, we can perform all the
standard tensorial operations in this category such as direct sums, tensor
products, duals, etc.

Exercise 4.1.1. Formulate explicitly the exact definition of a cylindrical
isomorphism of cylindrical vector bundles.

Denote by VBUNcyl(N̂) the set of isomorphism classes of cylindrical
vector bundles. We want to draw the reader’s attention to one subtle fact.
Two cylindrical vector bundles may be isomorphic as vector bundles but
may not be isomorphic as cylindrical vector bundles. Define

Pic∞cyl(N̂) ⊂ VBUNcyl(N̂)
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as the space of isomorphism classes of cylindrical complex line bundles over
N̂ . It is an Abelian group with respect to tensor multiplication. We have a
forgetful morphism

Φ : Pic∞cyl(N̂) → Pic∞(N̂)

which is clearly onto. Its kernel consists of isomorphism classes of cylindrical
structures on a trivial line bundle. We leave it to the reader to check the
following fact.

Exercise 4.1.2.

ker Φ ∼= H1(N, Z)/H1(N̂ , Z) ∼= Range
(
H1(N, Z) δ→ H2(N̂ , N ; Z)

)
.

The above fact can be given an alternative interpretation. The group
G := H1(N, Z) acts on Pic∞cyl(N̂) as follows. Given a line bundle L̂ → N̂

with a cylindrical structure (ϑ, L) and g ∈ G we obtain a new cylindrical
structure c · (ϑ, L) on L̂ described by the pair (γϑ, L), where γ : M → S1

is a gauge transformation living in the homotopy class described by c. The
action is not free, it is trivial precisely for the elements c living in the image
of the restriction morphism H1(N̂ , Z) → H1(N, Z). We will refer to this
action as the asymptotic twisting of the cylindrical structure. The fibers of
Φ are precisely the orbits of the asymptotic twisting action.

A cylindrical partial differential operator (p.d.o.) will be a first order
p.d.o. L̂ between two cylindrical bundles Ê, F̂ such that along the neck
[T,∞) × N (T À 0) it can be written as

L̂ = G∂t + L

where L : C∞(E) → C∞(E) is a first order p.d.o., E = Ê |N , F = F̂ |N and
G : E → F is a cylindrical bundle morphism. We will use the notation

L := ∂∞L̂.

If σ̂ denotes the symbol of L̂ then we see that G = σ̂(dt) and

∂∞L̂ = L̂ − G∂t.

Example 4.1.2. If Ê → N̂ is cylindrical then so is T ∗N̂ ⊗ Ê. Any connec-
tion is a first order p.d.o. C∞(Ê) → C∞(T ∗N̂ ⊗ Ê). A connection which
is cylindrical as a p.d.o. is called cylindrical. Observe though the following
“pathology”. If ∇̂ is such a connection then along the neck it has the form

∇̂ = dt ⊗ ∂t + ∂∞∇̂
where ∂∞∇̂ is a first order p.d.o. C∞(E) → C∞(E) ⊕ C∞(T ∗N ⊗ E). The
component

C∞(E) → C∞(T ∗N ⊗ E)
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is a connection on E while the component

A : C∞(E) → C∞(E)

is a zeroth order operator, i.e. an endomorphism of E. Thus, ∂∞∇̂ is no
longer a connection. We define a strongly cylindrical connection to be a
cylindrical connection such that the zeroth order component A described
above vanishes identically.

At this point it is illuminating to have another look at a notion we
encountered in §2.4.1. Recall that a connection ∇̂ on a cylindrical bundle
(Ê, ϑ̂) is called temporal if ∇̂t = ∂t. Thus, a connection is strongly cylindrical
if it is both cylindrical and temporal.

A cylindrical Hermitian bundle is a cylindrical bundle (Ê, ϑ̂) equipped
with a cylindrical metric ĥ and a strongly cylindrical connection ∇̂0 com-
patible with ĥ.

Suppose N̂ is an oriented cylindrical 4-manifold with N := ∂∞N̂ and σ̂
is a spinc structure on N̂ . We say that σ̂ is a cylindrical spinc-structure if
there exist a spinc structure σ on N and an isomorphism

ϕ : σ̂ |R+×N→ R+ × σ

where R+ × σ denotes the natural spinc structure on R × N induced by σ.
(ϕ has to be compatible in the obvious way with the cylindrical structure of
N̂ .) We set σ := ∂∞σ̂ and, whenever there is a potential ambiguity, we will
denote a cylindrical spinc structure by a triple

τ̂ := (σ̂, σ, ϕ).

We set ∂∞τ̂ := σ. Two such triples τ̂i = (σ̂i, σi, ϕi) are isomorphic if there
exist isomorphisms

Φ̂ : σ̂1 → σ̂2, Φ : σ1 → σ2

such that the diagram below is commutative.

σ̂1 |R+×N R+ × σ1

σ̂2 |R+×N R+ × σ2

w
ϕ1

u
Φ̂

u
R+×Φ

w
ϕ2

We denote by Spinc
cyl(N̂) the set of isomorphism classes of cylindrical spinc-

structures over N̂ . Observe that Pic∞cyl(N̂) acts on Spinc
cyl(N̂) freely and

transitively, so that Spinc
cyl(N̂) is a Pic∞cyl(N̂)-torsor.
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4.1.2. The Atiyah-Patodi-Singer index theorem. Suppose now that
Ê and F̂ are cylindrical Hermitian bundles over N̂ . An Atiyah-Patodi-
Singer operator (APS for brevity) is an elliptic cylindrical p.d.o. such
that along the neck it has the form L̂ = G∂t + L where

• G is a homothety, i.e. there exists a positive constant λ such that GG∗ = λ;

• ~∂∞L̂ := −G−1∂∞L̂ : C∞(E) → C∞(E) is formally selfadjoint.

Traditionally, the APS operators are described in the form (see [6]):

L̂ = G
(
∂t − A

)
.

The operator A is none other than ~∂∞L̂.
We will use the symbol P (L̂)≥ to denote the orthogonal projection onto

the space spanned by the eigenvectors of ~∂∞L̂ corresponding to eigenvalues
≥ 0. P (L̂)> is defined similarly.

Remark 4.1.3. We want to draw attention to a confusing point. Consider
an oriented Riemannian manifold N and form the cylindrical manifold N̂ =
R×N . ∂∞N̂ has two components N±∞. The induced orientation on N±∞ is
± the orientation on N . Any bundle E → N and any selfadjoint Dirac-type
operator L : C∞(E) → C∞(E) define in an obvious manner a cylindrical
bundle Ê = π∗E and an APS operator L̂ = ∂t − L. Then ~∂∞L̂ is a p.d.o.
on the disconnected boundary ∂∞N̂ . On N±∞ we have

~∂∞L̂ |N±∞= ±L.

To avoid confusion always orient the manifold N̂ first, and then give ∂∞N̂
the induced orientation given by the outer-normal-first convention. There is
no room for variation around this rule since the orientability of a bordism
implies the orientability of its boundary while the converse is certainly not
true (think of the Möbius band).

Suppose L̂ : C∞(Ê) → C∞(F̂ ) is an APS operator between cylindrical
Hermitian bundles. The APS problem for L̂ is the following boundary value
problem:

(APS)

{
L̂û = 0 on N̂r

P (L̂)≥û = 0 on ∂N̂r

where r À 0. If L̂ = G∂t + L then the formal adjoint L̂∗ = −G∗∂t + L∗

is also an APS operator. Indeed, using G∗ = λG−1and (~∂∞L̂)∗ = ~∂∞L̂ we
deduce

~∂∞L̂∗ = (G∗)−1L∗ = −(G∗)−1(G~∂∞L̂)∗ = −G~∂∞L̂G−1 = − 1
λ

G~∂∞L̂G∗
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so ~∂∞L̂∗ is formally selfadjoint.
The formal adjoint APS∗ of the APS boundary value problem is

(APS∗)

{
L̂∗v̂ = 0 on N̂r

P (L̂∗)>v̂ = 0 on ∂N̂r

.

Remark 4.1.4. As pointed out in [6], the solutions of (APS) and (APS∗)
can be given an alternate description. For clarity, along the neck we write

L̂ := G(∂t − A), L̂∗ = −G∗(∂t − B), B := −GAG−1.

A and B are first order selfadjoint elliptic operators and thus have discrete
spectra, consisting only of eigenvalues of finite multiplicities. Denote by
(ψλm)λm∈R and (φµn)µn∈R, respectively, a complete orthonormal system of
eigenfunctions of A and B, respectively. Then

P (L̂)≥û = 0 ⇐⇒ û |∂N̂r
∈ spanL2

{
ψλm ; λm < 0

}
,

P (L̂∗)>v̂ = 0 ⇐⇒ v̂ |∂N̂r
∈ spanL2

{
φµn ; µn ≤ 0

}
.

Suppose û and v̂ are smooth solutions of (APS) and (APS∗), respectively.
Along ∂N̂r, we can write

û =
∑

λm<0

uλmψλm , uλm ∈ C,
∑

λm<0

|uλm |2 < ∞

and

v̂ =
∑
µn≤0

vµnφµn , vµn ∈ C,
∑
µn≤0

|vµn |2 < ∞.

Now extend û and v̂ to [r,∞) × N by setting

û(t) =
∑

λm<0

eλm(t−r)uλmψλm , v̂(t) =
∑
µn≤0

eµn(t−r)vµnφµn

and continue to denote by û and v̂ the sections thus produced over N̂ . One
can show that û and v̂ are smooth and

L̂û = 0, L̂∗v̂ = 0.

These two sections also have nice behaviors as t → ∞. û decays exponen-
tially to zero (and thus it is an L2-section on N̂) while v̂(t) decays exponen-
tially to

v̂(∞) :=
∑
µn=0

vµnφµn .
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The Atiyah-Patodi-Singer index of L̂, denoted by IAPS(L̂), is the quan-
tity

IAPS(L̂) = IAPS(L, N̂r) := dim ker(APS) − dim ker( APS∗).

A priori, this index may be infinite, or even worse, may not be well defined.
The celebrated Atiyah-Patodi-Singer index theorem, [6], states that both
dim ker(APS) and dim ker(APS∗) are finite and their difference can be ex-
plicitly expressed in terms of L̂. To formulate this theorem we need to define
the eta invariant.

The elliptic selfadjoint operators on closed compact manifolds behave in
many respects as common finite-dimensional symmetric matrices. The eta
invariant extends the notion of signature from finite-dimensional symmetric
matrices to selfadjoint elliptic operators.

The signature of a finite-dimensional symmetric matrix A is defined as

sign (A) = number of positive eigenvalues− number of negative eigenvalues.

This definition however does not extend to infinite dimensions since the
above terms are infinite. Following a strategy very dear to physicists one
could try to “regularize” the definition. For each s ∈ C we set

(4.1.1) ηA(s) =
∑

λ∈σ∗(A)

dim ker(A − λ)
λ|λ|s−1

=
∑
λ>0

dim ker(A − λ) − dim ker(A + λ)
λs

where σ∗(A) = spec (A) \ {0}. Then one can define

sign (A) = ηA(0).

The advantage of this new definition is that it is admirably suited for infinite-
dimensional extensions. Assuming for simplicity that A is invertible we can
define

ηA(s) = tr (A · |A|−(s+1)), |A| = (A2)1/2.

Using the classical integral

Γ(α)x−α =
∫ ∞

0
tα−1e−txdt, x > 0, α > 1,

we get (x 7→ A2, α 7→ (s + 1)/2)

ηA(s) =
1

Γ( (s + 1)/2 )

∫ ∞

0
t(s−1)/2tr (Ae−tA2

)dt.

The right-hand side of the above expression has two advantages. First of
all, it makes sense even when A is not invertible and on the other hand,
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it extends to infinite dimensions. We will denote the trace of an infinite-
dimensional operator (when it exists) by “Tr” while “tr” is reserved for
finite-dimensional operators. We have the following result.

Proposition 4.1.5. (a) Consider a closed, oriented Riemannian manifold
(N, g) of dimension d, E → N a Hermitian vector bundle and

A : C∞(E) → C∞(E)

a first order selfadjoint elliptic operator. Then

(4.1.2) ηA(s) :=
1

Γ( (s + 1)/2 )

∫ ∞

0
t(s−1)/2Tr (Ae−tA2

)dt

is well defined for all Re s À 0 and extends to a meromorphic function on
C. Its poles are all simple and can be located only at s = (d + 1 − n)/2,
n = 0, 1, 2, · · · .

(b) For |s| À 0 the function ηA(s) is described by the Dirichlet series
(4.1.1).

(c) If d is odd then the residue of ηA(s) at s = 0 is zero so that s = 0 is
a regular point.

For a proof of this nontrivial result we refer to [8]. When d is odd we
define the eta invariant of A by

η(A) := ηA(0).

Remark 4.1.6. (a) From the definition it follows directly that η(−A) =
−η(A) and η(λA) = η(A), ∀λ > 0.

(b) In [14] it is shown that if A is an operator of Dirac type then one can
define its eta invariant directly by setting s = 0 in (4.1.2). In other words,
in this case

η(A) =
1√
π

∫ ∞

0
t−1/2Tr (Ae−tA2

)dt. ¥

Example 4.1.7. Let N ∼= S1 and D0 = i∂θ. The spectrum of D is Z and
all its eigenvalues are simple. Thus, for Re s À 1 we have

ηD0(s) =
∑
n6=0

signn

ns
= 0.

By unique continuation we deduce that ηD0(0) = 0. This simple equality
reflects the symmetry of the spectrum of D0. In general, the eta invariant
should be regarded as a measure of the asymmetry (about the origin) of the
spectrum.

More generally, define for each a ∈ (0, 1) the operator

Da := D0 + a.
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Its spectrum consists only of simple eigenvalues λn(a) = n+a, n ∈ Z. Thus

ηDa(s) =
∑
n≥0

1
(n + a)s

−
∑
n≥0

1
(n + 1 − a)s

= ζ(s, a) − ζ(s, 1 − a)
where

ζ(s, a) :=
∑
n≥0

1
(n + a)s

denotes the Riemann-Hurwitz function. Thus

ηDa(0) = ζ(0, a) − ζ(0, 1 − a)

and, according to [148, 13.21],

ζ(0, a) =
1
2
− a.

We obtain the following identity (see [7]):

ηDa(0) = 1 − 2a.

Theorem 4.1.8. (Atiyah-Patodi-Singer, [6])

IAPS(L̂, N̂r) =
∫

N̂r

ρ(L̂)dvĝ −
1
2

(
dim ker ~∂∞L̂ + η(~∂∞L̂)

)
where ρ(L̂) denotes the local index density of L̂, which depends only on the
coefficients of L̂ (see [12, 48, 117] for an exact definition) while η(~∂∞L̂)
denotes the eta invariant of the operator ~∂∞L̂. (The above integral is inde-
pendent of r À 0.)

Influenced by the above theorem we introduce the ξ-invariant (or the
reduced eta invariant) of a selfadjoint elliptic operator A by

ξ(A) :=
1
2
(h(A) + η(A))

where h(A) := dim kerA. Note that ξ(−A) = (h(A) − η(A))/2 so that
A 7→ ξ(A) is not an odd function.

Exercise 4.1.3. Let L̂0 and L̂1 be two APS operators on N̂ which differ
by a zeroth order term. Suppose there exists r0 > 0 such that L̂0 = L̂1 on
N̂ \ N̂r0 . Prove that

IAPS(L̂0, N̂r) = IAPS(L̂1, N̂r), ∀r > r0.

In many geometrically interesting situations the index density ρ(L̂) has
a very explicit description. We present below one such instance.
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Figure 4.2. The smoothing function γ

Example 4.1.9. Suppose N̂ is a cylindrical 4-manifold equipped with a
cylindrical spinc structure σ̂ and Â is a strongly cylindrical Hermitian con-
nection on det(σ̂). Denote by σ∞ the induced spinc structure on ∂∞N̂ and
set A = ∂∞Â = Â |N . Then, as shown in §2.4.1, the Dirac operator ˆ6DÂ is
an APS operator and Theorem 4.1.8 takes the form

(4.1.3) IAPS( ˆ6DÂ, N̂r) =
1
8

∫
N̂r

(
−1

3
p1(∇̂ĝ) + c1(Â)2

)
− ξ(DA)

where p1(∇̂ĝ) denotes the first Pontryagin form of TM determined from the
Levi-Civita connection ∇̂ĝ on TN̂ via the Chern-Weil construction. The
2-form c1(Â) is defined similarly.

4.1.3. Eta invariants and spectral flows. While the eta invariant itself
is a very complex object its deformation theory turns out to be a lot more
tractable. More specifically, in this subsection we will address the following
problem.

Consider a smooth path of selfadjoint Dirac operators Du on an odd-
dimensional manifold N (dimN = n). Compute ξ(D1) − ξ(D0).

Set ξt = ξ(Dt). We want to compute ξ̇t = dξt

dt although at this moment
we have no guarantee that the map t 7→ ξt is differentiable.

Since the family of Dirac operators (6Du)u∈[0,1] may not be independent
of u near u = 0, 1 we need to smooth out the corners. To this end, consider a
smooth, nondecreasing map γ : [0, 1] → [0, 1], u 7→ γ(u) such that γ(0) = 0,
γ(1) and γ′(u) ≡ 0 for u near 0 and 1 (see Figure 4.2). Moreover, for each
0 < t ≤ 1 set γt(u) = tγ(u) so that γt connects 0 to t.
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Denote by u the longitudinal coordinate along [0, 1] × N . For every
0 < t ≤ 1 form the APS operator L̂t on [0, 1] × N defined by

L̂t = ∂u − Dtγ(u).

From Theorem 4.1.8 we get

it := IAPS(L̂t) = ρt −
1
2
(h0 + ht) +

1
2
(η0 − ηt)

where ρt denotes the integral of the index density of L̂t, ht = h(Dt), ηt =
η(Dt). The above formula can be rewritten as

(4.1.4) ξt − ξ0 = ρt + jt

where jt = −(h0 + it). The term ρt depends smoothly on t since the coef-
ficients of L̂t do. The term jt is Z-valued so it cannot be smooth, unless it
is constant. If [ξt] = ξt (mod Z) then the map t 7→ [ξt] is smooth and by
(4.1.4)

(4.1.5)
d[ξt]
dt

= ρ̇t.

We will deal with ρ̇t a bit later. We first need to better understand the
special nature of the discontinuities of ξt.

We see from (4.1.1) that the discontinuities of ξt (and hence those of
jt) are due to jumps in ht. We describe how the jumps in ht affect ξt in a
simple, yet generic situation. We assume Dt is a regular family, i.e.

• The resonance set Z = {t ∈ [0, 1] ; ht 6= 0} is finite.
• For every t0 ∈ Z and every sufficiently small ε > 0, there exist an open
neighborhood N of t0 in [0, 1] and smooth maps λk : N → (−ε, ε), k =
0, 1, · · · , ht0 such that for all t ∈ N the family {λk(t)}k describes all the
eigenvalues of Dt in (−ε, ε) (including multiplicities) and, moreover, λk(t0) =
0, λ̇k(t0) 6= 0 for all k = 1, 2, · · · , ht0 .

Now for each t ∈ Z set

σ±(t) = #{k ; ±λ̇k(t) > 0}
and

∆tσ =


−σ−(0) if t = 0

σ+(t) − σ−(t) if t ∈ (0, 1)
σ+(1) if t = 1

.

If
∆tξ := lim

ε→0+
(ξt+ε − ξt−ε)

we see that ∆tξ = 0 if t 6∈ Z while for t ∈ Z we have

(4.1.6) ∆tξ = ∆tσ.
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Figure 4.3. Spectral flow

(To understand the above formula it is convenient to treat Dt as a finite-
dimensional symmetric matrix and then keep track of the changes in its
signature as the spectrum changes in the regular way described above.)
Finally, define the spectral flow of the family Dt by

(4.1.7) SF (Dt) =
∑

t∈[0,1]

∆tσ.

For example, in Figure 4.3 we have represented those eigenvalues λt of a
smooth path of Dirac operators which vanish for some values of t. The ±1’s
describe the jumps ∆tσ. Thus the spectral flow in Figure 4.3 is 1.

Intuitively, the spectral flow is the difference between the number of
spectral curves λk(t) which cross the axis λ = 0 going up and the num-
ber of spectral curves which cross this axis going down. The initial and
final moments require separate consideration. At the initial moment only
the going-down spectral curves contribute (with a nonpositive quantity),
while at the final moment only the going-up spectral curves are relevant,
contributing with a nonnegative quantity.

Using the equalities j1 − j0 =
∑

t ∆tξ and j0 = 0 we deduce

(4.1.8) j1 − j0 = −i1 − h0 =
∑

t

∆tξ =
∑

t∈[0,1]

∆tσ = SF (Dt)

so that

(4.1.9) i1 = IAPS(L̂1) = −h0 − SF (Dt).



4.1. Elliptic equations on manifolds with cylindrical ends 293

From the equalities (4.1.4) and (4.1.8) we now conclude

(4.1.10) ξ1 − ξ0 = SF (Dt) +
∫ 1

0

d[ξt]
dt

dt.

Remark 4.1.10. In the above two equalities we have neglected the smooth-
ing effect of γ. However, since γ(u) is nondecreasing the crossing patterns
of the eigenvalues of t 7→ Dt and u 7→ Dγ(u) are identical. This implies
SF (Dt) = SF (Dγ(u)).

Example 4.1.11. To make sure our sign conventions are correct we test
the equality (4.1.9) on a very simple example. Fix λ ∈ R \ Z and for each
t ∈ [0, 1] define

Dt = i∂θ + λt : C∞(S1) → C∞(S1).
spec (Dt) = tλ + Z and all the eigenvalues are simple. The family (Dt) is
regular and its resonance set is

Zλ = {t ∈ [0, 1] ; λt ∈ Z}.
To compute the spectral flow note that when λ > 0 we have σ−(t) = 0 and
σ+(t) = 1 for all t ∈ Zλ and thus

SF (Dt) = #Zλ − 1 = [λ].

When λ < 0 we have σ−(t) = 1 and σ+(t) = 0 for all t ∈ Zλ so that

SF (Dt) = −#Zλ = [λ].

We can form the operator Lλ = ∂t − Dt on [0, 1] × S1. A separation of
variables argument shows

IAPS(Lλ) = #{n ∈ Z ; n > 0, n + λ < 0} − #{n ∈ Z ; n ≤ 0, n + λ ≥ 0}
= #{n ; 0 < n < λ} − #{n ; −λ ≥ n ≥ 0}

=
{

[|λ|] , λ < 0
−[λ] − 1 , λ > 0

= −[λ] − 1, ∀λ ∈ R \ Z.

In our case h0 = 1 and we see that h0 +ind (Lλ) = −SF (Dt) which confirms
(4.1.9). Again we have neglected the possible corners of the family Dt near
t = 0, 1 but the above computations stay the same if we work with the
smoothed-out family Dγ(u) instead.

It is now time to explain the continuous variation d
dt [ξ]t. Formula (4.1.5)

shows that this is a locally computable quantity. In fact, one can be more
accurate than this.

Assume we have a family (Du)u∈[0,1] of Dirac type operators on our n-
dimensional manifold N (n is odd), acting on a Hermitian bundle E → N .
Observe that Du can be written as D0 +Tu where Tu is a selfadjoint bundle
endomorphism depending smoothly upon u. Set Ṫu = d

duTu and ξu = ξ(Du).
We then have the following result.
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Proposition 4.1.12.

d

du
[ξu] = − 1√

π
an−1(Ṫu, D2

u), n := dim N

where aj(Ṫu, Du) is determined from the asymptotic expansion

Tr (Ṫu exp(−tD2
u) ) ∼

∑
j≥0

aj(Ṫu, D2
u)t(j−n)/2, t → 0.

For a proof of a more general version of above result we refer to [48, Thm.
1.13.2]. (Watch out for an ambiguity in the statement of that theorem.)

The coefficients aj are local objects but apparently the above proposition
replaces an abstract assertion with an impractical statement. In special
situations though, the coefficients aj can be determined quite explicitly.
Such is the case when Tu is scalar, Tu = uλ so that Ṫu = λ. In this
case aj(Ṫu, D2

u) = λaj(D2
u) where the coefficient aj is determined from the

asymptotic expansion

Tr exp(−tD2
u) =

∑
j≥0

aj(D2
u)t(j−n)/2, t → 0.

For each u the operator D2
u is a generalized Laplacian and so there exist a

unique connection ∇u and an endomorphism Ru such that

D2
u = ∇∗

u∇u + Ru.

In [48, Chap. 4] it is shown that the coefficients aj can be expressed in terms
of the metric g on N and the Weitzenböck remainder Ru. As j increases the
actual description becomes more and more involved. However, for low j the
expression is quite manageable. For example (see [48, Chap. 4]) we have

(4.1.11) a0(D2
u) =

1
(4π)n/2

∫
N

tr idE dvg =
volg(N) · rk (E)

(4π)n/2
,

(4.1.12) a2(D2
u) =

1
(4π)n/2

∫
N

tr
(
Ru +

s(g)
6

idE

)
dvg

where s(g) denotes the scalar curvature of the metric g.

Example 4.1.13. We illustrate the strength of the above arguments on a
simple example. Consider again the operators Du = i∂θ + uλ of Example
4.1.11. Assume |λ| < 1/2, λ 6= 0. In this case n = 1. Equip S1 with the
standard metric so that its length is 2π. Using (4.1.11) we get

d

du
[ξu] = − λ√

π
a0(D2

u) = − λ√
π
· 2π√

4π
= −λ.
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Note that our assumptions on λ imply h1 = 0. Since h0 = 0 the variational
formula (4.1.10) now yields

ξ1 = ξ0 − 1 − SF (Du) +
∫ 1

0

d

du
[ξu]du.

Since η(D0) = 0 we get

η(D1) = 1 + 2(SF (Du) − λ).

From Example 4.1.11 we deduce SF = 0 if λ > 0 and SF = −1 if λ < 0.
Hence

η(i∂θ + λ) =
{

1 − 2λ if λ > 0
−1 − 2λ if λ < 0

This is in perfect agreement with the computation in [7] or Example 4.1.7.

For more general paths of Dirac operators the formula in Proposition
4.1.12 is for all intents and purposes useless. Fortunately, there is a geometric
way out of this trouble supplied by Theorem 4.1.8.

We consider only a simple situation. Assume N is an oriented Riemann-
ian manifold of dimension 3 equipped with a spinc structure σ. Fix a smooth
path of metrics (gu)u∈[0,1] on N such that gu ≡ gi if u is close to i = 0, 1.
Next, choose a path (Au)u∈[0,1] of Hermitian connections of det(σ) such that
Au = Ai for u close to i = 0, 1. For each u denote by Du the associated
Dirac operator on N determined by gu and Au. Consider now the manifold
N̂ = [0, 1] × N equipped with the metric ĝ = du2 + gu. The Levi-Civita
connection ∇̂ of ĝ has the strongly cylindrical form

∇̂ = du ∧ ∂u + ∇gu

near u = 0, 1. The path of connections (Au) determines a connection Â on
the product spinc structure σ̂ on Â. Denote by ˆ6DÂ the geometric Dirac
operator determined by ∇̂ and Â. This is an APS operator on N̂ and, more
precisely, along N̂ it has the form

ˆ6DÂ = c(du)
(
∂u − DAu − Tu

)
where Tu are zeroth order operators such that

(4.1.13) Tu ≡ 0, for u near 0 and 1.

Set
ˆ6D\

Â := c(du)
(
∂u − DAu

)
.

Using (4.1.13), Exercise 4.1.3 and (4.1.9) we deduce

IAPS( ˆ6DÂ) = IAPS( ˆ6D\

Â) = −h0 − SF (DAu).
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Figure 4.4. Cutoff functions

Theorem 4.1.8 now implies

ξ1 − ξ0 =
1
8

∫
N̂

(
−1

3
p1(∇̂) + c1(Â)2

)
− IAPS( ˆ6DÂ) − h0

= SF (DAu) +
1
8

∫
N̂

(
−1

3
p1(∇̂) + c1(Â)2

)
.

One can further simplify this formula by expressing the integral term as an
integral over N of some transgression forms. We refer to the beautiful paper
[7] for more details.

4.1.4. The Lockhart-McOwen theory. Let us first introduce three im-
portant smooth cutoff functions α, β, τ : R → R+ satisfying the following
conditions.

• 0 ≤ β′ ≤ 4.
• β(t) ≡ 1 on [1,∞) and ≡ 0 on (−∞, 1/2].
• α(t) = 1 − β(t).

• τ(t) =
∫ t
0 β(s)ds.

The graphs of these three functions are depicted in Figure 4.4.
We can view τ , first as a smooth function on the neck R+×N and then,

extending it by 0, as a smooth function on N̂ . In a similar way, we can
regard α and β as smooth functions on N̂ .

Fix a cylindrical Hermitian vector bundle Ê → N̂ . For each δ ∈ R,
k ∈ Z+ and p ∈ [1,∞] we denote by Lk,p

δ (Ê) the space of Lk,p
loc -sections û of

Ê such that
‖û‖k,p;δ := ‖eδτ û‖k,p < ∞

where ‖ · ‖k,p denotes the Lk,p-norm, defined in terms of the metric ĝ and
the fixed connection ∇̂. Notice that we have an isometry

mδ : Lk,p
δ (Ê) → Lk,p(Ê), û 7→ eδτ û.
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Much as in the compact case, these spaces are related by a series of
Sobolev-type embeddings. For a proof of the following results we refer to
[84, Sec. 3]. Set n := dim N̂ .

Theorem 4.1.14. (Continuous embeddings) There is a continuous em-
bedding

Lk0,p0
µ0

(Ê) ↪→ Lk1,p1
µ1

(Ê)
if
(i) k0 − k1 ≥ n(1/p0 − 1/p1),
(ii) k0 ≥ k1 ≥ 0 and either
(iii) 1 < p0 ≤ p1 < ∞ with µ1 ≤ µ0 or
(iii’) 1 < p1 < p0 < ∞ with µ1 < µ0.

Theorem 4.1.15. (Compact embeddings) If
(i) (k0 − k1) > n(1/p0 − 1/p1),
(ii) k0 > k1 and
(iii) µ1 < µ0

then the embedding Lk0,p0
µ0 (Ê) ↪→ Lk1,p1

µ1 (Ê) is compact.

An L2
loc-section û of a cylindrical bundle Ê is called asymptotically

cylindrical (or a-cylindrical) if there exists an L2
loc-cylindrical section û0 such

that û − û0 ∈ L2(Ê). We set ∂∞û := ∂∞û0. Observe that û0 is uniquely
determined by û. (N.B. In [6] the asymptotically cylindrical sections were
called extended L2-sections. We use the new terminology only for coherence
purposes.) The supremum of all µ ≥ 0 such that û − û0 ∈ L2

µ is called the
decay rate of the a-cylindrical section û.

We introduce a norm ‖ · ‖ex on the space of asymptotically cylindrical
sections defined by

‖û‖ex = ‖û − û0‖L2 + ‖∂∞û‖L2

and we denote by L2
ex the resulting Hilbert space. It fits into an exact

sequence of Hilbert spaces

0 → L2(Ê) ↪→ L2
ex(Ê) ∂∞→ L2(∂∞Ê) → 0.

Using the cutoff function β we can construct an entire family of splittings
ir : L2(∂∞Ê) → L2

ex(Ê), r ∈ R+, of this sequence described by

u(x) 7→ (iru)(t, x) := β(t − r)u(x).

We will find it convenient to have a whole range of asymptotically cylindrical
sections. Define Lp

ex in the obvious way and then set

Lk,p
µ,ex(Ê) := {û ∈ Lk,p

loc ∩ Lp
ex(Ê); ‖û − i1∂∞û‖

Lk,p
µ (Ê)

+ ‖∂∞û‖Lk,p(E) < ∞}.
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A p.d.o. L̂ : C∞(E) → C∞(E) is called asymptotically cylindrical if there
exists µ > 0 such that

Â ∈ Lk,2
µ (Hom (Ê, F̂ )), ∀k ∈ Z+

and L̂ − Â is cylindrical. µ = µ(L̂) is called the decay rate. A connection
is called asymptotically (strongly) cylindrical if it differs from a (strongly)
cylindrical one by zeroth order term in

⋂
k≥0 Lk,2

µ . Its decay rate can be
defined similarly.

An asymptotic APS operator (a-APS for brevity) is a first order
operator which along the neck can be written as

L̂ = G(∂t − L0) + Â

where L̂0 := G(∂t − L0) is an APS operator and Â ∈ Lk,2
µ (Hom (Ê, F̂ )),

∀k > 0. The decay rate is defined exactly as before. We set ~∂∞L̂ := L0. For
later use define the spectral gap

γ(L̂) := dist ( 0 , spec (L0) \ {0} ).

Observe that if L̂ is an a-APS operator then for every r À 0 we define rL̂
as the APS operator which along the neck is described by

rL̂ := G
(
∂t − L0

)
+ α(t − r) · Â.

If L̂ : C∞(Ê) → C∞(F̂ ) is an a-APS operator on N̂ then it defines a bounded
operator

(4.1.14) L̂δ = L̂k,δ : Lk+1,2
δ (Ê) → Lk,2

δ (F̂ ), k ∈ Z+,

for any δ < µ(L̂). Its formal adjoint with respect to the metric L2
δ is denoted

by L̂∗δ and is given by

(4.1.15) L̂∗δ := m−2δL̂
∗m2δ.

We can regard it either as a closed unbounded operator L2
δ → L2

δ or as a
bounded operator L1,2

δ → L2
δ .

The gluing construction uses the following spaces.

kerδ L̂ := ker L̂ ∩ L2
δ , kerex L̂ := ker L̂ ∩ L2

ex.

The following result is proved in [74] .

Theorem 4.1.16. (Lockhart-McOwen) Suppose L̂ is an a-APS opera-
tor. Then for any δ < µ(L̂) which is not an eigenvalue of −~∂∞L̂ the operator
L̂k,δ is Fredholm and its index is independent of k.

The following proposition is a slight generalization of [6, Prop. (3.11)].
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Proposition 4.1.17. Suppose L̂ is an a-APS operator. Then the following
hold.

(a) kerδ L̂ = ker L̂k,δ , ∀k ∈ Z+, δ < µ(L̂).

(b) The spaces kerδ L̂, ker−δ L̂∗ are independent of 0 < δ < min(µ(L̂), γ(L̂)).

(c) For every 0 < δ < min(µ(L̂), γ(L̂)) the continuous map m2δ : L2
δ → L2

−δ

induces an isomorphism

kerδ L̂∗δ ∼= ker−δ L̂∗.

(d) For every 0 < δ < min(µ(L̂), γ(L̂)) we have the equality

ker−δ L̂ = kerex L̂.

(e) For all r À 0 and for all 0 < δ < min(µ(L̂), γ(L̂)) the pullbacks by the
inclusions N̂r ↪→ N̂ induce isomorphisms

ker(rL̂, APS) ∼= kerδ(rL̂)

and
ker(rL̂

∗
, APS∗) ∼= ker−δ(rL̂

∗
) = kerex(rL̂

∗
).

(f)
ind(L̂δ) = lim

r→∞
IAPS(rL̂).

Exercise 4.1.4. Prove the above proposition.

The above results suggest the introduction of an APS index for an a-
APS operator L̂ by setting

IAPS(L̂) := lim
r→∞

IAPS(rL̂).

Using Proposition 4.1.17 and (4.1.9) we deduce that if L̂ = G(∂t − L(t)) is
an a-APS operator on R × N then

(4.1.16) ind(L̂δ) = IAPS(L̂) = −dim kerL(−∞) − SF (L(t)).

The remarks in §4.1.3 can be used to determine iδ := ind (L̂δ) for arbi-
trary δ. Assume for simplicity that L̂ is an APS operator (not just asymp-
totically). Set A := ~∂∞L̂.

By definition, the map

mδ : L2
δ → L2, ψ 7→ eδτ(t)ψ

is an isometry so that

iδ(L̂) = i0(mδL̂m−1
δ ) = IAPS(mδL̂m−1

δ , N̂r).
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A simple computation shows that

L̂δ := mδL̂m−1
δ = L̂ − δτ ′(t)G.

Observe that ~∂∞L̂δ = A + δ =: Aδ and

iδ = IAPS(L̂δ, N̂r).

Set Cr := [r, r + 1] × N . We have

IAPS(L̂δ, N̂r+1) − IAPS(L̂, N̂r) = −( ξ(Aδ) − ξ(A) ) +
∫

Cr

ρ(L̂δ)dvĝ.

On the other hand, the above index density can be expressed as in (4.1.4)
in terms of the APS index of the operator L̂δ = L̂ − δG on Cr.∫

Cr

ρ(L̂δ)dvĝ = ξ(Aδ) − ξ(A) + h(A) + IAPS(L̂ − δG, Cr).

Finally, according to (4.1.9), the last term can be expressed as a spectral
flow

(4.1.17) IAPS(L̂ − δG, Cr) = −h(A) − SF (A + tδ, t ∈ [0, 1]).

Putting all of the above together we obtain the following useful equality:

(4.1.18) iδ = IAPS(L̂) − SF (A + tδ, t ∈ [0, 1]).

This is in perfect agreement with Theorem 1.2 in [74]. Note also that if
δ is sufficiently small then there is no spectral flow correction in the above
formula.

Exercise 4.1.5. (Excision formula) Consider two a-APS operators

L̂0, L̂1 : Γ(Ê+) → Γ(Ê−)

on N̂ which have the same principal symbol. Set Ai := ~∂∞L̂i, i = 0, 1. Prove
that

(4.1.19) IAPS(L̂0) − IAPS(L̂1) = SF (A0 → A1)

where SF (A0 → A1) denotes the spectral flow of the affine path of elliptic
operators At = A0 + t(A1 − A0), t ∈ [0, 1].

Remark 4.1.18. The above exercise illustrates one of the many “anom-
alies” of the non-compact situation. The operators L̂0 and L̂1 are obviously
homotopic via the affine homotopy

L̂t := (1 − t)L̂0 + tL̂1.

However, for some values of t, the operator L̂1 may not define a Fredholm
operator

L1,2
δ (Ê+) → L2

δ(Ê−)

so that it is possible ind (L̂0,δ) 6= ind (L̂1,δ). The correction is given by
precisely the spectral flow SF (A0 → A1)
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4.1.5. Abstract linear gluing results. The main result of this subsection
is a general gluing theorem of Cappell-Lee-Miller [24]. To formulate it in a
more intuitive fashion we need to introduce the asymptotic notions in [110].
We begin with the notions of asymptotic map and asymptotic exactness. An
asymptotic map is a sequence (Ur, Vr, fr)r>0 with the following properties:

• There exist Hilbert spaces H0 and H1 such that Ur is a closed subspace
of H0 and Vr is a closed subspace of H1, ∀r > 0.

• fr is a densely defined linear map fr : Ur → H1 with closed graph and
range R(fr), ∀r > 0.

• limr→∞ δ̂(R(fr), Vr) = 0 where, following [60], we set

δ̂(U, V ) = sup
{

dist (u, V ) ; u ∈ U, |u| = 1
}

.

We will denote asymptotic maps by Ur

fr

−→a Vr.

Example 4.1.19. Suppose H0 = R = Ur, H1 = R⊕R and Vr = R⊕0 ⊂ H1.
Then the sequence of maps

fr : H0 → H1, t 7→ (rt, t)

defines an asymptotic map Ur

fr

−→a Vr. Observe that fr does not converge
in any reasonable sense to any linear map.

There is a super-version of this notion when Ur and Vr are Z2-graded
and are closed subspaces in Z2-graded Hilbert spaces such that the natural
inclusions are even operators.

Define the gap between two closed subspaces U, V in a Hilbert space H
by

δ(U, V ) = max
{

δ̂(U, V ), δ̂(V, U)
}

.

The sequence of asymptotic maps

Ur

fr

−→a Vr

gr

−→a Wr, r → ∞,

is said to be asymptotically exact if

lim
r→∞

δ(R(fr), ker gr) = 0.

The following result (proved in [110]) explains the above terminology.
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Proposition 4.1.20. If the sequence

Ur

fr

−→a Vr

gr

−→a Wr, r → ∞,

is asymptotically exact, Pr denotes the orthogonal projection onto ker gr and
Qr the orthogonal projection onto Wr then there exists r0 > 0 such that the
sequence

Ur
Pr◦fr−→ Vr

Qr◦gr−→ Wr

is exact for all r > r0.

An asymptotic map Ur

fr

−→a Vr is said to be an asymptotic isomorphism
if the sequence

0 → Ur

fr

−→a Vr → 0
is asymptotically exact.

Two cylindrical manifolds (N̂i, ĝi), i = 1, 2, are called compatible if there
exists an orientation reversing diffeomorphism

ϕ : N1 → N2

such that
g1 = ϕ∗g2.

Two cylindrical vector bundles (Êi, ϑi, Ei = ∂∞Êi) → N̂i are said to be
compatible if there exists a vector bundle isomorphism

γ : E1 → E2

covering ϕ.
For simplicity, we will fix some (ghost) reference, orientation reversing

diffeomorphism Φ0 : N1 → N2. We set N := N1 so that we can identify
ϕ with an orientation preserving self-diffeomorphism of N . It is very con-
venient to think of the end of N̂2 as the cylinder (−∞, 0) × N so that the
outgoing coordinate on N̂2 is −t. Note that the compatibility condition
provides a way of identifying ∂∞Ê1 with ∂∞Ê2 so that we can compare a
section of ∂∞Ê1 to a section of ∂∞Ê2.

The sections ûi of the compatible cylindrical bundles Êi are called com-
patible if ∂∞û1 = ∂∞û2. The cylindrical partial differential operators L̂i on
N̂i , i = 1, 2, are compatible if along their necks they have the form

L̂1 = G1∂t − L1, G2∂t − L2, G1 + G2 = L1 − L2 = 0.

Consider two compatible cylindrical manifolds N̂i, i = 1, 2. For every
orientation preserving diffeomorphism ϕ : N → N and every r À 0 we
denote by N̂(r) = N̂(r, ϕ) the manifold obtained by attaching

N̂1(r) := N̂1 \ (r + 1,∞) × N
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Figure 4.5. Gluing two cylindrical manifolds

to
N̂2(r) := N̂2 \ (−∞,−r − 1) × N

(see Figure 4.5) using the obvious orientation preserving identification

φr × Φ0 ◦ ϕ : [r, r + 1] × N1 → [−r − 1,−r] × N2

where
φr(t) := t − 2r − 1.

Two compatible cylindrical bundles Êi can be glued in an obvious way to
form a bundle Ê(r) = Ê1#rÊ2 for all r À 0. We want to emphasize that the
topological types of the resulting manifold N̂(r) and the bundle Ê(r) depend
on the gluing isomorphisms γ. In the sequel, to simplify the presentation,
we will drop ϕ and γ from our notations.

Given two compatible cylindrical sections ûi of Êi, i.e ∂∞û1 = ∂∞û2,
we can glue them together to a section û1#rû2 of Ê1#rÊ2. More generally,
if ûi are only L2

ex-sections with identical asymptotic values then we can
approximate them by cylindrical sections

ûi ≈ ûi(r) := αr(t)ûi + βr(t)∂∞ûi, i = 1, 2,

where αr(t) := α(|t| − r) and βr(t) := β(|t| − r), ∀t ∈ R, r À 0. Observe
that if ûi are genuine cylindrical sections then ûi(r) = ûi for all r À 0. Now
define

(4.1.20) û1#rû2 := û1(r)#rû2(r), r À 0.

The cylindrical partial differential operators L̂i on N̂i , i = 1, 2, are compat-
ible if along their necks they have the form

L̂1 = G1∂t − L1, G2∂t − L2, G1 + G2 = L1 − L2 = 0.

Such pairs L̂i of compatible cylindrical operators can be glued following
the above pattern and we let the reader fill in the obvious details. Using
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the above cutoff trick we can extend the gluing construction to compatible
asymptotic operators, i.e. pairs of operators which differ from a compatible
cylindrical pair by zeroth order terms in

⋂
k>0 Lk,2

δ . Cylindrical connections
are special examples of cylindrical operators so the above gluing construction
includes the gluing of compatible asymptotically cylindrical connections as
a special case.

Suppose D̂i : C∞(Êi) → C∞(Êi) are compatible, formally selfadjoint
a-APS operators of Dirac type. Observe that the compatibility condition
implies (on account of orientations) ~∂∞D̂1 = −~∂∞D̂2 so we set D := ~∂∞D̂1.

We can now form the Dirac type operator

D̂(r) := D̂1#rD̂2 : C∞(Ê(r)) → C∞(Ê(r)).

Fix 0 < δ < min
(
γ(D̂i), µ(D̂i)

)
and a continuous function

c : R+ → R+

satisfying

c(r) = o(1/r),
1

c(r)
= O(eδr) as r → ∞.

Define K̂c(r) as the finite-dimensional subspace of L2(Ê(r)) spanned by
eigenvectors of D̂(r) corresponding to eigenvalues in the interval [−c(r), c(r)].
Observe that K̂c(r) ⊂ C∞(Ê(r)). One should think of this space as an ap-
proximation for the kernel of D̂(r) for r À 0.

The formulation of the main gluing result requires the introduction of
some splitting maps

Sr
i : C∞(Ê(r)) → L2

ex(Êi), i = 1, 2.

We explain the construction for i = 1. First, regard N̂1,r as a submanifold
of N̂(r) in an obvious fashion. Thus any smooth section û of Ê(r) → N̂(r)
defines by restriction a section ũ1(r) over N̂1,r. Denote by zr the midpoint
of the overlapping interval [r, r + 1] and set

∂rû := ũ1(r) |zr×N .

Now set
Sr

1 û = αr(t)ũ1(r) + βr(t)∂rû.

Observe that Sr
1 û is a cylindrical section of Ê1 and

∂∞Sr
1 û := ∂rû.

With Sr
2 : C∞(Ê(r)) → L2

ex(Ê2) defined in a symmetrical fashion we have
the obvious equality

∂∞Sr
i û = ∂∞Sr

2 û.
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We assemble these maps in a single splitting map

Sr := Sr
1 ⊕ Sr

2 : C∞(Ê(r)) → L2
ex(Ê1) ⊕ L2

ex(Ê2).

Denote by Li ⊂ L2(E) the image of kerex D̂i via the map ∂∞. Observe that
Li ⊂ ker D. The spaces Li have additional structure which we now proceed
to describe.

The symbols of the operators D̂i define Clifford multiplications on the
bundles Êi and that is why we will denote them by the same symbol

ĉ : T ∗N̂i → End (Êi).

Set J := ĉ(dt). The operator J is skew-symmetric and satisfies J2 = −1 so
that it induces a symplectic structure on L2(E) defined by

ω(u, v) :=
∫

N
(Ju, v)dvg

Since {J, D} := JD + DJ = 0 we deduce that H := ker D is a symplectic
space. We have the following result (see [16, 104]).

Lemma 4.1.21. The spaces Li are Lagrangian subspaces of H i.e.

L⊥
i = JLi.

We get a difference map

∆ : kerex D̂1 ⊕ kerex D̂2 → L1 + L2 ⊂ ker D, (û1, û2) 7→ ∂∞û1 − ∂∞û2.

The following result is due to Cappell-Lee-Miller [24]. For a shorter proof,
in this asymptotic mappings context we refer to [110]. This result will be
the key to understanding the monopole gluing problem.

Theorem 4.1.22. (Linear Gluing Theorem) Using the above notation
and hypotheses we have an asymptotically exact sequence

(4.1.21) 0 → K̂c(r)

Sr

−→a kerex D̂1 ⊕ kerex D̂2
∆−→ L1 + L2 → 0.

We want to point out that the above sequence naturally splits. More
precisely, the gluing map

#r : ker∆ → L2(Ê(r))

defines an asymptotic map ker∆−→aHr which is an asymptotic right inverse
for Sr.

The above result also shows that the cut off level c(r) is somewhat arti-
ficial since Kc(r) is asymptotically independent of c(r). This shows that as
r → ∞ the eigenvalues λr of D̂(r) satisfying

|λr| = O(r−1−ε)
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are subject to the sharper constraint

|λr| = O(r−n), ∀n ≥ 1.

We conclude this discussion with a special case of Theorem 4.1.22 particu-
larly relevant in Seiberg-Witten theory.

Suppose now the entire problem is supersymmetric. Thus, Ê1 splits as
Ê+

1 ⊕ Ê−
1 and D̂ has the block decomposition

D̂ =

[
0 ˆ6D∗

ˆ6D 0

]
.

The restriction E of Ê1 to N induces a splitting E = E+ ⊕ E− and we can
write

J =
[

0 −G∗

G 0

]
where G∗G = 1E+ , GG∗ = 1E− . Moreover, J(E±) = JE∓ and

D =
[

D 0
0 −JDJ−1

]
.

The space H is Z2-graded,

H = H+ ⊕H−

and GH+ = H−.
The bundle Ê2 is also Z2-graded and the compatibility assumptions must

include the condition ∂∞E±
1 = ∂∞Ê±

2 .

Li = L+
i ⊕ L−

i , L±
i ⊂ H±

and the Lagrangian condition translates into

(4.1.22) (L+
i )⊥ = G∗L−

i , (L−
i )⊥ = GL+

i

where ⊥ denotes the orthogonal complements in H±.
All the spaces K̂c(r), kerex D̂i and Li in the statement of Theorem 4.1.22

are Z2-graded and in this case we can be more specific: all the asymptotic
maps in (4.1.21) are even. Moreover, the spaces K̂c(r) have a particularly in-
teresting description. To explain it we have to write D̂(r) is supersymmetric
form

D̂(r) =
[

0 ˆ6D(r)∗
ˆ6D(r) 0

]
.

For every selfadjoint operator A and any compact interval I we denote by
Spec(A; I) the spectral subspace corresponding to the part of the spectrum
situated in I. Then

K̂+
c(r)

∼= Spec( ˆ6D(r)∗ ˆ6D(r); [0, c(r)2])



4.1. Elliptic equations on manifolds with cylindrical ends 307

and
K̂−

c(r)
∼= Spec( ˆ6D(r) ˆ6D(r)∗; [0, c(r)2]).

Observe that dim K̂+
c(r) − dim K̂−

c(r) is a quantity independent of r because it

is equal to ind ˆ6D(r)

4.1.6. Examples. We conclude this section with several examples which
in our view best reveal the nature and the complexity of the objects involved
in the gluing theorem. Moreover, we will need these computations later on
in concrete gauge theoretic applications.

Example 4.1.23. Suppose N̂ is a cylindrical manifold. The Hodge=
de Rham operator

d + d∗ : Ω∗(N̂) → Ω∗(N̂)
is a cylindrical APS operator. According to [6, Prop. 4.9], the L2-kernel
of this operator can be identified with the “image of the relative in the
absolute”, i.e. with the image of the natural morphism

H∗(N̂t, ∂N̂t) → H∗(N̂t)

(for some t > 0). To understand the extended kernel let us recall that we
are working with the canonical cylindrical structure on T ∗N̂ and we have

∂∞Λ∗T ∗N̂ ∼= Λ∗T ∗∂∞N̂ ⊕ Λ∗T ∗∂∞N̂ .

Along the neck we have the isomorphisms

Λeven/oddT ∗N̂ = Λeven/oddπ∗T ∗N ⊕ dt ∧ Λodd/evenπ∗T ∗N.

We see that the induced grading on ∂∞Λ∗T ∗N̂ is not the obvious one. The
asymptotic boundary map

∂∞ : kerex(d + d∗) → Ω∗(N) ⊕ Ω∗(N)

has two components. Given an a-cylindrical form α̂ on N̂ we have

∂∞α̂ := α0 ⊕ dt ∧ ∗α1

and we will set
α0 := ∂0

∞α̂ and α1 = ∂1
∞α̂.

Denote by Lan the image of the morphism

∂∞ : kerex(d̂ + d̂∗) → H∗(N) ⊕ H∗(N)

and by Ltop the image of the morphism H∗(N̂) → H∗(∂N̂). We have the
following isomorphisms:

(4.1.23) Lan
∼= Range (∂0

∞) ⊕ ∗Range (∂1
∞) ∼= Ltop ⊕ ∗Ltop.

For the reader’s convenience we include a short proof of this fact.
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Observe first of all that Ltop is a Lagrangian subspace of H∗(N), i.e.
∗Ltop = L⊥

top, so that 2 dimLtop = dimH∗(N). Next, notice as in
[24, Sect. 10] that if α̂ ∈ kerex(d̂ + d̂∗) then

∂∞∗̂α̂ = ±∂1
∞α̂ ± dt ∧ ∗∂0

∞α̂ ⇔ ∂i
∞∗̂ = ± ∗ ∂1−i

∞ , i = 0, 1.

This implies ∂i
∞α̂ ∈ Ltop (i = 0, 1) so that

Lan ⊂ Ltop ⊕ ∗Ltop.

Both spaces above are Lagrangian and thus have the same dimension,
dimH∗(N). Hence they must be equal.

By comparing the short exact sequences

0 → ker0(d + d∗) → kerex(d + d∗) → Ltop ⊕ (∗Ltop) → 0

and
0 → ker0(d + d∗) ↪→ H∗(N̂) → Ltop → 0

we conclude that the natural map ϕ : kerex(d+d∗) → H∗(N̂) is not injective
(!) because we have

dim kerex(d̂ + d̂∗) = dim ker0(d̂ + d̂∗) + 2 dimLtop = dimH∗(N̂) + dim Ltop.

On the other hand, ϕ is surjective. Indeed, the isomorphism (4.1.23) shows
that given the harmonic forms α0, α1 ∈ Ltop there exists a form α̂ ∈
kerex(d + d∗) such that ∂i

∞α̂ = αi. Its image in H∗(∂N̂) via the morphism

υ : kerex(d̂ + d̂∗)
ϕ→ H∗(N̂) → Ltop

is the form ∂0
∞α̂. Thus the above composition is onto and its kernel can

be identified with the subspace of a-cylindrical harmonic forms α̂ such that
∂0
∞α̂ = 0. It has dimension

dim ker υ = dim ker0(d̂ + d̂∗) + dim Ltop.

On the other hand, ker(H∗(N̂) → Ltop) = ker0(d̂ + d̂∗) ⊂ Range (ϕ) so that

dim ker υ = dim ker ϕ + dim ker(H∗(N̂) → Ltop)

= dim kerϕ + dim ker0(d̂ + d̂∗).

Hence dim ker ϕ = dimLtop = dim kerex(d̂ + d̂∗) − dimH∗(N̂). This proves
the surjectivity of ϕ. Its kernel is a subspace of ker ∂0

∞. Moreover, the
induced map

∂1
∞ : kerϕ → Ltop

is a bijection. Observe that if α̂ ∈ kerϕ\{0} (i.e. α̂ is a nontrivial harmonic
form representing 0 ∈ H∗(N̂)) then ∂1

∞α̂ 6= 0 so that ∂0
∞∗̂α̂ 6= 0 which shows

that the harmonic form ∗α̂ represents a nontrivial element in H∗(N̂) !!!
These facts can be very clearly observed on the simplest situation. Sup-

pose N̂ = R × N . Then for any harmonic form α on N the form dt ∧ α is
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both harmonic and in L2
ex but its image in H∗(N̂) is obviously trivial since

dt ∧ α = d(tα). On the other hand, ∗̂(dt ∧ α) = ± ∗ α is in L2
ex but it

represents a nontrivial cohomology class.

Exercise 4.1.6. Fix 0 < ε ¿ 1. Use the results in the above example
together with the Gluing Theorem 4.1.22 to prove that there exists R =
Rε > 0 such that for all r > Rε zero is the only eigenvalue in the interval
[−r−1−ε, r−1−ε] of the Hodge-de Rham operator d+d∗ on the closed manifold
N̂(r) (introduced in §4.1.5).

Example 4.1.24. Suppose N̂ is a cylindrical 4-manifold. We can then form
the anti-self-duality operator

ASD : Ω1(N̂) → (Ω2
+ ⊕ Ω0)(N̂), α̂ 7→

√
2(d̂α̂)+ ⊕−d̂∗α̂.

Remark 4.1.25. Let us explain the two unusual features of this definition.
The factor

√
2 guarantees that ASD is an APS operator. The choice of

−d∗ instead of the regular d∗ is motivated by consistency reasons. When we
investigated the linearization TC of the Seiberg-Witten equation we encoun-
tered the operator d+⊕−2d∗. The negative sign appears because we worked
with the left action of the gauge group. Changing this into a positive sign
will affect all the orientation conventions.

Observe that if π : R × N → N denotes the natural projection then
along the cylinder we have the bundle isometries

Λ1T ∗N̂ → (Λ1 ⊕ Λ0)π∗T ∗N, ω1 7→ (a, f) := (ω − tω , tω),

Λ2
+T ∗N̂ → Λ1π∗T ∗N, η 7→

√
2 t η

where t denotes the contraction by ∂t. As in §2.4.1, any differential form
ω on N̂ can be uniquely written as

ω = dt ∧ f + a, f := tω, a := ω − dt ∧ f.

Moreover,
d̂(dt ∧ f0 + a1) = dt ∧ (ȧ1 − df0) + da1,

∗̂ω2 := ∗̂(dt ∧ f1 + a2) = dt ∧ ∗a2 + ∗f1,

d̂+(dt ∧ f0 + a) =
1
2
(d̂ + ∗̂d̂)(dt ∧ f0 + a1)

=
1
2
dt ∧ (ȧ1 − df0 + ∗da1) +

1
2
∗ (ȧ1 − df0 + da1)

and
d̂∗(dt ∧ f0 + a1) = −∗̂d̂∗̂(dt ∧ f0 + a1) = −(ḟ0 − d∗a1).

We can now regard the ASD-operator
√

2d̂+ − d̂∗ as a p.d.o.

C∞( (Λ1 ⊕ Λ0)π∗T ∗N) → C∞( (Λ1 ⊕ Λ0)π∗T ∗N),
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[
a
f

]
7→

[
ȧ + ∗da − df

ḟ − d∗a

]
.

We see that ASD has the APS form

ASD
[

a
f

]
=

(
∂

∂t
−

[
− ∗ d d
d∗ 0

]) [
a
f

]
∂∞Λ1T ∗N̂ ∼= (Λ1 ⊕ Λ0)T ∗∂∞N̂ ∼= ∂∞(Λ2

+ ⊕ Λ0)T ∗N̂

and
~∂∞(ASD) =

[
− ∗ d d
d∗ 0

]
.

The operator −~∂∞(ASD) is called the odd signature operator and we will
denote it by SIGN. (The negative sign is due mostly to historical reasons
but not solely.) It depends on the metric g and its eta invariant will be
denoted by ηsign(g) so that the Atiyah-Patodi-Singer has the form

IAPS(ASD) =
∫

N̂
ρ(ASD) +

1
2
(ηsign(g) − dim kerSIGN).

Remark 4.1.26. If we define the “classical” ASD-operator by

ASDcl :=
√

2d̂+ ⊕ d̂∗

then

ASDcl

[
a
f

]
=

[
1 0
0 −1

] (
∂

∂t
−

[
− ∗ d d
d∗ 0

]) [
a
f

]
and

~∂∞(ASDcl) =
[
− ∗ d d
d∗ 0

]
= ~∂∞ASD.

If we assume N̂ is spin and S = S+⊕S− is the associated bundle of complex
spinors then the Clifford multiplication map

ĉ : ΛT ∗N̂ ⊗ C → End (S)

induces isomorphisms ( but not isometries)

(4.1.24) Λ1T ∗N̂ ⊗ C ∼= Hom (S+, S−) ∼= S∗
+ ⊗ S− ∼= S+ ⊗ S−

and

(4.1.25) (Λ0 ⊕ Λ2
+)T ∗N̂ ⊗ C ∼= End (S+) ∼= S∗

+ ⊗ S+
∼= S+ ⊗ S+.

The operator ASDcl can be regarded as an operator

ASDcl : C∞(S− ⊗ S+) → C∞(S+ ⊗ S+).

If 6D : C∞(S+) → C∞(S−) denotes the canonical Dirac operator then we can
identify ASDcl with the geometric Dirac operator 6D∗ twisted by the bundle
S+ equipped with the Levi-Civita induced connection (see [5, Sec. 6] and
the references therein for details).
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The operators ASD and ASDcl have the same local index densities since

ASD∗ · ASD = ASD∗
cl · ASDcl, ASD · ASD∗ = ASDcl · ASD∗

cl.

This common index density is

(4.1.26) ρasd(ĝ) = −1
2

(
e(∇̂ĝ) +

1
3
p1(∇̂ĝ)

)
where e(∇̂ĝ) ∈ Ω4(N̂) is the Euler form associated to the Levi-Civita con-
nection of N̂ (via the Chern-Weil construction) and p1(∇̂ĝ) ∈ Ω4(N̂) is the
first Pontryagin form associated to the Levi-Civita connection of ĝ. This
follows essentially from the above identification of ASDcl with a geometric
Dirac operator (see [5, 6] for more details). Thus, as far as index computa-
tions are concerned, it makes no difference whether we work with ASD or
ASDcl.

Exercise 4.1.7. Show that D := ASDcl is a Dirac operator, i.e. both D∗D
and DD∗ are generalized Laplacians.

Suppose α ∈ kerex ASD. Then

(d̂ + ∗̂d̂)α̂ = 0 and d̂∗̂α̂ = 0.

We deduce that d̂∗d̂α̂ = 0. Taking the inner product with α̂ and using the
integration by parts formula of Sec. 1.2 over N̂r (r À 0) we deduce∫

N̂r

|d̂α̂|2dv̂ = ±
∫

∂Nr

α̂ ∧ ∗ t d̂α̂.

The boundary term goes to zero as r → ∞ since α̂ ∈ L2
ex and we deduce

d̂α̂ = 0. Thus α̂ ∈ kerex(d̂ + d̂∗) so that

kerex(ASD) = kerex(d̂ + d̂∗) |Ω1(N̂) .

Arguing similarly we deduce

(4.1.27) kerex ASD∗ = P+ kerex(d̂ + d̂∗) |Ω2(N̂) ⊕R

where P+ denotes the projection Ω2 → Ω2
+.

We can now determine ∂∞ kerex(ASD) and ∂∞ kerex(ASD∗). To present
this description observe that the spaces Ltop discussed in the previous ex-
ample are graded by the degree. We denote by Li

top the degree-i subspace.
Since L3

top = 0 we deduce

(4.1.28) ∂∞ kerex(ASD) = L1
an = L1

top ⊕ (dt ∧ ∗L3
top) = L1

top.

Since ∂∞ kerex(ASD∗)⊥ = G∂∞ kerex(ASD) (see (4.1.22)) we deduce

(4.1.29) ∂∞ kerex(ASD∗) = ∗L2
top ⊕ L0

top
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The above equality can also be seen directly from (4.1.27). We can use
the above simple observations to compute the APS index of ASD. Let us
assume for simplicity that both N̂ and N are connected.We have

IAPS(ASD) = dim kerL2(ASD) − dim kerex(ASD∗).

The first space can be identified with the image of H1(N̂ , N) in H1(N).
Using the long exact sequence of the pair (N̂ , N) we deduce

dim kerL2(ASD) = dim H1(N̂ , N) = b̂3

where b̂k := dimHk(N̂). On the other hand,

dim kerex(ASD∗) = dimP+ kerex(d̂ + d̂∗) + 1.

We want to identify the right-hand side of the above equality with known
topological invariants. For a 2-form α̂ ∈ ker(d̂ + d̂∗) the condition ∗̂α̂ = α̂
implies

∂0
∞α̂ = ∂1

∞α̂

so that we have a natural map

P+ kerex(d̂ + d̂∗) → L2
top, α̂ 7→ ∂0

∞α̂.

From the isomorphism (4.1.23) we deduce the above map is onto. Its kernel
is none other than the self-dual part of kerL2(d̂ + d̂∗). Thus

dimP+ kerex(d̂ + d̂∗) = dimP+ kerL2(d̂ + d̂∗) + dim L2
top.

The radical of the intersection form on H2(N̂ , N) is precisely the kernel of
the morphism

H2(N̂ , N) → H2(N̂)
so that

dimP+ kerL2(d̂ + d̂∗) = b̂+

where b̂± denotes the dimension of the positive/negative eigenspace of the
intersection form. Thus

dimP+ kerex(d̂ + d̂∗) = b̂+ + l2

where lk := dimLk
top. Hence

IAPS(ASD) = b̂3 − b̂+ − l2 − 1.

On the other hand, we have the following identities which are either tau-
tological or follow from the long exact sequence of the pair (N̂ , N) coupled
with the identity lk + l3−k = dimHk(N):

b2 = b̂+ + r + b̂−
r = l2

τ = b̂+ − b̂−
b̂k − b̂4−k = lk − l4−k
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where r is the dimension of the radical of the intersection form and τ is
its signature. After some elementary manipulations involving the above
identities we reach the conclusion

(4.1.30) IAPS(ASD) = −1
2
(χ + τ + h)

where χ =
∑

k(−1)k b̂k and h = dim(H0 ⊕ H1)(N).

We conclude this section with a detailed discussion of a very special
choice of N̂ which will be needed for further applications.

Example 4.1.27. Supppose L` → S2 is a Hermitian line bundle of degree
` ∈ Z over the 2-sphere. We assume S2 is equipped with a round metric g0

so that its area is π. Thus its radius is 1/2 so its Gauss (sectional) curvature
is 4. Denote by ω0 the volume form on S2.

The metric on L determines a unit disk bundle D` → S2 with boundary
a principal S1-bundle

S1 N`

S2

y w

u
π

Observe that L0 is the trivial line bundle and N0
∼= S1×S2 while L−1 is the

tautological line bundle over P1 ∼= S2 and in this case N−1
∼= S3. Moreover,

D−1 can be identified with a tubular neighborhood of P̄1 ↪→ P̄2.
N` is equipped with a free S1-action whose orbits coincide with the

fibers of π. We denote by ζ its canonical infinitesimal generator. A global
angular form is an S1-invariant 1-form ϕ ∈ Ω1(N`) such that ζ ϕ = 1.
Equivalently, this means that the restriction of ϕ to any fiber of π coincides
with the angular form dθ on S1. Using the language of principal S1-bundles
as in [64] we can say that iϕ defines a connection on the principal bundle
N`. Notice that

Lζdϕ = 0, ζ (dϕ) = Lζϕ − d(ζ ϕ) = 0.

Thus idϕ is the pullback of an imaginary closed 2-form Ω on S2, the curva-
ture of the connection iϕ. Moreover

(4.1.31) − 1
2π

∫
S2

Ω =
∫

S2

c1(L) = deg(L) = `.

The choice of global angular form is not unique. We can alter ϕ by the
pullback of a 1-form α on S2. The curvature will change according to the
rule

iΩ → iΩ + idα.
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In particular, we can choose the global angular form so that its curvature is
harmonic

Ω = cω0, c ∈ R.

Using this in the equality (4.1.31) we deduce

− c

2π
area (S2) = − 1

2π

∫
S2

cω0 = `

so that c = −2`. Thus with this choice we have

dϕ = −2`π∗ω0.

Observe that kerϕ determines a subbundle of TN` isomorphic to π∗TS2.
Thus

TN ∼= Rζ ⊕ kerϕ ∼= Rζ ⊕ π∗TS2.

For each r > 0 we construct a metric gr on TN` uniquely determined by the
conditions

gr(ζ, ζ) = r2, gr |ker ϕ= (π∗g0) |π∗TS2 .

The metric gr is the restriction of a natural metric ĝr on D`. Denote by h
the Hermitian metric on L`.

To describe ĝr observe that the angular form ϕ induces a Hermitian
connection A0 on L`. This produces a splitting of the tangent bundle TL`

into vertical and horizontal parts.

TL` := V TL` ⊕ HTL`.

The vertical part is spanned by vectors tangent to the fibers of π : L` → S2

and is isomorphic to π∗L`. The horizontal part is generated by the locally
covariant constant sections in the following sense. Choose local coordinates
z = (x, y) on a neighborhood U of a point p0 ∈ S2 and a local unitary frame
f of L` |U . Then a point P ∈ π−1(U) can be described by a pair of complex
numbers (ξ, z) uniquely determined by the conditions

P ∈ π−1(z), P = ξfz.

A tangent vector (ξ̇, ż) ∈ TP L` is vertical if ż = 0. It is horizontal if

ξ̇ + iaz(ż)ξ = 0

where ia ∈ iΩ1(U) is the 1-form representing A0 with respect to the unitary
frame f .

Consider the family of hypersurfaces Xr ⊂ L`

Xr := {(p, v); p ∈ S2, v ∈ π−1(p), hp(v, v) = r2}.
Xr is locally described by the equation

Xr = {(ξ, z); |ξ|2 = r2}.
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Observe that all these hypersurfaces are diffeomorphic to N`. Since A0 is a
Hermitian connection, the horizontal sub-bundle is tangent to the hypersur-
faces Xr. If we choose polar coordinates (r, θ) (away from the zero section)
in each fiber

ρ := |ξ|, ξf := ρeiθf

then the horizontal distribution can be described by the equation

(ρ̇, θ̇, ż) ∈ Tξ,zL`, ρ̇ = 0, iθ̇ + ia(ż).

The 1-form dθ +a is precisely the global angular form expressed in the local
coordinates (r, θ, z).

Now we can define a metric ĝr on TL` := V TL` ⊕ HTL` by

ĝr := r2h ⊕ π∗(g0).

The restriction of ĝr to X1 coincides with gr. We want to prove that the
scalar curvatures of gr and ĝr are everywhere positive provided r is suffi-
ciently small. We will use Cartan’s moving frame method. For more details
concerning this method we refer to [105, Chap. 4].

Pick a local (oriented) orthonormal frame τ1, τ2 of TS2 |U , denote by
θ1, θ2 the dual coframe and set

~θ :=
[

θ1

θ2

]
.

Then the structural equations for the Riemann metric g0 imply

d~θ =
[

0 µ
−µ 0

]
· ~θ, µ ∈ Ω1(U).

The so(2)-valued 1-form [
0 −µ
µ 0

]
describes the Levi-Civita connection with respect to the frame τ1, τ2:

∇LCτ1 = µτ2, ∇LCτ2 = −µτ1.

Then

dµ = −1
4
ω0

where 1/4 is the sectional curvature of S2. Set

ϕ1 := rdρ, ϕ2 := rϕ, ϕ3 := π∗θ1, ϕ4 = π∗θ2.

Observe that the metric ĝr can be described as

ĝr =
{(

ϕ1
)2 +

(
ϕ2

)2
}

+
{(

ϕ3
)2 +

(
ϕ4

)2
}
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so that (ϕ1, · · · , ϕ4) is a local, oriented, ĝr-orthonormal coframe of T ∗L`.
Set

~ϕ :=


ϕ1

ϕ2

ϕ3

ϕ4

 .

The Cartan structural equations show that there exists a unique 4×4 matrix

Ŝr = [θi
j ]1≤i,j≤4, θi

j ∈ Ω1(L`),

such that
d~ϕ = Ŝr ∧ ~ϕ, θi

j = −θj
i .

Moreover, the curvature of the Levi-Civita connection of the metric ĝr is
given by

Ω̂r = −dŜr + Ŝr ∧ Ŝr.

If (ζ1, ζ2, ζ3, ζ4) denotes the frame ĝr-dual to ~ϕ then the scalar curvature of
the metric ĝr is given by

ŝr =
∑
i6=j

〈Ω̂r(ζi, ζj)ζj , ζi〉.

We have

d~ϕ =


0

−2r`ϕ3 ∧ ϕ4

π∗µ ∧ ϕ4

−π∗µ ∧ ϕ3


and

θi
j = −1

2

4∑
k=2

{
dϕi(ζj , ζk) + dϕj(ζi, ζk) − dϕk(ζi, ζj)

}
ϕk.

We deduce

θ1
2 = −1

2

4∑
k=2

{
dϕ2(ζ1, ζk) − dϕk(ζ1, ζ2)

}
ϕk =

1
2

4∑
k=2

dϕk(ζ1, ζ2)ϕk = 0,

θ1
3 = −1

2

4∑
k=2

{
dϕ3(ζ1, ζk) − dϕk(ζ1, ζ3

}
ϕk = 0,

θ1
4 = 0,

θ2
3 = −1

2

4∑
k=2

{
dϕ2(ζ3, ζk) + dϕ3(ζ2, ζk) − dϕk(ζ2, ζ3)

}
ϕk = r`ϕ4,

θ2
4 = −1

2

4∑
k=2

{
dϕ2(ζ4, ζk) + dϕ2(ζ3, ζk) − dϕk(ζ2, ζ4)

}
= −r`ϕ3,
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θ3
4 = −1

2

∑
k=2

4
{

dϕ3(ζ4, ζk) + dϕ4(ζ3, ζk) − dϕk(ζ3, ζ4)
}

ϕk,

= −1
2

{
−dϕ2(ζ3, ζ4)ϕ2 − 2dϕ3(ζ3, ζ4)ϕ3 − 2dϕ4(ζ3, ζ4)ϕ4)

}
= −r`ϕ2 + π∗µ.

Thus

Ŝr =


0 0 0 0
0 0 r`ϕ4 −r`ϕ3

0 −r`ϕ4 0 −r`ϕ2 + π∗µ
0 r`ϕ3 r`ϕ2 − π∗µ 0

 .

The Riemann curvature tensor of ĝr is

Ω̂r = −dŜr + Ŝr ∧ Ŝr

=


0 0 0 0
0 0 r`π∗µ ∧ ϕ3 r`π∗µ ∧ ϕ4

0 −r`π∗µ ∧ ϕ3 0 (1
4 − 2r2`2)ϕ3 ∧ ϕ4

0 −r`π∗µ ∧ ϕ4 (2r2`2 − 1
4)ϕ3 ∧ ϕ4 0



+



0 0 0 0

0 0 ∗ ∗

0 −r2`2ϕ2 ∧ ϕ3 − r`ϕ3 ∧ π∗µ 0 ∗

0 −r2`2ϕ2 ∧ ϕ4 − r`ϕ4 ∧ π∗µ r2`2ϕ3 ∧ ϕ4 0



=



0 0 0 0

0 0 r2`2ϕ2 ∧ ϕ3 r2`2ϕ2 ∧ ϕ4

0 −r2`2ϕ2 ∧ ϕ3 0 (1
4 − 3r2`2)ϕ3 ∧ ϕ4

0 −r2`2ϕ2 ∧ ϕ4 (3r2`2 − 1
4)ϕ3 ∧ ϕ4 0


.

The scalar curvature of ĝr is

ŝr = 2
{

r2`2ϕ2 ∧ ϕ3(ζ2 ∧ ζ3) + r2`2ϕ2 ∧ ϕ4(ζ2 ∧ ζ4)

+(
1
4
− 3r2`2)ϕ3 ∧ ϕ4(ζ3, ζ4)

}
=

1
2
− 2r2`2.

We see that

(4.1.32) ŝr > 0, ∀r <
1

2|`| .

A similar computation shows that the scalar curvature of gr is

sr =
1
2
− 2r2`2 = ŝr.
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Observe that we can slightly perturb the metric ĝr in a neighborhood U of
∂D` so that the new metric continues to have positive scalar curvature and
its restriction to a smaller tubular neighborhood V ⊂ U of N` is isometric
to the product metric dt2 + gr on (0, ε] × N`.

More precisely, near ∂D`, ĝr has the form

ĝr = r2dρ2 + r2ρ2ϕ2 + π∗g0, ρ ∈ (1 − ε, 1].

Define the perturbed metric to be g̃r := r2dρ2 + r2α(ρ)2ϕ2 + π∗g0, where
the cut off function α is depicted in Figure 4.6.

ρ

α(ρ)

1

1

1

1

1−ε

Figure 4.6. Smoothing the linear function ρ → ρ

The scalar curvature of g̃r differs from the scalar curvature of ĝr by a
term bounded from above by Cr2‖α‖C2 where C is a universal constant.
The scalar curvature s(g̃r) will be positive as soon as r is sufficiently small.

The classical topological invariants of N`, ` 6= 0, are easy to compute.
To determine its fundamental group observe that N` is a Z|`|-quotient of
N−1

∼= S3. To see this represent S3 as the unit sphere in C2

S3 = {(z1, z2) ∈ C2; |z1|2 + |z2|2 = 1}

and the cyclic group Z|`| as the multiplicative subgroup of S1 consisting
|`|-th roots of 1. Then Z|`| acts on S3 by

ρ(z1, z2) = (ρz1, ρz2) (ρ|`| = 1)

and this action commutes with the Hopf action of S1

eit(z1, z2) = (eitz1, eitz2).

This action descends to an S1-action on the quotient N = S3/Z|`| and the
stabilizer of each point with respect to this action is precisely Z|`|. Thus N
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is equipped with a free S1 ∼= S1/Z|`|-action and the natural projection

π : S3 → N

satisfies
π(eitx) = e`itπ(x).

Thus N → N/S1 is a principal S1-bundle and the |`|-fold cover π : S3 → N
maps the fibers of the Hopf bundle S3 → S2 to the fibers of N → N/S1.
Moreover the restriction to fibers is an |`|-fold cover. This shows that N is a
circle bundle of degree −|`| over S2, i.e. N ∼= N−|`|. (To obtain the bundles
of positive degree we have to replace the Hopf action by its conjugate in the
above arguments.) This shows that

π1(N`) = Z|`|

and the homotopy class of a fixed orbit is a generator of this cyclic group.
Thus

H1(N`, Z) ∼= H2(N`, Z) = 0, H1(N`, Z) ∼= H2(N`, Z) ∼= Z|`|.

It is convenient to describe the isomorphism H2(N`, Z) ∼= Z|`|) from a dif-
ferent perspective.

The manifold N` bounds a disk bundle D` of degree ` and we have a
long exact sequence

0 = H1(N`, Z) → H2(D`, N`; Z) → H2(D`, Z) ∼= H2(S2, Z) → H2(N`)

→ H3(D`, N`; Z) ∼= H1D`, Z) = 0

where at the last step we have used Poincaré duality. On the other hand, the
Thom isomorphism theorem shows that the Poincaré dual τ ∈ H2(D`, N`; Z)
of S2 ↪→ D` satisfies

i∗τ = ` × generator of H2(S2, Z)

and the map

H0(S2, Z) → H2(D`, N`; Z) ∼= H2(D`, Z), u 7→ τ ∧ π∗u

is an isomorphism. Above, π denotes the natural projection D` → S2 while
i denotes the inclusion of S2 in D` as the zero section. Thus, τ is a generator
of H2(D`, N`; Z). The image of τ via the morphism

H2(D`, N`; Z) → H2(D`, Z)
∼=i∗→ H2(S2; Z)

is precisely i∗τ . Thus, the image of H2(D`, N`; Z) → H2(D`, Z) ∼= Z is the
subgroup `Z. The surjective morphism H2(D`, N`) is none other than the
natural projection

H2(D`, Z) ∼= Z → Z → Z/`Z ∼= H2(N`, Z).
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If we now identify H2(N`, Z) with the Abelian group Pic∞(N`) of isomor-
phism classes of smooth complex line bundles then the above observations
show that the restriction map

(4.1.33) Pic∞(D`) → Pic∞(N`)

is a surjection, i.e. any complex line bundle over N` extends to a line bundle
over D`. Such extensions are not unique. The kernel of the morphism
(4.1.33) is freely generated by the V TD`

∼= π∗L` = the pullback of L` → S2

to the disk bundle D` ↪→ L`.
Consider the operator ASD on D` determined by the metric g̃r. Because

of the cylindrical nature of g̃r near ∂D` we can attach a cylinder [0,∞) ×
N` and obtain a cylindrical manifold N̂`. We will continue to denote the
cylindrical metric on N̂` by g̃r. Assume ` 6= 0. Then

IAPS(ASD) = −1
2
(χ(D`) + τ(D`) + h(N`))

= −1
2
(2 + τ(D`) + 1) = −1

2
(2 + 1 + sign (`)).

Moreover,
kerL2(ASD) ∼= H1(D`, N`) = 0.

Observe that
∂∞ kerex(ASD) = ∗L2

top ⊕ L0
top

∼= 0 ⊕ R.

Thus
dim kerex(ASD) = dim kerL2(ASD) + 1 = 1

and
dim kerex(ASD∗) =

1
2
(1 + sign(`)) + 1.

This confirms the prediction

IAPS(ASD) = −1
2
(3 + τ(D`)).

We can now use the Atiyah-Patodi-Singer index theorem to conclude that

−1
2
(3 + τ(D`)) = −1

2

∫
D`

(
e(∇̂g̃r) +

1
3
p1(∇̂g̃r)

)
+

1
2

(
ηsign(gr) − h

)
.

Since h = b0(N) + b1(N) = 1 we deduce

ηsign(gr) = −2 − τ(D`) +
∫

D`

(
e(∇̂g̃r) +

1
3
p1(∇̂g̃r)

)
.

On the other hand, the Gauss-Bonnet theorem for manifolds with boundary
(see [48, §2.7.6 – 7]) implies∫

D`

e(∇̂g̃r) = χ(D`) = 2
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so that

(4.1.34) ηsign(gr) =
1
3

∫
D`

p1(∇̂g̃r) − τ(D`).

The last equality is valid for any 4-manifold with boundary, not just the
disk bundles D`. It justifies the name signature defect used to refer to
ηsign(g) since the right-hand side of (4.1.34) would be zero if D` were a
closed manifold. One of the main motivations for the research conducted in
the beautiful papers [6, 7, 8] was the need to better understand the nature
of this defect.

Let us now turn our attention to Dirac operators. Again we restrict
to the case ` 6= 0. Since the tangent bundle of any compact, oriented 3-
manifold is trivializable we deduce w2(N`) = 0. Thus N` is spinnable. The
universal coefficients theorem shows that

H2(N`, Z2) ∼= Z` ⊗ Z2
∼=

{
Z2 ` ≡ 0 mod 2
0 ` ≡ 1 mod 2

.

Hence, if ` is even there are precisely two nonisomorphic spin structures
on N` while when ` is odd there is exactly one isomorphism class of spin
structures.

If σ ∈ Spinc(N`) then c1(det σ) ≡ 0 mod 2. This implies that the range
of correspondence

Spinc(N`) 3 σ 7→ c1(det σ) ∈ H2(N`, Z)

is the subgroup G` of Z` generated by 2 mod `. We will identify G` with a
subset of {0, 1, · · · , |`| − 1}.

Fix σ ∈ Spinc(N`) and denote by k the element in G` determined by
c1(det(σ)). Since c1(det σ) is a torsion class the line bundle det(σ) supports
at least one flat connection Aσ. This connection is determined by its holo-
nomy along the fibers (which generate π1(N`)) and is given by a complex
number

ρσ := exp
(2πki

`

)
.

As in [106, p. 369], we form the connection

Bσ := Aσ +
ik
`

ϕ

so that

FBσ =
ik
`

dϕ = −2kiπ∗ω0.

The holonomy of Bσ along any fiber is zero. (Can you see why ?) Since the
curvature is the pullback of a form on the base of the fibration N` → S2 we
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deduce that Bσ is the pullback of a connection B′
σ on a line bundle L′

σ → S2

such that π∗(L′
σ) ∼= Lσ. The Chern class of L′

σ is

c1(L′
σ)− =

i
2π

· (−2kiω0) =
k

π
ω0.

Since ∫
S2

ω0 = π

this class corresponds to the element k ∈ H2(S2, Z) ∼= Z. Since the pullback
π∗ : H2(S2, Z) → H2(N`, Z) is given by the natural projection Z → Z/`Z
we deduce that k ∈ G` mod ` and c1(Lσ) = k.

On N` there is a canonical spinc structure σ0 induced from the natural
spinc structure σ̂0 on D` determined by the complex structure. Observe
that as a complex vector bundle we have

TD`
∼= π∗L` ⊕ π∗TS2 ∼= π∗(L` ⊕ K−1)

where K denotes the canonical line bundle on S2 ∼= P1. Observe that
deg K = −χ(S2) = −2. Then

det(σ̂0) ∼= K−1
D`

∼= π∗(L` ⊗ K−1).

This induces a spinc structure σ0 on N` satisfying

det(σ0) = π∗(L` ⊗ K−1) |N`
∼= π∗K−1 |N`

since L` |N`
∼= C. Thus c1(σ0) ≡ 2 mod `. For every n ∈ Z denote by Ln

the degree n line bundle over S2 and set

σ̂n := σ̂0 ⊗ Ln, σn := σ̂n |N`
.

Observe that

c1(det(σ̂0)) = π∗L`+2, c1(det(σ̂n)) = π∗L`+2+2n.

Then σn = σm ⇐⇒ n ≡ m mod ` so that

Spinc(N`) = {σn; n ∈ Z mod `}.
Observe that c1(det σn) ≡ (2n + ` + 2) mod `. Following [109], for each
n ∈ Z we define the canonical representative Lσn of σn to be the complex
line bundle L → S2 uniquely determined by the requirements

deg L ≡ n mod `, −1 + deg L

`
∈ [0, 1).

We set

h(σn) := −1 + deg Lσn

`
.

The rational number h(σn) has a simple geometric interpretation namely,
exp(−4πh(σn)i) is the holonomy along the fibers of N` → S2 of the flat
connections over det(σn).
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The previous considerations show that a flat connection over det(σn)
extends to a flat connection over det(σ̂n) if and only if 2n + 2 + ` = 0.

Fix a spinc structure σn on N` and denote by An a smooth flat con-
nection on det(σn). (There is only one gauge equivalence class of such flat
connections.) Suppose that there exists an asymptotic strongly cylindrical
connection Ân on det(σ̂n) → N̂`, with positive decay rate µ and with anti-
selfdual L2(g̃r)-curvature FÂn

(F+

Ân
= 0). (We will see later that if ` < 0

then there exist such connections Ân.) The connection Ân determines an
asymptotically cylindrical Dirac operator 6DÂn

with

~∂∞ 6DÂn
= DAn .

The Weitzenböck formula implies that kerDAn = 0 since FAn = 0 and the
scalar curvature of gr is positive. This implies

kerex 6D∗
Ân

= kerL2 6D∗
Ân

so that
IAPS(6DÂn

) = dimC kerL2 6DÂn
− dimC kerL2 6D∗

Ân
.

We claim that kerL2 6DÂn
is trivial.

For T À 0 set
N̂`(T ) := N̂` \ (T,∞) × N`.

Denote by t → ∞ the longitudinal coordinate along the long neck of N̂`,
J := ĉ(dt) and for each T > 1 set

N̂`(T ) := N̂` \ (T,∞) × N`.

Let ψ̂ ∈ kerL2 6D1. Observe that since kerDAn = 0 we have

(4.1.35) ‖ψ̂ |{t}×N`
‖C1 = o(1), as t → ∞.

Using the Weitzenböck formula (in which F+

Ân
= 0) and the integration by

parts formula in Exercise 1.2.2 of Sec. 1.2 we deduce

0 =
∫

N̂`(T )
〈6D∗

Ân
6DÂn

ψ̂, ψ̂〉dv(g̃r)

=
∫

N̂`(T )

(〈(
∇̂Ân

)∗∇̂Ânψ̂, ψ̂
〉

+
s(g̃r)

4
|ψ̂|2

)
dv(g̃r)

=
∫

N̂`(T )

(
|∇Ânψ̂|2 +

s(g̃r)
4

|ψ̂|2
)
dv(g̃r) −

∫
∂N̂`(T )

〈∇̂Ân
∂t

ψ̂, ψ̂〉dv(gr).

The estimate (4.1.35) now implies∫
N̂`(T )

(
|∇Ânψ̂|2 +

s(g̃r)
4

|ψ̂|2
)
dv(g̃r) = o(1) as T → ∞.
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Now let T → ∞. Since the scalar curvature of g̃r is positive we conclude
that ψ ≡ 0. Thus

IAPS(6DÂn
) = −dim kerex 6D∗

Ân
= −dim kerL2 6D∗

Ân
.

Denote by ηdir(σn, gr) the eta invariant of the Dirac operator DAn . Formula
(4.1.3) of §4.1.2 implies

−dim kerex 6D∗
Ân

= IAPS(6D1)

= − 1
24

∫
N̂`

1
3
p1(∇̂g̃r) +

1
8

∫
N̂`

c1(Ân) ∧ c1(Ân) − 1
2
ηdir(σ, gr).

Thus

4ηdir(σ, gr) = −1
3

∫
D`

p1(∇̂g̃r) + 8 dim kerex 6D∗
Ân

−
∫

N̂`

c1(Ân) ∧ c1(Ân).

Using the equation (4.1.34) we obtain

F(σm, gr) := 4ηdir(σ, gr) + ηsign(gr)

= 8 dim kerex 6D∗
Ân

− τ(D`) +
∫

N̂`

c1(Ân) ∧ c1(Ân)
(4.1.36)

In [107, 109] we showed that

(4.1.37) F(σn, gr) = 4`h(σn)(h(σn) − 1) + ` − sign (`).

We deduce

8 dim kerex 6D∗
Ân

= 4`h(σn)(h(σn) − 1) + ` −
∫

N̂`

c1(Ân) ∧ c1(Ân).

Suppose for example ` < −1 and −1 ≤ n < |`| − 1. Then

h(σn) = −n + 1
`

so that

4`h(σn)(h(σn) − 1) =
4(n + 1)(n + 1 + `)

`
.

To compute the integral term we use the intersection form on H2(N, Z)
induced by the Poincaré duality

H2(D`, ∂D`; Z) × H2(D`, Z) → Z.

Then ∫
N̂`

c1(Ân) ∧ c1(Ân) =
(2n + 2 + `)2

`

since det(σ̂n) = π∗L2n+2+`. We conclude that

dim kerex 6D∗
Ân

= 0.
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4.2. Finite energy monopoles

This very technical section offers a glimpse into the analytical theory of
the Seiberg-Witten equations on 4-manifolds with cylindrical ends. To keep
the technical details within reasonable limits we will consider only some
special, simpler situations required by the topological applications we have
in mind. This choice has an academic advantage as well: it offers the reader
a quite extensive picture of what to expect relying on a relatively moderate
analytical machinery. For an exhaustive presentation of this type of problem
in the Yang-Mills context we refer to [96, 133].

We tried to keep the presentation as self-contained as possible but, to
keep the length of this section within reasonable limits, we had to appeal
to certain basic facts about elliptic partial differential equations we did not
include in this book. These can be found in [47, 105].

4.2.1. Regularity. Suppose N̂ is an oriented cylindrical 4-manifold with
N := ∂∞N̂ . Fix a cylindrical spinc structure τ̂ = (σ̂, σ, ϕ) on N̂ (σ := ∂∞σ̂)
(see §4.1.1 for precise definitions). Denote by Ŝσ̂ = Ŝ+

σ̂ ⊕ Ŝ−
σ̂ the bundle of

complex spinors associated to σ̂, and by Sσ the bundle of complex spinors
associated to σ. Ŝσ can be equipped with a cylindrical structure such that
Sσ = ∂∞Ŝ+

σ̂ .

We denote by Ĉσ̂ the configuration space consisting of pairs Ĉ := (ψ̂, Â)
where ψ̂ ∈ L2,2

loc(Ŝ
+
σ̂ ) and Â is an L2,2

loc Hermitian connection of det(σ̂). Define
Ĝσ̂ as the space of L3,2

loc-maps γ̂ : N̂ → S1. For every point p0 ∈ N̂ we
define the subgroup Ĝσ̂(p0) ⊂ Ĝσ consisting of maps γ̂ : N̂ → S1 such that
γ̂(p0) = 1. (Such gauge transformations are said to be based at p0.)

A finite energy monopole is a configuration Ĉ = (ψ̂, Â) ∈ Ĉ satisfying
the Seiberg-Witten equations{

ˆ6DÂψ̂ = 0
F+

Â
= ĉ−1

(
1
2q(ψ)

)
and the growth condition

E(Ĉ) :=
∫

N̂

(
|∇̂Âψ̂|2 +

1
8
|q(ψ̂)|2 + |FÂ|

2 +
ŝ

4
|ψ̂|2

)
dv(ĝ) < ∞.

We will denote by Ẑσ̂ the set of finite energy monopoles on N̂ .
As in the closed case, we will need to use perturbation parameters. In

this case they will take the form of closed, compactly supported 2-forms
η ∈ Ω2(N̂) of appropriate regularity.

Proposition 4.2.1. Let Ĉ = (ψ̂, Â) ∈ Ẑσ̂. Then there exists γ̂ ∈ Ĝσ̂ such
that γ̂ · Ĉ ∈ C∞.
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Proof The proof relies on the following technical result.

Lemma 4.2.2. Suppose M is a smooth, compact, oriented Riemannian 4-
manifold with smooth boundary ∂M = N , σ ∈ Spinc(M) and C = (ψ, A) is
a L2,2-monopole corresponding to the spinc-structure σ. Then there exists a
L3,2

loc-map f : M → R such that eif · C is smooth in the interior of M .

We will present the proof of this lemma after we explain why it implies
Proposition 4.2.1.

Let Ĉ = (ψ̂, Â) be a finite energy monopole on N̂ . Set Cn := (n, n+2)×
N , n ∈ Z+. Using Lemma 4.2.2 we can find L3,2

loc-maps

f : N̂1 = N̂ \ (1,∞) × N → R, fn : Cn → R

such that

eif · Ĉ |N̂1
∈ C∞(N̂1), eifnĈ |Cn∈ C∞(Cn), ∀n ∈ Z+.

Set u0 = f0 − f , un := fn − fn−1, ∀n ≥ 1. Observe that un is a smooth
function on (n, n + 1) × N , ∀n ∈ Z+ because on this cylinder we have

−2idun = eifn · Â − eifn−1 · Â ∈ C∞(
(n, n + 1) × N

)
.

Fix 0 < ε ¿ 1
8 . For each n ∈ Z+ define ϕn ∈ C∞

comp

(
N̂

)
such that ϕn ≡ un

on (n+ 1
2 −ε, n+ 1

2 +ε)×N and ϕn ≡ 0 outside (n+ 1
2 −2ε, n+ 1

2 +2ε)×N .
Finally, set

hn : (n − 1/2 − ε, n + 1/2 + ε) × N → R, hn = fn−1 + ϕn, n ≥ 1,

and
h0 ≡ f + ϕ0 on N̂ \ [1/2,∞) × N.

Observe that hn−1 ≡ hn on (n + 1
2 − ε, n + 1

2 + ε)×N so that the collection
(hn) defines an L3,2

loc-map
h : N̂ → R.

On the other hand, on the cylinder (n − 1/2 − ε, n + 1/2 + ε) × N we have

eih · Ĉ = eiϕn ·
(
eifn−1Ĉ

)
∈ eiϕn · C∞ ⊂ C∞. ¥

Proof of Lemma 4.2.2 Fix a Hermitian connection A0 on det(σ) which
is smooth up to the boundary of M and set ia := A − A0. The Dirichlet
problem {

∆Mu = 1
2d∗a in M

u = 0 on ∂M

has a unique solution u ∈ L3,2(M) (see [47, Chap. 8]). Set γ := eiu and
(φ, B) := γ · (ψ, A). If ib := B − A0 then

ib = ia − 2idu
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so that d∗b = i(d∗a − 2∆Mu) = 0. The Seiberg-Witten equations for (φ, B)
can be rewritten as an elliptic system

(4.2.1a) 6DA0
φ = −1

2
c(ib)φ,

(4.2.1b) (d+ ⊕ d∗)b =
(1

2
q(φ) − F+

A0

)
⊕ 0.

An elliptic bootstrap, identical to the one in the proof of Proposition 2.1.11
of §2.1.2 concludes the proof of Lemma 4.2.2. ¥

Proposition 4.2.1 shows that there is no loss of generality by working only
with smooth finite energy monopoles. Observe also that nowhere in the proof
have we relied on the growth condition E(Ĉ) < ∞ to establish regularity
modulo Ĝ. The growth condition affects only the asymptotic behavior. In
particular, the considerations in 2.4.1 show that

Ẑσ̂ 6= ∅ =⇒ there exist three-dimensional σ-monopoles on N

In the next subsection we will have a closer look at three-dimensional monopoles.

4.2.2. Three-dimensional monopoles. Consider a closed, compact, ori-
ented Riemannian manifold (N, g) and a spinc structure σ ∈ Spinc(N).
We want to define a functional set-up which closely follows the relationship
between the four- and three-dimensional theory.

Define a configuration space Cσ consisting of pairs (ψ, A) where ψ ∈
L2,2(Sσ) and A is an L2,2-connection on det(σ). (Often we will need to
consider configurations of different regularity, which will be indicated by
Sobolev superscripts attached to Cσ. E.g., Cr

σ refers to configurations in
Lr,2. )

Denote by Gσ the group of L3,2-maps γ : N → S1. Observe that since
dimN = 3 the Sobolev-Morrey embedding theorem implies L3,2 embeds in
a Hölder space and, as in §2.1.2, we can conclude that Gσ is a Hilbert-Lie
group with commutative Lie algebra T1Gσ := L3,2(N, iR). For every ∗ ∈ N
we set

Gσ(∗) := {γ ∈ Gσ; γ(∗) = 1}.
Gσ(∗) will be called the group of gauge transformations based at ∗. Observe
that Gσ(∗) acts freely on Cσ. Now set Bσ : Cσ/Gσ and Bσ(∗) := Cσ(∗)/Gσ(∗).
As in §2.2.2 we can equip Bσ and Bσ(∗) with natural Sobolev metrics.

For every C ∈ Cσ we denote by

LC : T1Gσ → TCCσ
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the infinitesimal action at C

LC(if) :=
d

dt
|t=0 eitf · C = (ifψ, A − 2idf).

Its formal (L2) adjoint is

TCCσ 3 Ċ 7→ L∗
CĊ = L∗

C(ψ̇, iȧ) = −2id∗ȧ − iIm 〈ψ, ψ̇〉.

As in the four-dimensional case, we can identify kerLC with the Lie algebra
of the stabilizer Stab (C) with respect to the Gσ action.

Since Cσ is an affine space we can identify the tangent space TCCσ with
Cσ via the map

Ċ 7→ C + Ċ.

Define the slice SC ⊂ TCCσ
∼= Cσ at C by

SC := ker L∗
C ∩ L2,2.

More generally, we set Sr
C := ker L∗

C ∩ Lr,2. The slice at C is equipped with
a natural Stab (C)-action and, exactly as in the four-dimensional case (see
§2.2.2), we have the following result.

Proposition 4.2.3. There exists a small Stab (C)-invariant neighborhood
UC of C ∈ SC such that every orbit of Gσ which intersects UC does so trasver-
sally, along a single Stab (C)-orbit. In particular, every Gσ(∗)-orbit inter-
sects UC transversely in at most one point.

From the above proposition we conclude that Bσ(∗) is a Hilbert manifold
while Bσ is smooth away from the reducible orbits.

A three-dimensional monopole is a configuration C = (ψ, A) ∈ Cσ satis-
fying the Seiberg-Witten equations{

6DAψ = 0
1
2q(ψ) = c(∗FA)

.

Denote by Zσ ⊂ Cσ the set of three-dimensional monopoles. Exactly as
in the four-dimensional case we conclude that each three-monopole is Gσ-
equivalent to a smooth one and Mσ := Zσ/Gσ is a compact subset of Bσ.

Remark 4.2.4. Arguing exactly as in the proof of Lemma 2.2.3 one can
prove that if (ψ, A) is a 3-monopole then

sup
x∈N

|ψ(x)|2 ≤ 2 sup
x∈N

|s(x)|

where s is the scalar curvature of N . We have already used this fact in the
proof of the Thom conjecture in §2.4.2.
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To describe the local structure of Mσ we need to linearize the Seiberg-
Witten equations along a slice. The monopoles are zeros of the smooth
map

SW : Cσ → C1
σ
∼= TCCσ, (ψ, A) 7→ (6DAψ, q(ψ) − c(∗FA)

As explained in §2.4.1, the map SW is the formal (i.e. L2) gradient of the
energy functional

Eσ : Cσ → R,

Eσ(ψ, A) =
1
2

∫
N

(A − A0) ∧ (FA + FA0) +
1
2

∫
N
〈DAψ, ψ〉dvg

where A0 is a fixed, smooth reference Hermitian connection on det(σ). Since
d

dt
|t=0 Eσ(etif · C) = 0

we deduce

DCEσ(LCif) = 0 ⇐⇒
〈

SW (C) , LC(if)
〉

L2
= 0, ∀if ∈ T1Gσ

so that
SW (C) ∈ S1

C, ∀C ∈ Cσ.

Observe also that for every γ ∈ Gσ we have

SW (γ · (ψ, A)) = (γDAψ, q(ψ) − c(∗FA))

so that
‖SW (γ · C)‖L2 = ‖SW (C)‖L2 .

Hence C → ‖SW (C)‖L2 is a well defined continuous function on Bσ which
we denote by f. We can regard SW (C) as an S1-invariant tangent vector
field on Bσ(∗) or as a genuine tangent vector field on Bσ,irr. For Ċ ∈ TCCσ

and if ∈ T1Gσ define

TC

[
Ċ
if

]
=

 SW −1
2LC

−1
2L∗

C 0

 Ċ

if


:=

 d
dt |t=0 SW (C + tĊ) − 1

2LC(if)

−1
2L∗

CĊ

 ∈ TCCσ
L2

⊕ L2(N, iR).

More explicitly, if C := (ψ, A) and Ċ = (ψ̇, iȧ) then

(4.2.2) TC

 ψ̇
iȧ
if

 =

 DA 0 0
0 − ∗ d d
0 d∗ 0

 ·

 ψ̇
iȧ
if

 +

 1
2c(iȧ)ψ − i

2fψ
1
2 q̇(ψ, ψ̇)

i
2Im 〈ψ, ψ̇〉

 .

Denote by T0
C the first operator on the right-hand side of (4.2.2) and set

PC := TC − T0
C. Notice that PC is a zeroth order operator while TC is a first

order, formally selfadjoint elliptic operator.
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Exercise 4.2.1. Prove directly that TC is formally selfadjoint.

Suppose C0 is a 3-monopole. To understand the local structure of Mσ

near C0 it suffices to understand the structure of the critical set of the
restriction of Eσ to a small neighborhood U of C0 ∈ SC0 . For every C ∈ Cσ

we denote by ΠC the L2-orthogonal projection

TCC0
σ → S0

C0
.

Since TCC0
σ is independent of C, TCC0

σ
∼= L2(S ⊕ iT ∗N), we can write Π

instead of ΠC.

Exercise 4.2.2. Show that ΠTCCr
σ ⊂ Sr

C0
, ∀r ≥ 0.

Lemma 4.2.5. There exist a Stab (C0)-invariant neighborhood U = UC0 of
C0 ∈ SC0 and a constant λ > 0 such that

1
λ
‖SW (C)‖L2 ≤ ‖ΠSW (C)‖L2 ≤ λ‖SW (C)‖L2 , ∀C ∈ U.

It is worth emphasizing the main point of the above result. Roughly
speaking, it says that, for C sufficiently close to C0, the component of SW (C)
orthogonal to SC0 is small compared to the component along SC0 . In par-
ticular, if C ∈ SC0 is close to C0 then SW (C) vanishes if and only if its
component along SC0 vanishes.

Proof Observe that we always have

‖ΠSW (C)‖L2 ≤ ‖SW (C)‖L2

so it suffices to find a neighborhood U of C0 ∈ SC0 and λ > 1 such that

‖SW (C)‖L2 ≤ λ‖ΠSW (C)‖L2 , ∀C ∈ U.

We will prove a slightly more general result. More precisely, we will show
that there exists a neighborhood U of C0 ∈ SC0 such that for any C ∈ U and
any Ψ ∈ SC we have the equality

‖Ψ‖L2 ≤ λ‖ΠΨ‖L2 .

Lemma 4.2.5 follows by setting Ψ := SW (C) in the above inequality.
We argue by contradiction. Suppose there exist sequences Cn ∈ SC0 and

Ψn ∈ SCnsuch that

Cn
L2,2

−→ C0, ‖Ψn‖L2 = 1, ‖ΠΨm‖L2 <
1
n

.

Set Υn := ΠΨn and Ξn := (1 − Π)Ψn. Then

(4.2.3) 1 ≥ ‖Ξn‖ >
(
1 − 1

n

)
.
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Now observe that Ξ̂n ⊥ SC0 so there exists a unique ifn ∈ (ker LC0)
⊥ ∼=

(T1Stab(C0))⊥ ⊂ T1Gσ such that

LC0(ifn) = Ξ̂n,

LCn(if) = LC0 + Rn

where Rn is a zeroth order p.d.o. (bundle morphism) such that ‖Rn‖2,2 =
o(1) as n → ∞. The condition

L∗
Cn

ψn = 0

can be rewritten as

0 = (L∗
C0

+ R∗
n)(Υn + Ξn) = L∗

C0
Ξn + R∗

nΞn = L∗
C0

LC0(ifn) + R∗
nΞn.

Thus ifn ⊥ ker L∗
C0

LC0 and

‖L∗
C0

LC0(ifn)‖Lp = ‖R∗
nΞn‖Lp ,∀p ∈ (1,∞).

Using the Sobolev inequalities we deduce that there exists C > 0 such that

‖Rn‖L∞ ≤ C‖Rn‖2,2.

Hence there exists C > 0 such that

‖R∗
nΞn‖L2 ≤ Cq‖Rn‖2,2‖Ξn‖L2 , ∀n.

Using the elliptic estimate of Theorem 1.2.18 (v) for the generalized Lapla-
cian L∗

C0
LC0 we deduce that there exists a constant C > 1 such that

‖fn‖2,2 ≤ C‖RnΞn‖L2 = o(1) as n → ∞.

This implies fn → 0 in L2,2 and since LC0(ifn) = Ξn we deduce Ξn → 0 in
L2. This contradicts the inequality (4.2.3). Lemma 4.2.5 is proved. ¥

Fix a neighborhood U of C0 ∈ SC0 as in the above lemma. The critical
points of Eσ |U are determined from the equation

ΠSW (C) = 0, C ∈ U.

Equivalently, this means there exists a unique if ∈ T1Gσ such that

if ⊥ kerLC0 , SW (C) + LC0(if) = 0.

Thus, the problem of understanding the structure of Mσ near C0 boils down
to understanding the local structure of the equation

(4.2.4) SW (C0 + Ċ) = 0

where L∗
C0

Ċ = 0 and ‖Ċ‖2,2 is very small.
Set

H0
C0

:= ker LC0 , H1
C0

:=
{

Ċ ∈ CC; SW (Ċ) = 0, L∗
C0

Ċ = 0
}
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and denote by Π1 : SC0 → H1
C0

the L2-orthogonal projection. Observe that

ker TC0 = H1
C0

⊕ H0
C0

.

For every r > 0 we set

BC(r) := {Ċ ∈ H1
C; ‖Ċ‖L2 < r}.

The equation (4.2.4) is equivalent to the pair of equations

(†ε) (1 − Π1)
(
SW (C0 + Ċ)

)
= 0, Ċ ∈ SC0 , ‖Ċ‖2,2 ≤ ε,

(††ε) Π1

(
SW (C0 + Ċ)

)
= 0, Ċ ∈ SC0 , ‖Ċ‖2,2 ≤ ε.

The local structure of (†ε) can be easily analyzed using the implicit
function theorem. Our next result states that the solution set of (†ε) can be
represented as the graph of a Stab(C0)-equivariant map

Φ1 : H1
C0

→ kerΠ1

tangent to H1
C0

at 0.

Proposition 4.2.6. Suppose C0 is a smooth 3-monopole. There exist r0 =
r0(C0) > 0, ε = ε(C0), ν = ν(C0) > 0 and a smooth Stab(C)-equivariant
map

Φ1 : BC0(r0) → ker(1 − Π1)SC0

satisfying the following requirements.

(i) Φ1(0) = 0.

(ii) Any solution Ċ′ of (†ε) decomposes as

Ċ′ = Ċ ⊕ Φ1(Ċ)

where Ċ = Π1Ċ
′ ∈ BC0(r0). In particular,

(1 − Π1)
(

SW
(
C + Ċ + Φ1(Ċ) ) + LCΦ0(Ċ)

)
= 0,

∀Ċ ∈ BC(r).

(iii) ‖Φ1(Ċ)‖2,2 ≤ ν‖Ċ‖2, ‖DĊΦ1(v)‖2,2 ≤ C‖v‖ · ‖Ċ‖, ∀ v, Ċ ∈ H1
C0

. (H1
C0

is a finite-dimensional space and thus all norms on it are equivalent.)

The proof is a consequence of the implicit function theorem applied to
the nonlinear equation

F (Ċ) = 0

where F is the Stab(C0)-equivariant map

F : SC0 → (1 − Π1)S1
C0

, Ċ 7→ (1 − Π1)ΠSW (C0 + Ċ).
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The linearization of this map at Ċ = 0 is (1 − Π1)SWC0
, which is onto and

has kernel H1
C0

.
Set

QC0 : BC0(r0) → H1
C0

, Ċ 7→ Π1SW (C0 + Ċ + Φ1(Ċ)).

QC0 is called the Kuranishi map at C0. It is a Stab(C0)-equivariant map
and the above discussion shows that Q−1

C0
/Stab(C0) is homeomorphic to a

neighborhood of C0 in Mσ.

Definition 4.2.7. A 3-monopole C0 is called regular if QC0 ≡ 0.

Example 4.2.8. Suppose C0 = (Ψ0, A0) is a smooth reducible 3-monopole,
i.e. ψ0 ≡ 0. Then

SC0 =
{

φ̇ ⊕ iḃ ∈ L2,2(Sσ ⊕ iT ∗N); d∗ḃ = 0
}

and
TC0 = T0

C0
= DA0 ⊕ SIGN.

Thus
H1

C0
∼= ker 6DA0

⊕ iH1(N, g), H0
C0

∼= iH0(N, g) ∼= iR.

Fix (ψ̇, iȧ) ∈ BC0(r0). Then (φ̇, iḃ) := Φ1(ψ̇, iȧ) is the solution of the equa-
tion

(φ̇, iḃ) ∈ (1 − Π1)SC0 ,

(1 − Π1)
(
DA0+iȧ+iḃ(ψ̇ + φ̇), ∗FA0+iȧ+iḃ −

1
2q(ψ̇ + φ̇)

)
= 0

or equivalently,

(1 − Π′
1)

(
DA0+iȧ+iḃφ̇ +

1
2
c(iȧ + iḃ)ψ̇)

)
= 0,

(1 − Π′′
1)

(
i ∗ dḃ − 1

2
q(ψ̇ + φ̇)

)
= 0

(4.2.5)

where Π′
1 denotes the orthogonal projection onto kerDA0 and Π′′

1 denotes
the orthogonal projection onto H1(N, g).

Suppose now that kerDA0 = 0. Then Π′
1 ≡ 0, ψ̇ ≡ 0 and thus (4.2.5) is

equivalent to

(4.2.6) DA0+iȧ+iḃφ̇ = 0, (1 − Π′′
1)

(
i ∗ dḃ − q(φ̇)

)
= 0.

The map Φ1 of Proposition 4.2.6 is described by a pair of maps on

ḃ = ḃ(ȧ), φ̇ = φ̇(ȧ), ȧ ∈ H1(N, g), ‖ȧ‖L2 ≤ r0, ‖b‖2,2 ≤ ν‖a‖2
2.

By making r0 even smaller we can assume DA0+iȧ+iḃ(ȧ) is invertible, being

very close to the invertible operator DA0 . This shows that φ̇ ≡ 0 and the
second equation of (4.2.6) implies ḃ ≡ 0. Thus Φ1 ≡ 0.
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To compute the Kuranishi map at C0 we need to compute

Π′′
1(∗FA0+iȧ), ȧ ∈ H1(N, g).

Now observe that since C0 is reducible we have FA0 = 0. Thus ∗FA0+iȧ =
i ∗ dȧ, which clearly has trivial projection on the space of harmonic 1-forms.
We have thus shown that if A0 is a flat connection on det(σ) such that
kerDA0 = 0 then (0, A0) is a regular, reducible monopole.

The stabilizer of C0 is S1 which acts trivially on H1
C0

= iH1(N, g) so
that there exists an open neighborhood of C0 in Mσ homeomorphic to an
open ball in Rb1(N) and consisting only of reducible monopoles.

Definition 4.2.9. A pair

(σ, g) = (spinc structure on N , Riemannian metric on N)

is called good if all irreducible (σ, g)-monopoles are regular and for any flat
connection A on det(σ) the operator DA is invertible.

The discussion in the above example has the following consequence.

Proposition 4.2.10. If g is a positive scalar curvature metric on N then
(σ, g) is good for every σ ∈ Spinc(N). Moreover, Mσ is either empty or it
is a compact smooth manifold diffeomorphic to a b1(N)-dimensional torus
consisting only of regular reducible monopoles.

Remark 4.2.11. Suppose (σ, g) is a good pair and C0 = (ψ0, A0) is a
smooth monopole. If C0 is reducible then H1

C0
∼= H1(N, R) and the action

of Stab (C0) on H1
C0

is trivial. This proves that TCMσ
∼= H1

C, ∀C ∈ Mσ.

For each smooth monopole C and 0 < κ ¿ 1 we define the Kuranishi
neighborhood of C

UC(κ) := {Ċ ∈ SC; ‖Ċ‖2,2 < min(κ, ε(C))}

where ε(C) is determined as in Proposition 4.2.6. After we factor out the
action of Stab(C) it determines an open neighborhood of C in Bσ.

A word about notation When no serious confusion is possible, we will
continue to denote by UC0(κ) the neighborhood of [C0] in B determined by
UC0 ⊂ SC0. For example, the statement C ∈ UC0(κ) means C−C0 ∈ SC0 and
‖C − C0‖2,2 < κ while the statement [C] ∈ UC0 provides information only
about the gauge equivalence class of C and not C itself.

The family {
UC(κ); [C] ∈ Mσ

}
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is then an open cover of the compact subset Mσ ⊂ Bσ. We can extract a
finite subcover

UC1(κ), · · · , UCm(κ)

and we set
κ0 := min{κ(C1), · · · , κ(Cm)},

Uκ :=
m⋃

i=1

UCi(κ), ∀κ < κ0.

Uκ is an open neighborhood of Mσ in Bσ called a Kuranishi neighborhood
of Mσ. Observe that for every C ∈ Uκ

dist2,2([C], Mσ) ≤ κ.

4.2.3. Asymptotic behavior. Part I. Consider a semi-infinite cylinder

N̂ := (R+ × N, dt2 + g)

and σ a spinc structure on N . We will denote by σ̂ the induced cylindrical
spinc structure on N̂ . For every smooth configuration

Ĉ = (ψ̂, Â) ∈ Γ(Ŝ+
σ ) × Aσ

we define the scalar quantity called the energy density as

ρĈ :=
∣∣∇̂Âψ̂

∣∣2 +
1
8

∣∣q(ψ̂)
∣∣2 +

∣∣FÂ

∣∣2 +
ŝ

4

∣∣ψ̂∣∣2.
Thus,

E(Ĉ) =
∫

N̂
ρĈdvĝ.

For every interval I ⊂ R+ and every ε > 0 we set

Iε := {t ∈ R+; dist (t, I) ≤ ε}

EĈ(I) :=
∫

I×N
ρĈdvĝ.

Fix a Hermitian connection A0 on det(σ) → N and denote by Â0 its
pullback to det(σ̂) → N̂ . Any smooth Hermitian connection Â on det(σ̂)
can be written as

Â = Â0 + iϕ(t)dt + ia(t)

where ϕ(t) (resp. a(t)) is a smooth path of 0-forms (resp. 1-forms) on N .
Set

A(t) := A0 + ia(t) = Â |{t}×N .

If γ̂ := eif(t) is a gauge transformation on N̂ then

γ̂ · Â = Â0 + i(ϕ(t) − 2
df

dt
)dt + i(a(t) − 2df(t))
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where we recall that d denotes the three-dimensional exterior derivative
along N . If we regard γ̂ as a smooth path of gauge transformations γt

on N then the above computation shows

(γ̂ · Â)(t) = γt · A(t).

In other words, the assignment Â 7→ A(t) defines a unique class [A(t)] ∈
Aσ/Gσ. This also implies that for any smooth configuration Ĉ the assignment

t : Ĉ 7→ C(t) := Ĉ |{t}×N

defines a unique gauge equivalence class [C(t)] ∈ Bσ = Cσ/Gσ. Clearly, the
path t 7→ [C(t)] in Bσ is continuous. In particular, the quantity

νĈ(t) := f(C(t)) = ‖SW (C(t))‖L2

is well defined and independent of the gauge equivalence class of Ĉ.
Suppose now that Ĉ is a 4-monopole. Modulo a smooth gauge transfor-

mation we can assume Ĉ is temporal

Ĉ = (ψ(t), A(t)).

Then, for every interval I ⊂ R+ we have∫
I
‖SW (C(t))‖2

L2dt =
∫

t
dt

∫
N
|ψ̇(t)|2 + |Ȧ|2dvg =

1
2
EĈ(I)

so that

(4.2.7) ‖νC‖2
L2(I) =

1
2
EĈ(I).

A simple application of Hölder’s inequality shows that

(4.2.8) distL2([C(t0)], [C(t1)]) ≤
1
2
EĈ([t0, t1])1/2(t1 − t0)1/2.

Consider a finite interval I = [t0, t1] ∈ R+ and set

|s| := max
x∈N

|sg(x)|.

Observe that
1
16

‖ψ̂‖4
L4(I×N) =

1
16

∫
I
dt

∫
N
|ψ̂(t, x)|4dvg

=
1
8

∫
I
dt

∫
N
|q(ψ̂)|2 ≤ EĈ(I) − 1

4

∫
I
dt

∫
N

s|ψ̂|2dvg

≤ EĈ(I) +
|s|
4

∫
I
dt

∫
N
|ψ̂|2dvg

≤ EĈ(I) +
|s|
4

(t1 − t0)1/2volg(N)1/2‖ψ̂‖2
L4(I×N)

≤ EĈ(I) +
1
32

‖ψ̂‖4
L4(I×N) +

|s|2
2

(t1 − t0)volg(N).
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We have thus obtained the following L4-estimate.

(4.2.9) ‖ψ̂‖4
L4(I×N) ≤ 32EĈ(I) + 16|s|2(t1 − t0)volg(N).

We can build on this estimate to obtain a priori L∞-estimates for ψ̂.

Proposition 4.2.12. There exists a constant C > 0 which depends only on
the metric g such that

(4.2.10) ‖ψ̂‖4
L∞([T,T+1]×N) ≤ C

(
EĈ([T − 1, T + 2]) + 1

)
, ∀T > 1.

Proof We have

0 = 6D∗
Â
6DÂψ̂ =

(
∇̂Â

)∗∇̂Âψ̂ +
s

4
ψ̂ +

1
2
ĉ(F+

Â
)ψ̂.

We can now use Kato’s inequality and the equality ĉ(F+

Â
) = 1

2q(ψ̂) to con-
clude that

∆̂ĝ|ψ̂|2 ≤ 2
〈(

∇̂Â
)∗∇̂Âψ̂, ψ̂

〉
= −s

2
|ψ̂|2 − 1

4
|ψ̂|4.

Now set u := |ψ̂|2 so that we have

∆̂ĝu +
s

2
u ≤ −1

4
u2 ≤ 0.

We can rewrite this as a differential inequality of the type

∆̂ĝu + au ≤ 0

where a = s
2 ∈ L∞([T − 1, T + 2]×N). Using the DeGiorgi-Nash-Moser in-

equality (see [11] or [47, Thm. 8.17]) we deduce that there exists a constant
C > 0 which depends only on g such that

sup
[T,T+1]×N

u ≤ C
(
|s| + ‖u‖L2([T−1,T+2]×N)

)
(4.2.9)

≤ C ′
(
EĈ([t − 1, T + 2]) + 1

)1/2
. ¥

Corollary 4.2.13. If Ĉ = (ψ̂, Â) is a finite energy monopole on N̂ = R×N
then there exists a constant C > 0 which depends only on the metric g such
that

(4.2.11) ‖ψ̂‖4
L∞(N̂)

≤ C
(
EĈ(R+) + 1

)
.

The next result, whose proof is deferred to §4.2.5, shows that if the total
kinetic energy over a time period of length 4 is small enough, then the kinetic
energy at each moment must be small. In other words, “bursts” of energy
are prohibited.
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Lemma 4.2.14. Fix a smooth connection A0 on det(σ). There exist C0 > 0
and 0 < ω0 < 1 such that for every smooth temporal monopole Ĉ on
[−2, 2] × N satisfying

Ĉ = (C(t)) = (ψ(t), A0 + ia(t)), a(t) ∈ Ω1(N),

E2 :=
∫ 2

−2
dt

∫
N

(
|ψ̇(t)|2 + |ȧ(t)|2

)
dvN ≤ ω0

we have

‖SW (C(t))‖2
L2(N) =

∫
N

(
|ψ̇(t)|2 + |ȧ(t)|2

)
dvN ≤ C0E

2, ∀t ∈ [−1, 1].

Corollary 4.2.15. There exist C > 0 and ω0 ∈ (0, 1) such that if Ĉ is a
smooth monopole on [−2, 2] × N satisfying

E2 := EĈ([−2, 2]) ≤ ω0

then
‖SW (Ĉ |t×N )‖L2(N) ≤ C0E, ∀t ∈ [−1, 1].

Proof Since the above inequality is invariant under gauge transformations
on [−2, 2]×N we can assume Ĉ is in temporal gauge and then apply Lemma
4.2.14. ¥

For every ~ > 0 denote by f~ the level set of f

f~ = {C ∈ Cσ; f(C) < ~}.
Observe that f~ is an open neighborhood of Zσ in Bσ. The following result
refines Proposition 2.4.6 of 2.4.1. We leave its proof to the reader.

Proposition 4.2.16. There exists a function

~ : (0, 1) → (0,∞), κ 7→ ~(κ)

such that
(i) limκ→0 ~(κ) = 0.

(ii)If C ∈ f~(κ) then there exist a smooth monopole C0 ∈ Zσ and γ ∈ Gσ such
that

γ · C ∈ UC0(κ).

From the above proposition we deduce the following consequence.

Corollary 4.2.17. If Mσ = ∅ there exists ~0 > 0 such that f(C) > ~0, ∀C.
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The above result, coupled with Corollary 4.2.15, leads to the following
conclusion.

Corollary 4.2.18. If Ĉ is a finite energy monopole on R+×N then for any
sequence tn → ∞ we can find a subsequence tnk

such that [C(tnk
)] converges

to a point in Mσ.

If M
(1)
σ , · · · , M

(`)
σ are the connected components of Mσ we can find κ0 >

0 such that Uκ0 consists of disjoint open neighborhoods U
(j)
κ0 of M

(j)
σ , j =

1, · · · , `. Set
d0 = d0(κ0) := min

i6=j
distL2

(
U (i)

κ0
, U (j)

κ0

)
.

Exercise 4.2.3. Show that

lim inf
κ0↘0

d0(k0) > 0.

Hint: Show that if κ0 is sufficiently small there exists a constant C > 0
depending only on the geometry of N and C(E0) such that

distL2([C], M(i)
σ ) ≤ Cκ0, ∀i, ∀[C] ∈ U (i)

κ0
.

Corollary 4.2.15 shows that if Ĉ is a finite energy monopole and T > 0
is such that

EĈ([T,∞)) ¿ ~(κ)
then [C(t)] ∈ Uκ, ∀t > T + 1. Clearly, for large t the path t 7→ [C(t)] will
wander inside a single component U

(j)
κ of Uκ. We have thus proved the

following result.

Corollary 4.2.19. Suppose Ĉ is a finite energy smooth monopole on N̂ .
Then there exist a connected component M

(j)
σ of Mσ and, for all κ > 0, an

instant of time t = t(κ) > 0, such that [C(t)] ∈ U
(j)
κ for all t > t(κ).

A priori, the path [C(t)] in the above corollary may wander around
smaller and smaller neighborhoods U

(j)
κ of M

(j)
σ without converging to any

specified 3-monopole so the limit set may consist of several points in Mσ.
The results we proved so far show that the manner in which [C(t)] travels
around Mσ is quite constrained. More precisely, for every triple of arbitrarily
small constants a, b, c > 0 there exists an instant of time T = T (a, b, c) > 0
such that for all t > T the distance between [C(t)] and Mσ is < a, the kinetic
energy ‖ψ̇(t)‖2

L2 + ‖ȧ(t)‖2
L2 at time t is < b, and there is not much energy

left, i.e.
EĈ([T,∞)) < c.

The energy functional E on N (whose critical points are the 3-monopoles)
may not descend to Cσ/Gσ so it may not induce a well defined function on
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Mσ. On the other hand, it descends to function on Cσ/G1
σ where G1

σ denotes
the identity component of Gσ. We denote by M̃σ the space of G1

σ-orbits of 3-
monopoles. E defines a continuous map from the discrete set of components
of M̃σ to R. Mσ is a quotient of M̃σ modulo the action of the discrete group
H1(N, Z). Since

E(C(t1)) − E(C(t0)) = EĈ([t0, t1])
E(C(t)) has a well defined limit E∞ as t → ∞ so that the path C(t) “orbits”
closer and closer around one of the components of M̃σ where E ≡ E∞.

In the next subsection we will show that these restrictions, coupled with
the ellipticity of the Seiberg-Witten equations on cylinders, will force [C(t)]
to converge to a specified monopole [C0] ∈ Mσ. To minimize the volume
of technicalities we will make the simplifying assumption below which is
satisfied in all concrete applications we have in mind. For a presentation of
the general situation in the similar case of Yang-Mills equations we refer to
[96, 133].

(N)
In the remainder of this chapter we will work exclusively with

good pairs (σ, g).

4.2.4. Asymptotic behavior. Part II. Suppose Ĉ is a finite energy
monopole on N̂ . In the last subsection we have shown that for every
0 < κ ¿ 1 there exist a smooth monopole C0 and an interval J = [t0, t1] ⊂
R+ such that for every t ∈ J the configuration [C(t)] ∈ UC0(κ). We de-
duced this conclusion by taking advantage of the nice dynamical description
of the Seiberg-Witten equations in temporal gauge. These arguments were
however not powerful enough to deduce, for example, that once [C(t)] enters
a neighborhood UC0(κ) of [C0] it is then forced to stay inside it. From a
technical point of view this is due essentially to a lack of estimates of the
length of the path [C(t)], that is, estimating L1-norms of t-derivatives on
long time intervals. It is desirable to control the length of a portion of this
path in terms of its energy. To obtain such estimates we need to modify Ĉ
by a gauge transformation which will capture the elliptic character of the
Seiberg-Witten equations on a cylinder. Following [96, 133] we introduce
the following notion.

Definition 4.2.20. Let κ ∈ (0, 1) and C0 be a smooth monopole on N . A
configuration Ĉ on a cylinder I × N is said to be in κ-standard gauge with
respect to C0 if there exist smooth paths

I 3 t → (if(t), V(t)) ∈ (ker LC0)
⊥ × SC0 , V(t) = (ψ(t), ia(t))

such that ‖V(t)‖2,2 = ‖ψ(t)‖2,2 + ‖a(t)‖2,2 < κ, ∀t ∈ I and

Ĉ = (ψ0 + ψ(t), A0 + if(t)dt + ia(t)).
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For a proof of the following technical result we refer to [96, Lemma
2.4.3].

Lemma 4.2.21. Assume Ĉ is a smooth configuration on I ×N and C0 is a
smooth monopole on N such that C(t) is gauge equivalent to a configuration
in UC0(κ), ∀t ∈ I. Then there exists a smooth gauge transformation

γ̂ : I × N → S1

such that γ̂ · Ĉ is in κ-standard gauge with respect to C0.

Suppose now that Ĉ is a smooth 4-monopole on I × N in κ-standard
gauge with respect to the smooth 3-monopole C0 = (ψ0, A0). Thus, we can
write

Ĉ = (ψ̂ = ψ0 + ψ(t), Â = A0 + idf(t)dt + ia(t))
where, for any t ∈ I,

(4.2.12) ‖a(t)‖ 3
2
,2 + ‖ψ(t)‖ 3

2
,2 ≤ κ,

L∗
C0

(ψ(t), ia(t)) = 0, if(t) ⊥ kerLC0 .

Then, using the identities (2.4.1) and (2.4.2) in §2.4.1, we deduce

FÂ = FA0 + idt ∧ (ȧ(t) − df(t)) + ida(t),

F+

Â
=

i
2

(
dt ∧ (ȧ + ∗FA0 + ∗da(t) − df(t)) + ∗(ȧ(t) + FA0 + da(t) − df(t))

)
(J := ĉ(dt), A(t) := A0 + ia(t)),

6DÂ = J
(
∂t − DA(t) +

i
2
f(t)

)
.

If we suppress the t dependence in the above notation and we use the identity

DAψ0 =
(
DA0 +

1
2
c(ia)

)
ψ0 =

1
2
c(ia)ψ0

we can rewrite the Seiberg-Witten equations for Ĉ as follows.

(4.2.13a)
d

dt
ψ =

(
DA − i

2
f
)
(ψ + ψ0) = DA0ψ +

1
2
(c(ia) − if)(ψ0 + ψ),

(4.2.13b) i
d

dt
a =

1
2
q(ψ0 + ψ) − ∗ida + idf − ∗FA0 ,

(4.2.13c) d∗a +
1
2
Im〈ψ0, ψ〉 = 0.

One unpleasant feature of these equations is the apparent lack of infor-
mation on the t-derivatives of f . Still, the size of f can be controlled in
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terms of the sizes of (ψ, A). To achieve this we will need an elementary
identity whose proof is left to the reader.

Exercise 4.2.4. ([107]) Suppose ψ is a smooth spinor on N and A is a
smooth Hermitian connection on det(σ). Then

(4.2.14) d∗q(ψ) = −iIm〈ψ, DAψ〉. ¥

For simplicity, in the sequel will denote the t-derivatives by dots. Also,
we will denote by the same letter C all positive constants which depend only
on C0, the total energy of Ĉ and the metric g.

Differentiating (4.2.13c) with respect to t we get

id∗ȧ +
i
2
Im〈ψ0, ψ̇〉 = 0.

Now use (4.2.13c) and (4.2.14) to obtain

0 =
1
2
d∗q(ψ + ψ0) + id∗df +

i
2
Im〈ψ0, ψ̇〉

(4.2.13a)
= − i

2
Im〈ψ0 + ψ, DA(ψ0 + ψ)〉 + id∗df +

i
2
Im〈ψ0, ψ̇〉

= − i
2
Im〈ψ0 + ψ, ψ̇ +

i
2
f(ψ + ψ0)〉 + id∗df +

i
2
Im〈ψ0, ψ̇〉

= id∗df +
i
4
|ψ0 + ψ|2f − i

2
Im〈ψ, ψ̇〉 (4.2.13a)

=

id∗df +
i
4
Re〈ψ0 + ψ, ψ0 + ψ〉f − i

2
Im〈ψ, DA0ψ〉 −

i
4
Re〈ψ, (ψ0 + ψ)〉f

= id∗df +
i
4
Re〈ψ0, ψ0 + ψ〉f − i

2
Im〈ψ, DA0ψ〉

= id∗df +
i
4
|ψ0|2f +

i
4
Re〈ψ0, ψ〉f − i

2
Im〈ψ, DA0ψ〉

=
i
4
L∗

C0
LC0(if) +

1
4
Re〈ψ0, ψ〉if − i

2
Im〈ψ, DA0ψ〉.

Hence

(4.2.15) L∗
C0

LC0if = −Re〈ψ0, ψ〉if + 2Im〈ψ, DA0ψ〉.

The proof of the following result is a simple application of Theorem
1.2.18 (v) and is left to the reader.

Lemma 4.2.22. For each ψ such that ‖ψ‖2,2 ≤ κ consider the operator

Tψ : ker L⊥
C0

∩ L3,2 → L1,2(N, iR), if 7→ L∗
C0

LC0 + Re〈ψ0, ψ〉if.

Then, if κ is sufficiently small the operator Tψ is invertible. Moreover for
every r ∈ {0, 1} and every p ∈ (1, 2] there exists a constant C > 0 depending
only on p, r and the geometry of N such that

‖f‖2+r,p ≤ C‖Tψif‖r,p.
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Using the above lemma we deduce that there exists a constant C > 0
such that

‖f‖2,2 ≤ C‖Im〈ψ, DA0ψ〉‖L2 .

The Sobolev embedding theorems show that we have continuous embeddings

L2,2(N) ↪→ L∞(N), L1,2(N) ↪→ L6(N).

Using Hölder’s inequality we deduce that there exists a constant C > 0 such
that for every a ∈ L2,2(N) and b ∈ L1,2(N) we have

‖a · b‖L1,2 ≤ C‖a‖2,2 · ‖b‖1,2.

Hence
‖Im〈ψ, DA0ψ〉‖L1,2 ≤ C‖ψ‖2,2‖DA0ψ‖1,2 ≤ C‖ψ‖2

2,2.

We have thus established the estimate

(4.2.16) ‖f‖2,2 ≤ C‖ψ‖2
2,2

(4.2.12)
< Cκ2.

Since κ is meant to be very small we deduce that f(t) is very small as long
as Ĉ |I×N is in κ-standard gauge. Set

V(t) := (ψ(t), ia(t)).

The flow equations (4.2.13) can be rewritten as

(4.2.17) V̇ = SW (C0 + V) +
[
− if

2 ψ0 − if
2 ψ

idf

]
where

(4.2.18) L∗
C0

V = 0

and

(4.2.19) if = 2T−1
ψ (iIm〈ψ, DA0ψ〉).

We will denote the second term on the right-hand side of (4.2.17) by N(V).
Observe that

(4.2.20) N(V) = −1
2
LC0+V(if).

The estimate (4.2.16) shows that

(4.2.21) ‖N(V)‖2,2 ≤ C‖V‖2
2,2.

Remark 4.2.23. One can show exactly as in [96, Chap. 2] that there
exists a natural L2-metric on SC0 such that in a neighborhood of 0 ∈ SC0

the equations (4.2.17) have the form

V̇ = ∇̃E |SC0
(C0 + V)

where the gradient ∇̃ is computed with respect to this metric. ¥
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For every 0 < κ ¿ 1 we can find T0(κ) = T0(κ, Ĉ) À 0 such that for all
t0 ≥ T0(κ) there exists a smooth monopole C0 = C0(t0) ∈ Mσ so that

(4.2.22)


[C(t0)] ∈ UC0(κ

2)

EĈ([T0(κ),∞)) ≤ κ6

‖SW ([C(t)])‖2
L2 < κ6

, ∀t ≥ T0(κ).

Fix t0 ≥ T0(κ) and define

Tκ(t0) := sup
{

τ > 0; [C(t0 + t)] ∈ UC0(t0)(κ), ∀t ∈ [0, τ ]
}

= sup
{

T > 0; ‖V(t0 + t)‖2,2 ≤ κ, ∀t ∈ [0, T ]
}

where V(t) is determined as above by placing Ĉ in κ-standard gauge at C0

over the time interval for which this is possible. Roughly speaking, Tκ(t0) is
the length of the time interval, beginning at t0, during which the orbit [C(t)]
stays κ-close to [C0] := [C0(t0)]. We want to get more precise information
about the size of

dist2,2

(
[C(t0 + t)], [C0]

)
for 0 ≤ t ≤ Tκ(t0).

One of the main advantages of working in standard gauges comes from
the fact that the 4-dimensional equations become “almost” elliptic and thus
one can control stronger norms by weaker ones. More precisely, we have the
following result.

Lemma 4.2.24. There exist κ0 > 0 and C > 0 with the following property.
For any finite energy monopole Ĉ on R+ × N and all

0 < κ < κ0, t0 > T0(κ, Ĉ), t ∈ [t0 + 1, Tκ(t0)], [C0] ∈ Mσ

such that
distL2,2

(
[C(t0)], [C0]

)
< κ2

we have

(4.2.23)

dist2,2([C(t0 + t)], [C0])2

≤ C
(
distL2([C(t0 + t)], [C0])2 + EĈ([t − 1, t + 1])

)
≤ C

(
distL2([C(t0 + t)], [C0])2 + κ6

)
.
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In order to keep the flow of arguments uninterrupted we will defer the
proof of the above lemma to the next subsection. This lemma roughly states
that the L2,2 -distance between [C(t0 + t)] and [C0] can be controlled by the
weaker metric distL2 . This type of control immediately leads to nontrivial
lower estimates on the duration Tκ(t0).

Lemma 4.2.25. There exists a positive constant C such that for all 0 <
κ ¿ 1 we have

Tκ(t0) ≥ C
( κ

δ + κ2

)2
.

Proof Let T = Tκ(t0). We rewrite

C(t0 + t) = C0 + V(t), L∗
C0

V(t) = 0, ‖V(t)‖2,2 ≤ κ.

(Note the time shift in the argument of V.) The maximality of T implies

‖V(T )‖2,2 = κ

so that using Lemma 4.2.24 we deduce

(4.2.24) ‖V(T )‖L2 ≥ C‖V(T )‖2,2 − κ2 ≥ Cκ − κ3.

The distance ‖V(T ) − V(0)‖L2 can be estimated using the flow equations
(4.2.17). We have

‖V(T ) − V(0)‖L2 =
∫ T

0
‖V̇(t)‖L2dt

≤
∫ T

0

(
‖SW (C(t0 + t))‖L2 + ‖N(V(t))‖L2

)
dt

(4.2.21)

≤ C
(
T 1/2EĈ([t0, t0 + T ])1/2 + Tκ2

)
≤ C(T 1/2κ3 + κ2T ) ≤ CTκ2.

Hence,

(4.2.25) ‖V(T )‖L2 ≤ ‖V(0)‖L2 + ‖V(T ) − V(0)‖L2 ≤ κ2 + CTκ2.

Lemma 4.2.25 now follows by comparing (4.2.24) and (4.2.25). ¥

Since the configurations [Ĉ(t)] lie in a very small neighborhood of C0

it is natural to expect that the linearization of the flow (4.2.13) at C0 will
contain information about the nonlinear situation. We now want to suit-
ably decompose the flow (4.2.13) into a linear part and a small nonlinear
perturbation, and analyze how much of the linear behavior is preserved un-
der perturbation. At this stage the regularity assumption on C0 introduces
substantial simplifications.

Consider again the Stab (C0)-equivariant map

Φ1 : UC0 → (1 − Π1)SC0
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introduced in Proposition 4.2.6. Denote by A the linearization of SW at
C0:

A := SWC0
.

Lemma 4.2.26. A defines a closed, densely defined linear operator

kerL∗
C0

∩ L2 → kerL∗
C0

with domain
kerL∗

C0
∩ L1,2.

This operator is selfadjoint with compact resolvent. Moreover kerA = H1
C0

.

Exercise 4.2.5. Prove the above lemma.

The spectrum spec (A) of A is discrete, consisting of eigenvalues with
finite multiplicities. We have an L2-orthogonal decomposition

SC0 = H1
C0

⊕ S+
C0

⊕ S−
C0

corresponding to the partition

spec (A) = {0} ∪ spec (A) ∩ (0,∞) ∪ spec (A) ∩ (−∞, 0).

Correspondingly, any vector U ∈ SC0 decomposes as

U = U0 + U+ + U−.

Denote by µ+ = µ+(C0) the smallest positive eigenvalue of A, by −µ− =
−µ−(C0) the largest negative eigenvalue of A and

µ := min(µ−, µ+).

Now set

V0(t) := Π1V(t), ξ(t) := V0(t) + Φ1(V0(t)), U(t) := V(t) − ξ(t).

Observe that U0 = 0. Since C0 is regular, the graph of the map Φ1 describes
the critical points of SW in UC0(κ). To proceed further observe that

SW (C0 + V) = SW (C0 + ξ + U) = SW (C0 + ξ + U) − SW (C0 + ξ)

= A(ξ + U) −A(ξ) + R(ξ + U) − R(ξ) = AU + R(ξ + U) − R(ξ)
where

‖R(X)‖1,2 ≤ C‖X‖2
2,2, ∀X ∈ SC0 .

Set
Q(V) := R(ξ + U) − R(ξ) + N(V).

Q satisfies a similar quadratic estimate as R:

(4.2.26) ‖Q(X)‖L2 ≤ C‖X‖2
2,2, ∀X ∈ SC0 .

We can be much more precise. The following estimates are proved in the
next subsection.
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Lemma 4.2.27. There exists C > 0 such that ∀t ∈ [0, Tκ] we have

(4.2.27a) ‖R(ξ(t) + U(t)) − R(ξ)‖L2 ≤ C‖V(t)‖2,2 · ‖U(t)‖L2 ,

(4.2.27b) ‖Π1N(V(t)) ‖L2 ≤ C‖V(t)‖2,2 · ‖U(t)‖L2 ,

(4.2.27c)
∣∣∣〈N(V ), U±〉L2

∣∣∣ ≤ C‖V(t)‖2,2 · ‖U(t)‖2
L2 .

The estimates in Lemma 4.2.27 can be used to provide a crucial lower
bound for ‖SW (V(t))‖L2 .

Lemma 4.2.28. If κ is sufficiently small we have

(4.2.28) ‖SW (C0 + V(t))‖L2 ≥ C‖U(t)‖L2 , ∀t ∈ [0, Tκ(t0)].

Proof We have

‖SW (V(t))‖L2 = ‖AU + R(ξ + U) − R(U)‖
≥ ‖AU‖L2 − ‖R(ξ + U) − R(U)‖L2

≥ µ‖U‖L2 − Cκ‖U‖L2 . ¥

The flow equations (4.2.17) now decompose as

(4.2.29a) V̇0(t) = Π1Q(V),

(4.2.29b) U̇+(t) = AU+ + Q(V)+ − d

dt

(
Φ1(V0(t))

)+
,

(4.2.29c) U̇−(t) = AU− + Q(V)− − d

dt

(
Φ1(V0(t))

)−
.

Set
f0(t) := ‖V0(t)‖2

L2 , f±(t) := ‖U±(t)‖2
L2 ,

f(t) := f+(t) + f−(t) = ‖U(t)‖2
L2 .

Since ‖Φ1(V0)‖L2 ≤ ‖V0‖2
2,2 ≤ C‖V0‖2

L2 we deduce that the problem of
estimating ‖V(t)‖L2 is equivalent to the problem of estimating f0(t) and
f(t).

From (4.2.29a), (4.2.27a) and (4.2.27b) we get

‖V̇0(t)‖ ≤ Cf1/2.

In particular,

‖ d

dt
Φ1(V0(t))‖L2 = ‖DV0(t)Φ1V̇0(t)‖ ≤ ‖DV0(t)Φ1‖L2‖V̇0(t)‖L2

≤ Cκ‖V0(t)‖L2f1/2 ≤ Cκf1/2.
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Thus,

(4.2.30)
∣∣∣〈 d

dt
Φ1(V0(t)), U±〉L2

∣∣∣ ≤ Cκf.

Using (4.2.27a) and (4.2.27c) we deduce

(4.2.31)
∣∣∣〈Q(V ), U±〉L2

∣∣∣ ≤ Cκf.

Now, take the L2-inner product of (4.2.29b) with U+(t) and use (4.2.30),
(4.2.31) and the inequality

〈AU+(t), U+(t)〉L2 ≥ µ+‖U+(t)‖2
L2 = µ+f+(t).

We get

(4.2.32) ḟ+(t) ≥ 2µ+f+(t) − C+κf.

Using the equality (4.2.29c) we deduce similarly that

(4.2.33) ḟ−(t) ≤ −2µ−fi + C−κf.

By replacing C± with max(C+, C−) we can assume C+ = C−. Set h :=
f+ − f−. Notice that h satisfies a differential inequality of the type

(4.2.34) ḣ ≥ 2µf ≥ 2µh, ∀t ∈ [0, Tκ].

Remark 4.2.29. The trick in [133, Lemma 9.4] applies without change in
this situation as well, allowing us to conclude that

(4.2.35) f(t) ≤ 2
(
f+(0) + f−(T )

)(
e−µt + eµ(t−T )

)
, ∀0 < t < T < Tκ(t0).

Observe that this estimate is valid for any monopole Ĉ on a cylinder
[−1, T + 1] × N provided the total energy is sufficiently small and the path
[C(t)] lies entirely in a Kuranishi neighborhood of a 3-monopole C0. ¥

Lemma 4.2.30. Suppose there exists 0 < τ ≤ Tκ(t0) such that h(t) ≤ 0 for
all 0 ≤ t ≤ τ . Then there exist c, C > 0 such that for all t ∈ [0, τ ] we have

f(t) ≤ 2e−(2µ−−cκ)tf(0),

‖V0(t)‖ ≤ C‖V0(0)‖ ≤ Cκ2,

‖V(t)‖2
L2 ≤ C

(
‖V(0)‖2

L2 + κ4e−(2µ−−cκ)t
)

and

‖V(t)‖2
2,2 ≤ C

(
‖V(0)‖2

L2 + κ6 + κ4e−(2µ−−cκ)t
)
≤ Cκ4(1 + κ2e−(2µ−−cκ)t).
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Proof The inequality f+(t) ≤ f−(t) implies f(t) ≤ 2f−(t). Using this
information in (4.2.33) we deduce that

ḟ−(t) ≤ −(2µ− − cκ)f−

from which we obtain by integration

f(t) ≤ 2f−(t) ≤ 2e−(2µ−−cκ)t)f(0).

Using (4.2.29a) we deduce

f
1/2
0 (t) = ‖Π1V(t)‖ ≤ ‖Π1V(0)‖ +

∫ t

0
‖Π1V̇(s)‖ds

≤ ‖Π1V(0)‖ + C

∫ t

0
f1/2(s)ds

≤ C(‖Π1V(0)‖ + f(0)1/2e−(µ−−cκ)t) ≤ C‖V(0)‖2,1.

We now conclude using Lemma 4.2.24. ¥

Set

(4.2.36) τκ(t0) := sup{τ ∈ [0, Tκ(t0)]; f+(t) ≤ f−(t), ∀0 ≤ t < τ}.

Lemma 4.2.31. For every ε > 0 there exist 0 < κ < ε and t0 > T0(κ) > 0
such that Tκ(t0) = ∞.

Proof We argue by contradiction. Thus, assume there exists ε0 > 0 such
that for all κ < ε0 and all t0 > T0(κ) we have T := Tκ(t0) < ∞. Taking into
account the maximality of Tκ(t0) we deduce

‖V(T )‖2,2 = κ

so that

(4.2.37) ‖V(T )‖L2 ≤ κ.

Using Lemma 4.2.30 we now deduce τ := τκ(t0) < T . Set t1 := t0 + τ and
define χ = χ(κ) by

χ2 := max
{

κ2, dist2,2 ([C(t0 + τ)], [C0])
}

.

Lemma 4.2.30 shows that κ ≤ χ = O(κ). Observe that for t ≥ t1 the
configuration [C(t)] satisfies the conditions (4.2.22),

(4.2.38)


[C(t1)] ∈ UC0(χ

2)

EĈ([t1,∞))) ≤ κ6 ≤ χ6

supt>t1 ‖SW ([C(t)])‖2
L2 < χ6

so that
cχ−1 < T1 := Tχ(t1) < ∞.
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Redefine V(t) := V(t1 + t), t ∈ [0, Tχ(t1)] etc. Observe that by maximality

(4.2.39) ‖V(T1)‖2,2 = χ.

From the definition of t1 as t1 = t0 + τκ(t0) and the maximality of τκ(t0) we
deduce

f+(t) > f−(t), ∀t ∈ (0, T1].

Using the inequality (4.2.32) we deduce

1
2
‖U(t)‖2

L2 ≤ f+(t) ≤ f+(T1)e−(2µ+−cχ)(T1−t)

≤ ‖U(T1)||2L2e
−(2µ+−cχ)(T1−t), ∀t ∈ [0, T1].

Then

‖V0(T1)‖ ≤ ‖V0(0)‖ + ‖V0(T1) − V0(0)‖ ≤ ‖V0(0)‖ +
∫ T1

0
‖Π1V̇(t)‖dt

≤ ‖V0(0)‖ + C

∫ T1

0
‖U(t)‖L2dt

≤ ‖V0(0)‖ + ‖U(T1)‖L2

∫ T1

0
e−(µ+−cχ)(T1−t)dt

≤ ‖V(0)‖ + C‖U(T1)‖L2

(4.2.28)

≤ ‖V0‖ + C‖SW (C0 + V(t))‖L2

(4.2.40)
(4.2.38)

≤ ‖V0(0)‖ + O(κ3)
(4.2.38)

≤ χ2 + O(κ3) = O(κ2).

Thus
‖U(T1)‖L2 ≥ ‖V(T1)‖L2 − C‖V0(T1)‖L2

(4.2.23)

≥ C(‖V(T1)‖2,2 − κ6) − ‖V0(T1)‖
(4.2.40)

≥ C‖V(T1)‖2,2 − Cκ2
(4.2.39)

≥ C(κ − κ2).

This contradicts the inequality (4.2.28) which, coupled with the last condi-
tion in (4.2.38), implies

‖U(T1)‖L2 = O(κ3). ¥

The above lemma has an immediate consequence.

Corollary 4.2.32. There exists [C0] ∈ Mσ such that

lim
t→∞

dist2,2([C(t)], [C0]) = 0.



4.2. Finite energy monopoles 351

Proof Lemma 4.2.31 shows that for every limit point [C0] ∈ Mσ and any
neighborhood U of [C0] in Cσ/Gσ there exists an instant of time t = tU such
that [C(t)] ∈ U , ∀t ≥ tU . In particular, this shows there exists exactly one
limit point. ¥

We can now prove the main result of this section.

Theorem 4.2.33. Suppose Ĉ = (ψ̂, Â) is a smooth finite energy monopole
on R+ × N . Then there exist a smooth gauge transformation

γ̂ : R+ × N → S1

and a smooth monopole C0 = (ψ0, A0) on N such that

γ̂ · Ĉ = (ψ(t), A0 + ia(t) + if(t)dt),

L∗
C0

(ψ(t) − ψ0, ia(t)) = 0 ⇐⇒ (ψ(t), A0 + a(t)) ∈ SC0 , ∀t À 0,

lim
t→∞

eλt
(
‖ψ(t) − ψ0‖L2,2(N) + ‖a(t)‖L2,2(N) + ‖f(t)‖L3,2(N)

)
= 0,

∀0 ≤ λ < µ−(C0).

Proof Fix a smooth representative C0 of the limit of [C(t)] as t → ∞.
For all κ sufficiently small we can find a smooth gauge transformation γ̂
on R+ × N such that γ̂ · Ĉ is in κ-standard gauge with respect to C0 on
a semi-cylinder [T0(κ),∞) × N . Re-label Ĉ := γ̂ · Ĉ. Then there exists a
t0 ≥ T0(κ) > 0 such that

EĈ([t0,∞)) < κ3,

‖C(t0), C0‖L2,2(N) := ‖ψ(t) − ψ0‖L2,2(N) + ‖a(t)‖L2,2(N) ≤ κ2,

‖C(t0 + t) − C0‖L2,2(N) ≤ κ,

∀0 ≤ t ≤ Tκ(t0). Observe that τκ(t0) defined in (4.2.36) is infinite. Indeed, if
τκ(t0) < ∞ then, arguing as in the proof of Lemma 4.2.31, we would deduce
that f+(τκ + t) increases exponentially. This is plainly impossible.

Using Lemma 4.2.30 we deduce

‖U(t)‖L2 ≤ Ce−(µ−−cκ)t, ∀t ≥ T0(κ)

and

‖Π1V(t)‖ = ‖Π1V(t) − Π1V(∞)‖ ≤
∫ ∞

t
‖Π1V̇(s)‖ds

≤ C

∫ ∞

t
e−(µ−−cκ)sds ≤ Ce−(µ−−cκ)t.

This shows that

‖V(t)‖2,2 ≤ C‖V(t)‖L2 ≤ Ce−(µ−−cκ)t, ∀t ≥ T0(κ)
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so that
lim
t→∞

e(µ−−cκ)tdist2,2([C(t)], [C0]) = 0, ∀κ ¿ 1. ¥

Remark 4.2.34. The gauge transformation γ̂ postulated by the above theo-
rem may not be in the identity component of the group of gauge transforma-
tions on R+ × N . The group of components is parameterized by H1(N, Z).
If γ̂ lies in the component parameterized by c ∈ H1(N, Z) then we can find
a smooth map

γ : N → S1

which belongs to the component of Gσ corresponding to c. We can think of γ
as a t-independent gauge transformation on R+×N . Moreover γ̂c := γ̂ ·γ−1

lies in the identity component of the group of gauge transformations on
R+ × N and γ̂c · Ĉ will satisfy similar asymptotic behavior as γ̂ · Ĉ with C0

replaced by γ−1
c · C0. Thus we can strengthen the conclusion of Theorem

4.2.33 by adding the fact that γ̂ can be chosen to be of the special form
γ̂ = eif̂ .

The above convergence result can be slightly strengthened.

Proposition 4.2.35. With the above notation, for every nonnegative integer
m and every 0 ≤ λ < µ−

2 there exists a constant which depends only m and
λ and the geometry of N such that

‖V(t)‖
Lk,2

λ ([T0(κ),∞)×N)
≤ Cκ.

Exercise 4.2.6. Prove the above proposition.

Proposition 4.2.36. Fix an instant of time T0 > 0. Then there exists a
constant κ0 > 0 with the following property. For every κ < κ0, and every
monopole Ĉ on R+ × N such that

‖ρĈ‖
2
L2([T0,∞)×N = EĈ([T0,∞)) < κ6,

and
distL2,2([C(T0)], Mσ) ≤ κ2

we have

sup
t>T0+1

‖SW ([C(t)])‖2
L2(N) ≤ Cκ6

• [C(t)] ∈ Uκ, ∀t > T0.
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• There exist a monopole C∞ on N and a smooth gauge transformation γ̂
on R+ × N such that

lim
t→∞

‖γ̂C |t×N −C∞‖L2,2(N).

Proposition 4.2.36 is a simple consequence of the previous considerations
and we leave its proof to the reader.

Exercise 4.2.7. Prove Proposition 4.2.36.

Proposition 4.2.35 can be roughly interpreted as saying that, if the total
energy of the monopole Ĉ is below a certain capture level, then its dynamics
is constrained to a small Kuranishi neighborhood of some 3-monopole on N .

Up to now we have worked on a very special cylindrical manifold, N̂ :=
R+ × N . The results we proved extend without difficulty to the case when
N̂ is a cylindrical manifold without boundary such that ∂∞N̂ = N . The
next result summarizes all the facts proved so far.

Theorem 4.2.37. Fix T > 0. There exists a constant ~ > 0 with the
following property. If m ∈ Z+, 0 ≤ λ < µ−(C0), there exists a constant
C depending on m, λ and the geometry of N such that for any smooth
monopole Ĉ = (ψ̂, Â) satisfying∫

[T,∞)×N
ρĈ ≤ ~

there exist a smooth function

û : R+ × N → R

and a smooth monopole C0 = (ψ0, A0) on N such that along the neck

eiû · Ĉ = (ψ(t), A0 + ia(t) + if(t)dt)

L∗
C0

(ψ(t) − ψ0, ia(t)) = 0 ⇐⇒ (ψ(t), A0 + a(t)) ∈ SC0 , ∀t ≥ T

and

‖ψ(t) − ψ0‖Lm,2
λ ([T,∞)×N)

+ ‖a(t)‖
Lm,2

λ ([T,∞)×N)
+ ‖f(t)‖

Lm,2
λ ([T,∞)×N)

< C.

Remark 4.2.38. We would like to say a few words about an alternate
proof of Theorem 4.2.33 which works in the more general situation when
(N) is not satisfied (see [96]). For simplicity we will describe it briefly in
our nondegenerate context.

Observe that (4.2.15) can be rewritten as

Tψif = 2Im〈ψ, DAψ〉 = 2Im〈ψ, ψ̇〉
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where
‖Im〈ψ, ψ̇〉‖L2(N) ≤ C‖ψ‖2,2‖ψ̇‖L2

from which we deduce that

‖N(V)‖L2(N) ≤ C‖V‖L2,2‖V̇‖L2 .

Next observe that there exists a constant depending only on the geometry
of N such that if V ∈ UC0(κ) is sufficiently small in the L2,2-norm then

|E(C0 + V) − E(C0)|1/2 ≤ C‖SW (C0 + V)‖L2(N),

‖SW (C0 + V)‖L2 ≥ CdistL2

(
C0 + V, Mσ ∩ UC0(κ)

)
.

If κ is sufficiently small then, following the proof of [123, Lemma 1, p. 541],
we deduce that if V(t) ∈ UC0(κ) for all t ∈ [t0, t1] then

(4.2.41)
∫ t1

t0

‖V̇(t)‖L2(N)dt ≤ C
(
EĈ([t0,∞))1/2 − EĈ([t1,∞))1/2

)
≤ C ′EĈ([t0, t1])1/2

where C, C ′ are geometric constants. Using Corollary 4.2.15 it is now a
relatively simple job to establish the existence of an asymptotic limit. We
refer for details to [96, Chap. 4].

4.2.5. Proofs of some technical results. As promised, we include in this
subsection some proofs which would have diverted the reader’s attention had
they been included in the middle of the flow of arguments in the previous
subsections.

Proof of Lemma 4.2.14 Set CT := [−T, T ] × N and denote by Â0 the
connection induced by A0 on the cylinder C2. There exists t ∈ [−2, 2] such
that

‖SW (C(t0))‖2
L2(N) < E/4 ≤ ω0/4.

Now fix ω0 sufficiently small so that

distL2,2([C(t0)], Mσ) ≤ 1/100

for some t0 ∈ [−1, 1]. Set C0 := (0, A0) and

δ := sup
{

distL2,2([C0], [C]); [C] ∈ Mσ

}
.

Observe that δ < ∞ since Mσ is compact. We can find a smooth gauge
transformation such that

‖C0 − γ · C(t0)‖L2 ≤ δ + 1/50.
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Now observe that both the hypotheses and the conclusion of Lemma 4.2.14
are invariant under the action of the group of smooth gauge transforma-
tions on N . Thus, modulo such a transformation we can assume that our
monopole Ĉ satisfies the additional restriction

‖a(t0)‖L2,2(N) ≤ δ + 1/50

for some t0 ∈ [−1, 1]. Hölder’s inequality now implies

‖a(t)‖L2(N) ≤ ‖a(t0)‖L2(N) +
∫ t

t0

‖ȧ(s)‖L2(N)ds

≤ δ + 1/50 + 2E1/2.

(4.2.42)

The Seiberg-Witten equations have the form{
6DÂ0

ψ = − i
2 ĉ(a(t))ψ

iȧ = 1
2q(ψ) − ∗ida − ∗FA0

.

If we apply d∗ to the last equality we deduce

id∗ȧ =
1
2
d∗q(ψ)

(4.2.14)
= − i

2
Im〈ψ, DA0+a(t)ψ〉 = − i

2
Im〈ψ, ψ̇(t)〉.

Now regard ȧ as a 1-form on the four-dimensional cylinder. Since tȧ = 0 we
deduce d̂∗ȧ = d∗ȧ. Set b := ȧ, φ := ψ̇. By differentiating the Seiberg-Witten
equations with respect to t we deduce

6DÂ0
φ = − i

2 ĉ(a(t))φ + i
2 ĉ(b)ψ

iḃ = q(ψ, φ) − ∗idb

d̂∗b = − i
2Im〈ψ, φ〉

⇐⇒
{

6DÂ0
φ = − i

2 ĉ(a(t))φ + i
2 ĉ(b)ψ

ASD(ib) =
(
q(ψ, φ)

)
⊕

(
− i

2Im〈ψ, φ〉
) .

According to (4.2.10) there exists a geometric constant C > 0 such that

sup
|t|≤1

‖ψ(t)‖L∞(N) < C(1 + E1/4) ≤ C

so that
‖ASD(ib)‖L2(C2) ≤ CE.

Using interior elliptic estimates for the elliptic operator ASD we deduce

‖b‖L1,2(C3/2)
≤ C

(
E + ‖b‖L2(C2)

)
≤ CE.

Thus, for all t ∈ [−3/2, 3/2] we have

‖a(t)‖1,2 ≤ ‖a(t0)‖1,2 + |t − t0|1,2

∫ t

t0

‖b(s)‖L1,2(N)ds ≤ C.

Using the Sobolev embedding

L1,2(N) ↪→ L6(N)
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we deduce
‖a(t)‖L6(C3/2)

≤ C.

Thus
‖ĉ(a)φ‖L3/2(C3/2)

≤ C‖φ‖L2(C3/2)
≤ CE.

Using interior elliptic estimates for

(4.2.43) 6DÂ0
φ = − i

2
ĉ(a(t))φ +

i
2
ĉ(b)ψ

on C3/2 we deduce
‖φ‖L1,3/2(C4/3)

≤ C
(
‖φ‖L3/2(C3/2)

+ ‖ − i
2
ĉ(a(t))φ +

i
2
ĉ(b)ψ‖L3/2(C3/2)

)
≤ CE.

Using the Sobolev embedding L1,3/2(C4/3) ↪→ L12/5(C4/3) and the Hölder
inequality (with 1/6 + 5/12 = 7/12) we deduce

‖ĉ(a)φ‖L12/7(C4/3)
≤ CE

and we conclude as before using (4.2.43) that

‖φ‖L1,12/7(C5/4)
≤ CE.

Now use the Sobolev embedding L1,12/7(C5/4) ↪→ L3(C5/4) and the Hölder
inequality (with 1/6 + 1/3 = 1/2) to deduce

‖ĉ(a)φ‖L2(C5/4)
≤ CE.

Using (4.2.43) again we deduce

‖φ‖L1,2(C6/5)
≤ CE.

Thus
‖b‖L1,2(C6/5)

+ ‖φ‖L1,2(C6/5)
≤ CE.

Using trace theorems (see [79]) we deduce

‖b(t)‖L2 + ‖φ(t)‖L2 ≤ ‖b‖L1,2(C6/5)
+ ‖φ‖L1,2(C6/5)

≤ CE, ∀t ∈ [−1, 1].

The last inequality is precisely the content of Lemma 4.2.14. ¥

Proof of Lemma 4.2.24 Consider τ0 > 0 such that

‖V(t)‖2,2 ≤ Cκ, ∀|t − τ0| ≤ 1, EĈ([t0 + τ0 − 1,∞)) ≤ κ6.

Set Ij = (τ0 − 1/2j , τ0 + 1/2j). We will first prove that there exists j > 0
such that

(4.2.44) ‖V(t)‖L3,2(Ij×N) ≤ C‖V(t)‖L2(I0×N)

where V(t) = C(t) − C0. We follow an approach similar to the one used in
the proof of Lemma 4.2.14.
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Rewrite equations (4.2.17) and (4.2.18) as an elliptic system over the
4-manifold I0 × N

(4.2.45a) (∂t − DA0)ψ(t) =
1
2
c(ia(t))ψ − if

2
(ψ(t) + ψ0),

(4.2.45b) ASD ·
[

ia(t)
−if(t)

]
=

 1
2q(ψ0 + ψ) − ∗FA0

− i
2Im〈ψ0, ψ〉 − iḟ

 .

The component f is uniquely determined by ψ via the differential equation
on N

(4.2.46) Tψ(t)(if) := L∗
C0

LC0if + Re〈ψ0, ψ〉if = 2iIm〈ψ, DA0ψ〉.

Observe also that

(4.2.47) ASD ·
[

ia(t)
]

=

 1
2q(ψ0 + ψ) − ∗FA0 + idf

− i
2Im〈ψ0, ψ〉

 .

Our strategy is very simple although the details are somewhat cumber-
some. We will use the fact that (4.2.45a) + (4.2.45b) form an elliptic system
and then, relying on interior elliptic estimates, we will gradually prove that
stronger and stronger norms of the right-hand side, on gradually smaller
subdomains of I0 × N , can be estimated from above by the L2-norm of V
on I0 × N .

Observe first that L2,2(N) embeds continuously in L∞(N) because N
is three-dimensional. The L1,2-norm of the right hand side of (4.2.46) is
bounded from above by C‖ψ‖2,2 and thus we have a bound

‖f‖L3,2(N) ≤ C‖ψ‖L2,2(N).

Using interior elliptic estimates for the elliptic equation (4.2.45a) on I × N
we deduce

‖ψ(t)‖L1,2(I1×N) ≤ C
(
‖ψ(t)‖L2(I0×N) + ‖c(ia(t)ψ(t)‖L2(I0×N)

+‖if(ψ + ψ0)‖L2(I0×N)

)
(use ‖ψ‖∞ ≤ C)

(4.2.48) ≤ C(‖ψ(t)‖L2(I0×N) + ‖a(t)‖L2(I0×N)) = C‖V(t)‖L2(I0×N).

In particular, we deduce

(4.2.49) ‖ψ̇(t)‖L2(I1×N) ≤ C‖V(t)‖L2(I0×N).
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Set φ(t) := DA0ψ. Then

(4.2.50) φ̇(t) − DA0φ(t) =
1
2
[DA0 , c(ia)]ψ +

1
2
c(ia)φ − i

2
c(df)ψ − if

2
φ.

Thus, we have

‖φ(t)‖L1,2(I2×N) ≤ C
(
‖φ(t)‖L2(I1×N) +

∥∥ ‖c(idf(t))ψ(t)‖L2(N)

∥∥
L2(I1)

+
∥∥ ‖c(ia)(t)φ‖L2(N)

∥∥
L2(I1)

+ ‖ [DA0 , c(ia)]ψ ‖L2(I1×N)

)
.

Now use
‖df‖L2,2(N) + ‖ψ‖L2,2(N) + ‖a‖L2,2(N) ≤ Cκ,

L1,2(N) ↪→ L6(N) ↪→ L4(N)
and

‖c(ia)φ‖L2(N) ≤ C‖a‖L4(N)‖φ‖L4(N)

to deduce

‖c(ia)(t)φ‖L2(N) + ‖c(idf(t))ψ(t)‖L2(N) ≤ Cκ
(
‖φ‖L2(N) + ‖ψ‖L2(N)

)
and

‖[DA0 , c(ia)]ψ‖L2(N) ≤ Cκ‖ψ‖L1,2(I1×N) ≤ Cκ‖V‖L2(I0×N)

Hence

‖φ(t)‖L1,2(I2×N) ≤ C
(
‖φ(t)‖L2(I1×N) + κ‖V(t)‖L2(I1×N))

)
≤ C

(
‖ψ(t)‖L1,2(I1×N) + ‖V(t)‖L2(I×N)

)
≤ C‖V(t)‖L2(I0×N)

(4.2.51)

Differentiating (4.2.46) with respect to t we deduce

Tψ(t)(iḟ) = F (t)

:= −iRe〈ψ̇(t), ψ0〉 − 2iIm〈ψ̇(t), φ〉 + 2iIm〈ψ, φ̇〉.
(4.2.52)

Since ḟ ⊥ ker LC0 and ‖ψ(t)‖L2,2(N) is small we deduce from Lemma 4.2.22
that for every 1 < p ≤ 2 there exists a constant Cp > 0 such that

‖ḟ‖L2,p(N) ≤ C‖F (t)‖Lp(N).

Using the Sobolev embedding L1,2(N) ↪→ L6(N), Hölder’s inequality (in the
case 4/6 = 1/6 + 1/2) and the estimates

‖φ‖L1,2(N) ≤ Cκ, ‖ψ‖∞ < C

we deduce

‖F (t)‖L3/2(N) ≤ C(‖ψ̇(t)‖L2(N) + ‖ψ̇(t)‖L2(N)‖φ(t)‖L1,2(N) + κ‖φ̇(t)‖L2(N))

≤ C
(
κ‖φ̇(t)‖L2(N) + ‖ψ̇(t)‖L2(N)

)
.

Invoking the Sobolev embedding

L2,3/2(N) ↪→ L1,2(N)
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we deduce

‖ḟ(t)‖L1,2(N) ≤ C
(
‖ψ̇(t)‖L2(N) + κ‖φ̇(t)‖L2(N) + ‖ψ̇(t)‖L2(N)

)
so that we get

(4.2.53) ‖ḟ(t)‖L1,2(N) ≤ C‖ḟ(t)‖L2(N) ≤ C
(
‖ψ̇(t)‖L2(N) + ‖φ̇(t)‖L2(N)

)
.

Integrating over I2 and taking (4.2.49) and (4.2.51) into account we deduce

‖ḟ‖L2(I2×N) + ‖dḟ‖L2(I2×N) ≤ C(‖ψ̇(t)‖L2(I2×N) + ‖φ̇‖L2(I2×N))

≤ C‖V(t)‖L2(I0×N).
(4.2.54)

To proceed further observe that

q(ψ0 + ψ) = q(ψ0) + 2q(ψ0, ψ) + q(ψ)

where q(u, v) is the symmetric bilinear map associated to the quadratic map
q(u),

q(u, v) :=
1
4
(q(u + v) − q(u − v)).

Since q(ψ0) = 2 ∗ FA0 the equation (4.2.45b) can be rewritten as

(4.2.55) ASD ·
[

ia(t)
−if(t)

]
=

 1
2q(ψ) + q(ψ0, ψ)

− i
2Im〈ψ0, ψ〉 − iḟ

 .

Using interior elliptic estimates we deduce

(4.2.56) ‖(a, f)‖L1,2(I3×N) ≤ Cp

(
‖a(t)‖L2(I0×N) + ‖ψ‖L2(I2×N)

+‖ḟ‖L2(I2×N)

)
≤ C‖V(t)‖L2(I0×N).

Putting together the estimates (4.2.48) and (4.2.56) we deduce

(4.2.57) ‖V(t)‖L1,2(I3×N) ≤ C‖V(t)‖L2(I0×N), p ∈ (1, 2).

Thus, we have estimated the L1,2(I3×N)-norm of V(t) by a weaker one,
L2(I0 ×N). We iterate this procedure. Observe that the L1,2(I3 ×N)-norm
of the right-hand side of (4.2.45a) is bounded from above by the L2(I0×N)-
norm of V so, invoking the interior elliptic estimates, we deduce

‖ψ‖L2,2(I4×N) ≤ C‖V‖L2(I0×N).

Using this estimate and estimate (4.2.53) in (4.2.47) we deduce that the
L1,2(I4 ×N)-norm of the right-hand side of (4.2.47) is bounded from above
by the L2(I0×N)-norm of V. Using the interior elliptic estimates we deduce

‖a‖L2,2(I5×N) ≤ C‖V‖L2(I0×N).
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This shows

(4.2.58) ‖V‖L2,2(I5×N) ≤ C‖V‖L2(I0×N).

Differentiating (4.2.50) with respect to t we deduce that φ̇ satisfies the
elliptic equation

∂tφ̇ − DA0 φ̇ =
1
2
[DA0 , c(iȧ)]ψ +

1
2
[DA0 , c(ia)]ψ̇

− i
2

(
c(dḟ)ψ + c(df)ψ̇ + ḟφ + fφ̇

)
.

(4.2.59)

By trace results (see [79]) we deduce

‖ȧ(t)‖L1/2,2(N) ≤ C‖ȧ(t)‖L1,2(I5×N), ‖ψ̇(t)‖L1/2,2(N) ≤ C‖ψ̇(t)‖L1,2(I5×N).

Using the continuous Sobolev embeddings

L1/2,2(N) ↪→ L3(N), L1,2(N) ↪→ L6(N)

and the Hölder inequality, which produces a bounded bilinear map

L3(N) × L6(N) → L2(N), (u, v) 7→ uv,

we deduce ∥∥∥ [DA0 , c(iȧ)]ψ
∥∥∥

L2(N)

≤ C
(
‖ȧ‖L1,2(N)‖ψ‖L∞(N) + ‖ȧ‖L1/2,2(N)‖ψ‖L1,2(N)

)
≤ Cκ

(
‖V‖L2(I0×N) + ‖ȧ‖L1,2(N)

)
so that∥∥∥ [DA0 , c(iȧ)]ψ

∥∥∥
L2(I5×N)

≤ Cκ
(
‖V‖L2(I0×N) + ‖a‖L2,2(I5×N)

)
.

Using (4.2.53) and the L∞-estimates on f and ψ we deduce∥∥∥c(dḟ)ψ + c(df)ψ̇ + ḟφ + fφ̇
∥∥∥

L2(I5×N)
≤ C‖V‖L2(I0×N).

Applying the interior elliptic estimates to (4.2.59) we deduce

‖φ̇‖L1,2(I6×N) ≤ C‖V‖L2(I0×N).

Differentiating (4.2.52) with respect to t we deduce

L∗
C0

LC0if̈ + iRe〈ψ(t), ψ0〉f̈ = −iRe〈ψ̈(t), ψ0〉ḟ + 4iIm〈ψ̇(t), φ̇〉

+2iIm〈ψ̈(t), φ(t)〉 + 2iIm〈ψ, φ̈〉.
We can rewrite the last equation as

Tψ(t)(if̈) = −iRe〈ψ̈(t), ψ0〉ḟ + 4iIm〈ψ̇(t), φ̇〉

+2iIm〈ψ̈(t), φ(t)〉 + 2iIm〈ψ, φ̈〉.
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Since ‖ψ(t)‖L2,2(N) is small we deduce from Lemma 4.2.22 that for every
1 < p ≤ 2 we have

‖f̈‖L2,p(N)

≤ Cp

∥∥∥−Re〈ψ̈(t), ψ0〉ḟ + 4Im〈ψ̇(t), φ̇〉 + 2Im〈ψ̈(t), φ(t)〉 + 2Im〈ψ, φ̈〉
∥∥∥

Lp(N)
.

Now observe that

‖Re〈ψ̈(t), ψ0〉ḟ‖L3/2(N) ≤ C‖ψ̈‖L2(N)‖ḟ‖L6(N) ≤ C‖ψ̈‖L2(N)‖ḟ‖L1,2(N)

(use 4.2.53) and trace results)

≤ C‖V‖L2(I0×N)‖ψ̈‖L2(N).

Similarly

‖Im〈ψ̈(t), φ(t)〉‖L3/2(N) ≤ C‖ψ̈‖L2(N)‖φ‖L1,2(N) ≤ Cκ‖ψ̈‖L2(N).

Next observe

‖Im〈ψ̇, φ̇〉‖L3/2 ≤ C‖ψ̇‖L3(N)‖φ̇‖L3(N) ≤ C‖ψ̇(t)‖L1/2,2(N)‖φ̇‖L1/2,2(N)

(use trace results)

≤ C‖ψ̇‖L1,2(I6×N)‖φ̇‖L1,2(I6×N).

Finally

‖Im〈ψ, φ̈〉‖L3/2(N) ≤ C‖Im〈ψ, φ̈〉‖L2(N) ≤ C‖φ̈‖L2(N).

We conclude that
‖f̈‖L1,2(N) ≤ C‖f̈‖L2,3/2(N)

≤ C
(
‖V‖L2(I0×N)‖ψ̈‖L2(N) + ‖ψ̇‖L1,2(I6×N)‖φ̇‖L1,2(I6×N) + ‖φ̈‖L2(N)

)
Integrating the last inequality over I6 we deduce

(4.2.60) ‖f̈‖L2(I6×N) + ‖df̈‖L2(I6×N) ≤ C‖V‖L2(I0×N)

Now, look at the elliptic system (4.2.45a) + (4.2.47) in which the
L2,2(I6 × N)-norm of the right hand side can be estimated from above by
‖V‖L2(I0×N). Invoking the interior elliptic estimates once again we obtain
(4.2.44).

Now using trace results (see [79]) we get

‖V(τ0)‖2
L2,2(N) ≤ C‖V(t)‖2

L3,2(Ij×N) ≤ C‖V(t)‖2
L2(I0×N)

= C

∫ τ0+1

τ0−1
distL2([C(t0 + t)], [C0])2dt ≤

C

∫ τ0+1

τ0−1

(
distL2([C(t0 + t)], [C(t0 +τ0)])2 +distL2

(
[C(t0 +τ0)], [C0]

)2
)
dt

(4.2.8)

≤

C

∫ τ0+1

τ0−1

(
distL2

(
[C(t0 + τ0)], [C0]

)2 + |t− τ0|EĈ([t0 + τ0 − 1, t0 + τ0 + 1])
)
dt
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≤ C
(
distL2([C(t0 + τ0)], [C0])2 + κ6

)
.

The conclusion in Lemma 4.2.24 is now obvious. ¥

Proof of Lemma 4.2.27 Set

ξ :=
[

iaξ

ψξ

]
, U :=

[
iau

ψu

]
.

The quadratic remainder R(V) = SW (C0 + V) − AV can be expressed ex-
plicitly and, after some elementary manipulations left to the reader, we get

R(ξ + U) =

 1
2c(iaξ + iau)(ψξ + ψu)

1
2q(ψξ) + q(ψξ, ψu) + 1

2q(ψu) − ∗FA0

 ,

R(ξ) =

 1
2c(iaξ)ψξ

1
2q(ψξ) − ∗FA0

 .

Clearly
‖R(ξ + U) − R(ξ)‖L2 ≤ C‖V‖2,2‖U‖2.

The term N(V) requires a bit more work. We use the identity (4.2.20)

2N(V) = −LC0+V(if) = LC0(if) −
[

ifψ
0

]
=: LC0(if) + ϕ.

Now define Aξ := A0 + iaξ, and observe that

F := Im〈ψ, DA0ψ〉 = Im〈ψ, DAξ
ψ〉,

= Im〈ψ, DAξ
ψξ〉 + Im〈ψ, DAξ

ψu〉 = Im〈ψ, DAξ
ψu〉

We claim that

(4.2.61) ‖F‖L−1,2(N) ≤ C‖V‖2,2 · ‖U‖L2 ,

that is,
|〈F, τ〉L2 | ≤ C‖V‖2,2 · ‖U‖L2 · ‖τ‖1,2, ∀τ ∈ C∞(N).

Indeed, using the Sobolev embedding L2,2(N) ↪→ L∞(N) we deduce∣∣∣∫
N

τIm〈ψ, DAξ
ψu〉dvg

∣∣∣ ≤ C‖ψ‖L∞‖DAξ
ψu‖L−1,2‖ |τψ| ‖1,2

≤ C‖DA0ψu + c(iaξ)ψu‖L−1,2‖τ‖1,2‖ψ‖2,2

≤ C‖τ‖1,2‖ψ‖2,2

(
‖DA0ψu‖−1,2 + ‖c(iaξ)ψu‖−1,2

)
≤ C‖τ‖1,2‖V‖2,2‖U‖L2 .

The equality Tψ(if) = 2iF now implies

(4.2.62) ‖f‖1,2 ≤ C‖F‖−1,2 ≤ C(‖ψ‖∞ + ‖V‖2,2) · ‖U‖L2

so that
‖LC0+V(if)‖L2 ≤ C‖f‖1,2 ≤ C‖V‖2,2 · ‖U‖L2 .
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This proves (4.2.27b). To prove (4.2.27c) observe that

2
∣∣∣〈N(V), U±〉L2

∣∣∣ =
∣∣∣∫

N
〈LC0(if) + ϕ, U±〉dvg

∣∣∣
(L∗

C0
U± = 0)

=
∣∣∣∫

N
〈ϕ, U±〉dvg

∣∣∣ ≤ ‖ϕ‖L2‖U‖L2 ≤ ‖f‖L4‖ψ‖L4‖U±‖L2

(use the Sobolev embedding L1,2(N) ↪→ L4(N))

(4.2.62)

≤ C‖ψ‖1,2‖V‖2,2 · ‖U‖2
L2 .

This concludes the proof of Lemma 4.2.27. ¥

4.3. Moduli spaces of finite energy monopoles:
Local aspects

We have so far studied the internal structure of a single finite energy mono-
pole. We now shift the emphasis to a different structural problem. Namely,
we would like to describe some natural structures on the set of finite energy
monopoles.

This problem encompasses both a local and a global aspect. The local
aspect refers to the smoothness properties and the expected dimension of
this moduli space. The global issues we will discuss are concerned with the
compactness and orientability properties of this space.

4.3.1. Functional set-up. To analyze the possible structures on the set
of gauge equivalence classes of finite energy monopoles on a 4-manifold with
cylindrical ends we need to define an appropriate configuration space a priori
containing the set of such monopoles. Consider a cylindrical 4-manifold
(N̂ , ĝ) and a cylindrical spinc structure σ̂ on N̂ . Set σ := ∂∞σ̂. Again we
will be working under the nondegeneracy assumption (N) in 4.2.3, that the
pair (g, σ) is good.

The asymptotic analysis in the previous section suggests that it is wise
to restrict our attention to a special class of connections on det σ̂. We
will follow an approach inspired by [96, 99]. Observe first the following
consequence of the nondegeneracy assumption (N).

Lemma 4.3.1. The quantity

µ−(σ, g) := inf
{

µ−([C∞]); [C∞] ∈ Mσ

}
is strictly positive.

Exercise 4.3.1. Prove Lemma 4.3.1.
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Proposition 4.2.35 shows that it is natural to restrict our attention only
to configurations with stringent restrictions on their asymptotic behaviour.
Fix 0 < µ < µ−(σ, g) and denote by Ĉ∞

µ,ex the set of smooth configurations Ĉ

on N̂ which differ from a strongly cylindrical configuration by an L2,2
µ -term.

More precisely, along the neck Ĉ has the form

Ĉ = (ψ̂, Â) = (ψ(t), A∞ + if(t)dt + ia(t)), t ∈ R+, A∞ ∈ Aσ

and there exist ψ∞ ∈ C∞(Sσ), a∞ ∈ Ω1(N) such that

‖f‖
L2,2

µ
+ ‖a(t) − a∞‖

L2,2
µ

+ ‖ψ(t) − ψ∞‖
L2,2

µ
< ∞.

We set
∂∞Ĉ := C∞ = (ψ∞, A∞ + ia∞).

We thus have a natural projection

∂∞ : Ĉ∞
µ,ex → C∞

σ = smooth configurations on N.

As in §4.1.4, for every r ≥ 0 we can construct a right inverse

ir : C∞
σ → Ĉ∞

µ,ex

for ∂∞, ∂∞ ◦ ir = 1. The space Ĉ∞
µ,ex is equipped with a natural metric

dµ(Ĉ1, Ĉ2) := ‖∂∞Ĉ1 − ∂∞Ĉ2‖2,2 +
∥∥∥(Ĉ1 − i1∂∞Ĉ1) − (Ĉ2 − i1∂∞Ĉ2)

∥∥∥
L2,2

µ

.

We can now define1 Ĉµ,ex as the completion of Ĉ∞
µ,µ with respect to the metric

dµ. It is naturally equipped with a structure of Banach manifold. Observe
that ∂∞ extends to a smooth map

∂∞ : Ĉµ,ex → Cσ.

∂∞ is a surjective submersion.
Proposition 4.2.35 shows that for any smooth finite energy monopole Ĉ

there exists γ̂ ∈ C∞(N̂ , S1) such that γ̂ · Ĉ ∈ Ĉ∞
µ,ex. We want to prove that

the converse statement is true: any monopole Ĉ ∈ Ĉ∞
µ,ex has finite energy.

Proposition 4.3.2. Fix a smooth configuration Ĉ0 = (ψ̂0, Â0) ∈ Ĉµ,ex such
that ∫

N̂
FÂ0

∧ FÂ0
< ∞.

Then Ĉ = (ψ̂, Â) ∈ Ĉµ,ex has finite energy

E(Ĉ) :=
∫

N̂

(
|∇̂Âψ̂|2 +

1
8
|q(ψ̂)|2 + |FÂ|

2 +
ŝ

4
|ψ̂|2

)
dv(ĝ) < ∞

1This a departure from the traditional functional set-up which involves fractional Sobolev

spaces, [96, 133]. Our configurations have regularity slightly better than L2,2(N̂) because, by

definition, their asymptotic traces are not in L3/2,2(∂N̂) but in the more regular space L2,2(∂N̂).
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if and only if

E(Ĉ) :=
∫

N̂

(
|6DÂψ̂|2 +

1
2
|ĉ(F+

Â
) − 1

2
q(ψ̂)|2

)
dv(ĝ)

+2Eσ(∂∞Ĉ) +
∫

N̂
FÂ0

∧ FÂ0
< ∞

where Eσ : Cσ → R is the energy functional described in (2.4.8) of §2.4.1,
defined in terms of the reference connection A0 := ∂∞Â0. In particular, if
Ĉ ∈ Ĉ∞

µ,ex is a monopole then

E(Ĉ) := 2Eσ(∂∞Ĉ) +
∫

N̂
FÂ0

∧ FÂ0
=

∫
N̂

FÂ ∧ FÂ < ∞.

Proof Set N̂T := N̂ \ (T,∞)×N . Using the integration by parts formulæ
in Exercise 1.2.2 (in which all the inner products are real valued) we deduce∫

N̂T

|6DÂψ̂|2dv(ĝ) =
∫

∂N̂T

B6DÂ
(ψ̂, 6DA)dv(g) +

∫
N̂T

〈6D∗
Â
6DÂψ̂, ψ̂〉dv(ĝ)

(use the Weitzenböck formula)

=
∫

∂N̂T

B6DÂ
(ψ̂, 6DAψ̂)dv(g)

+
∫

N̂T

(
〈(∇̂Â)∗∇̂Âψ̂, ψ̂〉 +

s

4
|ψ̂|2 +

1
2
〈ĉ(F+

Â
)ψ̂, ψ̂〉

)
dv(ĝ)

=
∫

∂N̂T

(
B6DÂ

(ψ̂, 6DÂψ̂) − B∇̂Â(ψ̂, ∇̂Âψ̂)
)
dv(g)

+
∫

N̂T

(
|∇̂Âψ̂|2 +

s

4
|ψ̂|2 +

1
2
〈ĉ(F+

Â
), q(ψ̂)〉

)
dv(ĝ).

Denote the above boundary integral by R∂(T ). As in the proof of Proposi-
tion 2.1.4 we have

1
2

∫
N̂T

|ĉ(F+

Â
) − 1

2
q(ψ̂)|2dv(ĝ)

=
∫

N̂T

(
2|F+

Â
|2 +

1
8
|q(ψ̂)|2 − 1

2
〈ĉ(F+

Â
), q(ψ̂)〉

)
dv(ĝ).

By adding the above equalities we deduce∫
N̂T

(
|6DÂψ̂|2 +

1
2
|ĉ(F+

Â
) − 1

2
q(ψ̂)|2

)
dv(ĝ)

= R∂(T ) +
∫

N̂T

(
|∇̂Âψ̂|2 +

s

4
|ψ̂|2 + 2|F+

Â
|2 +

1
8
|q(ψ̂)|2

)
dv(ĝ)

= R∂(T ) +
∫

N̂T

(
|∇̂Âψ̂|2 +

s

4
|ψ̂|2 + |FÂ|

2 +
1
8
|q(ψ̂)|2

)
dv(ĝ)
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−
∫

N̂T

FÂ ∧ FÂ.

Using Exercise 1.2.2 we deduce

R∂(T ) =
∫

∂N̂T

(
〈Jψ̂, 6DÂψ̂〉 − 〈ψ, ∇̂Â

t ψ̂〉
)
dv(g)

(A(T ) := Â |∂N̂T
)

=
∫

∂N̂T

(
〈Jψ̂, J(∇̂Â

t − DA(T ))ψ̂〉 − 〈ψ, ∇̂Â
t ψ̂〉

)
dv(g)

= −
∫

∂N̂T

〈ψ, DA(T )ψ̂〉dv(g).

On the other hand, we can write FÂ = FÂ0
+ d̂(Â − Â0) so that

FÂ ∧ FÂ = FÂ0
∧ FÂ0

+ d̂
(
(Â − Â0) ∧ (FÂ + FÂ0

)
)
.

Thus ∫
N̂T

FÂ ∧ FÂ =
∫

∂N̂T

(Â − Â0) ∧ (FÂ + FÂ0
) +

∫
N̂T

FÂ0
∧ FÂ0

so that if we set C(T ) := Ĉ |∂N̂T
we deduce∫

N̂T

(
|6DÂψ̂|2 +

1
2
|ĉ(F+

Â
) − 1

2
q(ψ̂)|2

)
dv(ĝ)

=
∫

N̂T

(
|∇̂Âψ̂|2 +

s

4
|ψ̂|2 + |FÂ|

2 +
1
8
|q(ψ̂)|2

)
dv(ĝ)

−2Eσ(C(T )) −
∫

N̂T

FÂ0
∧ FÂ0

.

The first part of the proposition now follows by letting T → ∞.
The second part is an immediate consequence of the above proof and

the fact that ∂∞Ĉ = (ψ∞, A∞) is a monopole so that DA∞ψ∞ = 0. ¥

We now need to define an appropriate gauge group. Set

Ĝµ,ex :=
{

γ̂ ∈ L3,2
µ,ex(N̂ , C); |γ̂(p)| = 1 ∀p ∈ N̂

}
.

Observe that
Ĝµ,ex · Ĉµ,ex ⊂ Ĉµ,ex.

We can now define a metric dµ on Ĝµ,ex by setting

dµ(γ̂1, γ̂2) := ‖∂∞γ̂1 − ∂∞γ̂2‖3,2

+‖(γ̂1(t) − i0∂∞γ̂1) − (γ̂2 − i0∂∞γ̂2)‖L3,2
µ (R+×N)

.
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Ĝµ,ex equipped with the above metric becomes a topological group and we
have a continuous group morphism

∂∞ : Ĝµ,ex → Gσ.

Proposition 4.3.3. Ĝµ,ex is a Hilbert Lie group and T1Ĝµ,ex
∼= L3,2

µ,ex(N̂ , iR).

Exercise 4.3.2. Prove the above proposition.

The group Ĝµ,ex may not be connected. Its group of components is
isomorphic to H1(N̂ , Z). Since the map

H1(N̂ , Z) → H1(N, Z) = the group of components of Gσ

may not be onto, the morphism

∂∞ : Ĝµ,ex → Gσ

may not be onto. It becomes onto if we restrict to the identity components
of the two groups. We will indicate these components by the superscript 1.

Lemma 4.3.4. The morphism ∂∞ : Ĝ1
µ,ex → G1

σ admits a natural right
inverse

E : G1
σ → Ĝ1

µ,ex, exp(if) 7→ exp(ii0f).

We will denote by Ĝµ the kernel and by G∂
σ the image of the morphism

∂∞ : Ĝµ,ex → Gσ so that

Gσ/G∂
σ
∼= H1(N, Z)/H1(N̂ , Z).

Fix Ĉ0 = (ψ̂, Â) ∈ Ĉµ,ex and set C∞ := ∂∞Ĉ0, G∞ := Stab (C∞). Define

S∞ := {Ċ ∈ TC∞Cσ; L∗
C∞Ċ = 0}.

Fix a tiny neighborhood U∞ of 0 ∈ S∞ such that every Gσ orbit inter-
sects C∞ + U∞ along at most one G∞-orbit. We deduce that any G∂

σ-orbit
intersects U∞ along at most one G∞-orbit. Set

Û∞ := ∂−1
∞ (C∞ + U∞).

We see that any Ĝσ-orbit intersects Û∞ along at most one orbit of the
group Ĝµ,ex(C∞) := ∂−1

∞ (G∞). Thus, the problem of understanding the
local structure of Ĉµ,ex/Ĝµ,ex is equivalent to the problem of understanding
the local structure of

Û∞/Ĝµ,ex(C∞).

Observe that Ĝµ,ex(C∞) is a commutative Hilbert Lie group with Lie algebra

T1Ĝµ,ex(C∞) = {if ∈ L3,2
µ,ex; ∂∞(if) ∈ T1G∞}.
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Observe that there is a natural action of Ĝµ,ex(C∞) on ∂−1
∞ (C∞)×U∞ defined

by
γ̂ · (Ĉ, C∞ + Ċ) :=

(
γ̂ · Ĉ , C∞ + (∂∞γ̂) · Ċ

)
.

The following result should be obvious.

Lemma 4.3.5. The natural map

∂−1
∞ (C∞) × U∞ → Û∞, (Ĉ, Ċ) 7→ Ĉ + i0Ċ

is a Ĝµ,ex(C∞)-equivariant diffeomorphism.

The last lemma reduces the structure problem to understanding the quo-
tient ∂−1

∞ (C∞)/Ĝµ,ex(C∞). Observe now that ∂−1
∞ (C∞) is a smooth Hilbert

manifold modeled by L2,2
µ (S+

σ̂ ⊕ iT ∗N̂). The group Ĝµ,ex(C∞) acts smoothly
on this manifold and, as in the closed case, we can define the infinitesimal
action

LĈ0
: T1Ĝµ,ex(C∞) → TĈ0

∂−1
∞ (C∞), if 7→ d

ds
|s=0 esif · Ĉ0.

Set
ŜĈ0

:= {Ĉ ∈ TĈ0
∂−1
∞ (C∞); L

∗µ

Ĉ0
Ĉ = 0}

where ∗µ denotes the L2
µ-adjoint as in §4.1.4. Set Ĝ0 := Stab (Ĉ0). Notice

that the induced map Ĝ0 → G∞ is one-to-one.
Let us first observe an immediate consequence of the Lockhart-McOwen

Theorem 4.1.16.

Lemma 4.3.6. There exists µ0 = µ0(σ, g) ∈ (0, µ−(σ, g)] such that the
operator

(d̂ + d̂∗µ) : L1,2
µ (ΛT ∗N̂) → L1,2

µ (ΛT ∗N̂)
is Fredholm for every 0 < µ < µ0(σ, g).

(4.3.1) In the sequel we will always assume 0 < µ < µ0(σ, g).

Proposition 4.3.7. There exists a small Ĝ0-invariant neighborhood V̂ of
0 ∈ ŜĈ0

such that every orbit of Ĝµ,ex(C∞) intersects Ĉ0 + V along at most
one Ĝ0-orbit.

Proof We will follow the strategy used in the proof of Proposition 2.2.7
in §2.2.2. Consider

F : Ĝµ,ex(C∞) × ŜĈ0
→ ∂−1

∞ (C∞)

defined by
F(γ̂; ψ̂, iâ) = (γ̂(ψ̂0 + ψ̂), Â0 + iâ − 2d̂γ̂/γ̂).
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We have the following counterpart of Lemma 2.2.8.

Lemma 4.3.8. There exists a Ĝ0-invariant neighborhood W of (1, 0) ∈
Ĝµ,ex(C∞) × ŜĈ0

with the following properties.

• P1 The restriction of F to W is a submersion. In particular, F(W ) is an
open neighborhood of Ĉ0 in ∂−1

∞ (C∞).

• P2 Each fiber of the map F : W → F(W ) consists of a single Ĝ0-orbit.

Proof of Lemma 4.3.8 We will use the implicit function theorem. The
differential of F at (1, 0) is the bounded linear map

DF : T1Ĝµ,ex(C∞) × ŜĈ0
→ TĈ0

∂−1
∞ (C∞)

described by

(if̂ , ψ̂, iâ) 7→ (if̂ ψ̂0 + ψ̂) ⊕ (iâ − 2id̂f̂) = LĈ0
(if̂) + ψ̂ ⊕ iâ.

We want to prove that DF is surjective and kerDF ∼= T1Ĝ0.

• kerDF ∼= T1Ĝ0. If (if̂ , ψ̂, iâ) ∈ kerDF then L
∗µ

Ĉ0
(ψ̂ ⊕ iâ) = 0 so that

0 = L
∗µ

Ĉ0
DF(if̂ , ψ̂, iâ) = L

∗µ

Ĉ0
(LĈ0

(if̂) + ψ̂ ⊕ iâ) = L
∗µ

Ĉ0
LĈ0

(if̂).

Thus,

0 =
∫

N̂T

〈L∗µ

Ĉ0
LĈ0

(if̂), if̂〉m2µdv(ĝ) =
∫

N̂T

〈L∗
Ĉ0

m2µLĈ0
(if̂), if̂〉dv(ĝ)

=
∫

N̂T

|LĈ0
(if̂)|2m2µdv(ĝ) ±

∫
∂N̂T

(f̂
d

dt
f̂)m2µ(T )dv(g).

By letting T → ∞ we obtain

0 =
∫

N̂
|LĈ0

(if̂)|2m2µdv(ĝ)

so that if̂ ∈ kerLĈ0

∼= T1Ĝ0. This equality forces ψ̂ = 0 and â = 0.

• Surjectivity We need the following technical result. Its proof will be
presented after we complete the proof of Lemma 4.3.8.

Lemma 4.3.9. The range of the bounded linear operator

LĈ0
: {if̂ ∈ L1,2

µ,ex(M, iR); ∂∞if̂ ∈ T1G∞} → L2
µ(S+

σ̂ ⊕ iT ∗N̂)

is closed.

If we assume the lemma then we deduce that any ψ̂⊕iâ ∈ L2
µ(S+

σ̂ ⊕iT ∗N̂)
decomposes L2

µ-orthogonally as

ψ̂ ⊕ iâ = LC∞(if̂) + ψ̂ ⊕ iâ

where L
∗µ

Ĉ0
(ψ̂ ⊕ iâ) = 0 and if̂ is unique up to an element of kerLĈ0

.



370 4. Gluing Techniques

Lemma 4.3.10. If
ψ̂ ⊕ iâ ∈ L2,2

µ

then
if̂ ∈ L3,2

µ,ex.

Observe that if ψ̂ ⊕ iâ ∈ L2,2
µ then Lemma 4.3.10 implies ψ̂ ⊕ iâ ∈ L1,2

µ ,
thus proving the surjectivity of DF.

Proof of Lemma 4.3.10 Observe that f∞ := ∂∞f̂ is a constant function
on N and thus extends in an obvious fashion to N̂ . Set

f̂0 := f̂ − f∞.

We use the equality

L
∗µ

C0
LC0(if̂0) = u := L

∗µ

C0
(ψ̂ ⊕ iâ) − L

∗µ

C0
LC0f∞ ∈ L1,2

µ .

Along a cylinder [T − 2, T + 2] × N , T > 3, we have

L
∗µ

C0
LC0(if̂0) =

(
L∗

Ĉ0
LĈ + 2µLĈ0

)
(if̂0) = u

so that using interior elliptic estimates we deduce

‖f̂0‖L3,2((T−1,T+1)×N) ≤ C
(
‖f̂0‖L2((T−2,T+2)×N) + ‖u‖L1,2((T−2,T+2)×N)

)
≤ Ce−µT

(
‖eµtf̂0(t)‖L2((T−2,T+2)×N) + ‖eµtu(t)‖L1,2((T−2,T+2)×N)

)
.

Thus
‖eµtf̂0‖L3,2((T−1,T+1)×N) ≤ CeµT ‖f̂0‖L3,2((T−1,T+1)×N)

≤ C
(
‖eµtf̂0(t)‖L2((T−2,T+2)×N) + ‖eµtu(t)‖L1,2((T−2,T+2)×N)

)
.

If we now square the above inequality and then sum over T = 2, 3, · · · we
obtain an estimate of the L3,2

µ -norm of f̂0 in terms of the L1,2
µ -norm of u and

the weaker L2
µ-norm of f̂0. This completes the proof of the claim. ¥

We can now apply the implicit function theorem to conclude that there
exists an open neighborhood W of (1, 0) ∈ Ĝµ,ex(C∞) × ŜĈ0

such that the
restriction of F to W is a submersion. Since kerD(1,0)F ∼= T1Ĝ0 we deduce
that the fibers of F : W → F(W ) are smooth manifolds of dimension dim Ĝ0.
In particular, if Ĝ0 = 1 then F is a local diffeomorphism.

Suppose Ĝ0 = S1 so that ψ̂0 = 0. We have to prove that each fiber
of F : W → F(W ) consists of a single Ĝ0-orbit. Let F(exp(if̂1); ψ̂1, iâ1) =
F(exp(if̂2); ψ̂2, iâ2), i.e.

exp(if̂)ψ̂1 = ψ̂2, â1 − â2 = 2d̂f̂
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where f̂ := f̂1 − f̂2. Since (ψ̂j , iâj) ∈ SĈ0
we deduce

L
∗µ
Ĉ0

(ψ̂j , iâj) = 0 ⇐⇒ d̂∗µ âj = 0.

This implies
d̂∗µ d̂f̂ = 0.

Using again an integration by parts argument as before (over N̂T , T → ∞)
we conclude d̂f̂ = 0, which leads to the desired conclusion. This concludes
the proof of Lemma 4.3.8. ¥

Proof of Lemma 4.3.9 Suppose we are given

f̂n ∈ L1,2
µ,ex, ∂∞f̂n ∈ T1G∞

such that

(4.3.2) LĈ0
(if̂n)

L2
µ−→ (ψ̂, iâ), n → ∞.

We have to show there exists

if̂ ∈ L1,2
µ,ex, ∂∞f̂ ∈ T1G∞

such that
LĈ0

(if̂) = (ψ̂, iâ).

First of all, observe that it suffices to consider only the case

∂∞f̂n = 0.

Indeed, we can write
f̂n = f̂0

n + ∂∞f̂n

and

LĈ0
(if̂n) = LĈ0

(if̂0
n) + LĈ0

(i∂∞f̂n) = LĈ0
(if̂0

n) + (exp(i∂∞f̂n)ψ̂0, 0).

A subsequence of ∂∞f̂n converges modulo 2πZ to a constant ω and clearly

(exp(iω)ψ̂0, 0) = LĈ0
(iω).

Thus, it suffices to consider only the situation f̂n ∈ L1,2
µ . The condition

(4.3.2) implies

df̂n

L2
µ−→ −â.

Now observe that we have the following

A priori estimate There exists C > 0 such that

(4.3.3) ‖ĝ‖
L1,2

µ (R+×N)
≤ C‖d̂ĝ‖L2

µ(R+×N),

∀ĝ ∈ L2
µ(R+ × N) ∩ L1,2

loc(R+ × N).
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To prove the above inequality we will use a trick2 in [151, Prop. (2.39)].
Observe first that we only need to prove a L2

µ-bound for ĝ since

‖ĝ‖2
L1,2

µ
= ‖ĝ‖2

L2
µ

+ ‖d̂ĝ‖2
L2

µ
.

Set b̂ := d̂ĝ and observe that
d

dt
ĝ = ∂t b̂

which implies

|ĝ(t)| = |ĝ(t) − ĝ(∞)| ≤
∫ ∞

t
|b̂(s)|ds.

Thus ∫ ∞

0
|ĝ(t)|2e2µtdt ≤

∫ ∞

0

(∫ ∞

t
|b̂(s)|ds

)2
e2µtdt

(use the Cauchy-Schwarz inequality for the interior integral, 0 < ν < µ)

≤
∫ ∞

0

(∫ ∞

t
|b̂(s)|2e2νsds

)(∫ ∞

t
e−2νsds

)
e2µtdt

=
1
2ν

∫ ∞

0

(∫ ∞

t
|b̂(s)|2e2νsds

)
e2(µ−ν)tdt

(switch the order of integration)

=
1
2ν

∫ ∞

0

(∫ s

0
e2(µ−ν)tdt

)
|b̂(s)|2e2νsds

=
1
2ν

∫ ∞

0

1
2(µ − ν)

(
e2(µ−ν)s − 1

)
|b̂(s)|2e2νsds

=
1

4ν(µ − ν)

(∫ ∞

0
|b̂(s)|2e2µsds −

∫ ∞

0
|b̂(s)|2e2νsds

)
≤ 1

4ν(µ − ν)

(∫ ∞

0
|b̂(s)|2e2µsds

)
.

To obtain the a priori estimate we only need to integrate the above inequality
over N . ¥

Using (4.3.3) we deduce

‖f̂n − f̂m‖
L1,2

µ (R×N)
≤ C‖ân − âm‖L2

µ(R+×N), ∀n, m > 0.

Since (ân) is L2
µ-Cauchy sequence we deduce that (f̂n) converges in the L1,2

µ -
norm to f̂ satisfying (weakly) the differential equation

d̂f̂ = −â.

This shows LĈ0
(if̂) = (ψ̂, iâ), which concludes the proof of Lemma 4.3.9. ¥

2I am indebted to Stephen Bulloch for drawing my attention to this trick.
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Remark 4.3.11. (a) Observe that if ĝ ∈ L1,2
loc(N̂) is such that d̂ĝ ∈ L2

µ then
the above proof shows that ĝ ∈ L2

ex(N̂) and

‖ĝ − ∂∞ĝ‖L2
µ
≤ C‖d̂ĝ‖L2

µ
.

This is essentially the content of the key technical result [132, Lemma 5.2]
proved there by entirely different means.
(b) Suppose Ê → N̂ is a Hermitian vector bundle equipped with a cylindrical
structure (ϑ̂, ∇̂0). Fix µ > 0. The above proof shows that there exists a
positive constant C with the following property: for every u ∈ L2(Ê) such
that ∇̂0u ∈ L2

µ(T ∗N̂ ⊗ Ê) we have ‖û‖L2
µ
≤ C‖∇̂0û‖L2

µ
. Iterating the above

procedure to the bundles T ∗N̂⊗k ⊗ Ê we deduce

(4.3.4) ‖û‖L2
µ
≤ Ck‖(∇̂0)⊗kû‖L2

µ

for all û ∈ L2(Ê).

Exercise 4.3.3. Prove the claims in the above remark.

∗ ∗ ∗

We can now complete the proof of Proposition 4.3.7. We need to prove
that there exists a small Ĝ0-invariant neighborhood V̂ of 0 ∈ ŜĈ0

such that

every Ĝµ,ex(C∞)-orbit intersects Ĉ0 + V̂ along at most one orbit. In other
words, we need to prove that, for V̂ as above, each fiber of the map

F : Ĝµ,ex(C∞) × V̂ → ∂−1
∞ (C∞)

consists of a single Ĝ0-orbit. Observe that according to Lemma 4.3.8 this
statement is true for the restriction of F to a Ĝ0-invariant neighborhood
Û0 × V̂0 of (1, 0) ∈ Ĝµ,ex(C∞) × ŜĈ0

. We will argue by contradiction.

Suppose there exist sequences (ψ̂n, iân), (φ̂n, ib̂n) ∈ V̂0 and γ̂n ∈ Ĝµ,ex(C∞)
with the following properties.

(4.3.5) (ψ̂n, iân), (φ̂n, ib̂n) → 0 in L2,2
µ .

(4.3.6) Ĉ0 + (ψ̂n, iân) = γ̂n · (Ĉ0 + (φ̂n, ib̂n)), ∀n.

We will show that γ̂n ∈ Ĝ0, ∀n À 0. We will rely on the following auxiliary
result.

Lemma 4.3.12. γ̂n belongs to the identity component of Ĝµ,ex(C∞) for all
n À 0.
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Let us first show why this result implies γ̂n ∈ Ĝ0 for all n À 0. Using
Lemma 4.3.12 we can write

γ̂n = exp(if̂n), f̂n ∈ L3,2
µ,ex.

We can also assume that the constant function fn := ∂∞f̂n lies in the interval
[0, 2π]. By extracting a subsequence we can assume

fn → f∞.

Using (4.3.6) we deduce

(4.3.7) d̂(f̂n − fn) = b̂n − ân.

The a priori estimate (4.3.3) implies

‖f̂n − fn‖L1,2
µ

≤ C‖b̂n − ân‖L2
µ
→ 0.

The equality (4.3.7) also implies

‖d̂(f̂n − fn)‖
L2,2

µ
≤ ‖b̂n − ân‖L2,2

µ
.

We conclude that f̂n converges in L3,2
µ,ex to the constant function f̂∞ ≡ f∞.

Using (4.3.6) we deduce

exp(if̂∞) · Ĉ0 = Ĉ0

so that exp(if̂∞) ∈ Ĝ0. This proves that, for large n, γ̂n lies in the
Ĝ0-invariant neighborhood Û0 of 1 ∈ Ĝµ,ex(C∞). Thus, for all n À 0
(1, (ψ̂n, iân)) and (γ̂n, (ψ̂n, ib̂n)) lie in the same fiber of the restriction of
F to Û0 × V̂0. This shows γ̂n ∈ Ĝ0, thus completing the proof of Proposition
4.3.7. ¥

Proof of Lemma 4.3.12 The equality (4.3.6) shows that

‖(d̂γ̂n)/γ̂n‖L2
µ
→ 0

so that it suffices to prove that there exists c > 0 such that

(4.3.8)
∥∥∥ d̂γ̂

γ̂

∥∥∥
L2

µ

≥ c

for all γ̂ ∈ Ĝµ,ex(C∞) which do not lie in the component of 1.

Observe that Ωγ̂ := (d̂γ̂)/γ̂ is closed and γ̂ lies in the identity component
of Ĝµ,ex(Ĉ∞) if and only if there exists f̂ ∈ L3,2

µ such that

Ωγ̂ := id̂f̂ .

Set
Iγ̂ : L1,2

µ (N̂) → R, f̂ 7→ ‖Ωγ̂ + id̂f‖L2
µ
.
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This functional is smooth, strictly convex, and coercive, i.e.

Iγ̂(f̂) → ∞ as ‖f̂‖
L1,2

µ
→ ∞.

(The coercivity is a consequence of (4.3.3).) The variational principle [19,
III.20] (or [105, Prop. 9.3.16]) implies there exists a unique f̂γ̂ ∈ L1,2

µ such
that

‖Ωγ̂ + id̂f̂γ̂‖L2
µ

= min Iγ̂ .

f̂γ̂ is characterized by the variational equation

d̂∗µ d̂f̂γ̂ = id̂∗µΩγ̂ .

Arguing exactly as in the proof of Lemma 4.3.10 we deduce f̂γ̂ ∈ L3,2
µ . Set

[γ̂] := exp(if̂γ̂)γ̂, [Ωγ̂ ] := Ω[γ̂].

Observe [γ̂] is in the same component as γ̂ but

‖ [Ωγ̂ ] ‖L2
µ
≤ ‖Ωγ̂‖L2

µ
.

Notice also that the assumption (4.3.1) implies that [Ωγ̂ ] lies in the finite-
dimensional kernel of the Fredholm operator

(d̂ + d̂∗µ) : L1,2
µ (iΛ∗T ∗N̂) →: L2

µ(iΛ∗T ∗N̂).

The set
{[Ωγ̂ ]; γ̂ ∈ Ĝµ,ex(C∞)}

is an Abelian subgroup S of ker(d̂ + d̂∗µ) isomorphic to the discrete group
of components of Ĝµ,ex(C∞). The constant c in (4.3.8) is given by

inf{‖s‖L2
µ
; s ∈ S \ {0} } > 0. ¥

It is now time to put together the results we proved so far to describe
a topology on the set Ĉµ,ex/Ĝµ,ex. The results we proved so far amount es-
sentially to a “straightening statement”: each orbit has an open invariant
neighborhood equivariantly diffeomorphic to an open invariant neighbor-
hood of the zero section of a Ĝµ,ex-equivariant vector bundle over Ĝµ,ex. Let
us provide the details.

Fix Ĉ0 ∈ Ĉµ,ex and set C∞ := ∂∞Ĉ0. To describe a neighborhood of
Ĝµ,ex · Ĉ0 we need to fix several objects.

• A small open neighborhood U∞ of 0 ∈ SC∞ such that every Gσ-orbit
intersects C∞ + U∞ along at most one G∞-orbit.

• A small open neighborhood V̂ of 0 ∈ ŜĈ0
such that every Ĝµ,ex(C∞)-orbit

on ∂−1
∞ (C∞) intersects Ĉ0 + V̂ along at most one Ĝ0-orbit. Set

Û0 := Û0(V̂ , U∞) = V̂ + i0U∞
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where i0 : Cσ → Ĉµ,ex is the extension map defined as in §4.1.4.

Lemma 4.3.13. The set Ŵ := Ĝµ,ex ·Û0 is an open neighborhood of Ĝµ,ex ·Ĉ0

in Ĉµ,ex.

Sketch of proof Since Ŵ is Ĝµ,ex-invariant it suffices to show that there
exists an open neighborhood V of Ĉ0 such that Ŵ = Ĝµ,ex · V̂. To construct
the neighborhood V̂ we consider as in Lemma 4.3.8 a map

F : Ĝµ,ex × Û0 → Ĉµ,ex, F(γ̂; ψ̂, iâ) = (γ̂(ψ̂0 + ψ̂), Â0 + iâ − 2d̂γ̂/γ̂).

Using the implicit function theorem (whose applicability can be established
using the same arguments as in the proof of Lemma 4.3.8) we can then show
there exists a neighborhood N̂ of 1 ∈ Ĝµ,ex such that the restriction of F to
N̂ × Û0 is a submersion. Then V̂ := F(N̂ × Û0) is an open neighborhood of
Ĉ0 in Ĉσ̂,µ and Ŵ = Ĝµ,ex · V̂. ¥

There is a tautological left Ĝµ,ex-action on Ĝµ,ex× Û0 and the above map
F is Ĝµ,ex-equivariant. Observe that the group Ĝ0 acts freely on Ĝµ,ex × Û0

by
γ̂0 · (γ̂, Ĉ) := (γ̂ · γ̂−1

0 , γ̂0 · Ĉ)

∀γ̂0 ∈ Ĝ0, γ̂ ∈ Ĝµ,ex, Ĉ ∈ Û0. This action commutes with the above Ĝµ,ex ac-
tion and, moreover, F is Ĝ0-invariant. We let the reader check the following
fact.

Exercise 4.3.4. Each fiber of F consists of a single Ĝ0-orbit.

We deduce the following local linearization statement.

Proposition 4.3.14. The induced map

F : (Ĝµ,ex × Û0)/Ĝ0 → Ŵ

is a Ĝµ,ex-equivariant diffeomorphism.

A neighborhood of (1, 0) ∈
(
(Ĝµ,ex× Û0)/Ĝ0

)
/Ĝµ,ex is homeomorphic to

Û0/Ĝ0. This has the following consequence.

Corollary 4.3.15. A neighborhood of Ĉ0 in Ŵ/Ĝµ,ex (equipped with the
quotient topology) is homeomorphic to Û0/Ĝ0.

Sometimes it is convenient to have a based version of this result. Fix a
base point ∗ ∈ N and form the groups

Gσ(∗) := {γ ∈ Gσ; γ(∗) = 1}
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and
Ĝµ,ex(∗) := ∂−1

∞ (Gσ(∗)).
Using the short exact sequence

1 ↪→ Ĝµ,ex(∗) ↪→ Ĝµ,ex ³ S1 → 1

(where the second arrow is given by γ̂ 7→ ∂∞γ̂(∗)) we obtain a fibration

Ĝµ,ex(∗) Ĝµ,ex × Û0

S1 × Û0.

y w

uu
p

The projection p is Ĝ0-equivariant and we get a fibration

Ĝµ,ex(∗) (Ĝµ,ex × Û0)/Ĝ0

(S1 × Û0)/Ĝ0.

y w

uu
p

The last diagram has the following consequence.

Corollary 4.3.16. The based gauge group Ĝµ,ex(∗) acts freely on Ĉσ̂,µ and
the quotient is naturally a smooth Banach manifold equipped with a smooth
S1-action. A neighborhood of Ĉ0 in this based quotient is S1-equivariantly
diffeomorphic to

(S1 × Û0)/Ĝ0.

Moreover, we have a natural homeomorphism

Ĉσ̂,µ/Ĝµ,ex
∼=

(
Ĉσ̂,µ/Ĝµ,ex(∗)

)
/S1.

The asymptotic boundary map ∂∞ : Ĉσ̂,µ → Cσ fits nicely in this picture.
Observe first that

∂∞(γ̂ · Ĉ) = (∂∞γ̂) · (∂∞Ĉ), ∀γ̂ ∈ γ̂µ(∗)
and thus we get a smooth map

(4.3.9) ∂∞ : Ĉσ̂,µ/Ĝµ,ex(∗) → Cσ/G∂
σ(∗).

This map is locally described by

∂∞ : Û0 → U∞

which is clearly a submersion. Observe also that the map (4.3.9) is onto.
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4.3.2. The Kuranishi picture. The ambient configuration space

Ĉµ,ex/Ĝµ,ex

has a rich local and infinitesimal structure. We now want to analyze whether
the set of gauge equivalence classes of finite energy monopoles has a natural
local structure compatible in a natural way with the local structure of the
ambient space.

We first need to define the appropriate functional set-up for the Seiberg-
Witten map (whose zeros will be our finite energy monopoles). To construct
such a set-up we will rely on the nondegeneracy assumption (N). Denote
by Zσ ⊂ Cσ the set of 3-monopoles on N . The nondegeneracy assumption
implies that Zσ is a Banach manifold.

Define
Ĉµ,sw := ∂−1

∞ (Zσ)

and
Ŷµ := L1,2

µ (Ŝ−
σ̂ ⊕ iΛ2

+T ∗N̂).

Observe that Ĉµ,sw is a smooth Ĝµ,ex-invariant submanifold of Ĉµ,ex.
At this point we want to draw the attention to a very confusing fact

having to do with the cylindrical structure of iΛ2
+T ∗N̂ described in Example

4.1.24 of §4.1.6. Recall that along the neck R+ × N we have the bundle
isometry

I : Λ2
+T ∗N̂

∼=→ π∗Λ1T ∗N, ω 7→
√

2 t ω

where π is the natural projection R × N → N .
The following fact indicates that, for essentially metric reasons, we have

to be very careful how we interpret the term q(ψ), as an endomorphism or
as a differential form.

Exercise 4.3.5. (a) Show that if e1, e2, e3 is a local oriented orthonormal
frame of T ∗N then for every ψ ∈ Γ(Sσ) we have

c−1(q(ψ)) =
1
2

∑
i

〈ψ, c(ei)ψ 〉ei.

(b) Show that for every t > 0 and every ψ̂ ∼ (ψ(t)) ∈ Γ(Ŝ+
σ̂ ) ∼= Γ(π∗Sσ)

√
2I

(
ĉ−1

(
q(ψ̂)

))
|t×N= c−1

(
q(ψ(t))

)
.

Hint for (b): Use part (a) and the identity in Exercise 1.3.2.

The Seiberg-Witten equations define a natural map

ŜW : Cµ,sw → Ŷµ, (ψ̂, Â) 7→ 6DÂψ̂ ⊕
(√

2(F+

Â
− 1

2
ĉ−1(q(ψ̂))

)
.
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Using Exercise 4.3.5 the reader can immediately check that indeed ŜW (Ĉ) ∈
Ŷµ for all Ĉ ∈ Ĉµ,sw and that ŜW is twice continuously differentiable. Set

M̂µ := ŜW
−1

(0)/Ĝµ,ex, M̂µ(∗) := ŜW
−1

(0)/Ĝµ,ex(∗).

We want to analyze the local structure of M̂µ and M̂µ(∗).
Suppose Ĉ0 is a smooth finite energy monopole. The results in §4.2.4

show that, modulo a L3,2
loc-gauge transformation, we can assume Ĉ0 ∈ Ĉµ,sw.

Denote by ŜW Ĉ0
the linearization of ŜW at Ĉ0. We obtain a differential

complex

(K̂Ĉ0
) 0 → T1Ĝµ,ex

1
2
LĈ0−→ TĈ0

Ĉµ,sw

ŜW Ĉ0−→ T0Yµ → 0.

Proposition 4.3.17. The complex K̂Ĉ0
is Fredholm.

Proof Let us first introduce a bit of terminology. A Hilbert complex is a
differential complex

0 → H0
d→ H1

d→ H2 → · · ·
in which the spaces of cochains Hi are Hilbert spaces and the differentials
are bounded linear maps. A Fredholm complex is a Hilbert complex with
finite-dimensional cohomology. (For more on Hilbert complexes we refer to
[20].) The following result is left to the reader as an exercise.

Lemma 4.3.18. Suppose

0 → (C0, d0)
f→ (C1, d1)

g→ (C2, d2) → 0

is a short exact sequence of Fredholm complexes where the morphisms f and
g are bounded linear maps with closed ranges. If two of the complexes are
Fredholm then so is the third and, moreover,

χ(C1, d1) = χ(C0, d0) + χ(C2, d2)

where χ denotes the Euler-Poincaré characteristic of the associated Z-graded
cohomology space.

The complex (K̂Ĉ0
)fits in a short exact sequence

(E) 0 → F
i

↪→ K̂Ĉ0

∂∞−→ B → 0

defined as follows.

• F = FĈ0
:

(F )

0 ↪→ L3,2
µ (N̂ , iR) = T1Ĝµ

LĈ0−→ L2,2
µ (Ŝ+

σ̂ ⊕ iT ∗N̂) = TĈ0
∂−1
∞ (C∞)

ŜW Ĉ0−→ Ŷµ → 0.
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• B = B(Ĉ0):

(B) 0 → T1Gσ

1
2
LC∞−→ TC∞Zσ → 0 → 0.

Denote by d(C∞) the dimension of the component of Mσ containing C∞.
We leave the reader to check the following elementary facts.

Exercise 4.3.6. (a) Prove that (E) is exact and the maps i and ∂∞ have
closed ranges.
(b) Prove that B is Fredholm and χ(B) = dimStab(C∞) − d(C∞).

We see that Proposition 4.3.17 is a consequence of the following result.

Lemma 4.3.19. The differential complex F is Fredholm if 0 < µ < µ0(σ, g).

Proof The arguments in the proof of Lemma 4.3.9 (especially the estimate
(4.3.3)) show that the differential LĈ0

in F has closed range if
0 < µ < µ0(σ, g). Moreover ker LĈ0

= T1Stab (Ĉ0). Thus it suffices to
show that

ŜW : L2,2
µ (Ŝ+

σ̂ ⊕ iT ∗N̂) → Ŷµ

has closed, finite codimensional range and dim
(
ker ŜW Ĉ0

/Range (LĈ0
)
)

<
∞.

Using Lemma 4.3.10 we deduce that any Ĉ ∈ L2,2
µ (Ŝ+

σ̂ ⊕ iT ∗N̂) decom-
poses uniquely as

Ĉ = Ĉ0 + Ĉ
⊥

where
Ĉ
⊥ ∈ Range (LĈ0

) ⊂ ker ŜW Ĉ0

and
Ĉ0 ∈ L2,2

µ (Ŝ+
σ̂ ⊕ iT ∗N̂), L

∗µ

Ĉ0
Ĉ0 = 0.

Thus it suffices to show that the operator

T̂Ĉ0,µ := ŜW Ĉ0
⊕ 1

2
L
∗µ

Ĉ0
: L2,2

µ (Ŝ+
σ̂ ⊕ iT ∗N̂) → Ŷµ ⊕ L1,2

µ (N, iR)

is Fredholm. To do so, we will rely on Lockhart-McOwen Theorem 4.1.16.

Let us first observe that T̂Ĉ0,µ is an a-APS operator. Set

Ĉ0 = (ψ̂0(t), Â0), C∞ := (ψ∞, A∞) = ∂∞Ĉ0

and

Ĉ =

 ψ(t)

idt ∧ u(t) + ia(t)

 ∈
L2,2

µ (Ŝ+
σ̂ )

⊕
L2,2

µ (iT ∗(R+ × N))
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Along the neck we can write Â0 = A∞ + idt∧ v(t) + ia(t), v, a ∈ Lk,2
µ for all

k ∈ Z+, 0 < µ < µ0. The operator ŜW Ĉ0
⊕ 1

2L
∗µ

Ĉ0
has the form(

ŜW Ĉ0
⊕ 1

2
e−2µtL∗

Ĉ0
e2µt

)(
ψ(t) ⊕ idt ∧ u(t) + ia(t)

)

=


6DÂ0

ψ(t) + 1
2 ĉ

(
idt ∧ u(t) + ia(t)

)
ψ̂0

√
2d̂+( idt ∧ u(t) + ia(t) ) − 1√

2
ĉ−1

(
q̇( ψ̂0, ψ )

)
−id̂∗

(
dt ∧ u(t) + a(t)

)
+ 2iµu(t) − i

2Im〈 ψ̂0, ψ 〉


(use Exercise 4.3.5 and the computations in Example 4.1.24)

=


J 0 0

0 1 0

0 0 1




∇̂0

t ψ(t) −
(
DA∞ψ + i

2(c(a(t)) − u(t))ψ̂0

)
+ i

2v(t)ψ(t)

i
(
∂ta(t) + ∗da(t) − du(t)

)
−1

2c−1q̇(ψ̂0, ψ)

i
(
∂tu(t) − d∗a(t) + 2µu(t)

)
− i

2Im〈 ψ̂0, ψ 〉



=


J 0 0

0 1 0

0 0 1


∂t


ψ(t)

ia(t)

iu(t)

 −


DA∞ 0 0

0 − ∗ d d

0 d∗ −2µ




ψ(t)

ia(t)

iu(t)



−


i
2( c(a(t)) − u(t) )ψ̂0(t)

1
2c−1q̇(ψ̂0(t), ψ(t))

i
2Im〈 ψ̂0(t), ψ(t) 〉



 +

 iv(t)
2 J 0 0
0 0 0
0 0 0

 ψ(t)
ia(t)
iu(t)


Proposition 4.2.35 shows that ‖ψ(t) − ψ∞‖

Lk,2
µ

+ ‖a‖
Lk,2

µ
+ ‖v(t)‖

Lk,2
µ

< ∞,

for all k ∈ Z+. The above computation now implies that T̂Ĉ0,µ is an a-APS

operator and, using (4.2.2), we deduce

~∂∞T̂Ĉ0,µ = TC∞,µ :=

 SWC∞ −1
2LC∞

−1
2L∗

C∞ −2µ

 .

We want to show that ker(µ + TC∞,µ) = 0 for all 0 < µ < µ−(σ, g).

Suppose Ċ ⊕ if ∈ ker(ν + TC∞,µ), ν ∈ R. This means

(4.3.10)


SWC∞(Ċ) − 1

2LC∞(if) = −νiĊ

L∗
C∞(Ċ) + 4µif = 2νif

.
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Observe that L∗
C∞SWC∞ = (SWC∞LC∞)∗ = 0. If we apply L∗

C∞ to the first
equation in (4.3.10) we deduce

L∗
C∞LC∞(if) = 2νL∗

C∞Ċ = 4ν(ν − 2µ)(if).

Let us now require that ν is such that

4ν(ν − 2µ) < 0.

This implies f ≡ 0 and forces

L∗
C∞Ċ = 0, SWC∞(Ċ) = −νĊ.

Suppose additionally that

0 < ν < µ−(σ, g) ≤ µ−(C∞).

This implies Ċ = 0.
Now, if ν := µ < µ−(σ, g) then automatically both requirements are

satisfied because
4ν(ν − 2µ) = −4µ2 < 0.

We deduce that ker(µ + TC∞,µ) = 0 as soon as 0 < µ < µ0(σ, g). The
Lockhart-McOwen Theorem 4.1.16 now implies that T̂Ĉ0

is Fredholm if 0 <

µ < µ0(σ, g) ≤ µ−(σ, g). This completes the proof of Lemma 4.3.18 and of
Proposition 4.3.17. ¥

Set
H i

Ĉ0
:= H i(K̂Ĉ0

), i = 0, 1, 2.

The finite-dimensional space H2
Ĉ0

is called the obstruction space at Ĉ0. Ob-
serve also that

H0
Ĉ0

∼= T1Ĝ0.

The results in §4.3.1 show that the quotient Ĉµ,sw/Ĝµ,ex equipped with
the quotient topology has a nice local structure. Suppose Ĉ0 ∈ Ĉµ,sw is a
finite energy monopole. Set

Ssw
C∞ := SC∞ ∩ TC∞Zσ.

Then there exist a small neighborhood V∞ of 0 ∈ Ssw
C∞ and a small neigh-

borhood V̂0 of 0 ∈ ŜĈ0
such that if

Û0 := Ĉ0 + V̂ + i0V∞

then a neighborhood of [Ĉ0] in Ĉµ,sw/Ĝµ,ex is homeomorphic to the quotient
Û0/Ĝ0. The results in §4.3.1 show that additionally

TĈ0
Ĉµ,sw =

(
ŜĈ0

+ i0(Ssw
C∞)

)
+ Range

(
LĈ0

: T1Ĝµ,ex → TĈ0
Ĉµ,sw

)
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and (
ŜĈ0

+ i0(Ssw
C∞)

)
∩ Range

(
LĈ0

: T1Ĝµ,ex → TĈ0
Ĉµ,sw

)
= 0.

Thus, to understand the nature of a small neighborhood of [Ĉ0] in M̂µ it
suffices to understand the nature of the set of small solutions of the nonlinear
equation

(4.3.11) F(Ĉ) = 0

where
F :

(
ŜĈ0

+ i0(Ssw
C∞)

)
→ Ŷµ, F(Ĉ) := ŜW (Ĉ0 + Ĉ).

Proposition 4.3.17 shows that the linearization of F at 0 is a Fredholm map
and, moreover,

ker D0F ∼= H1
Ĉ0

, coker D0F ∼= H2
Ĉ0

.

Arguing exactly as in §2.2.2 we deduce that there exist a small Ĝ0-invariant
open neighborhood N̂ of 0 ∈ H1

Ĉ0
and a Ĝ0-invariant map

Q̂Ĉ0
: N̂ → H2

Ĉ0

such that Q̂Ĉ0
(0) = 0 and Q̂−1

Ĉ0
(0)/Ĝ0 is homeomorphic to an open neigh-

borhood of [Ĉ0] in M̂σ.

Definition 4.3.20. (a) The monopole Ĉ0 is called regular if its obstruction
space is trivial, H2

Ĉ0
= 0. Ĉ0 is called strongly regular if H2(F ) = 0.

(b) The integer

d(Ĉ0) := −χ(K̂Ĉ0
) = dimR H1

Ĉ0
− dimR H0

Ĉ0
− dimR H2

Ĉ0

is called the virtual dimension at Ĉ0 of the moduli space M̂µ.

Remark 4.3.21. The long exact sequence associated to (E) shows that
there is a surjective map H2(F ) ³ H2

Ĉ0
so that a strongly regular monopole

is also regular.

The above discussion has the following consequence.

Corollary 4.3.22. (a) If Ĉ0 is a regular irreducible monopole then a small
neighborhood of [Ĉ0] ∈ M̂µ is homeomorphic to Rd(Ĉ0).

(b) If Ĉ0 is a strongly regular irreducible then there exist a small neigh-
borhood Û0 of [Ĉ0] ∈ M̂µ and a small neighborhood U∞ of C∞ ∈ Mσ such
that Û0

∼= Rd(Ĉ0), U∞ = ∂∞(Û0) and the induced map ∂∞ : Û0 → U∞ is a
submersion.
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Example 4.3.23. We want to point out some subtleties hidden in (E).
Consider the special situation when (N, g) is the sphere S3 equipped with
the round metric g of radius 1. Spinc(N) consists of a single structure σ
and the pair (σ, g) is good since g has positive scalar curvature. Mσ consists
of single reducible monopole C0 = (0, A0). We deduce

H0(B) ∼= R, H1(B) = 0.

Suppose Ĉ0 ∈ Ĉµ,sw is a smooth irreducible monopole on N̂ . Then ∂∞Ĉ0 =
C0 and the sequence (E) leads to a short exact sequence

(4.3.12) 0 → H0(B) = R → H1(F ) → H1
Ĉ0

→ 0.

A superficial look at the complex (F ) might lead one to believe that H1(F )
is intended to be the tangent space at Ĉ0 to the fiber of

∂∞ : M̂µ → Mσ.

Thus one would expect that H1(F ) would inject into H1
Ĉ0

, intended to be

TĈ0
M̂µ → Mσ. However, the sequence (4.3.12) shows that the natural map

H1(F ) → H1
Ĉ0

is not injective since dim H1(F ) = dimH1
Ĉ0

+ 1. How can
this be possible?

The explanation is simple. The fiber of the map ∂∞ : M̂µ → Mσ over
C0 should be understood as the set of monopoles on N̂ modulo the group

Ĝµ,ex(C0) = ∂−1
∞ (Stab(C0)).

A careful look at (F ) shows that it involves a smaller group Ĝµ which fits
in a short exact sequence

1 ↪→ Ĝµ ↪→ Ĝµ,ex(C0) → S1 → 1.

To correct our initial intuition of H1(F ) we should think of it as intended
to be the tangent space to the fibers of

∂∞ : M̂µ(∗) → Mσ(∗).

In our case Mσ(∗) = Mσ.

In the remaining part of this subsection we want to provide alternate
descriptions of the cohomology spaces intervening in the long exact sequence
associated with (E). These interpretations (more precisely Propositions
4.3.28 and 4.3.30) constitute the main difference between the approach to
gluing we propose in this book and the traditional one pioneered by T.
Mrowka, [99]. They are responsible for substantial simplifications to the
whole gluing procedure. Our first result should be obvious.
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Lemma 4.3.24. We have natural isomorphisms

H1(FĈ0
) ∼= kerµ(T̂Ĉ0,µ),

H2(FĈ0
) ∼= kerµ(T̂∗µ

Ĉ0,µ
).

Lemma 4.3.25. There exists a natural exact sequence

0 → U0 → kerex(T̂Ĉ0,µ) → H1
Ĉ0

→ 0

where U0 is the kernel of the natural map H1(FĈ0
) → H1

Ĉ0
or, equivalently,

the cokernel of the map ∂∞ : T1Ĝ0 → T1G∞.

Proof The proof consists of two parts. We will first construct a natural
map

kerex(T̂Ĉ0,µ) → H1
Ĉ0

and then we will prove it leads to the above exact sequence. The details will
be carried out in several steps.

Step 1 If Ĉ ∈ kerex(T̂Ĉ0,µ) then Ĉ ∈ TĈ0
Ĉµ,sw , i.e. Ĉ is strongly cylindrical.

Suppose that along the neck Ĉ has the form

Ĉ = (ψ(t), ia(t) + iu(t)dt).

Since Ĉ ∈ kerex(T̂Ĉ0,µ) we deduce

∂∞Ĉ = (ψ(∞), ia(∞), iu(∞)) ∈ ker TC∞,µ.

To prove that u(∞) = 0 it suffices to show that if (ψ, ia, iu) ∈ kerTC∞ then
u = 0. This follows easily by looking at (4.3.10) in which ν = 0. The details
can be safely left to the reader. Thus, we have a well defined map

Υ : kerex(T̂Ĉ0,µ) ↪→ ker
(
ŜW Ĉ0

: TĈ0
Ĉµ,sw → Ŷµ

)
³ H1

Ĉ0
.

Step 2 Υ is onto. Observe first that the long exact sequence associated
to (E) implies that we can represent each cohomology class τ ∈ H1

Ĉ0
by an

element Ĉ ∈ TĈ0
Ĉµ,sw such that

SWC∞∂∞Ĉ = 0, L∗
C∞∂∞Ĉ = 0.

Next observe that since Ĉ is strongly cylindrical we have

∂∞
(
L
∗µ

Ĉ0
Ĉ
)

= L∗
C∞∂∞Ĉ = 0

so that
L
∗µ

Ĉ0
Ĉ ∈ L1,2

µ (N̂ , iR).
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Arguing as in the proof of Lemma 4.3.9 we deduce that the densely defined,
selfadjoint operator

∆Ĉ0,µ := L
∗µ

Ĉ0
LĈ0

: L2,2
µ (N̂ , iR) ⊂ L2

µ(N̂ , iR) → L2
µ(N̂ , iR)

has closed range. Clearly its kernel is trivial so that it is also surjective.
Arguing as in the proof of Lemma 4.3.10 we deduce that

∆−1

Ĉ0,µ

(
L1,2

µ

)
= L3,2

µ .

Thus we can find if̂0 ∈ L3,2
µ (N̂ , iR) such that

∆Ĉ0,µ(if0) = L
∗µ

Ĉ0
Ĉ.

If we set
Ĉ
′
:= Ĉ − LĈ0

(if̂0)

then ŜW Ĉ0
Ĉ′ = 0 so that Ĉ and Ĉ′ define the same element in H1

Ĉ0
. Moreover

L
∗µ

Ĉ0
Ĉ′ = L

∗µ

Ĉ0
Ĉ − ∆Ĉ0,µ(if̂0) = 0

so that Ĉ′ ∈ kerex T̂Ĉ0,µ. This proves that Υ is onto.

Step 3 ker Υ = ker(H1(FĈ0
) → H1

Ĉ0
). From the natural inclusion

H1(FĈ0
) = kerµ(T̂Ĉ0,µ) ⊂ kerex(T̂Ĉ0,µ)

we deduce that
ker(H1(FĈ0

) → H1
Ĉ0

) ⊂ ker Υ.

Conversely, suppose Υ(Ĉ) = 0 ∈ H1
Ĉ0

. In particular, this implies

∂∞Ĉ = 0,

i.e. Ĉ ∈ L2
µ ⇐⇒ Ĉ ∈ H1(FĈ0

). ¥

Remark 4.3.26. It is perhaps instructive to describe the image of U0 in
kerex T̂Ĉ0,µ. Suppose for simplicity that N is connected, Ĉ0 is irreducible
but C∞ is reducible. Then U0 ⊂ H1(FĈ0

) is spanned by the the infinitesi-
mal variation LĈ0

(i). To find its harmonic representative (i.e. describe the
element in kerµ T̂Ĉ0,µ defining the same class in H1(FĈ0

)) it suffices to solve
the equation

∆Ĉ0,µ(if̂) = ∆Ĉ0,µ(i)

with unique solution

L3,2
µ 3 iϕ0 := ∆−1

Ĉ0,µ

(
∆Ĉ0,µ(i)

)
.
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Then the harmonic representative of LĈ0
(i) is LĈ0

(i − iϕ0). Observe that
f̂0 := 1 − ϕ0 is the unique function f ∈ L3,2

µ,ex satisfying the equations

∆Ĉ0,µ(if̂0) = 0, ∂∞f̂0 = 1. ¥

Lemma 4.3.25 has one small “defect”. More precisely, it describes a
geometric object, the virtual tangent space H1

Ĉ0
, in terms of the quantity

ker T̂Ĉ0,µ which depends on the choice of µ dictated by functional analytic
considerations. Our next result will remove this defect. Set

T̂Ĉ0
:= ŜW Ĉ0

⊕ 1
2
L∗

Ĉ0

Observe that the a-APS operator T̂Ĉ0
can be formally obtained from T̂Ĉ0,µ

by setting µ = 0. Moreover, the decomposition

kerTC∞ = TC∞Mσ ⊕ T1G∞

produces a decomposition of the boundary map

∂∞ : kerex T̂Ĉ0
→ kerTC∞

into components

∂0
∞ : kerex T̂Ĉ0

→ T1G∞, ∂c
∞ : kerex T̂Ĉ0

→ TC∞Mσ.

Remark 4.3.27. Using (4.1.22) of §4.1.5 with G = 1 we deduce that we
have the orthogonal decomposition

∂0
∞(kerex T̂Ĉ0

) ⊕ ∂0
∞(kerex T̂∗

Ĉ0
) = T1G∞.

Now observe that if (Ψ, if) ∈ L1,2
µ,ex(S−

σ̂ ⊕ iΛ2
+T ∗N̂)⊕L1,2

µ,ex(iΛ0T ∗N̂) belongs
to kerex T̂∗

Ĉ0
then if ∈ T1Ĝ0 (see the the proof of Proposition 4.3.30. Thus

∂0
∞(kerex T̂Ĉ0

) ∼= T1(G∞/∂∞Ĝ0).

As an example, suppose Ĉ0 is reducible, Ĉ0 = (0, Â0). Then

T̂Ĉ0
= 6DÂ0

⊕ ASD.

The above observation implies that any 1-form ω ∈ kerex ASD is strongly
cylindrical. This is in perfect agreement with the equality (4.1.28) proved
in Example 4.1.24 of §4.1.6.

Proposition 4.3.28. There exists a natural short exact sequence

(H1) 0 → H1
Ĉ0

→ kerex T̂Ĉ0
→ T1(G∞/∂∞Ĝ0) → 0.

In particular
kerex T̂Ĉ0,µ

∼= kerex T̂Ĉ0
.
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Proof We discuss separately three cases.

Case A. Ĉ0 is reducible. In view of Lemma 4.3.25 we only have to prove
kerex T̂Ĉ0,µ

∼= H1
Ĉ0

∼= kerex T̂Ĉ0
. Set

V̂ := Ŝ+
σ̂ ⊕ iΛ1T ∗N̂ .

Along the neck it decomposes as

V̂ ∼= Sσ ⊕ iπ∗Λ1T ∗N ⊕ idtπ∗RN

where π : R+ × N → N is the natural projection. Over the neck, each
section Ĉ of V̂ splits as

Ĉ = ψ(t) ⊕ (ia(t) + iu(t)dt).

Denote by Tµ the automorphism of V̂ which is the identity off the neck while
along the neck it has the form

Tµ

(
ψ(t) ⊕ (ia(t) + iu(t)dt)

)
= ψ(t) ⊕ (ia(t) + im2µu(t)dt).

A simple computation shows that since Ĉ0 is reducible we have

L
∗µ

Ĉ0
= m−2µL∗

Ĉ0
Tµ

and
ŜW Ĉ0

TµĈ = TµŜW Ĉ0
Ĉ.

We thus have a well defined bijection

ker T̂Ĉ0,µ → ker T̂Ĉ0
, Ĉ 7→ TµĈ

which maps ker−ε T̂Ĉ0,µ injectively into ker−µ−ε T̂Ĉ0
. Its inverse maps the

space ker−µ−ε T̂Ĉ0
injectively into ker−µ−ε T̂Ĉ0,µ. To conclude the proof of

Case A we only need to recall Proposition 4.1.17 which states that if µ is
sufficiently small then

kerex T̂Ĉ0,µ
∼= ker−ε T̂Ĉ0,µ

∼= ker−µ−ε T̂Ĉ0,µ, kerex T̂Ĉ0

∼= ker−µ−ε T̂Ĉ0
.

Case B. C∞ is irreducible, and thus so is Ĉ0. We have to show kerex T̂Ĉ0

∼=
H1

Ĉ0
. Note that any Ĉ ∈ kerex T̂Ĉ0

tautologically defines a cohomology class

in H1
Ĉ0

. We want to show that the induced map kerex T̂Ĉ0
→ H1

Ĉ0
is an

isomorphism.
Observe first that this map is 1 − 1. Indeed, if

Ĉ ∈ kerex T̂Ĉ0
and Ĉ = LĈ0

(if)

for some f ∈ L3,2
µ,ex then ∆Ĉ0

(if) := L∗
Ĉ0

LĈ0
(if) = 0. Multiplying the last

equality by if and integrating by parts on N̂T→∞ we deduce LĈ0
(if) = 0.
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To show that this map is onto we construct a right inverse Γ. More
precisely, if Ĉ ∈ TĈ0

Cµ,sw satisfies ŜW Ĉ0
then we set

Γ(Ĉ) = Ĉ − LĈ0
∆−1

Ĉ0
L∗

Ĉ
Ĉ

where we regard ∆Ĉ0
as a bounded Fredholm operator

∆Ĉ0
: L3,2(N̂) → L1,2(N̂).

(It is Fredholm since ∆Ĉ0
= ∆ + 1

4 |ψ̂0|2 and ∂∞ψ̂0 6= 0.) As such it has
trivial index and kernel and ∆−1

Ĉ0
(L1,2

µ ) ⊂ L3,2
µ .

Case C. Ĉ0 is irreducible but C∞ is reducible. In view of Remark 4.3.27 we
only have to prove that

H1
Ĉ0

∼= K0 := ker
(
∂0
∞ : kerex T̂Ĉ0

→ T1G∞
)
.

Clearly K0 ⊂ TĈ0
Cµ,sw, that is every Ĉ ∈ K0 is asymptotically strongly

cylindrical, and thus we get a tautological map

K0 → H1
Ĉ0

.

Arguing as in Case B we deduce that this map is 1 − 1. To prove that this
map is onto we construct a right inverse Γ formally identical to the one in
Case B,

Γ(Ĉ) = Ĉ − LĈ0
∆−1

Ĉ0
L∗

Ĉ
Ĉ,

where this time we regard ∆Ĉ0
as a bounded Fredholm operator

∆Ĉ0
: L3,2

µ → L1,2
µ

of trivial index and kernel. (Note that since ∂∞ψ̂0 = 0 the operator ∆Ĉ0
is

no longer Fredholm in the functional framework L3,2 → L1,2.) ¥

We conclude this section by presenting a similar description of H2(FĈ0
)

in terms of kerex T̂∗
Ĉ0

.

Proposition 4.3.30. There exists a natural short exact sequence

(H2) 0 → H2(FĈ0
) → kerex T̂∗

Ĉ0

∂0∞−→ Range(T1Ĝ0
∂∞→ T1G∞) → 0

where the upper ∗ denotes the formal adjoint.



390 4. Gluing Techniques

Proof Let us first observe that

H2(FĈ0
) = kerµ T̂

∗µ

Ĉ0,µ
∼= ker(T̂Ĉ0,µT̂

∗µ

Ĉ0,µ
: L2,2

µ → L2
µ)

and

T̂Ĉ0,µT̂∗
Ĉ0,µ

= ŜW Ĉ0
ŜW

∗µ

Ĉ0
⊕ 1

4
∆Ĉ0,µ

where we recall that

∆Ĉ0,µ := L
∗µ

Ĉ0
LĈ0

.

Since ker(∆Ĉ0,µ : L3,2
µ → L1,2

µ ) = 0 we deduce

(Ψ, if̂) ∈ kerµ T̂
∗µ

Ĉ0,µ
⇐⇒ f̂ ≡ 0 and ŜW

∗
Ĉ0

(m2µΨ) = 0.

We conclude that the correspondence

kerµ T̂
∗µ

Ĉ0,µ
3 (Ψ, if̂)

ϕ7→ (m2µΨ, 0)

induces a map

ϕ : kerµ T̂
∗µ

Ĉ0,µ
→ ker−µ(T̂∗

Ĉ0
= ŜW

∗
Ĉ0

+
1
2
LĈ0

) = kerex(T̂∗
Ĉ0

).

Clearly ∂0
∞ ◦ ϕ = 0.

Conversely, suppose

(Ψ, if̂) ∈ kerex T̂∗
Ĉ0

⇐⇒ ŜW
∗
Ĉ0

(Ĉ) +
1
2
LĈ0

(if̂) = 0

and f̂ ∈ L2
µ (i.e. ∂0

∞(Ψ ⊕ if̂) = 0). Apply L∗
Ĉ0

to both sides of the above

equation and use the identity L∗
Ĉ0

ŜW
∗
Ĉ0

≡ 0 to deduce

L∗
Ĉ0

LĈ0
(if̂) = 0.

Since f̂ ,LĈ0
(if̂) ∈ L2

µ we can integrate the last equality by parts over N̂T→∞
and we deduce∫

N̂
|LĈ0

(if̂)|2dv̂ = 0 ⇐⇒ LĈ0
(if̂) = 0 ⇐⇒ f̂ ≡ 0 (since f̂ ∈ L2

µ).

The fact that the map

(4.3.13) kerex T̂∗
Ĉ0

∂0∞−→ Range(T1Ĝ0
∂∞→ T1G∞)

is onto now follows from Remark 4.3.27. Proposition 4.3.30 is proved. ¥
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Remark 4.3.31. Proposition 4.3.30 shows that we have a natural map
H2(FĈ0

) → TC∞Mσ which for simplicity we will denote by ∂∞. Observe
also that if Ĉ0 is reducible there exists (0, if̂) ∈ kerex T̂∗

Ĉ0
such that

∂∞f̂ = 1.

If (Ψ1, if̂1), (Ψ2, if̂2) are two such elements then

(Ψ1 − Ψ2, if̂1 − if̂2) ∈ ϕ
(
H2(FĈ0

)
)
⊂ kerex T̂∗

Ĉ0

so that f̂1 = f̂2. The function f̂0 = f̂1 = f̂2 is uniquely determined by the
equations

f̂0 ∈ L3,2
µ,ex, L∗

Ĉ0
LĈ0

(if̂0) = 0, ∂∞f̂0 = 1.

Notice also that we have a unitary isomorphism

∂∞ kerex T̂∗
Ĉ0

∼= ∂∞H2(FĈ0
) ⊕ T1G∞.

More precisely, if (Ψ, if̂) ∈ kerex T̂∗
Ĉ0

is such that ∂∞f̂ = 1 then

∂∞ kerex T̂∗
Ĉ0

= spanR
{

∂∞(Ψ, if̂), ∂∞H2(FĈ0
) ⊕ 0

}
= spanR

{
0 ⊕ i, ∂∞H2(FĈ0

) ⊕ 0
}

.

4.3.3. Virtual dimensions. Suppose Ĉ0 = (ψ̂0, Â0) ∈ Ĉµ,sw is a mono-
pole. Set C∞ = (ψ∞, A∞) = ∂∞Ĉ0 and d(C∞) = dimTC∞Mσ. We want to
describe a general procedure for computing the virtual dimension d(Ĉ0).

Using Lemma 4.3.18 and Exercise 4.3.6 we deduce

d(Ĉ0) = −χ(F ) + d(C∞) − dimG∞

= ind
(
ŜW Ĉ0

⊕ 1
2
L
∗µ

Ĉ0
: L2,2

µ (Ŝ+
σ̂ ⊕ iΛ1T ∗N̂) → L1,2

µ (Ŝ−
σ̂ ⊕ iΛ2

+T ∗N̂ ⊕ iR)
)

+d(C∞) − dimG∞
(use Proposition 4.1.17)

= IAPS(T̂Ĉ0,µ) + d(C∞) − dimG∞

(use the excision formula (4.1.19) of §4.1.4)

(4.3.14) = IAPS(T̂Ĉ0
) + d(C∞) − dim G∞ − SF (TC∞ → TC∞,µ).

To proceed further let us first notice the following result, whose proof will
be presented a bit later.

Lemma 4.3.32.

SF
(
TC∞ → TC∞,µ

)
= −dimG∞.
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Thus

(4.3.15) d(Ĉ0) = IAPS(T̂Ĉ0
) + d(C∞).

Now denote by T̂0
Ĉ0

the operator obtained by setting ψ̂0 = 0 in the

description of T̂Ĉ0
. Observe that along the neck T̂0

Ĉ0
has the form

T̂0
Ĉ0


ψ(t)

ia(t)

iu(t)



=


J 0 0

0 1 0

0 0 1


∂t


ψ(t)

ia(t)

iu(t)

 −


DA∞ 0 0

0 − ∗ d d

0 d∗ 0




ψ(t)

ia(t)

iu(t)




+

 iv(t)
2 J 0 0
0 0 0
0 0 0

 ψ(t)
ia(t)
iu(t)

 .

This shows T̂0
Ĉ0

is an a-APS operator and

T0
C∞ := ~∂∞T̂0

Ĉ0
=

[
DA∞ 0

0 −SIGN

]
.

Set
PC∞ := TC∞ − T0

C∞ .

Observe that PC∞ is a zeroth order symmetric operator described by

PC∞

 ψ

ia
iu

 =


i
2( c(a) − u )ψ∞

1
2c−1q̇(ψ∞, ψ)

i
2Im〈ψ∞, ψ 〉

 .

Denote by ϕ(C∞) the spectral flow of the family T0
C∞ + tPC∞ , t ∈ [0, 1].

Using the excision formula (4.1.19) we deduce

d(Ĉ0) = IAPS(T̂0
Ĉ0

) + d(C∞) − ϕ(C∞).

T̂0
Ĉ0

is the direct sum of the complex operator 6DÂ0
and the real operator

ASD. Since we are interested in real indices we have

IAPS(T̂0
Ĉ0

) = 2IAPS(6DÂ0
) + IAPS(ASD).
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Denote by ηsign(g) the eta invariant of SIGN and by ηdir(C∞) the eta
invariant of DA∞ . We set

F(C∞) := 4ηdir(C∞) + ηsign(g).

Using (4.1.3) of §4.1.2, (4.1.30) of §4.1.6 we deduce

IAPS(T̂0
Ĉ0

) =
1
4

∫
N̂
−1

3
p1(∇̂ĝ) + c1(Â0)2 −

(
dimC kerDA∞ + ηdir(C∞)

)

−1
2

(
χN̂ + τN̂ + b0(N) + b1(N)

)
Using the signature formula of Atiyah-Patodi-Singer (see [6] and also (4.1.34)
of §4.1.6) we deduce ∫

N̂

1
3
p1(∇̂ĝ) = ηsign(g) + τN̂

and we conclude

IAPS(T̂0
Ĉ0

) =
1
4

(∫
N̂

c1(Â0)2 − (2χN̂ + 3τN̂ )
)
− 1

4
F(C∞)

−dimC kerDA∞ − 1
2
(b0(N) + b1(N)).

Putting together all of the above we obtain the following formula:

d(Ĉ0) =
1
4

(∫
N̂

c1(Â0)2 − (2χN̂ + 3τN̂ )
)
− 1

2

(
b0(N) + b1(N)

)
+d(C∞) − ϕ(C∞) − dimC ker DA∞ − 1

4
F(C∞).

(VDim)

The first line in (VDim) consists of the soft terms, those which do not
involve functional analytic terms. The second line consists of the hard terms
and their computation often requires nontrivial analytical work.

Remark 4.3.33. (a) Observe that the integral term in (VDim) would
formally give the virtual dimension of the moduli space if N̂ were compact.
The remaining contribution depends only on the geometry of the asymptotic
boundary N and we will refer to it as the boundary correction. We will
denote it by β(C∞). The boundary correction is additive with respect to
disjoint unions which shows that formula (VDim) also includes the case
when the asymptotic boundary is disconnected.

(b) Assume N is connected so that b0(N) = 1. If C∞ is reducible then, using
the nondegeneracy assumption (N), we can simplify somewhat the virtual



394 4. Gluing Techniques

dimension formula because kerDA∞ = 0, d(C∞) = b1(N) and ϕ(C∞) = 0.
We deduce

d(Ĉ0) =
1
4

(∫
N̂

c1(Â0)2 − (2χN̂ + 3τN̂ )
)

+
1
2

(
b1(N) − 1

)
− 1

4
F(C∞).

(VDimr)

(c) The exact value of the term F(C∞) is very difficult to compute in general
although it is known in many concrete situations; see [107, 108, 115].
Consider more generally the quantity

F : Aσ × Metrics on N → R, (A, g) 7→ 4η(DA) + ηsign(g).

F(A, g) satisfies the variational formula

F(A1, g1) − F(A0, g0) = 4(h0 − h1) + 8SF (DAt)

− 1
4π2

∫
N

(A1 − A0) ∧ (FA0 + FA1),

where At := (1− t)A0 + tA1, g(t) is a smooth path of metrics on g such that
g(i) = gi, i = 0, 1, DAt is the Dirac operator determined by At and the metric
g(t), and ht := dimC DAt , t = 0, 1. In particular, we deduce that F(A, g)
mod 4Z is independent of g. Moreover, if A0, A1 are flat connections then

F(A0, g) = F(A1, g) mod 4Z.

When σ is defined by a spin structure and A is the trivial connection,
then F(A, g) is a special case of the Kreck-Stolz invariant, [68]. The above
variational formula coupled with the Weitzenböck formula shows that this
invariant is constant on the path components of the space of metrics of
positive scalar curvature. In the paper [68], M. Kreck and S. Stolz have
shown that the higher dimensional counterpart of F actually distinguishes
such path components.
(d) The notation β(C∞) is a bit misleading since it does not take into ac-
count the dependence of β(C∞) on the orientation of N . When changing
the orientation we have to replace F(C∞) by −F(C∞). ϕ(C∞) changes as
well, but in a less obvious fashion (see Exercise 4.3.8). This boundary con-
tribution is not Gσ-invariant due to the contributions ϕ(C∞) and F(C∞).
More precisely, for γ ∈ Gσ, we gave

(4.3.16) ϕ(γC∞) + 2SF (DA∞ → DA∞−2dγ/γ) = ϕ(C∞)

where the above spectral flow is viewed as a spectral flow of complex oper-
ators. Using the variational formula in (c) we conclude that

ϕ(γC∞) +
1
4
F(γC∞) =

1
4π2

∫
N

dγ/γ ∧ FA∞ =
∫

M
γ∗(

1
2π

) ∧ c1(det σ).
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This computation also shows that β(C∞) is G∂
σ-invariant, where G∂

σ denotes
the subgroup of Gσ consisting of gauge transformations which extend over
N̂ .

Exercise 4.3.7. Prove the equality (4.3.16).

Proof of Lemma 4.3.32 Assume for simplicity that N is connected so
that dimG∞ ∈ {0, 1}. We first need to understand the spectrum of TC∞,tµ,
t ∈ [0, 1], µ positive and very small. Equivalently this means solving the
equation

(4.3.17) TC∞,tµ

[
Ċ
if

]
= ν

[
Ċ
if

]
⇐⇒


SWC∞(Ċ) − 1

2LC∞(if) = νiĊ

L∗
C∞(Ċ) + 4tµif = −2νif

As in 4.3.2 we deduce

(4.3.18) ∆C∞(if) := L∗
C∞LC∞(if) = 4ν(ν + 2tµ)(if).

The spectrum of the symmetric second order elliptic operator ∆C∞ is discrete
and consists only of nonnegative eigenvalues of finite multiplicities. We will
distinguish two cases.

Case 1 C∞ is irreducible, so that dimG∞ = 0. In this case we have

ker ∆C∞
∼= T1G∞ = 0.

If Ċ ⊕ if ∈ kerTC∞,tµ then using (4.3.18) we deduce f ≡ 0. Using this
information back in (4.3.17) we deduce

SWC∞(Ċ) = 0.

This shows that kerTC∞,tµ = ker TC∞ , for all t ∈ [0, 1] and thus the spectral
flow of the family TC∞,tµ is equal to 0 = −dimG∞.

Case 2 C∞ is reducible, so that dim ker ∆C∞ = dimT1G∞. Moreover

ker TC∞ =
{

Ċ ⊕ if ; SWC∞(Ċ) ⊕ L∗
C∞(Ċ) = 0, LC∞(if) = 0

}
.

Fix t ∈ (0, 1]. We claim that

(4.3.19) kerTC∞,tµ =
{

Ċ ⊕ if ; f ≡ 0, SWC∞(Ċ) ⊕ L∗
C∞(Ċ) = 0

}
.

Using (4.3.18) with ν = 0 we deduce

∆C∞(if) ⇐⇒ LC∞(if) = 0.

Using this information in the first equation of (4.3.17) we deduce SWC∞(Ċ) =
0. Now apply LC0 to both sides of the second equation in (4.3.17). Using
the equality LC∞(if) = 0 we conclude

LC∞L∗
C∞(Ċ0) = 0.
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We now take the inner product of the above equality with Ċ and then we
integrate by parts over N to deduce that∫

N
|L∗

C∞Ċ|2dv(g) = 0 ⇐⇒ L∗
C∞Ċ = 0.

Using the last equality in the second equation of (4.3.17) we deduce

tµf = 0 ⇐⇒ f ≡ 0

which proves our claim.
The equality (4.3.19) shows that there is no contribution to the spectral

flow of the family TC∞,tµ for t ∈ (0, 1]. The only contribution to the spectral
flow can occur at t = 0. Since

dim kerTC∞ − dim kerTC∞,tµ = 1

and since the spectral flow contributions at t = 0 are nonpositive we deduce
that this contribution is either 0 or −1.

To decide which is the correct alternative we need to understand the
eigenvalues νt of ker TC∞,tµ such that

νt ↗ 0 as t ↘ 0.

If νt is such an eigenvalue then 4νt(νt +2tµ) must be a very small eigenvalue
of ∆C∞ , so that

νt(νt + 2tµ) = 0.

The requirement νt < 0 forces νt = −2tµ and LC∞(if) = 0. Applying LC∞
to both sides of the second equation in (4.3.17) we deduce as before that

L∗
C∞Ċ = 0 ⇐⇒ Ċ ∈ SC∞ .

Using the first equation in (4.3.17) we deduce

SWC∞(Ċ) = −2tµĊ, Ċ ∈ SC∞ ,

so that Ċ is an eigenvector of SWC∞ : SC∞ → SC∞ corresponding to −2tµ.
Since

2tµ < 2µ < µ−(g) ≤ µ−(C∞)

(where −µ−(C∞) is the negative eigenvalue of SWC∞ : SC∞ → SC∞ closest
to zero) we deduce that Ċ ≡ 0. Thus −2tµ is a simple eigenvalue of TC∞,tµ

and the corresponding eigenspace is

{Ċ ⊕ if ; Ċ ≡= 0, f ≡ const.}.
This shows that the spectral flow contribution at t = 0 is −1 and thus

SF (TC∞,tµ; t ∈ [0, 1]) = −1 = −dimG∞. ¥



4.3. Moduli spaces of finite energy monopoles: Local aspects 397

Example 4.3.34. Suppose (N, g) is the sphere S3 equipped with the round
metric. There exists a unique spinc structure σ on N and the pair (σ, g)
is good. Denote by C0 the unique (modulo Gσ) monopole on N . C0 is
reducible, C0 = (0, A0). Observe also that (4.1.37) (with ` = −1) implies
that F(C0) = 0. Alternatively, S3 admits an orientation reversing isometry,
so that the spectra of both DA0 and SIGN are symmetric with respect to
the origin and thus their eta invariants vanish. Using (VDimr) we deduce
that the boundary correction determined by C0 is

β(C0) = −1
2
. ¥

Example 4.3.35. Suppose (N, g) is the 3-manifold S1 × S2 equipped with
the product of the canonical metrics on S1 and S2. g has positive scalar
curvature so that (σ, g) is good for every σ ∈ Spinc(N). Since H1(N, Z2) =
Z2 there exist exactly two isomorphism classes of spin structures on N but
the induced spinc structures are isomorphic since H2(N, Z) has no 2-torsion.

Any monopole on N is reducible so that the only spinc structure σ for
which there exist monopoles is the class σ0 induced by the spin structures.
The moduli space Mσ0 is diffeomorphic to a circle.

Remark 4.3.33 (c, d) shows that the boundary correction term is Gσ0-
invariant and, moreover, it is identical for all C ∈ Mσ0 . One can show that
ηdir(C) = 0 (see [107, Appendix C]) and ηsign(g) = 0 (see [67]). Since
b1(N) = 1 we deduce from (VDimr) that

β(C) = 0, ∀C ∈ Mσ0 . ¥

Example 4.3.36. Suppose N̂ = R × N . A finite energy monopole Ĉ0 over
N̂ is called a tunneling. Observe that ∂∞N̂ = (−N)∪N . A spinc structure
(σ−, σ+) on ∂∞N̂ extends to N̂ if and only if σ− = σ+ = σ. Its asymptotic
limit is a G∂-orbit of pairs of σ-monopoles (C−, C+), where G∂ consists of
pairs (γ−, γ+) ∈ Gσ×Gσ such that γ− and γ+ belong to the same component
of γσ. We want to emphasize that a priori it is possible that C− and C+

may be Gσ-equivalent. Set

∂±
∞Ĉ0 := C±

and

G± = Stab (C±).

Modulo a gauge transformation we can assume Ĉ0 is temporal:

Ĉ0 = (C(t))t∈R.
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The operator T̂Ĉ0
has the APS form G(∂t − TC(t)). Using (4.3.14) and

Lemma 4.3.32 we deduce

d(Ĉ0) = IAPS(T̂Ĉ0
) + d(C−) + d(C+)

(4.1.16)
= −dim kerTC− − SF (TC(t)) + d(C−) + d(C+)

(dim kerTC− = d(C−) + dimG−)

= −SF (TC(t)) + d(C+) − dimG−.

In particular, if d(C±) = 0 then

d(Ĉ0) = −SF (TC(t)) − dimG−. ¥

As indicated in Remark 4.3.33 (e), the term ϕ(C∞) behaves less trivially
when changing the orientation of N . One can use the computations in the
above example to describe this behavior.

Exercise 4.3.8. Suppose N is a compact, connected, orientable 3-manifold
and C∞ is an irreducible monopole on N . Denote by ϕ±(C∞) the contribu-
tions ϕ in (VDim) corresponding to the two choices of orientation on N .
Show that

ϕ+(C∞) + ϕ−(C∞) = dimR ker TC∞ − dimR ker T0
C∞

= d(C∞) − dimR kerT0
C∞ .

4.3.4. Reducible finite energy monopoles. Assume for simplicity that
N is connected and suppose Ĉ0 = (0, Â0) ∈ Ĉµ,sw is a reducible monopole.
This is equivalent to requiring that Â0 is strongly a-cylindrical and

F+

Â0
= 0.

Then
T̂Ĉ0

= 6DÂ0
⊕ ASD.

Using Proposition 4.3.28 and the computations in Example 4.1.24 we deduce

H1
Ĉ0

∼= kerex 6DÂ0
⊕ kerex ASD ∼= kerex 6DÂ0

⊕ kerex(d̂ + d̂∗) |Ω1(N̂)

(use (4.1.28)

(4.3.20) ∼= kerex 6DÂ0
⊕ H1(N̂ , N) ⊕ L1

top.

Denote by H2
+(N̂) the self-dual part of kerL2(d̂ + d̂∗) |Ω2(N̂). Using Proposi-

tion 4.3.30 and the computations in Example 4.1.24 we deduce

H2(F (Ĉ0)) ∼= kerex 6D∗
Â0

⊕ kerex ASD∗

∼= kerex 6D∗
Â0

⊕ H2
+(N̂) ⊕ L2

top.
(4.3.21)
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We deduce the following consequence.

Corollary 4.3.37. If kerex 6D∗
Â0

= 0, L2
top = 0 and b̂+ := dimH2

+(N̂) = 0

then Ĉ0 is strongly regular.

We now want to investigate in greater detail the subset

M̂red
µ ⊂ M̂µ

consisting of reducible monopoles. Observe that

M̂red
µ =

{
(0, Â) ∈ Ĉµ,sw; F+

Â
= 0

}
/Ĝµ,ex.

Observe first that it is a connected space since it is a quotient of the linear
affine subspace

F+

Â
= 0.

Set
Âµ,sw :=

{
Â; (0, Â) ∈ Ĉµ,sw

}
.

There exists a natural affine map

F : Âµ,sw → L1,2
µ (iΛ2

+T ∗N̂), Â 7→ F+

Â

and M̂red
µ can be identified with

F−1(0)/Ĝµ,ex.

Given Â ∈ F−1(0) we get as in §4.3.2 a Fredholm complex

(K) 1 ↪→ T1Ĝµ,ex → TÂÂµ,sw → L1,2
µ (iΛ2

+T ∗N̂) → 0.

We denote its cohomology by Hk
Â

and we set

χ(K) := H0
Â
− H1

Â
+ H2

Â
.

Observe that H0
Â

is the tangent space to the stabilizer of Â, which is S1.
Thus

dimH0
Â

= 1.

Since F is affine we deduce that the Kuranishi map associated to this defor-
mation picture is trivial. On the other hand, the stabilizer of Â acts trivially
on H1

Â
and thus, if nonempty, M̂red

µ is a connected, smooth manifold of di-
mension

dim M̂red
µ = dimH1

Â
− dimH2

Â
= −χ(K) + 1.

As in §4.3.2 we can embed (K) in an exact sequence of Fredholm complexes
similar to (E). Denote by Mred

σ the similar space of reducible σ-monopoles
on ∂∞N̂ . Arguing exactly as in the proof of (4.3.15) of §4.3.3 we deduce that

−χ(K) = IAPS(ASD) + dim Mred
σ
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(4.1.30)
= −1

2

(
χN̂ + τN̂ + b0(N) + b1(N)

)
+ b1(N)

= −1
2

(
χN̂ + τN̂ + 1 − b1(N)

)
.

We have thus proved the following result.

Proposition 4.3.38. If M̂red
µ is nonempty then it is a smooth, connected

manifold of dimension

M̂red
µ =

1
2

(
b1(N) + 1 − χN̂ − τN̂

)
.

In the next section we will have more to say about the existence of
reducibles.

Example 4.3.39. Consider again the manifold N̂`, ` = −1, discussed in
Example 4.1.27. Recall that N̂−1 is obtained from a disk bundle D−1 of
degree −1 over S2 by attaching an infinite cylinder

R+ × ∂D−1
∼= R+ × S3.

Since H1(S3) = H2(S3) = 0 we deduce L1
top = L2

top = 0 and since the
intersection form of N̂−1 is negative definite we deduce b̂+ = 0. Moreover,
H1(N̂−1, N1) = 0

Fix a spinc structure σ̂ on N̂−1. In Example 4.1.27 we have equipped
N̂−1 with a positive scalar curvature cylindrical metric and we have shown
that for every reducible finite energy σ̂-monopole Ĉ0 = (0, Â0) on N̂−1 we
have

kerex 6DÂ0
= 0.

Set C0 := ∂∞Ĉ0. Arguing exactly as in the proof of (4.1.36) we obtain

8 dim kerex 6D∗
Â0

= F(C0) + τN̂−1
−

∫
N̂−1

c1(Â0)2 = −1 −
∫

N̂−1

c1(Â0)2.

Thus H1
Ĉ0

= 0 and Ĉ0 is strongly regular if and only if

c1(σ̂) · c1(σ̂) =
∫

N̂−1

c1(Â0)2 = −1.

If we identify H2(D`, Z) ∼= H2(D−1, ∂D−1; Z) ∼= Z with generator u0, the
Poincaré dual of the zero section of D`, we see that the above equality is
possible if and only if

c1(σ̂) = ±u0.

We now want to prove that for any spinc structure σ̂ over N̂−1 there
exists a unique (modulo Ĝµ,ex) finite energy σ̂-monopole, which necessarily
is reducible.
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Observe first that according to Proposition 4.3.38 the space of reducibles
is either empty or a smooth, connected manifold of dimension

1
2
(1 + b1(S3) − χN̂−1

− τN̂−1
) = 0

so that it consists of at most one point.
Denote by σ the unique spinc-structure on N1 = ∂∞N̂−1

∼= S3 and
denote by A0 the trivial connection on the trivial line bundle det(σ). We
can form the energy functional defined in (2.4.8)

Eσ(ψ, A) =
1
2

∫
S3

(A − A0) ∧ FA +
1
2

∫
S3

Re 〈DAψ, ψ〉dv.

The energy of the unique σ-monopole C0 = (0, A0) is 0. Now extend A0 to a
strongly cylindrical connection Â0 on det(σ̂). If Ĉ = (ψ̂, Â) is a finite energy
σ̂-monopole then according to Proposition 4.3.2 we have∫

N̂−1

(
|∇̂Âψ̂|2 +

1
8
|q(ψ̂)|2 + |FÂ|

2 +
ŝ

4
|ψ̂|2

)
dv̂

= E(Ĉ) =
∫

N̂−1

FÂ ∧ FÂ ≤
∫

N̂−1

|FÂ|
2dv̂.

Since ŝ > 0 we conclude that ψ̂ ≡ 0.
To establish the existence part it suffices to show there exists iâ ∈

L2,2
µ (iΛ1T ∗N̂−1) such that if Â := Â0 + iâ then

F+

Â
= 0 ⇐⇒ id̂+â = −F+

Â0
.

Look at the operator

ASD : L2,2
µ (Λ1T ∗N̂−1) → L1,2

µ (i(Λ2
+ ⊕ Λ0)T ∗N̂−1).

According to Proposition 4.1.17 its cokernel is isomorphic to kerex ASD∗ =
0, which shows that the above operator is onto. Since F+

Â0
∈ L1,2

µ (it has

compact support) we can find â ∈ L2,2
µ (Λ1T ∗N̂−1) such that

id̂+â = −F+

Â0
and d̂∗â = 0 ⇐⇒ ASD(iâ) = (−

√
2F+

Â0
) ⊕ 0.

This proves that reducible monopoles do exist.
Suppose Ĉ0 is the unique finite energy σ̂-monopole. Thus the reducibles

are isolated points in M̂µ. Using the virtual dimension formula (VDimr)
we deduce that

d(Ĉ0) =
1
4

∫
N̂−1

c1(Â0)2 −
1
4

(
2χN̂−1

+3τN̂−1

)
− 1

2
=

1
4

∫
N̂−1

c1(Â0)2 −
3
4

< 0.

If we denote by σ̂n the spinc structure such that c1(σ̂n) = (2n + 1)u0 then
the above formula becomes

(4.3.22) d(Ĉ0, σ̂n) = −(n2 + n + 1).



402 4. Gluing Techniques

This formula covers all spinc classes on N̂−1 since the intersection form of
N̂−1 is odd.

Example 4.3.40. Consider the cylindrical manifold N̂ diffeomorphic to the
unit open ball B4 ⊂ R4 equipped with a positive scalar curvature metric ĝ
such that ∂∞ĝ is the round metric on ∂∞N̂ ∼= S3. Spinc(N̂) consists of
a single structure σ̂0 and, exactly as in the previous example we deduce
that modulo gauge there exists a unique finite energy monopole Ĉ0 which is
reducible, Ĉ0 = (0, Â0). Set C0 = ∂∞Ĉ0.

Since ĝ has positive scalar curvature we deduce as before that kerex 6DÂ0
=

0. Moreover, as in the previous example we have

8 dim kerex 6D∗
Â0

= F(C0) + τN̂ −
∫

N̂
c1(Â0)2 = 0.

Using Corollary 4.3.37 we deduce that Ĉ0 is a strongly regular, reducible
monopole.

Example 4.3.41. Consider the disk bundle D2 × S2 → S2. It is a 4-
manifold with boundary N := S1 × S2 which we equip with the product
metric g as in Example 4.3.35. We form N̂ by attaching the cylinder R+×N

to the boundary of D2 × S2. As in Example 4.1.27 we can equip N̂ with
a cylindrical metric ĝ of positive scalar curvature which along the neck has
the form dt2 + g.

The only spinc structure on N which admits monopoles is the structure
σ0 induced by the spin structures on N . In this case all monopoles are
reducible and

Mσ
∼= S1.

The structure σ0 on N is induced by pullback from S2 and thus it can be
extended to N̂ . On the other hand, since the map

H2(N̂ , Z) → H2(N, Z)

is one-to-one there exists exactly one extension σ̂0 of σ0 to N̂ satisfying

c1(σ̂0) = 0.

Arguing as in Example 4.3.39 we deduce that all finite energy σ̂-monopoles
are reducible. According to Proposition 4.3.38, the expected dimension of
M̂red

µ is
1
2
(b1(N) + 1 − 2) = 0

so that there exists at most one finite energy σ̂-monopole which must be
reducible. Reducibles do exist because det(σ̂0) admits flat connections.

Suppose Ĉ0 = (0, Â0) is a reducible monopole so that Â0 is flat. From the
long exact cohomology sequence of (N̂ , N) we deduce that H1(N̂ , N) = 0
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and the morphism H2(D2 ×S2) → H2(S1 ×N) is onto, i.e. L2
top

∼= R. Thus
Ĉ0 is not strongly regular.

If C0 := ∂∞Ĉ0 then exactly as in the previous example we deduce

8 dim kerex 6D∗
Â0

= F(C0) + τN̂ −
∫

N̂
c1(Â0)2.

In Example 4.3.35 we have shown that F(C0) = 0 and since τhN = 0 we
deduce

8 dim kerex 6D∗
Â0

= −
∫

N̂−1

c1(Â0)2 = 0.

According to (VDimr) we have

d(Ĉ0) = −1
4
(2χN̂ + 3τN̂ ) +

1
2
(b1(N) − 1) = −1.

4.4. Moduli spaces of finite energy monopoles:
Global aspects

We now have quite a detailed understanding of the local structure of the
moduli space of finite energy monopoles. For applications to topology we
need to know some facts about the global structure of this space.

In this section we will discuss some global problems. As always we will
work under the nondegeneracy assumption (N).

4.4.1. Genericity results. In 4.3.2 we developed criteria to recognize
when the moduli space of finite energy monopoles is smooth. As in the
compact case, there are two sources of singularities. The main problem is
due to the obstruction spaces H2

Ĉ0
and a second, less serious, problem is due

to the presence of reducibles. We will deal first with the reducibles issue.
In the compact case we found a cheap way to avoid the reducibles by

perturbing the Seiberg-Witten equations. We follow a similar strategy in
the noncompact case.

Fix a cylindrical spinc-structure σ̂ on N̂ with σ := ∂∞σ̂ such that there
exists at least one reducible finite energy monopole Ĉ0 = (0, Â0). For ev-
ery sufficiently regular, compactly supported 2-form η on N̂ we form the
perturbed Seiberg-Witten equations

ŜW η(ψ̂, Â) = 0 ⇐⇒


6DÂψ̂ = 0

ĉ(F+

Â
+ iη+) = 1

2q(ψ̂)

We will refer to the solutions of these equations as η-monopoles. Since
η is supported away from the neck the finite energy η-monopoles can be
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organized in the same fashion as the unperturbed ones and we obtain a
moduli space M̂µ(η).

The reducible η-monopoles are described by the zeros of the map

Fη : Âµ,sw → L1,2
δ (iΛ2T ∗N̂), Â 7→ F+

Â
+ iη+.

If Fη(Â0 + iâ) = 0 then
d̂+â = −η+.

To decide whether the above equation admits a solution iâ ∈ TÂ0
Âµ,sw we

need to understand the cokernel of the map

(4.4.1) d̂+ : TÂ0
Âµ,sw → L1,2

δ (iΛ2T ∗N̂).

This map is part of the complex (K) and thus it has closed range and its
cokernel is isomorphic to H2

Â0
.

To compute its dimension observe that

dimH1
Â0

− dimH2
Â0

=
1
2

(
b1(N) + 1 − χN̂ − τN̂

)
and, exactly as in Proposition 4.3.28, we have

dimH1
Â0

= dim kerex ASD.

The computations in Example 4.1.24 imply that

dim kerex ASD = dim kerL2 ASD + dim ∂∞ kerex ASD = b̂3 + l1.

Referring to the notations in Example 4.1.24 we can further write

dim H2
Â0

= b̂3 + l1 −
b1 + 1 − χN̂ − τN̂

2

= b̂3 + l1 − b1 − b̂2 − b̂+ + b̂− + b̂1 + b̂3

2

= l1 − b1 − b̂2 − b̂+ + b̂− + b̂1 − b̂3

2

= l1 − b1 − 2b̂+ − r + l1 − l3

2
(r = l2, l1 + l2 = b1, l3 = 0)

=
2b̂+ + l1 + l2 + l3 − b1

2
= b̂+.

Thus if b̂+ = 0 then H2
Â0

= 0 and, exactly as in the compact case, the
reducible cannot be perturbed away because Fη is surjective.

Suppose now b̂+ > 0. We can identify H2
Â0

with the L2
µ-orthogonal

complement of the range of the map (4.4.1). This is a finite-dimensional
space

V ⊂ L2
µ(iΛ2

+T ∗N̂).
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Now, fix a sufficiently large positive integer k0 and define

N :=
{

η ∈ Lk0,2
µ (iΛ2T ∗N̂); ∃v ∈ V : 〈η+, v〉L2

µ
6= 0, supp (η)∩neck = ∅

}
.

We see that N is the complement of a finite dimensional subspace of Lk0,2
µ (iΛ2T ∗N̂)

and for any η ∈ N there are no reducible η-monopoles.
Using the Sard-Smale transversality theorem as in §2.2.3 we can prove

the following genericity result.

Proposition 4.4.1. Suppose b̂+ > 0. There exists a generic subset Ñ ⊂ N
such that if η ∈ Ñ all η-monopoles are irreducible and strongly regular.
In particular, for η ∈ Ñ the moduli space M̂µ(η) is a smooth manifold.

Idea of proof Denote by ∆ the diagonal of Mσ × Mσ and consider

F : N × Ĉirr
µ,sw/Ĝµ,ex × Mσ → Ŷµ × Mσ × Mσ,

F(η, Ĉ, C) = (ŜW η(Ĉ), ∂∞Ĉ, C).

One has to show that F is transversal to 0 × ∆ ⊂ Ŷµ × Mσ × Mσ and then
apply Sard-Smale to the natural projection

π : N × Ĉirr
µ,sw/Ĝµ,ex × Mσ → N

restricted to the smooth submanifold F−1(0 × ∆). The details are very
similar to the proof in §2.2.3 with a slight complication arising from the
noncompact background. It should be a good exercise for the reader to
practice the techniques developed in this chapter. ¥

Remark 4.4.2. The strong regularity implies more than the smoothness of
the moduli spaces of finite energy monopoles. Assume b̂+ > 0 and suppose
for simplicity that 0 ∈ Ñ so that each finite energy monopole Ĉ0 ∈ M̂µ is
strongly regular. Set C∞ = ∂∞Ĉ0. The sequence (E) leads to a long exact
sequence

(4.4.2) 0 ↪→ T1G∞ → H1(F (Ĉ0)) → H1
Ĉ0

→ TC∞ → 0.

Now set M∂
σ := Zσ/G∂

σ. Mσ is a quotient of M∂
σ modulo the action of the

discrete group
H1(N, Z)/H1(N̂ , Z)

and we have a natural map

∂∞ : M̂µ → M∂
σ.

The sequence (4.4.2) shows that the strong regularity forces the above map
to be a submersion.
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4.4.2. Compactness properties. Because the background space N̂ is
noncompact it is a priori (and a posteriori) possible that the moduli space
M̂µ is noncompact. In the present subsection we will try to understand in
some detail the main sources of noncompactness.

Fix a cylindrical spinc structure σ̂ on N̂ with σ := ∂∞σ̂. For 0 < µ <

µ0(σ, g) we denote by M̂µ the moduli space of Ĝµ,ex-orbits of finite energy
σ̂-monopoles topologized with the L2,2

µ,ex-topology.

Recall that in 4.2.3 we have introduced the quotient M̃σ := Zσ/G1
σ,

where G1
σ denotes the identity component of Gσ. M̃σ is a covering space of

M∂
σ and we denote by

π : M̃σ → M∂
σ

the natural projection. The group H1(N, Z) of components of Gσ acts on
M̃σ with quotient Mσ. Similarly, M∂

σ is a quotient of M̃σ modulo a dis-
crete group: the image of H1(N̂ , Z) in H1(N, Z). The map ∂∞ induces a
continuous map

∂∞ : M̂µ → M∂
σ.

We already see one (mild) source of noncompactness: the moduli space M∂
σ.

The three-dimensional energy functional E defines a continuous function
on M̃σ with discrete range

· · · E−1 < E0 < E1 < · · · .

Denote by M̃σ,k the subset of M̃σ where E ≡ Ek. Set

M∂
σ,k := π

(
M̃σ,k

)
.

Since E is invariant under the gauge transformations on N which extend
to N̂ it descends to a continuous function on M∂

σ and the sets M∂
σ,k are

precisely its fibers.
The energy functional defines a continuous function

E : M̂σ̂ → R, Ĉ 7→ E(Ĉ).

Proposition 4.3.2 shows that E(Ĉ) depends only on the component of M∂
σ,k

containing ∂∞Ĉ. We conclude that the range of E is discrete since it injects
into the set of critical values of the three-dimensional energy functional Eσ.
We will refer to the range of E as the (σ̂)-energy spectrum. The energy
spectrum is {

C + Ek; k ∈ Z
}

where C is a constant independent of k. Now denote by M̂k
µ the subspace

M̂k
µ := ∂−1

∞ M∂
σ,k.
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Clearly, if the energy spectrum is infinite then the moduli space M̂µ cannot
be compact for obvious reasons. We would like to investigate the compact-
ness properties of the energy level sets.

As in §4.2.3 define the energy density

ρ : M̂µ → C∞(N̂ , R),

Ĉ = (ψ̂, Â) 7→ ρĈ := |∇̂Âψ̂|2 +
1
8
|q(ψ̂)|2 + |FÂ|

2 +
ŝ

4
|ψ̂|2.

The Main Energy Identity in Lemma 2.4.4 shows that for every Ĉ ∈ M̂µ

the density ρĈ is positive on the cylindrical neck. Remarkably, the Key
Estimate in Lemma 2.2.3 continues to hold in the noncompact situation as
well. More precisely, we have

(4.4.3) sup
x∈N̂

|ψ̂(x)|2 ≤ 2 sup
x∈N̂

|ŝ(x)|.

To prove (4.4.3) we set u(x) := |ψ̂(x)|2. As in Lemma 2.2.3 we observe
that u satisfies the differential inequality

∆N̂ +
1
4
u2 +

ŝ

2
u ≤ 0.

If we compactify N̂ to N̂ by adding {∞}×N then u extends to a continuous
function on N̂ and thus it achieves a maximum at a point x0 ∈ N̂ . If x0 ∈ N̂
then we conclude exactly as in the proof of Lemma 2.2.3. If x0 ∈ {∞} × N

then since ψ̂ |∞×N is a 3-monopole we deduce from Remark 4.2.4 in §4.2.2
that

u(x0) ≤ 2 sup
x∈N

|s(x)| ≤ 2S0, S0 := sup
x∈N̂

|ŝ(x)|.

Set N̂T := N̂ \ (T,∞) × N and fix E0 > 0. If E(Ĉ) ≤ E0 then since ρĈ is
positive on the neck we deduce

−S2
0vol (N̂T ) ≤

∫
N̂T

(
|∇̂Âψ̂|2 +

1
8
|q(ψ̂)|2 + |FÂ|

2
)
dv̂ − S2

0vol (N̂T )

(4.4.3)

≤
∫

N̂0

ρĈdv̂ ≤ E0.

Thus, there exists a constant C0 which depends only on the geometry of N̂ ,
E0 and T such that

(4.4.4)
∫

R+×N
ρĈdv̂ +

∫
N̂T

(
|∇̂Âψ̂|2 +

1
8
|q(ψ̂)|2 + |FÂ|

2
)
dv̂ ≤ C0,

∀Ĉ ∈ M̂µ s.t. E(Ĉ) ≤ E0. To proceed further we need the following
technical result. Fix a smooth, strongly cylindrical, reference connection Â0

on det(σ̂).
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Lemma 4.4.3. Fix the constants E0, T > 0. Then there exists a positive
constant C > 0 which depends only on E0, T , Â0 and the geometry of N̂
with the following property.

For every Ĉ = (ψ̂, Â) ∈ M̂µ satisfying E(Ĉ) ≤ E0 there exists γ̂ ∈ Ĝµ,ex

such that if (φ̂, B̂) = γ̂ · Ĉ then

‖B̂ − Â0‖L3,2(N̂T ) ≤ C.

Roughly speaking, the above lemma states that if the energy of (ψ̂, Â)
on N̂T is not too large then the gauge orbit of Â cannot be too far from the
gauge orbit of the reference connection Â0. Thus, high (but) finite energy
monopoles are far away from the reference configuration.

Proof Assume for simplicity that T = 0. The proof relies on elements
of the Hodge theory for manifolds with boundary as presented, e.g., in [98,
Chap. 7]. Set iâ := Â− Â0. The 1-form â decomposes uniquely as a sum of
mutually L2-orthogonal terms

â = 2d̂u + 2d̂∗b̂ + 2Ω

where u ∈ L1,2(N̂1), b̂ ∈ L1,2(Λ2T ∗N̂1), Ω ∈ L1,2(Λ1T ∗N̂1) are constrained
by the conditions

u |∂N̂1
= 0, tb̂ |∂N̂1

= 0, d̂Ω = d̂∗Ω = 0.

Ω defines an element in the group H1(N̂1, R), which can be identified with
the vector space spanned by the harmonic 1-forms in L1,2(ΛT ∗N̂1). Denote
by [Ω] a harmonic 1-form representing an element in H1(N̂1, 2πZ) closest to
Ω. We can find a map γ̂ : N̂1 → S1 (smooth up to the boundary) such that

2d̂γ̂

γ̂
= 2id̂v̂ + 2i[Ω]

where v̂ ∈ L3,2(N̂1, R), v̂ |∂N̂1
= 0. Consider the gauge transformation

β̂ := ei(û−v̂)γ̂.

Observe that

Â − 2d̂β̂

β̂
= Â0 + 2id̂∗b̂ + 2i(Ω − [Ω]).

Using [98, Thm. 7.7.9] we deduce that there exists a positive constant ν

depending only on the geometry of N̂1 such that

‖d̂∗b̂‖L2(N̂1) ≤ ν‖d̂d̂∗b̂‖L2(N̂1) = ν‖FÂ − FÂ0
‖L2(N̂1).

Using (4.4.4) we deduce
‖FÂ‖L2(N̂1) ≤ C
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so that

‖Â − 2d̂β̂

β̂
− Â0‖L2(N̂1) ≤ C(1 + ‖Ω − [Ω]‖L2(N̂1)) ≤ C ′

where C ′ is a positive constant depending only on the geometry of N̂1 and
E0. We can now find a gauge transformation γ̂1 ∈ Ĝµ,ex such that

γ̂1 ≡ β̂ on N̂1/2 = N̂ \ (1/2,∞) × N.

Set (φ̂, B̂) := γ̂ · Ĉ and iδ̂ := B̂ − Â0. Observe that on N̂1/2 we have

d̂∗δ̂ = 0, d̂δ̂ = −i(FB̂ − FÂ0
), ‖δ̂‖L2(N̂1/2)

≤ C ′.

Using interior elliptic estimates for the operator d̂ + d̂∗ we deduce

‖δ̂‖L1,2(N̂1/4) ≤ C
(
‖d̂δ̂ ⊕ d̂∗δ̂‖L2(N1/2) + ‖δ̂‖L2(N̂1/2)

)
≤ C ′′.

We can now bootstrap the a priori L1,2-bound to a L3,2-bound using the
Seiberg-Witten equations, as we have done many times in this chapter. ¥

Remark 4.4.4. We only want to mention that one can use the techniques
in [141] to give a different (albeit related) proof of Lemma 4.4.3. The results
in [141] require Lp-bounds on curvature where p > 2. However, since our
gauge group is Abelian the arguments in [141] extend without difficulty to
L2-bounds as well.

Using Lemma 4.4.3 and the estimate (4.4.3) we can obtain after a stan-
dard bootstrap the following result.

Lemma 4.4.5. Fix E0, T > 0. Then there exists C which depends only
on E0, T and the geometry of N̂ such that, for every Ĉ = (ψ̂, Â) ∈ M̂µ

satisfying E(Ĉ) ≤ E0, there exists γ̂ ∈ Ĝµ,ex such that d
dt γ̂ = 0 for t ≥ T + 2

and if we set (φ̂, B̂) := γ̂ · Ĉ then

d̂∗(B̂ − Â0) = 0 on N̂T+1

and
‖B̂ − Â0‖L3,2(N̂T ) + ‖φ̂‖L3,2(N̂T ) ≤ C.

Along the neck any Ĉ ∈ Ĉµ,sw has the form

(ψ(t), A0 + ia(t) + if(t)dt)

where (ψ∞, A0 + ia(∞)) ∈ Zσ. For T > 0 we set

ST (Ĉ) := ‖ψ(t) − ψ(∞)‖
L3,2

µ ([T,∞)×N)
+ ‖a(t) − a(∞)‖

L3,2
µ ([T,∞)×N)

+‖f(t)‖
L3,2

µ ([T,∞)×N)
.
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It induces a function

[ST ] : M̂µ → R+, [ST ]([Ĉ]) := inf
{

ST (γ̂ · Ĉ); γ̂ ∈ Ĝµ,ex

}
.

According to Theorem 4.2.33 [ST ]([Ĉ]) < ∞ for all Ĉ ∈ M̂µ.

Lemma 4.4.6. Fix T > 0. For any constants E0, S0 > 0 the set{
[Ĉ] ∈ M̂µ; E(Ĉ) ≤ E0, [ST ]([Ĉ]) ≤ S0

}
is precompact.

Proof Consider a sequence of smooth monopoles

Ĉn = (ψ̂n, Ân) ∈ Ĉµ,sw

such that
E(Ĉ0) ≤ E0, ST (Ĉn) ≤ S1 := S0 + 1.

Set iân := Ân − Â0. According to Lemma 4.4.5 we can assume there exists
a constant depending only on E0 and the geometry of N̂0 such that

(4.4.5) ‖ân‖L3,2(N̂T ) + ‖ψ̂n‖L3,2(N̂T ) ≤ C, ∀n.

Along the neck we write ân = an(t) + fn(t)dt and set

Cn := (ψn(∞), A0 + ian(∞)).

We can also assume d∗an(∞) = 0, for otherwise we can replace Cn by eifCn

for a suitable function f : N → R. (For any ε > 0 we can extend f to f̂ on
N̂ such that, for all n, |ST (eif̂ Ĉn) − ST (Ĉn)| < ε.) We then deduce that ∀n

‖an(∞)‖L2(N) ≤ ‖an(T )‖L2(N) + ‖an(T ) − an(∞)‖L2(N)

≤ ‖an(T )‖L2(N) + const · ST (Ĉn)

and
‖ψn(∞)‖L2(N) ≤ ‖ψn(T )‖L2(N) + ‖ψn(T ) − ψn(∞)‖L2(N)

≤ ‖ψn(0)‖L2(N) + const · ST (Ĉn).

On the other hand, the estimate (4.4.5) implies that

‖an(T )‖L2(N) + ‖ψn(T )‖L2(N) ≤ C, ∀n.

Thus
‖an(∞)‖L2(N) + ‖ψn(∞)‖L2(N) ≤ C, ∀n.

Since (ψn(∞), A0 + ian(∞)) is a 3-monopole and d∗an(∞) = 0 we deduce

‖an(∞)‖L3,2(N) + ‖ψn(∞)‖L3,2(N) ≤ C, ∀n.

We can now conclude using the compact embeddings

L3,2
µ (N̂) → L2,2

µ (N̂), L3,2(N) → L2,2(N). ¥
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In Theorem 4.2.37 we have introduced the capture level ~ > 0 and a
constant t > 0 such that if Ĉ ∈ Ĉµ,sw is a smooth monopole satisfying∫

[T,∞)×N
ρĈ < ~

then
[ST ]([Ĉ]) ≤ t.

For every Ĉ ∈ M̂µ define T (Ĉ) > 0 as the smallest nonnegative number T
such that ∫

[T,∞)×N
ρĈdv̂ ≤ ~.

We will refer to T (Ĉ) as the capture moment of Ĉ. Lemma 4.4.6 has the
following consequence.

Lemma 4.4.7. The set

{Ĉ ∈ M̂µ; E(Ĉ) ≤ E0, T (Ĉ) ≤ T0

}
is precompact.

The last results indicate that in order to proceed further we need a
detailed study of the finite energy monopoles on cylinders of longer and
longer lengths. This study will also be relevant when we discuss the gluing
problem.

For each positive integer n consider a tube

Cn := (an, bn) × N, −∞ ≤ an < bn ≤ ∞,

such that `n := (bn − an) → ∞ as n → ∞. Continue to denote by σ the
spinc structure induced by σ on Cn. Consider now for each n a σ-monopole
Ĉn on Cn such that

−∞ < En := E(Ĉn) < ∞
and En → E∞ ∈ R+ as n → ∞. Define a density µn on R by

µn(t) :=


1
2

∫
t×N ρĈn

dvN , t ∈ [an, bn]

0 otherwise
.

Observe that µn are nonnegative L1-functions on R and∫
R

µn(t)dt =
1
2
En.

Observe also that if t ∈ (an, bn) then

µn(t) := ‖SW (Ĉn(t))‖2
L2(N).
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Tight-compact

Vanishing

Dichotomy

µ

µ

µn

n

n

Figure 4.7. Concentration compactness alternatives

According to the concentration-compactness principle of P.L. Lions [80,
81], we have the following alternatives as n → ∞.

There exists a subsequence of µn (which we continue to denote by µn)
satisfying one and only one of the following possibilities (see Figure 4.7).

• Tight-compactness There exists a sequence tn ∈ R such that

∀ε > 0, ∃T > 0 :
∫

[tn−R,tn+T ]
µn(t)dt ≥ E∞ − ε, ∀n ≥ n(ε).

• Vanishing

lim
n→∞

sup
τ∈R

∫
[τ−T,τ+T ]

µn(t)dt = 0, ∀T > 0.

• Dichotomy There exists 0 < λ < E∞ such that for all ε > 0 there exists
nε > 0, Rε, tn = tn,ε ∈ R and dn := dn,ε satisfying for n ≥ nε

(4.4.6)


∣∣∣∫ tn+Rε

tn−Rε
µndt − λ

∣∣∣ ≤ ε,
∣∣∣∫ tn+Rε+dn

tn−Rε−dn
µndt − λ

∣∣∣ ≤ ε,

dn,ε → ∞.
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We call λ above the splitting level of the dichotomy.

Remark 4.4.8. In [103] it is proved that the sequences tn,ε can be chosen
independent of ε, which is what we will assume in the sequel.

Lemma 4.4.9. The Vanishing alternative cannot occur if E∞ > 0.

Proof Suppose vanishing occurs. Then for every ε > 0 we can find n(ε) >
0 such that for all n > n(ε) the integral of µn over any interval of length 4
is < ε. Using Corollary 4.2.15 we deduce that if ε is sufficiently small then

µn(t) ≤ Cε, ∀t ∈ [an + 1, bn − 1].

This shows that the path t 7→ Ĉ |t×N stays in a small neighborhood of a
connected component of M̃σ for t ∈ [an + 1, bn − 1]. Thus

0 < E(Ĉ(bn − 1)) − E(Ĉ(an + 1)) < Cε

where Cε → 0 as ε → 0. This leads to a contradiction since

En = EĈn
([an, an + 1]) + EĈn

([an + 1, bn − 1]) + EĈn
([bn − 1, bn])

≤ 2ε + Cε. ¥

Lemma 4.4.10. If the sequence µn is tight then by extracting a subsequence
we can find a sequence tn ∈ R such that an−tn → A∞ ∈ [−∞,∞], bn−tn →
B∞ ∈ [−∞,∞] , a sequence of gauge transformations γ̂n on Cn and a
monopole Ĉ on [A∞, B∞] × N such that

E(Ĉ) = E∞

and
(γ̂n · Ĉn)(t + tn) → Ĉ

in L1,2
loc([A∞, B∞] × N).

Proof The Seiberg-Witten equations on cylinders are translation invari-
ant so that by suitable translations we can assume the sequence tn in the
description of Tight-compactness is identically zero. Also, assume for
simplicity that A∞ = −∞ and B∞ = ∞.

Fix ε > 0 smaller than the capture level ~. We deduce that there exists
T > 1 such that for all n À 0∫ −T+1

−∞
µn(t)dt +

∫ ∞

T−1
µn(t)dt ≤ ε,

∫ T+2

−T−2
µn(t)dt ≥ En − ε

Arguing as in the proof of Lemma 4.4.6 we deduce that there exists
γ̂n ∈ Ĝµ,ex(R×N) such that γ̂n · Ĉn is bounded in L3,2([−T −1, T +1]×N).
Relabel Ĉn := γ̂n · Ĉn so that, in the new notation, Ĉn is bounded in
L3,2([−T, T ] × N).
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Figure 4.8. Multiple splittings

The arguments in §4.2.4 and in the proof of Lemma 4.4.6 show that
there exist smooth 3-monopoles C±

n and a smooth function

f̂n : R × N → R

such that f̂n ≡ 0 on [−T, T ] × N and eif̂n · Ĉn(t) stays in a tiny L2,2-
neighborhood of C−

n for all t ∈ [an,−T + 1] and eif̂n · Ĉn(t) stays in a tiny
neighborhood of C+

n for all t ∈ [T − 1, bn].
Lemma 4.2.24 (or rather (4.2.44) in §4.2.5) shows that there exists a

constant C > 0 independent of n such that for every interval I ⊂ R of
length ≤ 1 the L2,2(I × N)-norm of Ĉn is bounded from above by C. It
is now clear that a subsequence of eif̂n · Ĉn converges strongly in L1,2

loc to a
monopole Ĉ on R × N . The tightness condition implies E(Ĉ) = E∞. ¥

Exercise 4.4.1. Prove that the convergence in the above result can be
improved to a strong L2,2

loc-convergence.

Remark 4.4.11. The above L2,2
loc-convergence has a built-in uniformity.

More precisely, the rate of convergence on cylindrical pieces of length 1
is bounded from above, meaning that for any ε > 0 there exists nε > 0 such
that

‖γ̂nĈn(• + tn) − Ĉ(•)‖L2,2([T,T+1]×N) < ε

for all n > nε and any admissible T .

We now have to deal with the dichotomy alternative. The “di-” prefix
may be misleading. It is possible that the energy splits in several “bumps”
each carrying a nontrivial amount of energy as in Figure 4.8. We want to
first show that there are nontrivial constraints on how the dichotomy can
occur.

If the energy spectrum consists of at least two values we define the energy
gap

δ := min
{
Em − Ek; m > k

}
.

Observe that the compactness of Mσ coupled with the gauge change law
(2.4.9) implies that δ > 0. For every sufficiently small χ surround the closed
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sets M̃σ,k by tiny, mutually disjoint open neighborhoods Ok(χ) such that if
C ∈ Ok then

|E(C) − Ek| < δ/8

and
distL2,2([C], M̃σ,k) ≤ χ, ∀[C] ∈ Ok(χ).

According to Proposition 4.2.16 we can find ~(χ) > 0 such that if ‖SW (C)‖2
L2 ≤

~(χ) then C modulo G1
σ belongs to one of the open sets Ok(χ).

Suppose now that the dichotomy occurs. Fix a very small χ > 0 and
ε > 0 such that 0 < ε ¿ ~(χ). Set

λn := min(`n, dn).

By suitable t-translations we can arrange that the sequence tn in the defi-
nition of dichotomy is identically zero. For each n À 0 we have

(4.4.7)
∫ Rε+dn

Rε

µn(t)dt +
∫ −Rε

−Rε−dn

µn(t)dt ≤ ε

and

(4.4.8) λ − ε ≤
∫ Rε

−Rε

µn(t)dt ≤ λ + ε.

We can now split the interval In = [an, bn] into several parts:

I ′n := [an, bn] ∩ [−Rε − λn/2, Rε + λn/2], Jn := In \ I ′n.

The set Jn has at most two components and the dichotomy assumption
guarantees that as n → ∞ the measure of Jn increases indefinitely. We
cannot exclude the possibility that one of the components of Jn has bounded
size as n → ∞. Define J0

n as the union of I ′n with the (possibly empty)
asymptotically bounded component of Jn. We set

[cn, dn] := J0
n.

Observe that

λ − ε <

∫
J0

n

µn(t) ≤ λ + 2ε.

In \ J0
n has at most two components and each of them increase indefinitely

as n → ∞.Three situations can occur (see Figure 4.9).

A. In \ J0
n has two components J±1

n and their sizes increases indefinitely as
n → ∞.

B. The complement of [−Rε, Rε] in In consists of two intervals of indefinitely
increasing sizes but In \J0

n is an interval J1
n whose size increases indefinitely

as n → ∞.
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Figure 4.9. Dichotomy alternatives

C. Exactly one of the components of the complement of [−Rε, Rε] in In

increases indefinitely as n → ∞.

We will discuss the three cases separately.

A. Using (4.4.8) and Corollary 4.2.15 we deduce that Ĉn |∂Jn×N is very close
to a pair of critical points of E . Since the energy of Ĉn over J0

n × N (which
is ≈ λ) can be expressed as

EĈn
([cn, dn] × N) = E(Ĉn(dn)) − E(Ĉn(cn))

we deduce that it is very close to the difference of two critical values of E .
Since λ > 0 these two critical values have to be distinct. We reach the
conclusion that

λ > δ/2.

Thus the splitting energy λ is bounded from below by a strictly positive
constant which depends only on the geometry of N .

B. We argue as before to conclude that for large n the energy on the two
intervals J0

n and J1
n is bounded from below by δ/2.
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C. The restriction Ĉ0
n of Ĉn to J0

n ×N defines a new sequence of monopoles
on larger and larger domains. This sequence is tightly-compact and thus it
converges to a nontrivial finite energy monopole on a semi-infinite interval.

Definition 4.4.12. A right semi-tunneling is a finite energy monopole on
a cylinder [a,∞) × N . A left semi-tunneling is a finite energy monopole on
a cylinder (−∞, b) × N .

In Figure 4.9 Ĉ0
n converges to a right semi-tunneling. If we time reverse

the situations depicted in this figure we see that left semi-tunnelings are also
possible.

The next result summarizes the previous discussion.

Lemma 4.4.13. If Dichotomy occurs then we can partition [an, bn] into
k ≤ 3 intervals J i

n, 1 ≤ i ≤ k, with the following properties.
(a)

lim
n→∞

length(J i
n) = ∞.

(b) If we set Ĉi
n := Ĉn |Ji

n×N then either (Ĉi
n) is tight and converges to a

nontrivial (semi)-tunneling or (Ĉi
n) is not tight and E(Ĉi

n) ≥ δ/2.

If we iterate this discussion we deduce that there exist a positive integer
k constrained by

k <
2E∞

δ
+ 2

and a partition In = [an, bn] into k intervals

In := I1
n ∪ I2

n ∪ · · · ∪ Ik
n

such that
lim

n→∞
length(Ij

n) = ∞, ∀1 ≤ j ≤ k

and Ĉj
n := (Ĉn |

Ij
n×N

) is tight. Modulo gauge transformations and time

translations the sequences (Ĉj
n) converge L2,2

loc to nontrivial (semi-)tunnelings
Ĉj
∞ with the following properties.

• limn→∞ E(Ĉj
n) = E(Ĉj

∞), ∀j.

• Ĉj
∞ is a tunneling for every 1 < j < k.

• Ĉ1
∞ is either a tunneling or a right semi-tunneling while Ĉk

∞ is either a
tunneling or a left semi-tunneling.

• ∂+
∞Ĉj

∞ = ∂−
∞Ĉj+1

∞ , for all 1 ≤ j < k.

• If an = −∞ (resp. bn = ∞) for all n then Ĉ1
∞ (resp. Ĉk

∞) must be a
tunneling.
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The above discussion has the following important consequence

Proposition 4.4.14. If M̂k
µ is noncompact then there exists a nontrivial

tunneling Ĉ0 such that

∂+
∞Ĉ0 ∈ M̃σ,k.

Proof Suppose M̂k
µ is not compact. Pick a sequence Ĉn ∈ M̂k

µ with no
convergent subsequence. Lemma 4.4.7 shows that the sequence Ĉn |R+×N

cannot be tight and vanishing cannot occur. Dichotomy is the only alter-
native and the previous discussion implies the existence of tunnelings with
the required properties. ¥

We want to present a few applications of the above result. Suppose σ is
such that c1(det σ) is a torsion class. Then Eσ is Gσ-invariant and since Mσ

is compact we deduce that E has only finitely many critical values

E1 < E2 < · · · < Em.

Corollary 4.4.15. The space{
[Ĉ] ∈ M̂µ; E(∂∞[Ĉ]) = E1

}
is compact.

Proof If Ĉ is a nontrivial σ-tunneling then [∂±
∞Ĉ] ∈ Mσ and

E(∂+
∞Ĉ) − E(∂−

∞M̂) > 0.

In particular, there cannot exist tunnelings towards σ-monopoles of smallest
energy. The corollary now follows from Proposition 4.4.14. ¥

Corollary 4.4.16. Suppose the metric g on N has positive scalar curvature.
Then for every σ ∈ Spinc(N), σ̂ ∈ Spinc(N̂) such that ∂∞σ̂ = σ the space
M̂µ(σ̂) is either compact or empty.

Proof If M̂µ(σ̂) 6= ∅ then Mσ 6= ∅. Since g has positive scalar curvature
all the σ-monopoles are reducibles and thus c1(det σ) is a torsion class.
Moreover, according to Proposition 4.2.10 Mσ is a b1(N)-dimensional torus.
The energy functional Eσ has only one critical value. The compactness now
follows from the previous corollary. ¥
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4.4.3. Orientability issues. When the background manifold N̂ is com-
pact, we established the orientability of the moduli space of monopoles re-
lying on two facts.

• The moduli space of monopoles is compact.

• The family of linearizations
{

TĈ; Ĉ ∈ M̂σ

}
of the Seiberg-Witten equa-

tion can be deformed through Fredholm operators to an orientable family of
Fredholm operators.

When N̂ is a cylindrical manifold none of the above facts is true in
general and thus a general approach to orientability requires new techniques.
The possible noncompactness is not a very serious obstacle since one can
naturally embed the moduli spaces of finite energy monopoles into some
compact metric spaces. The deformation issue is a more serious problem
and requires delicate analysis. The references we are aware of at this time
(July 1999) are rather sketchy on the orientability issue which is discussed
in special cases by ad-hoc methods.

We will not attempt to provide a comprehensive treatment of this prob-
lem since it is beyond the scope of these notes. Instead, we will discuss
in detail only the situations arising in the topological applications we will
present later on.

Suppose (N̂ , ĝ) is a cylindrical manifold such that b̂+(N̂) > 0 and
(N, g) := ∂∞(N̂ , ĝ) has positive scalar curvature. (The concrete examples
we have in mind are N = S3, S1×S2 with their natural metrics.) Assume σ̂

is a spinc structure on N̂ such that σ := ∂∞σ̂ supports reducible monopoles
(i.e. c1(det σ) is a torsion class). The moduli space Mσ consists only of
reducible monopoles and is diffeomorphic to a b1(N)-dimensional torus. We
assume that we have generically perturbed the Seiberg-Witten equations on
N̂ as in §4.3.1 such that the resulting moduli space M̂µ(σ̂) consists only of
strongly regular irreducible monopoles. This implies that M̂µ(σ̂) is a smooth
manifold, the asymptotic boundary map

∂∞ : M̂µ(σ̂) → M∂
σ

is a submersion and the dimension of each component of M̂µ is given by the
virtual dimension formula. We want to warn the reader that, contrary to
the compact case, the moduli space M̂µ may consist of several components
of different virtual (and in this case actual) dimensions. We assume for
simplicity that η ≡ 0 is such a generic perturbation.

Before we proceed with our orientability discussion let us first point out
an interesting result. We will present some of its topological implications in
§4.6.2.
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Corollary 4.4.17. If N is equipped with a metric of positive scalar curva-
ture and the image of H1(N̂ , Z) in H1(N, Z) has infinite index then

M̂µ(σ̂) = ∅.

Proof Set G := H1(N, Z)/H1(N̂ , Z). The universal cover of M∂
σ is M̃σ

∼=
H1(N, g) (= monopoles modulo gauge transformations homotopic to the
identity). We deduce that M∂

σ is connected and

Mσ := M∂
σ/G.

In particular, we deduce that M∂
σ is noncompact and connected. Thus, there

cannot exist submersions from a compact smooth manifold M to M∂
σ so that

M̂µ(σ̂) must be empty. ¥

For each Ĉ ∈ M̂ with C∞ := ∂∞Ĉ, the tangent space TĈM̂µ fits in a long
exact sequence derived from (E),

0 → H1(F (Ĉ)) → TĈM̂µ → TC∞Mσ → 0.

To describe orientations on TĈM̂µ we need to describe orientations on
H1(F (Ĉ)) and TMσ. It is clear that Mσ can be oriented by specifying
an orientation on H1(N, R).

To orient H1(F (Ĉ)) observe that

detH1(F (Ĉ)) ∼= det T̂Ĉ,µ

where we regard T̂Ĉ,µ as an unbounded Fredholm operator L2
µ → L2

µ. Thus,
we need to study the orientability of the family of Fredholm operators

M̂µ 3 Ĉ 7→ T̂Ĉ,µ.

The computations in §4.3.2 show that if Ĉ = (ψ̂, Â) and C∞ = (ψ∞, A∞)
(ψ∞ ≡ 0 since all monopoles on N are reducible) then we can write

T̂Ĉ,µ =
[
6DÂ 0
0 ASDµ

]
+ P̂Ĉ

where ASDµ :=
√

2d̂+ ⊕ (−d∗µ) and P̂Ĉ is a zeroth order operator. Set
T̂s

Ĉ,µ
:= T̂Ĉ,µ−(1−s)P̂Ĉ. We let the reader check that the family of operators

[0, 1] × M̂µ 3 (s, Ĉ) 7→ T̂s
Ĉ,µ

∈ Bounded Operators L1,2
µ → L2

µ
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is continuous. Since

~∂∞T̂s
Ĉ,µ

=


DA∞ 0 0

0 − ∗ d d

0 d∗ −2µ


is independent of s we deduce that all the operators T̂s

Ĉ,µ
are Fredholm.3

The orientability of Ĉ 7→ T̂Ĉ,µ is thus equivalent to the orientability of

T̂0
Ĉ,µ

:=
[
6DÂ 0
0 ASDµ

]
.

The first component of the above operator acts on complex spaces and thus
defines a naturally oriented family. The second component is independent of
Ĉ and thus is orientable. To fix an orientation we need to specify orientations
on kerµ ASDµ and kerµ ASD∗µ

µ . Arguing as in the proofs of Propositions
4.3.28 and 4.3.30 we deduce

kerµ ASDµ
∼= kerex ASD, kerµ ASD∗µ

µ
∼= kerex ASD/H0(N̂ , R).

The computations in Example 4.1.24 show that kerex ASD/H0(N̂ , R) fits
in a short exact sequence

0 → H2
+(N̂) → kerex ASD/H0(N̂ , R) → L2

top → 0

where L2
top denotes the image of H2(N̂ , R) in H2(N, R) while H2

+(N̂) denotes
a maximal positive subspace of the intersection form on H2(N̂ , N ; R).

Similarly kerex ASD can be included in a short exact sequence

0 → H1
L2(N̂) → kerex ASD → L1

top → 0

where H1
L2(N̂) denotes the image of H1(N̂ , N ; R) → H1(N̂ , R) while L1

top

denotes the image of H1(N̂ , R) → H1(N, R).

Proposition 4.4.18. Suppose (N, g) has positive scalar curvature. Then
M̂µ is orientable. We can fix an orientation on it by choosing orientations
on

(4.4.9) H1(N, R), L1
top, L2

top, H
1
L2(N̂), H2

+(N̂).

Remark 4.4.19. Using the long exact sequence of the pair (N̂ , N) we see
that the spaces in the above proposition are naturally related. We let the
reader to verify that a choice of orientations on H1(N̂ , R), H1(N, R) and
H2

+(N̂ , R) naturally induces orientations on the spaces (4.4.9).

3Warning: If C∞ were irreducible then the operator T̂s
Ĉ,µ

may not be Fredholm for all s.
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4.5. Cutting and pasting of monopoles

We have traveled a long road and we have gathered a lot of information
about the finite energy monopoles. This section is the culmination of all
this work. We will describe how to glue two finite energy monopoles into a
monopole on a closed compact manifold (pasting) and then we will explain
why all monopoles on a closed manifold partitioned by a hypersurface split
into finite energy monopoles (cutting).

4.5.1. Some basic gluing constructions. Consider again the situation
in §4.1.5. Suppose (N̂ , ĝ) is a cylindrical manifold, (N, g) := ∂∞(N̂ , ĝ). We
want to emphasize one aspect relating to the notion of cylindrical structure
which was muted in our original definition. More precisely, a cylindrical
structure presupposes the existence of an isometry ϕ between the comple-
ment of a precompact open set D ⊂ N̂ and the cylinder R+ × N . The
complete notation of a cylindrical structure ought to be

(N̂ , D, N, ĝ, g, ϕ)

but that would push the pedantry to dangerous levels. This notation (which
will certainly not be used in the sequel) has one conceptual advantage. It
shows that there is a “quasi”-action by pullback of the group of diffeomor-
phisms of N on the space of cylindrical structures. We use the term “quasi”
since a diffeomorphism f of N may not extend to a diffeomorphism of N̂1.
However, there will always exist a metric ĝf on N̂1 such that

ĝf |(0,1)×N
∼= dt2 + f∗g.

This “quasi”-action induces a genuine action on the space of equivalence
classes of cylindrical manifolds where we declare two cylindrical manifolds
N̂1 and N̂2 to be equivalent when there exists an orientation preserving
diffeomorphism Ψ : N̂1 → N̂2 which restricts to an isometry along the necks.

Similarly, if (Ê, ϑ, E) is a cylindrical vector bundle on N̂ with E := ∂∞Ê
there exists a natural action of Aut (E) on the space of isomorphism classes
of cylindrical structures on Ê.

As in §4.1.5, consider two cylindrical manifolds

(N̂i, Di, Ni, ĝi, gi, ϕi), (Ni, gi) = ∂∞(N̂i, ĝi), i = 1, 2.

Recall that (N̂i, ĝi) are compatible if N1
∼= −N2 (as oriented manifolds) and

g1 = g2. More precisely, this means there exists an orientation reversing
isometry

φ : ∂∞(N̂1, ĝ1) → ∂∞(N̂2, ĝ2).

We set N := N1(∼= −N2). Observe that the above “quasi”-action is hidden
inside the above definition of compatibility.
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For every r À 0 we chop the half-cylinders (r + 2,∞) × Ni and glue
the resulting manifolds Ni(r + 2) over a cylinder (r, r + 2) × N to form a
closed manifold N̂(r) with a long cylinder. The diffeomorphism class of
N̂(r) depends on φ but in order to simplify the notation we will not indicate
this in writing.

A simple rescaling argument shows that there exists a constant C > 0
which depends only on the geometry of N̂i such that for all r > 100 we have

(4.5.1) ‖u‖Lp(N̂(r)) ≤ Cr
1
2
+ 1

p ‖u‖L1,2(N̂(r)), ∀u ∈ L1,2(N̂(r)), 1 < p ≤ 6.

Suppose (Êi, ϑi, Ei) → N̂i are compatible cylindrical manifolds as de-
fined in §4.1.5. They can be glued in an obvious fashion to form a bundle
Ê(r) → N̂(r). For every p ∈ (1,∞), k ∈ Z+ and µ > 0 there exists a natural
linear map

∆ = ∆(Ê1, Ê2) : Lp
µ,ex(Ê1) × Lk,p

µ,ex(Ê2) → Lk,p(E),

∆(û1, û2) = ∂∞û1 − ∂∞û2.

The pairs of sections (û1, û2) ∈ ker ∆(E1, E2) are called compatible pairs. In
4.1.5 we have constructed a gluing map

#r : ker ∆(Ê1, Ê2) → Lk,p
µ (Ê(r)), (û1, û2) 7→ û1#rû2

defined by the cut off construction (4.1.20) (see Figure 4.10)

û1#rû2 := ûi(r)#rû2(r).

The gluing construction extends to compatible asymptotically cylindri-
cal first order p.d.o. L̂i to produce a first order p.d.o. L̂1#rL̂2 on Ê(r).

Lemma 4.5.1. Suppose L̂i are compatible asymptotically cylindrical opera-
tors. For any k ∈ Z+ and any p ∈ (1,∞), µ > 0 there exists a constant which
depends only on k, p, µ and the coefficients of L̂i such that if ûi ∈ Lk+1,p

µ,ex (Êi)
satisfy

∂∞û1 = ∂∞û2, L̂iûi = 0, i = 1, 2,

then

‖L̂1#rL̂2(û1#rû2)‖Lk,p(Ê(r)) ≤ Ce−µr
(
‖û1‖Lk+1,p

µ,ex
+ ‖û2‖Lk+1,p

µ,ex

)
.

Proof For simplicity we will consider only the case k = 0. Fix p ∈ (1,∞)
and µ > 0. We can write

L̂1 := L̂0
1 + Â1

where L̂0
1 is a cylindrical operator and Â1 is a bundle morphism which be-

longs to
⋂

m∈Z+
Lm,p

µ .
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Figure 4.10. Gluing compatible sections
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Figure 4.11. The three regions of N̂(r)

The manifold N̂(r) consists of three parts (see Figure 4.11):

N̂(r)− ∼= N̂1 \ (r,∞) × N, N̂(r)+ ∼= N̂2 \ (r,∞) × N

and the overlap region

N̂0(r) ∼= (−1, 1) × N.
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Over N̂(r)− we have

L̂1#rL̂2 ≡ L̂1, û1#rû2 ≡ û1.

A similar thing happens over N̂(r)+. Thus, the section L̂1#rL̂2(û1#rû2) is
supported on N̂0(r). To ease the presentation identify the region

N̂−
0 (r) := (−1, 0) × N ⊂ N̂0(r)

with the region (r, r + 1) × N ⊂ N̂1. Over N̂−
0 (r) we have

û1#rû2 = α(t − r)
(
û1 − ∂∞û1

)
+ ∂∞û1

and
L̂1#rL̂2 = L̂1 − β(t − r)Â1 = L̂0

1 + α(t − r)Â1

where α(t) and β(t) are depicted in Figure 4.4 of §4.1.4. A symmetric
statement is true over N̂+

0 (r) := (0, 1) × N ⊂ N̂(r)0.
To simplify the presentation we will use the symbol q1 ∼ q2 to denote

two quantities q1, q2 over N̂(r)0 such that

‖q1 − q2‖Lp(N̂(r)0) ≤ Ce−µr
(
‖û1‖L1,p

µ,ex
+ ‖û2‖L1,p

µ,ex

)
where C > 0 is a constant depending only on p, µ > 0 and the coefficients
of L̂i.

We deduce that over N̂−
0 (r) we have

L̂1#rL̂2(û1#rû2) =
(
L̂1 − βÂ1

)
(α(û1 − ∂∞û1) + ∂∞û1 )

= L̂1(α(û1 − ∂∞û1)) + L̂1∂∞û1 − βÂ1(α(û1 − ∂∞û1) + ∂∞û1 )

∼ L̂1(α(û1 − ∂∞û1)) + L̂1∂∞û1 = L̂1(αû1 + β∂∞û1)

(α + β = 1, ‖∂∞û1 − û1‖L1,p(N̂−
0 (r)) ≤ Ce−µr‖û1‖L1,p

µ,ex
)

= L̂1û1 + L̂1(β(∂∞û1 − û1)) = L̂1(β(∂∞û1 − û1)) ∼ 0. ¥

Remark 4.5.2. Completely similar arguments can be used to prove the
more general estimate∥∥∥(L̂1#rL̂2)(û1#rû2) − (L̂1û1)#r(L̂2û2)

∥∥∥
Lk,p(N̂(r))

≤ Ce−µr
(
‖û1‖Lk+1,p

µ,ex
+ ‖û2‖Lk+1,p

µ,ex

)
.

(4.5.2)

Exercise 4.5.1. Prove the estimate in the above remark.
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Exercise 4.5.2. Suppose ω1, ω2 are two compatible, asymptotically strongly
cylindrical differential forms on N̂1 and N̂2 respectively. Show that

d̂(ω1#rω1) = (d̂ω1)#r(d̂ω2).

Finally, we would like to explain how to glue cylindrical spinc-structures.
We refer back to §4.1.1 for the detailed description of the notion of cylin-
drical spinc structure. To figure out what to expect we begin with a simple
argument.

Suppose we have two compatible cylindrical manifolds N̂1, N̂2. As be-
fore, form N̂(r) for r À 0. Let us (noncanonically) identify Spinc(N̂(r))
with H2(N̂(r), Z) or, equivalently, with the group Pic∞(N̂(r)) of isomor-
phism classes of smooth complex line bundles over N̂(r). This group can be
recovered from the two pieces of the decomposition using the Mayer-Vietoris
sequence

H1(N̂(r), Z) → H1(N̂1, Z) ⊕ H1(N̂2, Z) ∆1−→ H1(N, Z)
δ1−→ H2(N̂(r), Z) r2−→ H2(N̂1, Z) ⊕ H2(N̂2, Z) ∆2−→ H2(N, Z).

The arrow r2 indicates that a line bundle σ̂ on N̂(r) induces by restriction
line bundles σ̂i on N̂i while the arrow ∆2 shows that these line bundles
induce isomorphic line bundles on the dividing hypersurface N . Denote by
σ this isomorphism class. The arrow δ1 shows that in order to recover σ̂ we
need to glue σ̂i using an automorphism ϕ of σ

σ̂ = σ̂1#ϕσ̂2.

On the space of automorphisms of σ we can now define an equivalence
relation ∼ generated by

ϕ ∼ τ ⇐⇒


ϕ ◦ τ−1is homotopic to an automorphism of σ
which decomposes as a product between
an automorphism which extends over N̂1 and
an automorphism which extends over N̂2.


The arrow δ1 shows that the isomorphism class of σ̂1#ϕσ̂2 depends only on
the equivalence class of ϕ. (Can you see this directly?) If we set

G := H1(N, Z) and Gi := Range(H1(N̂i, Z) → G),

then we deduce that the space of ∼-equivalence classes is isomorphic to
G/(G1 + G2). Then the restriction map r2 defines a fibration

Pic∞(N̂(r)) → ker ∆

with fiber the space of gluing parameters H1(N, Z)/(G1 + G2),

G/(G1 + G2) ↪→ Pic∞(N̂(r)) → ker∆.
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Let us now refine this construction. Denote by C the cylinder (−1, 1) × N .
We can regard it in a tautological way as a cylindrical manifold with two
cylindrical ends. A cylindrical structure on line bundle L̂ over C is then a
quadruple (L±, ϑ±) where L± is a line bundle over {±1} × N and ϑ± is an
isomorphism

ϑ± : L̂ |{±1}×N→ L±.

Observe that the forgetful morphism Pic∞cyl(C) → Pic∞(C) is onto and its
kernel is isomorphic to G

0 → G → Pic∞cyl(C) → Pic∞(C) → 0.

The above is a naturally split sequence, with splitting map

δ : Pic∞(C) → Pic∞cyl(C), L̂ 7→ (L̂; L̂ |{±1}×N ,1).

We have a natural difference map

∆cyl : Pic∞cyl(N̂1) × Pic∞cyl(N̂2) → Pic∞cyl(C),(
(L̂1, L1, ϑ1), (L̂2, L2, ϑ2)

)
7→

7→
(

(L̂2 ⊗ L̂∗
1) |C , (L̂2 ⊗ L̂∗

1 |−1×N ,1), (L2 ⊗ L∗
1 |1×N , ϑ2 ⊗ ϑ−1

1 )
)
.

Two cylindrical line bundles (L̂i, Li, ϑi) on N̂i are called compatible if

(L̂1, L̂2) ∈ ker ∆cyl.

More precisely, this means that there exist isomorphisms

Φ : Hom(L̂1 |C , L̂2 |C) → C,

φ− : Hom(L̂1, L̂2) |−1×N→ C, φ+ : Hom(L1, L2) |1×N→ C

such that the diagram below is commutative

Hom(L̂1, L̂2) |−1×N Hom(L̂1, L̂2) |C Hom(L1, L2) |1×N

C−1×N CC C1×N

u
φ−

u
Φ

u w
ϑ2ϑ−1

1

u
φ+

u u ww

.

Intuitively but less rigorously, if we think of cylindrical line bundles as bun-
dles with a given “framing” at infinity, then two cylindrical line bundles
are compatible if the framings are homotopic. We will write the pairs of
compatible cylindrical line bundles in the form(

(L̂1, L, ϑ1), (L̂2, L, ϑ2)
)
.

Such a pair can be glued using the trivial automorphism 1 : L → L to
produce a line bundle

(L̂1, L, ϑ1)#r(L̂2, L, ϑ2) ∈ Pic∞(N̂(r)).
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We thus have a surjective morphism called the gluing map

#r : ker ∆cyl → Pic∞(N̂(r)).

Its kernel consists of pairs

(
(CN̂1

, CN , ϑ1), (CN̂2
, CN , ϑ2)

)
with the property that there exist maps γ̂i : N̂i → S1, i = 1, 2 and γ : N → C
such that the diagram below is commutative

CN CN CN

CN

[
[
[[]
γ̂1

w
ϑ1

u
γ

u
ϑ2

�
�

���

γ̂2

This implies

ϑ1γ̂2 |N= ϑ2γ̂1 |N .

Since we are interested only in homotopy classes of such γ̂i we deduce that
the kernel of the above map is (G1 + G2)/(G1 ∩ G2). We can express this
more suggestively in terms of the asymptotic twisting action. Define an
action of G1 + G2 on ker ∆cyl by

(c1 + c2) ·
(
(L̂1, L, ϑ1), (L̂2, L, ϑ2)

)
:=

(
(L̂1, L, c2ϑ1), (L̂2, L, c1ϑ2)

)
,

where the above actions of c1, c2 are given by the asymptotic twisting oper-
ation defined in §4.1.1. This action is not free. The stabilizer of an element
in ker∆cyl is precisely the subgroup G1∩G2 corresponding to the homotopy
classes of gauge transformations over N which extend over N̂(r). The orbits
of this action are precisely the fibers of the gluing map #r. Thus the gluing
operation is well defined on the space of orbits of this G1 + G2-action. We
will also refer to this operation as the connected sum of an orbit of compatible
cylindrical line bundles.

Proposition 4.5.3. For any complex line bundle L on N̂(r) there exists a
unique G1+G2-orbit of compatible cylindrical line bundles L̂i → N̂i, i = 1, 2,
such that L ∼= L̂1#rL̂2.
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Exercise 4.5.3. Prove that we have the following commutative diagram,
with exact rows, column and diagonal.

G

G1 ∩ G2

G1 + G2

G1 ∩ G2

ker ∆cyl

G

G1 + G2
Pic (N̂(r)) ker∆

A
A

A
A

A
A

A
ADD

/'
'
'
'')

u |

f[
[

[
[[̂

'
'
'
'
''))

[
[

[
[

[[̂̂

y w ww

.

We can now define the notion of cylindrical spinc-structure on N̂i in
an obvious fashion. The space of isomorphism classes of such structures is
a Pic∞cyl(N̂i)-torsor. By fixing one such structure we can now reduce the
decomposition problem for spinc-structures to the analogous problem for
line bundles. We have the following result.

Proposition 4.5.4. Any spinc structure on N̂(r) can be written as the con-
nect sum of a unique G1+G2-orbit of compatible cylindrical spinc structures
on N̂i.

4.5.2. Gluing monopoles: Local theory. Consider two compatible cylin-
drical 4-manifolds N̂1 and N̂2. Suppose (N, g) satisfies the nondegeneracy
assumption (N). Fix µ > 0 sufficiently small. Form the closed manifold
N̂(r), r À 0, and fix σ̂ ∈ Spinc(N̂(r)) so that

σ̂ = σ̂1#σ̂2

where σ̂1 and σ̂2 are compatible cylindrical spinc-structures on N̂1 and N̂2

respectively. Now choose strongly cylindrical connections Â0,i on det(σ̂i)
and set

Â0 = Â0(r) := Â0,1#rÂ0,2.

If Ĉi ∈ Ĉµ,ex(N̂i) we set

‖Ĉi‖k,p := ‖Ĉi − (0, Â0,i)‖Lk,p
µ,ex

.

Suppose Ĉi ∈ Ĉµ,sw(N̂i, σ̂i) are two smooth monopoles such that

∂∞Ĉ1 = ∂∞Ĉ2.

As in the previous subsection we can form

Ĉr = (ψ̂r, Âr) := Ĉ1#rĈ2 = (ψ̂1#rψ̂2, Â1#rÂ2).
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The configuration Ĉr ∈ Ĉσ̂(N̂(r)) may not be a monopole but it almost
satisfies the Seiberg-Witten equations. Arguing as in the proof of Lemma
4.5.1 we deduce the following result.

Lemma 4.5.5. There exist constants C > 0 and r0 > 0 which depend only
on the geometry of N̂i such that

‖6DÂr
ψ̂r‖L1,2(N̂(r)) + ‖F+

Âr
− 1

2
q(ψ̂r)‖L1,2(N̂(r)) ≤ Ce−µr

(
‖Ĉ1‖2,2 + ‖Ĉ2‖2,2

)
,

∀r > r0.

Exercise 4.5.4. Prove Lemma 4.5.5.

Naturally, we would like to know whether there exist genuine monopoles
near Ĉr. In other words, we would like to investigate the L2,2-small solutions
Ĉ of the nonlinear equation

ŜW (Ĉr + Ĉ) = 0, L∗
Ĉr

(Ĉ) = 0.

Form the nonlinear map

N : L2,2
(
Ŝ+

σ̂ ⊕ iT ∗N̂(r)
)
→ L1,2

(
Ŝ−

σ̂ ⊕ iΛ2
+T ∗N̂(r)

)
given by

N (Ĉ) := ŜW (Ĉr + Ĉ) ⊕ L∗
Ĉr

(Ĉ).

Denote by T̂r = T̂Ĉr
the linearization of N at 0

T̂r(Ĉ) = ŜW Ĉr
(Ĉ) ⊕ L∗

Ĉr
(Ĉ).

Observe that

(4.5.3) T̂r := T̂Ĉ1
#rT̂Ĉ2

.

Now set
R(Ĉ) := N (Ĉ) −N (0) − T̂rĈ.

Using (4.5.1) with p = 4 we deduce the following result.

Lemma 4.5.6. There exists a constant C > 0 which depends only on the
geometry of N̂i such that

‖R(Ĉ)‖L1,2(N̂(r)) ≤ Cr3/2‖Ĉ‖2
L2,2(N̂(r))

, ∀Ĉ ∈ L2,2
(
Ŝ+

σ̂ ⊕ iT ∗N̂(r)
)

‖R(Ĉ1) − R(Ĉ2)‖L1,2(N̂(r))

≤ Cr3/2
(
‖Ĉ1‖L2,2(N̂(r)) + ‖Ĉ2‖L2,2(N̂(r))

)
‖Ĉ1 − Ĉ2‖L2,2(N̂(r)),

∀Ĉ1, Ĉ2 ∈ L2,2
(
Ŝ+

σ̂ ⊕ iT ∗N̂(r)
)
.
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To shorten the presentation we set

Xk
+ := Lk,2

(
Ŝ+

σ̂ ⊕ iT ∗N̂(r)
)
, Xk

− := Lk,2
(
Ŝ−

σ̂ ⊕ iΛ2
+T ∗N̂(r)

)
,

Xk := Xk
+ ⊕ Xk

−.

According to Lemma 4.5.6, N is a continuous map X2
+ → X1

− differentiable
at 0.

We can now form the closed, densely defined operator

L̂r : X0 → X0

with block decomposition

L̂r :=

[
0 T̂∗

r

T̂r 0

]
.

L̂r is the analytical realization of a Dirac type operator. It is selfadjoint and
induces bounded Fredholm operators

Xk+1 → Xk.

Denote by Hr the subspace of X0 spanned by the eigenvectors of L̂r corre-
sponding to eigenvalues in the interval (−r−2, r−2). Hr consists entirely of
smooth sections. The decomposition X0 = X0

+⊕X0
− induces a decomposition

Hr = H+
r ⊕H−

r .

We denote by Y(r) the orthogonal complement of Hr in X0. Y(r) is also
equipped with a Sobolev filtration

Yk(r) := Y0 ∩ Xk.

Again we have a decomposition

Yk(r) := Yk
+(r) ⊕ Yk

−(r).

Denote by P± the orthogonal projection X± → H±
r and set Q± := 1 − P±.

Observe that
Q±(Xk) = Yk

±(r).

For each Ĉ ∈ X0
+ we set

Ĉ0 := P+Ĉ, Ĉ
⊥

:= Q+Ĉ.

Observe that

(4.5.4) P−T̂r(Ĉ) = T̂r(Ĉ0), Q−(T̂rĈ) = T̂rĈ
⊥
.

Moreover, for every k ∈ Z+, T̂r induces a bounded operator

Yk+1
+ → Yk

−
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with bounded inverse S and there exists C = Ck > 0 such that

(4.5.5) ‖Su‖Lk+2,1(N̂(r)) ≤ Ckr
2‖u‖Lk,2(N̂(r)), ∀u ∈ Yk

−.

The equation N (Ĉ) = 0 is equivalent to the pair of equations

P−N (Ĉ) = 0 and Q−N (Ĉ) = 0.

Using the identities (4.5.4) we can rewrite the above equations as

(4.5.6a) Q−N (0) + T̂rĈ
⊥

+ Q−R(Ĉ
⊥

+ Ĉ0) = 0

(4.5.6b) P−N (0) + T̂rĈ0 + P−R(Ĉ
⊥

+ Ĉ0)

Set U⊥ := −SQ−N (0). Fix Ĉ0. We can rewrite (4.5.6a) as an equation for
C⊥

(4.5.7) Ĉ
⊥

= F(Ĉ
⊥
) := U⊥ − SQ−R(Ĉ

⊥
+ Ĉ

0
).

One should think of F as a family of functions FC0
(Ĉ

⊥
) parameterized by

Ĉ0. Using Lemma 4.5.6 and (4.5.5) we deduce

(4.5.8)
‖F(Ĉ⊥

1 ) − F(Ĉ⊥
2 )‖2,2

≤ Cr5/2
(
‖Ĉ⊥

1 + Ĉ0‖2,2 + ‖Ĉ⊥
2 + Ĉ0‖2,2

)
‖Ĉ1 − Ĉ2‖2,2.

Lemma 4.5.1 coupled with (4.5.5) shows that

‖F(0)‖2,2 ≤ Cr2e−µr.

Thus
‖F(Ĉ⊥)‖2,2 ≤ ‖F(0)‖2,2 + ‖F(Ĉ⊥) − F(0)‖2,2

≤ Cr2e−µr + Cr5/2‖Ĉ⊥
+ Ĉ0‖2,2‖Ĉ

⊥‖2,2.

Observe that there exists r = r(µ) > 0 such that for all r > r(µ) we have

FĈ0

{
‖Ĉ⊥‖2,2 ≤ r−3

}
⊂

{
‖Ĉ⊥‖2,2 ≤ r−3

}
, ∀ ‖Ĉ0‖2,2 ≤ r−3.

Moreover, according to (4.5.8) the induced map

FĈ0
:
{
‖Ĉ⊥‖2,2 ≤ r−3

}
→

{
‖Ĉ⊥‖2,2 ≤ r−3

}
is a contraction. Set

B⊥(r−3) :=
{
‖Ĉ⊥‖2,2 ≤ r−3

}
⊂ Y2

+(r),

B0(r−3) :=
{
‖Ĉ0‖2,2 ≤ r−3

}
⊂ H+

r .

For each Ĉ0 ∈ B0(r−3) the fixed point equation (4.5.7) has an unique solution

Ĉ⊥ = Φ(Ĉ0) ∈ B⊥(r−3).

We let the reader verify that Φ depends differentiably upon Ĉ0.
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Now define the Kuranishi map Ĉ0 7→ κr(Ĉ0) by making the substitution

Ĉ⊥ → Φ(Ĉ0)

in (4.5.6b), that is
κr : B0(r−3) → H−

r ,

Ĉ0 7→ P−N (0) + T̂rĈ0 + P−R(Φ(Ĉ0) + Ĉ0)

= P−SW
(
Ĉr + Ĉ0 + Φ(Ĉ0)

)
.

The space H−
r is called the obstruction space. The Kuranishi map κr has

the following significance. The part of the graph of Φ sitting above the zero
set κ−1

r (0) consists of all the monopoles on N̂r located in the local slice at
Ĉr at a L2,2-distance ≤ r−3 from Ĉr. If kr ≡ 0 (in which case we say that
the gluing is unobstructed ) then the set of monopoles near Ĉr is described
by the graph of Φ.

The results in §4.1.5 give more accurate information on the size and
location of the Hilbert subspaces H±

r . More precisely, we have the short
asymptotically exact sequence

0 → H+
r −→a kerex T̂Ĉ1

⊕ kerex T̂Ĉ1

∆−→ L̂+
1 + L̂+

2 → 0

where L̂+
i is the range of the asymptotic boundary map ∂∞ : kerex T̂Ĉi

→
kerTC∞ . Similarly, we have a short asymptotically exact sequence

0 → H−
r −→a kerex T̂∗

Ĉ1
⊕ kerex T̂∗

Ĉ2

∆

−→a→ L̂−
1 + L̂−

2 → 0

where L̂−
i is the range of ∂∞ : kerex T̂∗

Ĉi
→ kerTC∞ . Using the notation and

results in §4.3.2 we set

L+
i := ∂c

∞ kerex T̂Ĉi
→ TC∞Mσ,

C+
i := ∂0

∞ kerex T̂Ĉi
→ T1G∞ ∼= coker(T1Ĝi

∂∞→ T1G∞),

L−
i = ∂c

∞ kerex T̂∗
Ĉi

→ TC∞Mσ,

C−
i = ∂0

∞ kerex T̂Ĉi
→ T1G∞∼= Range(T1Ĝi

∂∞→ T1G∞).

The results in Propositions 4.3.28 and 4.3.30 imply that we can identify H1
Ĉi

with the subspace ker(∂0
∞ : kerex T̂Ĉi

→ T1G∞) and

L+
i
∼= ∂c

∞H1
Ĉi

, L−
i = ∂c

∞H2(FĈi
).

To put the above facts in some geometric perspective we need to recall the
results in Propositions 4.3.28 and 4.3.30. Denote by Ĝi the stabilizer of Ĉi

and by G∞ the stabilizer of C∞. We then have the following commutative
diagrams in which both the rows and the columns are exact. Sr denotes the



434 4. Gluing Techniques

splitting map defined in §4.1.5 while ∆ denotes the difference between the
asymptotic limits.

• Virtual tangent space diagram

(T)

0 0 0

0 → ker∆c
+ H1

Ĉ1
⊕ H1

Ĉ2
L+

1 + L+
2 → 0

0 → H+
r kerex T̂Ĉ1

⊕ kerex T̂Ĉ2
L̂+

1 + L̂+
2 → 0

0 → ker∆0
+ C+

1 ⊕ C+
2 C+

1 + C+
2 → 0

0 0 0

u u u
w

Sr

u u

w
∆c

+

u
w

Sr

u u
Υ1⊕Υ2

w
∆

u
w

Sr

u u

w
∆0

+

u

• Obstruction diagram

(O)

0 0 0

0 → ker∆c
− H2(FĈ1

) ⊕ H2(FĈ2
) L−

1 + L−
2 → 0

0 → H−
r kerex T̂∗

Ĉ1
⊕ kerex T̂∗

Ĉ2
L̂−

1 + L̂−
2 → 0

0 → ker∆0
− C−

1 ⊕ C−
2 C−

1 + C−
2 → 0

0 0 0

u u u
w

Sr

u u

w
∆c

−

u
w

Sr

u u
∂0∞⊕∂0∞

w
∆

u
w

Sr

u u

w
∆0

−

u

The Lagrangian condition (4.1.22) establishes certain relationships be-
tween the above two sequences.
• Complementarity equations

(L) L+
i ⊕ L−

i = TĈ∞Mσ, C+
i ⊕ C−

i = T1G∞,

C+
i
∼= coker(T1Ĝi

∂∞−→ T1G∞), C−
i = Range(T1Ĝi

∂∞−→ T1G∞), i = 1, 2,
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L−
i =

(
L+

i

)⊥
, C−

i =
(
C+

i

)⊥
.

Suppose that at least one of the monopoles Ĉi is irreducible, say Ĉi.
Then C⊥

1 = 0 and ker∆0
− = 0. The diagram (O) implies

H−
r
∼= ker ∆c ⊂ H2(FĈ0

) ⊕ H2(FĈ0
).

Our next result summarizes the facts we have established so far. A local
gluing result of this nature was proved for the first time by Tom Mrowka
in his dissertation [99], in a slightly different form and in the Yang-Mills
context, relying on conceptually different methods.

Theorem 4.5.7. (Local gluing theorem) Suppose Ĉi ∈ Ĉµ,sw(N̂i, σ̂i),
i = 1, 2, are two finite energy monopoles with compatible asymptotic limits
such that at least one of them is irreducible. Then the following hold.

(a)
H−

r
∼= ker ∆c ⊂ H2(FĈ0

) ⊕ H2(FĈ0
).

(b) There exists r0 > 0 (depending only on the geometry of N̂i and ‖Ĉi‖2,2)
with the following property. For every r > r0 there exist smooth maps

κr : B0(r−3) ⊂ H+
r → H−

r , Φ : B0(r−3) ⊂ H+
r → Y(r)+

such that the variety{
Ĉ = Ĉr + Ĉ

0 ⊕ Ĉ
⊥
; ‖Ĉ0‖2,2 ≤ r−3, κr(Ĉ

0
) = 0, Ĉ

⊥
= Φ(Ĉ

0
)
}

coincides with the set of monopoles Ĉ on N̂(r) satisfying

L∗
Ĉr

(Ĉ − Ĉr) = 0, ‖Ĉ − Ĉr‖2,2 ≤ r−3

where Ĉr := Ĉ1#rĈ2 and H±
r are determined from the diagram (T).

Remark 4.5.8. The obstruction space H−
r can also be described as the

space spanned by the eigenvectors of T̂rT̂
∗
r corresponding to very small eigen-

values, i.e. eigenvalues in [0, r−4). (As pointed out in §4.1.5 the eigenvalues
determining H−

r are in reality a lot smaller than r−4, in fact smaller than
any r−n as r → ∞.) Notice that

T̂rT̂
∗
r : L2,2

 S−
σ̂ ⊕ iΛ2

+T ∗N̂(r)⊕
iΛ0T ∗N̂(r)

 → L2

 S−
σ̂ ⊕ iΛ2

+T ∗N̂(r)⊕
iΛ0T ∗N̂(r)


has the block decomposition

T̂rT̂
∗
r =

 ŜW rŜW
∗
r ŜW r ◦ LĈr

L∗
Ĉr

◦ ŜW
∗
r L∗

Ĉr
LĈr
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where ŜW r denotes the linearization of the Seiberg-Witten equations at Ĉr.
Now witness a small miracle.

ŜW r ◦ LĈr
(if̂) =

d

dt
|t=0 ŜW (eitf̂ · Ĉr)

=
d

dt
|t=0

(
eitf̂ · 6DÂr

ψr,
√

2F+

Âr
− 1√

2
q(ψ̂r)

)
=

(
if̂ 6DÂr

ψ̂r, 0
)
.

This shows that the off-diagonal terms in the above description of T̂rT̂
∗
r are

zeroth order operators !!! Since

‖6DÂr
ψ̂r‖L2,2(N̂(r)) ≤ Ce−µr

we deduce that their norm is exponentially small. We can now write

T̂rT̂
∗
r =

[
ŜW rŜW

∗
r 0

0 L∗
Ĉr

LĈr

]
+ Wr =: Vr + Wr

where Wr is bounded, symmetric and ‖Wr‖ = O(e−µr). Denote (temporar-
ily) by H̃−

r the space spanned by the eigenvectors of Vr corresponding to
eigenvalues in [0, r−4). We can now use the perturbation results in [60]
to deduce that the gap distance between H−

r and H̃−
r converges to zero

as r → ∞. In applications it thus suffices to work with H̃−
r rather than

H−
r . The space H̃−

r has an additional structure deriving from the diagonal
structure of Vr. More precisely, H̃−

r splits into a direct sum

very small eigenvalues of ŜW rŜW
∗
r ⊕ very small eigenvalues of L∗

Ĉr
LĈr

.

We deduce from this picture that the operator L∗
Ĉr

LĈr
does not have very

small eigenvalues if at least one of Ĉi is irreducible. The reason is simple: any
eigenvector corresponding to such an eigenvalue will contribute nontrivially
to the kernel of ∆0

− in the diagram (O). We conclude that for any ε > 0
there exists R = Rε > 0 such that for all r > Rε we have

‖LĈr
(if̂)‖2

L2(N̂(r))
= 〈L∗

Ĉr
LĈr

(if̂), (if̂)〉 ≥ r−2−ε‖f̂‖2
L2(N̂(r))

,

∀f̂ ∈ L1,2(N̂(r)). ¥

We left out one technical issue in the above discussion. More precisely,
we cannot a priori eliminate the possibility that some of the monopoles
constructed in Theorem 4.5.7 are gauge equivalent. It is true that they lie
in the slice ker L∗

Ĉr
but it is possible that the neighborhood in which they

are situated is so large that one gauge orbit intersects it several times. We
will now show that this is not the case by providing an explicit, r-dependent
estimate of the diameter of the local slice at Ĉr.
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Lemma 4.5.9. There exists r0 > 0 such that for all r > r0 the configurations

Ĉr + Ξ, ‖Ξ‖L2,2(N̂(r)) ≤ r−3, L∗
Ĉr

Ξ = 0

are pairwise gauge inequivalent.

Proof We argue by contradiction. We assume that for all r > 0 there
exist

γ̂r ∈ Ĝ
3,2
σ̂ 6= 1

and Ξ1,r 6= Ξ2,r such that

(4.5.9) γ̂r ·
(
Ĉr + Ξ1,r

)
= Ĉr + Ξ2,r, L∗

Ĉr
Ξi,r = 0, ‖Ξi,r‖L2,2(N̂(r)) ≤ r−3.

Set Ĉr =: (ψ̂r, Âr), Ξi,r =: (ψ̂
i,r

, iâi,r) and Ξr := Ξ2,r − Ξ1,r. Observe that

(4.5.10) ‖Ξi,r‖2,2 = O(r−3) as r → ∞.

Denote by cr the average value of γ̂r : N̂(r) → C. We can regard cr as the
orthogonal projection of γ̂r onto the kernel of d̂ + d̂∗. Using the estimate in
Exercise 4.1.6 of §4.1.6 we deduce

‖γ̂r − cr‖2
L2 = O

(
r1+ε‖d̂γ̂r‖2

L2

)
.

The equality (4.5.9) implies

(4.5.11) 2d̂(γ̂r − cr) = 2d̂γ̂r = iγ̂r(â2,r − â1,r)

so that
‖d̂γ̂r‖2 = O(r−3).

Hence

(4.5.12) ‖γ̂r − cr‖2
2 = O(r−5+ε).

Now use (4.5.10), (4.5.12) and interior elliptic estimates for the elliptic equa-
tion (4.5.11) to deduce that there exists C > 0 such that for any open set
U ⊂ N̂(r) of diameter < 1 we have

‖γ̂r − cr‖L3,2(U) ≤ Cr−5/2+ε.

Using the Sobolev embedding L3,2(U) → L∞(U) (where the embedding
constant can be chosen independent of U and r) we deduce

‖γ̂r − cr‖L∞(N̂(r)) = O(r−5/2+ε).

The last estimate shows that γ̂r is very close (in the sup-norm) to being
constant and thus it can be represented as

γ̂r = exp(if̂r).
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Denote by c′r the point on the unit circle S1 ⊂ C and pick ϕr ∈ [0, 2π] such
that exp(iϕr) = c′r. Observe that we can choose f̂r so that

‖f̂r − ϕr‖L∞(N̂(r)) = O(r−5/2+ε).

We can now rewrite (4.5.9) as

iâ1,r − 2id̂f̂r = iâ2,r, exp(if̂r)(ψr + ψ̂
1,r

) = ψ̂r + ψ̂
2,r

.

These two equalities have to be supplemented by the slice conditions

0 = L∗
Ĉr

(Ξi,r) = 2d̂∗âi,r + Im〈ψ̂r, ψ̂i,r
〉.

A simple computation leads to the equality

−4d̂∗d̂f̂r + Im〈ψ̂r, (eif̂r − 1)(ψ̂r + ψ̂
2,r

)〉.

We can further rewrite the above as

(4.5.13) 4d̂∗d̂f̂r = − sin(f̂r)|ψ̂r|2 + Im〈ψ̂r, (eif̂r − 1)ψ̂
2,r

〉.

Set ξr := f̂r − ϕr. We have

4d̂∗d̂ξr = − sin(ϕr)|ψ̂r|2 −
(
sin(f̂r) − sin(ϕr)

)
|ψ̂r|2 + Im〈ψ̂r, (eif̂r − 1)ψ̂

2,r
〉.

Multiply the last equality by 1 and integrate by parts over N̂(r). Since
‖ψ̂

2,r
‖L2 = O(r−3) and ‖ sin(f̂r) − sin(ϕr)‖L∞ = O(r−5/2+ε) we deduce

| sin(ϕr)|
∫

N̂(r)
|ψ̂r|2d vol = O

(
r−5/2+ε)

∫
N̂(r)

|ψ̂r|2d vol
)
.

Thus
| sin(ϕr)| = O(r−5/2+ε).

Thus either |ϕr| = O(r−5/2+ε) or |ϕr − π| = O(r−5/2+ε). We can exclude
the second possibility by using the equality

eif̂r(ψ̂r + ψ̂
1,r

) = ψ̂r + ψ̂
2,r

and the fact that ψ̂r does not vanish identically; better yet, ‖ψ̂r‖∞ is
bounded away from zero independent of r. (Recall that Ĉr is an almost
monopole obtained by gluing two finite energy monopoles at least one of
which was irreducible.) Hence

(4.5.14) ‖f̂r‖L∞ = O(r−5/2+ε).

We can rewrite the equality (4.5.13) as

(4.5.15)
L∗

Ĉr
LĈ(f̂r) = 4d̂∗d̂f̂r + |ψ̂r|f̂r

= (f̂r − sin(f̂r))|ψ̂r|2 + Im〈ψ̂r, (eif̂r − 1)ψ̂
2,r

〉.
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Using interior elliptic estimates for the above equation we deduce that there
exists C > 0 such that if U ⊂ N̂(r) is an open subset of diameter < 1 then

(4.5.16) ‖f̂r‖L3,2(U) ≤ Cr−5/2+ε.

Multiplying the equality (4.5.15) by f̂r we deduce

〈∆Ĉr
f̂r, f̂r〉 ≤ Cr−5/2+ε‖f̂r‖2

L2 .

Using the eigenvalue estimate in Remark 4.5.8 we deduce

‖f̂r‖2
L2 ≤ Cr2+ε〈∆Ĉr

f̂r, f̂r〉L2 .

The last two estimates contradict each other for r À 0. This concludes the
proof of Lemma 4.5.9. ¥

We have thus proved the following result.

Corollary 4.5.10. There exist r1 > 0 and for every r > r1 an open neigh-
borhood Ur of 0 ∈ Vr such that the set{

Ĉr + Ĉ; L∗
Ĉr

Ĉ = 0, Ĉ = Ĉ0 + Φ(Ĉ0), Ĉ0 ∈ Ur, κr(Ĉ0) = 0
}

is homeomorphic to an open set in the moduli space M̂σ̂1#σ̂2. ¥

We will refer to the open subsets of M̂σ̂1#σ̂2 described in the above
corollary as splitting neighborhoods.

Remark 4.5.11. The choice of size r−3 in the definition of Φr and κr is
by no means unique or natural. Our proof shows that if we replace r−3 by
r−n, n ≥ 3, everywhere in the statement of Theorem 4.5.7 we will still get a
valid result.

To give the reader an idea of the strength of the gluing theorem we
consider several special cases.

Example 4.5.12. Both Ĉ1 and Ĉ2 are irreducible, strongly regular and Ĉ∞
is irreducible. In this case, the middle column in (O) is identically zero and
we deduce that the obstruction space H−

r is trivial. Thus, κr ≡ 0 and the
set of monopoles close to Ĉr := Ĉ1#rĈ2 can be represented as the graph of
a smooth map

Φ : B0(r−3) ⊂ H+
r → Y2

+(r)

where Ĉ is implicitly defined by the fixed point equation (4.5.7). Moreover,
the dimension and location of H+

r can be determined from the diagram (T),
which in this case simplifies to

0 → H+
r −→aH1

Ĉ1
⊕ H1

Ĉ2

∆

−→a TC∞Mσ → 0.
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To see why L+
1 + L+

2 = TC∞Mσ observe that in our special case we have
L−

i = 0 and thus, using (L), we conclude L+
i = TĈ∞Mσ. The smooth

manifold filled by the monopoles close to Ĉr has dimension

d(Ĉ1) + d(Ĉ2) − d(C∞).

Observe that all the monopoles on N̂(r) constructed in this way are regular.

Example 4.5.13. Both Ĉ1 and Ĉ2 are irreducible, strongly regular but Ĉ∞
is reducible. The obstruction space H−

r is trivial and the monopoles near Ĉr

form a manifold of the same dimension as H+
r , which is

d(Ĉ1) + d(Ĉ2) − d(C∞) + dim G∞.

Again, all the monopoles near Ĉr are irreducible and regular.

Example 4.5.14. Suppose both Ĉi are strongly regular, Ĉ1 is irreducible but
Ĉ2 is reducible. Again we deduce that the obstruction space Hr vanishes.
The monopoles near Ĉr form a manifold of dimension

dimH+
r = d(Ĉ1) + d(Ĉ2) − d(C∞) + dimG∞.

Set
d(Ĉ1)#d(Ĉ2) := d(Ĉ1) + d(Ĉ2) − d(C∞) + dimG∞.

The above three examples show that if both Ĉi are strongly regular and at
least one is irreducible then the set of monopoles near Ĉr is a smooth man-
ifold of dimension d(Ĉ1)#d(Ĉ2). All these monopoles are both irreducible
and regular. We can formally write

d(Ĉ1#rĈ2) = d(Ĉ1)#d(Ĉ2).

4.5.3. The local surjectivity of the gluing construction. The glu-
ing process described in the previous subsection constructed certain open
subsets (splitting neighborhoods) of the moduli spaces of monopoles on a
4-manifold with a very long neck. This splitting process we are about to
present will show that if the 4-manifold is sufficiently stretched then these
splitting neighborhoods cover the entire moduli space.

Consider again the Riemannian manifold N̂(r) introduced in the pre-
vious subsection. If Ĉ = (ψ̂, Â) is a monopole on N̂(r) then, according to
Proposition 2.1.4, its energy

E(Ĉ) :=
∫

N̂(r)

(
|∇̂Âψ̂|2 +

1
8
|q(ψ̂)|2 + |FÂ|

2 +
ŝ(ĝr)

4
|ψ̂|2

)
dv(ĝr)

is a topological invariant, depending only on the spinc structure and not on
the metric. On the other hand, ‖ŝ(ĝr)‖L∞ is independent of r and because
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‖ψ‖L∞ ≤ 2‖ŝ(ĝr)‖L∞ we deduce that the energy of Ĉ on any open set of
N̂(r) of volume O(1) as r → ∞ is O(1) as r → ∞. If we take this open set
to be the complement of the long neck we conclude that the energy of Ĉ on
the long neck is bounded from above by a constant independent of r.

The discussion in §4.4.2 shows that any sequence (Ĉn) of monopoles on
N̂(rn → ∞) splits as n → ∞ into a chain

Ĉ0, Ĉ1, Ĉ2, · · · , Ĉk, Ĉk+1

where Ĉ0 is a finite energy monopole on N̂1, Ĉk+1 is a finite energy monopole
on N̂2 and Ĉ1, · · · , Ĉk are tunnelings on R × N such that

∂+
∞Ĉi = ∂−

∞Ĉi+1.

Assume for simplicity that tunnelings do not exist. We deduce that
the moduli spaces of finite energy monopoles on N̂i are compact and, more-
over, as r → ∞ the monopoles on N̂(r) will split into a pair of finite energy
monopoles Ĉ1 and Ĉ2 with matching asymptotic limits, ∂∞Ĉ1 = ∂∞Ĉ1 ∈
Mσ. Denote by P the set of such pairs.

Given such a pair (Ĉ1, Ĉ2), the local gluing theorem postulates the ex-
istence of r0 = r0(Ĉ1, Ĉ2) > 0 and for each r > r0 the existence of an open
set UĈ1,Ĉ2,r ⊂ M̂σ̂(ĝr) with the property

UĈ1,Ĉ2,r =
{

Ĉ ∈ M̂σ̂(ĝr); distL2,2([Ĉ], [Ĉ1#rĈ2]) < r−3
}

.

Since P is compact we deduce that there exists R0 > 0 such that

r0(Ĉ1, Ĉ2) < R0, ∀(Ĉ1, Ĉ2) ∈ P.

For each r > R0 we set

Ur :=
⋃

(Ĉ1,Ĉ2)∈P

UĈ1,Ĉ2,r ⊂ M̂σ̂(ĝr).

We can now state the main result of this subsection.

Theorem 4.5.15. Assume N̂1 and N̂2 are equipped with real analytic
structures. Then there exists R1 > 0 such that

Ur = M̂σ̂(ĝr), ∀r > R1.

Sketch of proof The method we will employ in the proof is a substantially
sharper variation of the strategy used in [26, Sec. 2.2] to establish a similar
fact.

Consider a sequence Ĉr→∞ of monopoles on N̂(r) which splits as r → ∞
to a pair (Ĉ1, Ĉ2) ∈ P. Let us explain in some detail the meaning of this
statement.
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Identify the long neck of N̂(r) with the long cylinder [−r, r] × N . The
splitting implies that there exists τ > 0 independent of r with the following
property: if we denote by Ĉr

1 (resp. Ĉr
2) the restriction of Ĉr to the portion

of N̂(r) containing [−r, τ ] × N (resp. [τ, r] × N) then Ĉi
r converges in L2,2

loc

to Ĉi (with the additional uniformity explained in Remark 4.4.11). Denote
by Ĝi the stabilizer of Ĉi.

We want to prove that for all r À 0 there exists (Ĉ1(r), Ĉ2(r)) ∈ P such
that

∂∞Ĉi = ∂∞Ĉi(r) =: C∞

and
distL2,2([Ĉr], [Ĉ1(r)#rĈ2(r)]) < r−3.

Assume for simplicity that τ = 0. It will be convenient to regard Ĉi as
monopoles on the truncated manifold N̂i(r) = N̂i \ (r,∞) × N .

Define the configurations Ĉi,r ∈ Ĉµ,sw(N̂i) by

Ĉi,r = αrĈ
r
i + (1 − αr)C∞

where αr = α(t − r + 1) and α is depicted in Figure 4.4 of 4.1.4.
Using the estimate (4.2.35) in Remark 4.2.29 of §4.2.4 coupled with the

uniform L2,2
loc-convergence of Ĉr

i we deduce after some elementary manipula-
tions that

(4.5.17) ‖ŜW (Ĉi,r)‖L1,2
µ

= O(e−µr), dist
L2,2

µ
(Ĉi, Ĉi,r) = o(1) as r → ∞.

Exercise 4.5.5. Prove the above estimates.
Hint: Consult [26, Sec. 2.2] for inspiration.

To proceed further we need to use some of the constructions (and nota-
tion) in §4.3.1 and §4.3.2. Denote by Ŝi the global “slice”

Ŝi = kerL
∗µ

Ĉi
∩ L2,2

µ .

Using Proposition 4.3.7 we deduce that there exists a L2,2
µ -small neighbor-

hood V̂i of 0 ∈ Ŝi such that every orbit of Ĝµ on Ĉµ,sw(N̂i) intersects Ĉi + V̂i

along at most one point. Modulo Ĝµ we can assume that Ĉi,r ∈ Ĉi + V̂i. Set
Ξi,r := Ĉi,r − Ĉi ∈ Ŝi.

Now denote by Y+
i ⊂ Ŝi the L2

µ-orthogonal complement of H1(FĈi
) in

Ŝi, by Y−
i the L2

µ-orthogonal complement of H2(FĈ0
) in its natural ambient

space and by M̂i(C∞) the moduli space of Ĝµ-equivalence classes of finite
energy monopoles Ĉ on N̂i such that ∂∞Ĉ = C∞. We have the usual Kuran-
ishi local description of a neighborhood of Ĉi in M̂i(C∞). More precisely,
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there exist a small neighborhood Ui of 0 ∈ H1(FĈi
), a smooth map

Φi : Ui → Yi, Φi(0) = 0

and a real analytic map κi : Ui → H2(FĈ2
) such that the set{

Ĉi + u + Φi(u); u ∈ Ui, κi(u) = 0
}

is homeomorphic to an open neighborhood of Ĉi ∈ M̂i(C∞). Moreover, there
exists C > 0 such that

(4.5.18) ‖κi(u)‖
L1,2

µ
≤ C‖ŜW (Ĉi + u)‖

L1,2
µ

, ∀u ∈ Ui.

Exercise 4.5.6. Use the fixed-point strategy in the proof of Theorem 4.5.7
to establish (4.5.18).

Decompose Ξi,r = Ξ0
i,r + Ξ⊥

i,r ∈ H1(FĈi
) ⊕ Y+

i . Since ŜW (Ĉi + Ξi,r) =

O(e−µr) and T̂Ĉi,µ
= ŜW Ĉi

⊕ L
∗µ

Ĉi
has closed range we deduce

‖Ξ⊥
i,r‖L2,2

µ
= O(e−µr).

Thus

(4.5.19) ‖ŜW (Ĉi + Ξ0
i,r)‖L1,2

µ
= O(e−µr).

The iterative construction of Φi via the Banach fixed point theorem shows
that for every u ∈ Ui and every sufficiently small Ξ⊥ ∈ Y+

i we have

‖Φi(u) − Ξ⊥‖
L2,2

µ
≤ C‖Q−ŜW (Ĉi + u + Ξ⊥)‖L1,2

where Q− denotes the orthogonal projection onto Y−
i . In particular, we

deduce that

(4.5.20) ‖Φi(Ξ0
i,r)‖L2,2

µ
= O(e−µr).

The estimates (4.5.18) and (4.5.19) imply that

‖κi(Ξi,r)‖ = O(e−µr).

Since κr is real analytic we can use ÃLojasewicz’ inequality (see [15, 86]) to
deduce that there exists p > 0 such that

dist(Ξ0
i,r, k

−1
i (0)) = O(‖κi(Ξ0

i,r)‖p) = O(e−pµr) as r → ∞.

Using (4.5.20) we can now conclude that

dist
L2,2

µ
(Ĉi,r, M̂i(C∞)) = O(e−cr)

for some c > 0. Thus, we can find Ĉi(r) ∈ M̂i(C∞) such that

dist
L2,2

µ
(Ĉi,r, Ĉi(r)) = O(e−cr).
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This implies immediately that there exists R1 > 0 which depends only on
the geometry of N̂i such that for all r > R1 we have

distL2,2(Ĉr, Ĉ1(r)#rĈ2(r)) ≤ Ce−cr < r−3.

This completes the proof of Theorem 4.5.15. ¥

4.5.4. Gluing monopoles: Global theory. It is now the time to put
together the facts established in the previous two subsections. There is a
wide range of situations possible and we will not attempt to formulate the
most general result. In this subsection we will deal only with two generic
situations which display most of the relevant features of the general gluing
problem.

Again we consider the cylindrical manifolds (N̂1, ĝ1) and (N̂2, ĝ2) with
N = ∂∞N̂i, g := ∂∞ĝi together with a G1 +G2-orbit of compatible cylindri-
cal spinc structures σ̂i, ∂∞σ̂1 = ∂∞σ̂2 = σ. For every c ∈ G we denote by cσ̂i

the asymptotic twisting of the spinc structure σ̂i defined in §4.1.1. We will
identify an element c in G with the unique gauge transformation γ : N → S1

such that 1
2πidγ/γ is the harmonic 1-form in N representing c. We form as

before the Riemannian manifold (N̂(r), ĝr) with a long cylindrical neck.

CASE 1. We will first consider the situation characterized by the following
conditions.

A1 (g, σ) is good.

A2 There exist no (g, σ)-tunnelings on R × N .

A3 b+(N̂i) > 0.

A4 All finite energy monopoles on N̂i are irreducible and strongly regular.

Observe that A1 and A2 are automatically satisfied if g has positive
scalar curvature. The genericity discussion in §4.4.1 shows that we can ar-
range so that A4 is fulfilled using generic compactly supported perturbations
of the Seiberg-Witten equations. Fix a base point at infinity,

∗ ∈ N = ∂∞N̂1 = ∂∞N̂2.

We need to introduce some notation.

• Z ⊂ Cσ(N) – monopoles on N .

• Ĝi := Ĝµ,ex(N̂i), GN̂i := ∂∞Ĝi ⊂ G, GN̂ := GN̂1 · GN̂2 ⊂ G,

MN̂i := Z/GN̂i , MN̂ := Z/GN̂ ,
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The based versions of these spaces are defined in the obvious way. The
space MN̂i

i is a cover of MN̂ , while MN̂ is a cover of Mσ. Moreover we have
induced boundary maps

∂∞ : M̂i
∂∞−→ MN̂i ³ MN̂ ,

∂∞ : M̂i(∗) ∂∞−→ MN̂i ³ MN̂ (∗).
• Ẑi ⊂ Ĉµ,ex(N̂i, σ̂i) – the set of finite energy σ̂i-monopoles on N̂i,

M̂i := Zi/Ĝi, i = 1, 2.

Define

Ẑ =
{

(Ĉ1, Ĉ2) ∈ Ẑ1 × Ẑ2; ∂∞Ĉ1 = ∂∞Ĉ2 mod GN̂
}

,

Ẑ(∗) =
{

(Ĉ1, Ĉ2) ∈ Ẑ1 × Ẑ2; ∂∞Ĉ1 = ∂∞Ĉ2 mod GN̂ (∗)
}

,

The group Ĝ1 × Ĝ2 acts on Ẑ. The quotient Ẑ/Ĝ1 × Ĝ2 can be given the
following description.

Lemma 4.5.16.

Ẑ/Ĝ1 × Ĝ2 =
{

([Ĉ1], [Ĉ2]) ∈ M̂1 × M̂2; ∂∞[Ĉ1] = ∂∞[Ĉ2] ∈ MN̂
}

.

Ẑ(∗)/Ĝ1(∗) × Ĝ2(∗) =
{

([Ĉ1], [Ĉ2]) ∈ M̂1(∗) × M̂2(∗); ∂[
∞[Ĉ1] = ∂[

∞[Ĉ2]
}

.

In particular, there exist natural maps

∂∞ × ∂∞ : Ẑ/Ĝ1 × Ĝ2 → MN̂ ,

∂[
∞ × ∂[

∞ : Ẑ(∗)/Ĝ1(∗) × Ĝ2(∗) → MN̂ (∗).

We get a decomposition

Ẑ = Ẑred ∪ Ẑirr := (∂∞ × ∂∞)−1(MN̂
irr) ∪ (∂∞ × ∂∞)−1(MN̂

red).

Observe that
Ẑred = Ẑred(∗),

and we have a trivial fibration

S1 ↪→ Ẑirr ³ Ẑirr(∗)

where the action of S1 on Ẑirr is given by

eic(Ĉ1, Ĉ2) = (Ĉ1, e
icĈ2).

We have a short split exact sequence

1 → Ĝ1(∗) × Ĝ2(∗) ↪→ Ĝ1 × Ĝ2 ³ S1 × S1 → 1,
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where the last arrow is given by the evaluation at ∗. Set

N̂ := Ẑ/
(
Ĝ1 × Ĝ2

)
, N̂(∗) := Ẑ(∗)/

(
Ĝ1(∗) × Ĝ2(∗)

)
The assumption A4 implies that Ẑ/Ĝ1 × Ĝ2 is a Hilbert manifold. Note that

N̂irr = N̂irr(∗)/S1, N̂red = N̂red(∗)/S1.

Denote by ∆σ̂1,σ̂2(∗) the diagonal of MN̂ (∗) × MN̂ (∗). We deduce

N̂(∗) = (∂∞ × ∂∞)−1(∆σ̂1,σ̂2(∗)), N̂ = (∂∞ × ∂∞)−1(∆σ̂1,σ̂2(∗))/S1.

The manifold N̂ will provide an approximation for the Seiberg-Witten mod-
uli space M̂(N̂(r), σ̂1#σ̂2).

The gluing operation produces a family of S1-equivariant maps

#̂r : N̂(∗) → B̂N̂r
(∗) = Ĉ

(
N̂(r), σ̂1#σ̂2

)
/ĜN̂(r)(∗),

([Ĉ1], [Ĉ2]) 7→ [Ĉ1]#̂r[Ĉ2].

More precisely, if (Ĉ1, Ĉ2) ∈ Ẑ then there exists a pair γ̂i ∈ Ĝi such that
∂∞γ̂i(∗) = 1 and

∂∞Ĉ1 = ∂∞Ĉ2.

We set
[Ĉ1]#̂r[Ĉ2] := [γ̂1Ĉ1#rγ̂2Ĉ2].

Let us check that this is a correct definition.

1. Suppose first that (γ̂′
1, γ̂

′
2) ∈ Ĝ1(∗)× Ĝ2(∗) is another pair with the above

properties. Set δi := γ̂i/γ̂′
i. Because the based gauge group G(∗) acts freely

on Cσ we deduce
∂∞δ1 = ∂∞δ2,

and
γ̂1Ĉ1#rγ̂2Ĉ2 = (δ1#rδ2) · (γ̂′

1Ĉ1#rγ̂
′
2Ĉ2)

2. Suppose we have (Ĉ′
1, Ĉ

′
2) ∈ Ẑ such that there exists a pair (γ̂′

1, γ̂
′
2) ∈

Ĝ1(∗) × Ĝ2(∗) with the property

(γ̂′
1Ĉ

′
1, γ̂

′
2Ĉ2) = (Ĉ1, Ĉ2).

Then ∂∞γ̂1γ̂
′
1Ĉ

′
1 = ∂∞γ̂2γ̂

′
2Ĉ

′
2

[Ĉ′
1]#̂r[Ĉ′

2] = [γ̂1γ̂
′
1Ĉ

′
1#rγ̂2γ̂

′
2Ĉ

′
2]

= [γ̂1Ĉ1#rγ̂2Ĉ2] = [Ĉ1]#̂r[Ĉ2].

Denote by M̂r the moduli space of (σ̂1#σ̂2, ĝr)-monopoles on N̂(r).
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Theorem 4.5.17. (Global gluing theorem) There exists r0 > 0 with the
following properties.

(i) For all r > r0 all the monopoles in M̂r are irreducible and regular.

(ii) For all r > r0 the smooth manifolds M̂r(∗) and #̂r

(
N̂(∗)

)
are S1-

equivariantly isotopic inside B̂σ̂,irr(N̂r, ∗).

Proof Let

Ẑ∆ :=
{

(Ĉ1, Ĉ2) ⊂ Ẑ(∗); ∂∞Ĉ1 = ∂∞Ĉ2

}
,

and
Ĝ∆(∗) :=

{
(γ̂1, γ̂2) ∈ Ĝ1(∗) × Ĝ2(∗); ∂∞Ĝ1 = ∂∞Ĝ2

}
.

Observe that the group Ĝ∆(∗) acts freely on Ẑ∆ and the quotient is N̂(∗).
We have a gluing map

#r : Ĝ∆(∗) → ĜN̂r

which a group morphism. We also have a gluing map

#r : Ẑ∆ → CN̂r

which is (Ĝ∆(∗), ĜN̂r
(∗)-equivariant. This map descends to the gluing map

#̂r. For large r, we have an S1-equivariant embedding

#̂r : N̂(∗) → B̂N̂r
(∗).

We denote its image by Nr(∗), and set N̂r := N̂r(∗)/S1. For every (Ĉ1, Ĉ2) ∈
Ẑ∆ we set

Ĉr = Ĉr(Ĉ1, Ĉ2) := Ĉ1#rĈ2.

We get a virtual tangent space H+

Ĉr
, described by a diagram of the type (T),

and an obstruction space H−
Ĉr

, described by a diagram of the type (O).

Since the moduli spaces M̂σ̂i,µ are compact these diagrams are asymp-
totically exact (uniformly in Ĉr(Ĉ1, Ĉ2)) as r → ∞. In particular, we deduce
that there exists R0 > 0 such that H−

Ĉr
= 0, ∀r > R0 and all Ĉr ∈ #rẐ∆.

Moreover, the diagram (T) shows that the map

#r

(
Ẑ∆

)
3 Ĉr 7→ dimR H+

Ĉr
∈ Z

is continuous and the family
{
H+

Ĉr
; Ĉr ∈ #rẐ∆

}
forms a smooth #rĜ∆-

equivariant vector bundle H+
r → #rẐ∆. It descends to a smooth vector

bundle [H+
r ] on N̂r = #rẐδ/#rĜ∆. We regard it in a natural way as a

sub-bundle of T B̂N̂r
|N̂r

.
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A quick inspection of the diagram (T) shows that [H+
r ] ∼= T N̂r in a very

strong sense: there exists θ : [1,∞) → R+ such that θ(r) → 0 as r → ∞ and

sup
[Ĉr]∈Nr

gap distL2(TĈr
Nr, [H+]Ĉr

) ≤ θ(r), ∀r À 0.

Thus, for all intents and purposes we can identify TNr with [H+
r ].

The space Y2
+(Ĉr) introduced in the proof of the local gluing theorem is

orthogonal (or uniformly almost orthogonal) to TĈr
N̂r, and thus the collec-

tion
Y+

r =
{

Y2
+(Ĉr); Ĉr ∈ N̂r

}
defines an infinite-dimensional vector bundle over N̂r: the normal bundle
corresponding to the embedding

N̂r ↪→ B̂σ̂,irr.

We leave the reader to verify that Lemma 4.5.9 implies that the exponential
map Y+

r → B̂σ̂,irr defined by the embedding

N̂r ↪→ B̂σ̂,irr

induces a diffeomorphism from the bundle of disks of radii r−3 of Y+
r to a

tubular neighborhood of N̂r ↪→ B̂σ̂,irr.

The local gluing theorem produces for each [Ĉr] ∈ N̂r a local section
ΦĈr

of Y+
r defined on a neighborhood of radius r−3 centered at [Ĉr]. We can

view ΦĈr
as a normal pushforward of a r−3-sized neighborhood of Ĉr into a

small tubular neighborhood of N̂r ↪→ B̂σ̂,irr. Set

Ψr(Ĉr) := ΦĈr
(Ĉr).

Since this is an unobstructed gluing problem we deduce that Ψr(Ĉr) is a
genuine σ̂-monopole. Moreover, according to Remark 4.5.11,

distL2,2(Ĉr, Ψr(Ĉr)) ≤ r−n, ∀r À 0, ∀Ĉr.

We can now invoke Corollary 4.5.10 and Theorem 4.5.15 to conclude that
for large r the space M̂σ̂(ĝr) consists only of irreducible, regular monopoles
and the map Ψr is a diffeomorphism

Ψr : N̂r → M̂σ̂(ĝr).

Clearly Γr := Ψr ◦ #r : N̂ → M̂σ̂(ĝr) is a diffeomorphism. Since this
diffeomorphism is defined by a small pushforward in the normal bundle it
is clear that it can be completed to an isotopy. This construction lifts to an
S1-equivariant diffeorphism

Γ[
r : N̂(∗) → M̂σ̂(ĝr, ∗). ¥
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Remark 4.5.18. The covering space MN̂
σ → Mσ may have infinite fibers if

the index of G1 + G2 in G is infinite. This would indicate that N̂, and thus
M̂σ̂(ĝr) may be noncompact, which we know is not the case. How can we
resolve this conflict?

First of all, if these coverings are infinite then it is possible that the
moduli spaces M̂i are empty (see Corollary 4.4.17 for such an example). On
the other hand, the maps ∂∞ : M̂i(∗) → MN̂

σ (∗) have compact fibers and
may not be onto. The intersection ∂[

∞(M̂N̂
1 )∩∂[

∞(M̂N̂
2 ) can then be compact

or even empty.

CASE 2. We now analyze one special case of degenerate gluing. More
precisely, assume the following.

B1 (N, g) is the sphere S3 equipped with the round metric.

B2 b+(N̂1) > 0, b+(N̂2) = 0.

B3 All the finite energy monopoles on N̂1 are irreducible and strongly regular.

B4 Up to gauge equivalence, there exists a unique finite energy σ̂2-monopole
Ĉ2 = (0, Â2) on N̂2 which is reducible and satisfies H1

Ĉ2
= 0. We denote by

d0 its virtual dimension. (Observe that d0 ≤ 0.)

Observe that, according to (4.3.20), the condition B4 implies

H1(N̂2, N ; R) = 0 = H1(N̂2, R).

The identity (4.3.21) implies

H2(FĈ2
) ∼= kerex 6D∗

Â2
.

H2(FĈ2
) is a complex vector space, and thus equipped with a natural S1-

action. Set

h2 := dimC H2(FĈ2
) = −d0 + 1

2
.

Denote by

L → M̂µ(N̂1, σ̂1)

the complex line bundle associated to the principal S1-bundle

M̂µ(N̂1, σ̂1∗) → M̂µ(N̂1, σ̂1).

In this case Ẑ(∗) = Ẑ = Ẑred and N̂ = Ẑ/Ĝ1 × Ĝ2.
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Theorem 4.5.19. (Degenerate gluing) There exists r0 > 0 with the fol-
lowing property. For every r > r0 the moduli space M̂σ̂1#σ̂2(N̂ , ĝr) consists
only of regular irreducible monopoles and there exists a S1-equivariant map

Sr : M̂µ(N̂1, σ̂1, ∗) → Ch2

such that its zero set is a smooth S1-invariant submanifold of M̂µ(N̂1, σ̂1, ∗)
S1-equivariantly diffeomorphic to M̂σ̂1#σ̂2(N̂ , ĝr, ∗). In particular, this means
there exists a section sr of the vector bundle Lh2 → M̂µ(N̂1, σ̂1) whose zero
locus is a smooth submanifold diffeomorphic to M̂σ̂1#σ̂2(N̂ , ĝr).

Sketch of proof We use the same notation as in CASE 1. Observe first
that assumption B1 implies that there exist a unique spinc structure σ0

on N and an unique σ0-monopole C∞ which is reducible and regular. In
particular

TC∞Mσ0 = 0, T1G∞ ∼= R.

Moreover, since G = H1(N, Z) = 0 we deduce that G1 = G2 = 0, and any
gauge transformation on N̂1 extends to N̂ .

Suppose (Ĉ1, Ĉ2) ∈ Ẑ∆. Then we can form Ĉr := Ĉ1#rĈ2. There are
many cancellations in the diagrams (L) and (O) associated to Ĉr. More
precisely, we have

H1
Ĉ2

= 0, L±
i = 0, C+

2 = 0, C−
1 = 0, H2(FĈ1

) = 0.

We deduce that ker∆0
+ = 0, ker∆c

+
∼= H1

Ĉ1
such that

H+
r (Ĉr) ∼= H1

Ĉ1
.

Observe that Lemma 4.5.9 implies that the subspace H+
r (Ĉr) ⊂ TĈr

Ĉ(N̂r)

and the tangent space to the Ĝ(N̂r)-orbit through Ĉr are transversal. More-
over,

TĈr

(
#r(Ẑ∆)

)
= TĈr

(
Ĝ(N̂r) · Ĉr

)
+ H+

r (Ĉr)

and the assignment

Ẑ∆ 3 (Ĉ1, Ĉ2) 7→ H+
r (Ĉ1#rĈ2) ⊂ TĈ1#rĈ2

Ĉ(N̂r)

is a ĜN̂r
-equivariant sub-bundle of T Ĉ(N̂r) |#rẐ∆

and it descends to a smooth
vector bundle

[H+
r ] → N̂r

For large r we have diffeomorphisms

N̂r
∼= N̂ ∼= M̂1.

Moreover, the bundle [H+
r ] → N̂r is isomorphic to the tangent bundle of

M̂1.
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To see this observe first that TĈ1
M̂1

∼= H1
Ĉ1

. Next, the compactness of

M̂1 implies that we have uniformity with respect to Ĉ1 as r → ∞ in the
Cappell-Lee-Miller gluing theorem. Thus, the family

Ẑ∆ 3 (Ĉ1, Ĉ2) 7→ H+
r (Ĉ1#rĈ2)

is homotopic as r → ∞ to the family

Ẑ∆ 3 (Ĉ1, Ĉ2) 7→ H1
Ĉ1

= TĈ1
M̂1.

Using the obstruction diagram (O) we conclude similarly that

H−
r (Ĉr) ∼= H2(FĈ2

).

Fix (Ĉ0
1, Ĉ

0
2) ∈ Ẑ∆ and set

V 0
r := Hr(Ĉ0

1#rĈ
0
2) ⊂ Yr := L1,2(S−

σ̂1#rσ̂2
⊕ iΛ2

+T ∗N̂r).

According to the Cappell-Lee-Miller gluing theorem, Theorem 4.1.22, there
exists r0 = r0(Ĉ1, Ĉ2) > 0 so that for r > r0(Ĉ1, Ĉ2) the last isomorphism is
described by an explicit map

I−
Ĉr,r

: H−
r (Ĉr) → V 0

r
∼= H2(FĈ0

2
).

In fact, since M̂µ(N̂1, σ̂1) is compact, we have

R0 := sup
(Ĉ1,Ĉ2)∈Ẑ∆

r0(Ĉ1, Ĉ2) < ∞

so that for all r > R0 there exists an isomorphism IĈ1,r : H−
r (Ĉr) → V 0

r

depending continuously on Ĉ1. This means that for r > R0 the collection

Ẑ∆ 3 (Ĉ1, Ĉ2) 7→ H−
r (Ĉ1#rĈ2)

forms a trivial complex vector bundle H−
r of rank h2 over Ẑ∆. Using the

diffeomorphism
#r : Ẑ∆ → #r(Ẑ∆) ⊂ Ĉ(N̂r)

we can think of H−
r as a vector bundle over #r(Ẑ∆).

If (γ̂1, γ̂2) ∈ Ĝ∆ then

H−
r ((γ̂1#rγ̂2) · Ĉr) = (γ̂1#rγ̂2) · H−

r (Ĉr).

Two configurations in #rẐ∆ belong to the same Ĝ(N̂r)-orbit if and only if
they belong to the same #rĜ∆-orbit. Since #rẐ∆ consists only of irreducible
configurations we can thus think of H−

r as a Ĝ(N̂r)-equivariant subbundle of
the infinite-dimensional vector bundle Wr over Ĝ(N̂r) ·#rẐ∆ with standard
fiber Yr. Although the bundle H−

r is trivial, it is not equivariantly trivial.
To see this, we present an alternate description of the bundle H−

r .
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Denote by Grass the Grassmannian of complex h2-dimensional sub-
spaces of L1,2(S−

σ̂1#rσ̂2
) ⊂ Yr. The action of Ĝ(N̂r) on Yr induces an action

on Grass. The isomorphisms IĈr,r can be regarded as a #rĜ∆-equivariant
map

φ : #rZ∆ → Grass

whose image lies in the Ĝ(N̂r)-orbit of V 0
r . The bundle H−

r is defined by the
Ĝ(N̂r)-equivariant extension of φ

Φ : Ĝ(N̂r) · #rZδ → Grass.

The stabilizer of V 0
r ∈ Grass with respect to the action of Ĝ(N̂r) is the

subgroup S1 of constant gauge transformations. It is convenient to think
of S1 as given by the obvious inclusion S1 → Ĝ(N̂r) which splits the short
exact sequence

1 ↪→ Ĝ(N̂r, ∗) ↪→ Ĝ(N̂r)
ev∗−→ S1 ³ 1.

The quotient
(
Ĝ(N̂r) · #rẐ∆

)
/Ĝ(N̂r, ∗) is the space of gauge equivalence

classes of based almost monopoles on N̂r,(
Ĝ(N̂r) · #rZδ

)
/Ĝ(N̂r, ∗) ∼= N̂r(∗).

The bundle H−
r descends to a bundle [H−

r ] → N̂r which is the bundle asso-
ciated to the S1-fibration

N̂r(∗) → N̂r

via the natural action of S1 on V 0
r ,

[H−
r ] ∼= N̂r(∗) ×S1 V r

0
∼= N̂r(∗) ×S1 Ch2 ∼= Lh2 → N̂r.

Denote by Ξr the orthogonal complement of H+
r in TBσ̂1#rσ̂2,irr. We can

regard Ξr as the normal bundle of the embedding

N̂r ↪→ Bσ̂1#rσ̂2,irr.

Using the exponential map we can identify a tubular neighborhood Ur (of
diameter ≈ r−3) of

N̂r ⊂ Bσ̂1#σ̂2,irr

with a neighborhood Vr of the zero section of Ξr. Observe that we have
a natural projection π : Ur → N̂r which we can use to pull back H−

r to a
vector bundle π∗[H−

r ] → Ur.

The Seiberg-Witten equations over N̂ define a section ŜW of an infi-
nite dimensional vector bundle Wr over Bσ̂1#σ̂2,irr with standard fiber Yr.
According to Remark 4.5.8 we can regard [H−

r ] as a subbundle of Wr. We
denote by P− the L2-orthogonal projection

P− : Wr → [H−
r ].
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Arguing as in the proof of Theorem 4.5.17 we deduce from the local gluing
theorem that there exists a smooth section Ψr : Ur

∼= Vr ⊂ Ξr → [H−
r ] such

that, for all [Ĉr] ∈ N̂r, we have

(4.5.21) ŜW
(
Ĉr + Ψr(Ĉr)

)
∈ π∗H−

r |Ĉr+Ψr(Ĉr), ∀Ĉr ∈ #rẐ∆.

Set
N̂′

r :=
{

Ĉr + Ψr(Ĉr); Ĉr ∈ N̂r

}
⊂ Ur.

Observe that
N̂′

r
∼= N̂r

∼= M̂µ(N̂1, σ̂1),

and moreover, according to (4.5.21), the restriction of the Seiberg-Witten
section ŜW to N̂′

r defines a smooth section of the vector bundle π∗[H−
r ].

This is a smooth section sr of

Lh2 → N̂′
r
∼= N̂r.

Its zero set is precisely M̂σ̂1#σ̂2(N̂ , ĝr), which is generically a smooth mani-
fold. ¥

The above theorem has an immediate corollary which will be needed in
the next section. Suppose N̂ is a compact, smooth, oriented 4-manifold and
N̂1 is the cylindrical 4-manifold obtained from N̂ by deleting a small ball
and attaching the infinite cylinder R+ × S3. Denote by N̂2 the cylindrical
4-manifold with positive scalar curvature obtained by attaching the infinite
cylinder R+ × S3 to a small ball. Observe that N̂1#rN̂2 is diffeomeorphic
to N̂ . Moreover, if σ̂2 denotes the unique cylindrical spinc-structure on N̂2

then the correspondence

Spinc
cyl(N̂1) 3 σ̂1 7→ σ̂1#σ̂2 ∈ Spinc(N̂)

is a bijection. We will denote its inverse, Spinc(N̂) → Spinc(N̂1), by

σ̂ 7→ σ̂ |N̂1
.

Corollary 4.5.20. Suppose b+(N̂) > 0. Then the S1 bundles

S1 ↪→ M̂σ̂(N̂ , ĝr, ∗) → M̂σ̂(N̂ , ĝr)

and
S1 ↪→ M̂µ(N̂1, σ̂ |N̂1

, ∗) → M̂µ(N̂1, σ̂ |N̂1
)

are naturally isomorphic.

Proof The conditions B1 and B2 are clearly satisfied. B3 is generically
satisfied. Finally, according to Example 4.3.40 in §4.3.4, condition B4 is also
satisfied, with h2 = 0. The corollary now follows immediately from Theorem
4.5.19. ¥
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4.6. Applications

We have some good news for the reader who has survived the avalanche of
technicalities in this chapter. It’s payoff time!

We will illustrate the power of the results we have established so far
by proving some beautiful topological results. All the gluing problems in
Seiberg-Witten theory follow the same pattern.

A major limitation of the cutting and pasting technique has its origin
in the difficulties involved in describing the various terms arising in the
diagrams (T), (O), (L). A good understanding of both the geometric and
topological background is always a make or break factor.

4.6.1. Vanishing results. The simplest topological operation one can per-
form on smooth manifolds is the connected sum. It is natural then to ask
how this operation affects the Seiberg-Witten invariants. The first result of
this section provides the surprisingly simple answer.

Theorem 4.6.1. (Connected sum theorem) Suppose M1 and M2 are
two compact, oriented smooth manifolds such that b+(Mi) > 0. Then

swM1#M2(σ) = 0, ∀σ ∈ Spinc(M1#M2).

Before we present the proof of this result let us mention a surprising
consequence.

Corollary 4.6.2. No compact symplectic 4-manifold M can be decomposed
as a connected sum M1#M2 with b+(Mi) > 0.

Proof The result is clear if b+(M) = 1 since b+(M1#M2) = b+(M1) +
b+(M2). If b+(M) > 1 then, according to Taubes’ Theorem 3.3.29 not all
the Seiberg-Witten invariants of M are trivial. ¥

Remark 4.6.3. (a) The smooth 4-manifolds which cannot be decomposed
as M1#M2 with b+(Mi) > 0 are called irreducible. We can rephrase the
above corollary by saying that all the symplectic 4-manifolds are irreducible.
It was believed, or rather hoped, that the symplectic manifolds exhaust
the list of irreducible 4-manifolds and all other can be obtained from them
by some basic topological operations, much as in the two-dimensional case
where all compact oriented surfaces are connected sums of tori.

This belief was shattered by Z. Szabó in [131], who constructed the
first example of a simply connected, irreducible, non-symplectic 4-manifold.
Immediately after that, R. Fintushel and R. Stern showed in [36] that the
phenomenon discovered by Szabó was not singular and developed a very
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elegant machinery to produce irreducible manifolds, most of which are not
symplectic.

(b) Up to this point we knew only one vanishing theorem: positive
scalar curvature ⇒ trivial Seiberg-Witten invariants. The connected sum
theorem, however, has a different flavor since the vanishing is a consequence
of a topological condition rather than of a geometric one.

Proof of Theorem 4.6.1 Set N̂ := M1#M2. Observe that b+(N̂) > 1
so that the Seiberg-Witten invariants of N̂ are metric independent.

Denote by N̂i the manifold obtained from Mi by deleting a small ball
and then attaching the infinite cylinder R+ × S3. Observe that

N̂ ∼=diffeo N̂1#S3,rN̂2.

On S3 there exists a single spinc structure and any two cylindrical structures
σ̂i ∈ Spinc

cyl(N̂i) are compatible. Thus

Spinc(N̂) ∼= Spinc
cyl(N̂1) × Spinc(N̂2).

The manifolds N̂1 and N̂2 (generically) satisfy all the assumptions of the
Global Gluing Theorem 4.5.17 and thus

M̂σ̂1#σ̂2(N̂ , ĝr) ∼= M̂µ(N̂1, σ̂1, ∗) × M̂µ(N̂2, σ̂2∗)/S1.

Moreover, according to the computation in Example 4.5.13 we have (com-
ponentwise)

dim M̂σ̂1#σ̂2(N̂ , gr) = dim M̂µ(N̂1, σ̂1) + dim M̂µ(N̂2, σ̂2) + 1.

The left-hand side of the above equality can be zero if and only if one of the
two dimensions on the right-hand side is negative, forcing the corresponding
moduli space to be (generically) empty. Thus, if σ̂ ∈ Spinc(N̂) is such that
the expected dimension d(σ̂) = 0 then the corresponding moduli space is
generically empty so that swN̂ (σ̂) = 0.

To deal with the case d(σ̂1#σ̂2) > 0 we follow an approach we learned
from Frank Connolly. Suppose σ̂0 = σ̂1#σ̂2 ∈ Spinc(N̂) is such that d(σ̂0) =
2n > 0. Then

swN̂ (σ̂0) =
∫

M̂σ̂0

Ωn
0

where Ω0 ∈ H2(M̂σ̂0 , Z) is the first Chern class of the base point fibration

S1 ↪→ X0 := M̂σ̂0(∗)
p0−→ M̂σ̂0 .

Denote by Ωi, i = 1, 2, the first Chern class of the base point fibration

S1 ↪→ Xi := M̂µ(N̂i, σ̂i, ∗)
pi−→ M̂µ(N̂i, σ̂i).
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It is convenient to think of Ωj , j = 0, 1, 2, as differential forms. The pullbacks
p∗Ωj are exact and there exist 1-forms θj such that

dθj = p∗Ωj

and ∫
M̂σ̂j

Ωm =
∫

M̂σ̂j
(∗)

θ ∧ (dθj)m, ∀m ∈ Z+, j = 0, 1, 2.

(Above, we have tacitly used the fact that the manifolds M̂σ̂j are orientable.)
The 1-forms θj have a simple geometric interpretation: they are global an-
gular forms of the corresponding S1-fibrations. In topology these forms also
go by the name of transgression forms.

On the other hand, we can regard θ0 as a global angular form for the
diagonal S1-action on

X := M̂µ(N̂1, σ̂1, ∗) × M̂µ(N̂2, σ̂2, ∗)
so that we can choose

θ0 =
1
2

(
θ1 + θ2

)
+ exact form.

Thus

swN̂ (σ̂0) =
1

2n+1

∫
X0

(θ1 + θ2) ∧ (dθ1 + dθ2)n

=
1

2n+1

∫
X1×X2

(θ1 + θ2) ∧ (dθ1 + dθ2)n.

For j = 0, 1, 2 set mj := dimXj and c0 := 2−(n+1). Observe that when
M̂µ(N̂i) 6= ∅ its dimension must be nonnegative and we have

(4.6.1) m1, m2 > 0, m0 = n + 1 = m1 + m2.

Using Newton’s binomial formula we deduce

swN̂ (σ̂0) = c0

m0−1∑
k=0

(
m0 − 1

k

)(∫
X1

θ1 ∧ (dθ1)k

)(∫
X2

(dθ2)m0−1−k

)

+c0

m0−1∑
k=0

(
m0 − 1

k

)(∫
X1

(dθ1)k

)(∫
X2

θ2 ∧ (dθ2)m0−1−k

)
.

The integrals involving only powers of (dθj) vanish because these are exact
forms. We deduce

swN̂ (σ̂0) = c0

∫
X1

θ1 ∧ (dθ1)n + c0

∫
X2

θ2 ∧ (dθ2)n.

Using (4.6.1) we now deduce n + 1 > max(m1, m2) so that both integrals
above vanish. ¥
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Remark 4.6.4. For a proof of the connected sum theorem not relying on
gluing and pasting techniques we refer to [120].

We conclude this subsection with another vanishing result implied by a
topological constraint. This result will be considerably strengthened in the
next subsection.

Before we state the result let us mention that an element x of an Abelian
group G is called essential if it generates an infinite cyclic group.

Proposition 4.6.5. Suppose N̂ is a compact, oriented, smooth 4-manifold
satisfying the following conditions.
(a) b+(N̂) > 1.

(b) There exists a smoothly embedded S2 ↪→ N̂ with trivial self-intersection
and defining an essential element in H2(N̂ , Z).

Then all the Seiberg-Witten invariants of N̂ are trivial.

Proof Observe that because the self-intersection of S2 ↪→ N̂ is trivial it
admits a small tubular neighborhood U diffeomorphic to the trivial disk
bundle D2 × S2. Set N̂ := ∂U ∼= S1 × S2 and equip it with the product
metric g.

Denote by (N̂1, ĝ1) the manifold obtained from N̂ by removing U and
attaching the infinite cylinder R+ × N . Moreover, we choose ĝ1 such that
∂∞ĝ1 = g. Also, denote by (N̂2, ĝ2) the cylindrical manifold obtained by
attaching the cylinder R+ × N to U and such that ∂∞ĝ2 = g.

Observe that N̂ is diffeomorphic to N̂1#rN̂2 for any r > 0. Suppose
there exists a spinc structure σ̂ on N̂ such that

swN̂ (σ̂) 6= 0.

Since b+(N̂) > 1 this implies that M̂σ̂(N̂ , ĝr) 6= ∅, ∀r > 0. In particular, if
we use the unique decomposition

σ̂ = σ̂1#σ̂2

we conclude that M̂µ(N̂1, σ̂1) 6= ∅. At this point we want to invoke the
following topological result, whose proof we postpone.

Lemma 4.6.6. The image of H1(N̂1, Z) → H1(N, Z) has infinite index.

The last result and the positivity of the scalar curvature of N now place
us in the setting of Corollary 4.4.17 of §4.4.3 which implies that M̂µ(N̂1, σ̂1)
is empty. This contradiction completes the proof of Proposition 4.6.5. ¥

Proof of Lemma 4.6.6 We will prove the dual homological statement,
namely that the image of H3(N̂1, N, Z) → H2(N, Z) has infinite index.
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Observe that
H2(N, Z) = H2(S1 × S2, Z) ∼= Z

with generator S2 ↪→ N ∼= S1 × S2. Next, notice that the inclusion

N ↪→ N̂

induces an injection
H2(N, Z) ↪→ H2(N̂ , Z)

whose image is generated by the cycle S2 ↪→ N̂ . Denote by k[S2] the
generator of the image H3(N̂1, N, Z) → H2(N, Z). Thus, there exists a
cycle c ∈ H3(N̂1, N, Z) such that

∂c = k[S2] ∈ H2(N, Z).

This cycle determines a three-dimensional chain c on N̂ such that

∂c = k[S2 ↪→ N̂ ]

so that k[S2 ↪→ N̂ ] = 0 ∈ H2(N̂ , Z). Since the homology class [S2 ↪→ N̂ ] is
essential we deduce k = 0 so that the morphism H3(N̂1, N, Z) → H2(N, Z)
is trivial. ¥

4.6.2. Blow-up formula. In the previous subsection we have shown that
the connected sum of two 4-manifolds with positive b+’s has trivial Seiberg-
Witten invariants. This raises the natural question of understanding what
happens when one of the manifolds is negative definite. In this case we know
that the intersection form is diagonal, exactly as the intersection form of a
connected sum of CP

2’s.
In this final subsection we will investigate one special case of this new

problem. More precisely, we will determine the Seiberg-Witten invariants
of M#CP

2 in terms of the Seiberg-Witten invariants of M . As explained in
Chapter 2, the connected sum M#CP

2 can be interpreted as the blow-up
of M at some point. It is thus natural to refer to the main result of this
subsection as the blow-up formula.

Suppose M is a compact, oriented, smooth 4-manifold such that b+(M) >

1. Denote by N̂1 the manifold obtained from M by removing a small ball
and then attaching the infinite cylinder R+ × S3. Observe that

Spinc(M) ∼= Spinc
cyl(N̂1).

Now denote by N̂2 the manifold obtained from CP
2 by removing a small

disk and then attaching the cylinder R+ × S3. Again we have

Spinc(CP
2) ∼= Spinc

cyl(N̂2).
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Moreover, any two spinc structures σ̂i ∈ Spinc
cyl(N̂i) are compatible and the

induced map

Spinc
cyl(N̂1) × Spinc

cyl(N̂2) → Spinc(M#CP
2),

(σ̂1, σ̂2) 7→ σ̂1#σ̂2

is a bijection.
The manifold N̂2 can also be obtained as in Example 4.3.39 in §4.3.4 by

attaching R+ × S3 to the boundary of the Hopf disk bundle over S2. If we
now regard S3 as the total space of the degree −1 circle bundle over S2 we
can equip it with a metric g of positive scalar curvature as in Example 4.1.27.
(The round metric is included in the constructions of Example 4.1.27.) Fix
cylindrical metrics ĝi on N̂i such that ĝ2 has positive scalar curvature and

∂∞ĝ1 = g = ∂∞ĝ2.

The manifold CP
2 is equipped with a canonical spinc structure σcan

induced by the complex structure on CP2. The map

Spinc(N̂2) 3 σ̂ 7→ c1(det(σ̂)) ∈ H2(N̂2, Z) ∼= Z

is a bijection onto 2Z+1 ⊂ Z where the generator of H2(N̂2, Z) is chosen such
that c1(σcan) = 1. For each n ∈ Z denote by σ̂n the unique cylindrical spinc

structure on N̂2 such that c1(σ̂n) = (2n + 1). Observe that c1(σ̄can) = −1
so that σ̄can = σ−1.

Theorem 4.6.7. (Blow-up Formula) For every σ̂ ∈ Spinc(M) we have

|sw
M#CP2(σ̂#σ̂n)| =

{
0 if d(σ̂) < ±n(n + 1)

|swM (σ̂)| if d(σ̂) ≥ n(n + 1)
.

Corollary 4.6.8. If BM ⊂ Spinc(M) denotes the set of basic classes of M
then

B
M#CP2 =

{
σ̂#σ̂n; σ̂ ∈ BM , n ∈ Z d(σ̂) ≥ n(n + 1)

}
.

In particular, BM 6= ∅ ⇐⇒ B
M#CP2 6= ∅.

Proof of the Blow-up Formula The computations in Example 4.3.39
show that the moduli space M̂(N̂2, σ̂n) consists of a single reducible mono-
pole and the virtual dimension is dn = −(n2+n+1). Moreover (see Example
4.5.14 in §4.5.2)

d(σ̂#σ̂n) = d(σ̂)#d(σ̂n) := d(σ̂) + d(σ̂n) + 1 = d(σ̂) − n(n + 1).

We prove first that

|sw
M#CP2(σ̂#σ̂n)| = |swM (σ̂)|
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if n = ±1. We want to use Theorem 4.5.19. The computations in Exam-
ple 4.3.39 show that the assumptions B1,B2,B4 are satisfied with h2 = 0.
Moreover, B3 is generically satisfied. We deduce that we have an isomor-
phism between the S1-bundles

P :=
{

M̂µ(N̂1, σ̂, ∗) → M̂µ(N̂1, σ̂)
}

and
Pn :=

{
M̂σ̂#σ̂n(M#CP

2
, ĝr, ∗) → M̂σ̂#σ̂n(M#CP

2
, ĝr)

}
.

Using Corollary 4.5.20 we obtain an isomorphism of S1-bundles

P =
{

M̂µ(N̂1, σ̂, ∗) → M̂µ(N̂1, σ̂)
}
∼=

{
M̂σ̂(M, ĝr, ∗) → M̂σ̂(M, ĝr)

}
= Q.

Thus we have Ω := c1(Q) = c1(P ),

swM (σ̂) =
〈(

1 − Ω
)−1

, [M̂σ̂(M)]
〉

= ±
〈(

1 − c1(Pn)
)−1

, [M̂σ̂#σ̂n(M#CP
2)]

〉
= sw

M#CP2(σ̂#σ̂n).

(The above integrations are well defined since all the manifolds involved are
orientable.)

In general, set

Xn := M̂σ̂#σ̂n(M#CP
2
, ĝr), X := M̂µ(N̂1, σ̂).

Example 4.3.39 shows that we can apply Theorem 4.5.19 for any spinc struc-
ture σ̂n on N̂2 but if n 6= ±1 we will encounter obstructions to gluing. The
manifold Xn is thus the smooth zero set of a section sr of the vector bundle

On := P ×S1 Ch2 , h2 :=
n(n + 1)

2
over X. The cycle determined by Xn in X is therefore the Poincaré dual of
the Euler class of this vector bundle. Observe that

e(On) = c1(P )h2 = Ωh2 .

Consequently,

|sw
M#CP2(σ̂#σ̂n)| =

∣∣∣∣〈 (1 − Ω)−1, [s−1
r (0)]

〉∣∣∣∣
=

∣∣∣∣〈 (1 − Ω)−1e(On), [X]
〉∣∣∣∣ =

∣∣∣∣〈 Ωh2(1 − Ω)−1, [X]
〉∣∣∣∣

=
∣∣∣∣〈 (1 − Ω)−1, [X]

〉∣∣∣∣ = |swM (σ̂)|. ¥
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Corollary 4.6.9. (Fintushel-Stern [34], Morgan-Szabó-Taubes [97])
Suppose M is a compact, oriented, smooth 4-manifold satisfying the follow-
ing conditions.
(a) b+(M) > 1.
(b) There exists an embedding S2 ↪→ M which determines an essential ele-
ment of H2(M, Z) with nonnegative self-intersection d.

Then all the Seiberg-Witten invariants of M are trivial, i.e. BM = ∅.

Proof Denote by Md the d-fold blow-up of M , Md := M#dCP
2. Each

blow-up decreases self-intersections by 1 so that Md contains an essentially
embedded 2-sphere with trivial self-intersection. According to Proposition
4.6.5 in the preceding subsection we have

BMd
= ∅.

We can now invoke Corollary 4.6.8 to conclude that BM = ∅. ¥

Remark 4.6.10. The results of C.T.C Wall [144] imply that if M is a sim-
ply connected manifold with indefinite intersection form and c ∈ H1(M, Z)
is a primitive class (i.e. H2(M)/Z · c is torsion free) which is represented by
an embedded 2-sphere and c2 = 0 then

M ∼= N#(S2 × S2) or M ∼= N#(CP2#CP
2).

In particular, by the connected sum theorem the Seiberg-Witten invariants
of M must vanish. Corollary 4.6.9 shows that the Seiberg-Witten vanishing
holds even without the primitivity assumption.

Remark 4.6.11. We have reduced the proof of Corollary 4.6.9 to the special
case when the embedded sphere S2 ↪→ M has self-intersection 0.

Stefano Vidussi has shown in [143] that such an essential sphere exists if
and only if there exists a hypersurface N ↪→ M carrying a metric of positive
scalar curvature such that b1(N) > 0 and decomposing M into two parts
M± satisfying

b1(M) + b1(N) > b1(M+) + b1(M−).
We refer the reader to [111, 143] for details and generalizations of Corollary
4.6.9.

The above vanishing corollary has an intriguing topological consequence.

Corollary 4.6.12. Let M be a compact symplectic 4-manifold with

b+(M) > 1.

If Σ ↪→ M is an embedded surface representing an essential element in
H2(M, Z) with nonnegative self-intersection then its genus must be positive.
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Proof If the genus of Σ were zero then, according to Corollary 4.6.9, the
Seiberg-Witten invariants of M would vanish. Taubes’ theorem tells us this
is not possible for a symplectic 4-manifold with b+ > 1. ¥

Remark 4.6.13. (a) The above genus estimate is optimal from different
points of view. First of all, the genus bound is optimal since it is achieved
by the fibers of an elliptic fibration. The condition on self-intersection be-
ing nonnegative cannot be relaxed without affecting the genus bound. For
example, the exceptional divisor of the blow-up of a Kähler surface has
self-intersection −1 and it is represented by an embedded sphere.

(b) The above minimal genus estimate has the following generalization
known as the adjunction inequality.

Suppose M is a closed, oriented 4-manifold such that b+(M) > 1. If
Σ ↪→ M is an essentially embedded surface such that Σ ·Σ ≥ 0 then for any
basic class σ ∈ BM we have

2g(Σ) ≥ 2 + Σ · Σ − 〈c1(det σ), Σ〉.
(When g(Σ) ≥ 1 we can drop the essential assumption.) One can imitate the
proof of the Thom conjecture in §2.4.2 to obtain this result (see [119]). For
a different proof, using the full strength of the cutting-and-pasting technique
we refer to [97].

Observe that if M is symplectic and the essential homology class c ∈
H2(M, Z) is represented by a symplectically embedded surface Σ0 and
c · c ≥ 0 then the adjunction equality implies

2g(Σ0) = 2 + Σ0 · Σ0 − 〈c1(det(σ)), Σ0〉.
In particular, if Σ is any other embedded surface representing c we deduce
from the adjunction inequality that

g(Σ0) ≤ g(Σ).

This shows that if Σ is a symplectically embedded surface such that Σ·Σ ≥ 0
then it is genus minimizing in its homology class.

In a remarkable work, [114], P. Ozsvath and Z. Szabó have shown that
we can remove the nonnegativity assumption Σ · Σ ≥ 0 from the statement
of the adjunction inequality provided we assume that g(Σ) > 0 and X has
simple type, i.e. if σ ∈ BM is a basic class then d(σ) = 0. It is known that
all symplectic manifolds have simple type; see[97].

Exercise 4.6.1. Use the blow-up formula and the techniques in §2.4.2 to
prove the adjunction inequality in the case Σ · Σ ≥ 0.

The adjunction inequality implies the following generalization of Corol-
lary 4.6.12.
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Corollary 4.6.14. Suppose M is a symplectic manifold and Σ ↪→ M is an
essentially embedded surface such that Σ · Σ ≥ 0. Then

(4.6.2) g(Σ) ≥ 1 +
1
2
Σ · Σ.

In particular, for any n ∈ Z∗ we have

g(nΣ) ≥ 1 +
n2

2
Σ · Σ.

Assume b+(M) > 1. For every c0 ∈ Hom (H2(M, Z), R) and every a, b ∈
R the set

Sc0(a) := {x ∈ H2(M, Z); |〈x, c0〉| ≤ a}
represents a strip in the lattice H2(M, Z). The adjunction inequality shows
that we have restrictions on the location of the set of basic classes. More
precisely, for every essentially embedded surface Σ ↪→ M (g(Σ) > 0 if Σ·Σ <
0) we have

c1(BM ) ⊂ S[Σ](µ(Σ)), µ(Σ) := −χ(Σ) − Σ · Σ.

If M also happens to be symplectic, then Taubes’ Theorem 3.3.29 also im-
plies

c1(BM ) ⊂ −1
2
c1(KM ) + Sω(degω KM ).

Exercise 4.6.2. Suppose M is a closed, oriented 4-manifold with b+(M) >
1.
(a) Show that if c ∈ H2(M, Z) is a nontrivial homology class such that
c · c = 0 which is represented by a smoothly embedded torus T 2 ↪→ M then

BM ⊂ c⊥ :=
{
σ ∈ Spinc(M); 〈c1(det σ), c〉 = 0

}
.

(b) Show that if c ∈ H2(M, Z) is represented by an embedded 2-torus and
c · c = −2 then either

〈c1(BM ), c〉 ⊂ {−2, 0, 2}
or

〈c1(BM ), c〉 ⊂ {−1, 1}.
(c) Show that the same conclusion continues to hold if c · c = −2 and c is
represented by an embedded 2-sphere.
(d) Suppose c is a homology class represented by an essentially embedded
surface Σ. If

g(Σ) = 1 +
1
2
c · c > 0

then BM ⊂ c⊥. If moreover 0 < g(Σ) < 1 + 1
2c · c then BM = ∅.





Epilogue

A whole is that which has a beginning, a middle and an
end.

Aristotle , Poetics

We can now take a step back and enjoy the view. Think of the places
we’ve been and of the surprises we’ve uncovered! I hope this long and
winding road we took has strengthened the idea that Mathematics is One
Huge Question, albeit that it appears in different shapes, colours and flavors
in the minds of the eccentric group of people we call mathematicians.

I think the sights you’ve seen are so breathtaking that even the clumsiest
guide cannot ruin the pleasure of the mathematical tourist. I also have some
good news for the thrill seeker. There is a lot more out there and, hereafter,
you are on your own. Still, I cannot help but mention some of the trails
that have been opened and are now advancing into the Unknown. (This is
obviously a biased selection.)

We’ve learned that counting the monopoles on a 4-manifold can often be
an extremely rewarding endeavour. The example of Kähler surfaces suggests
that individual monopoles are carriers of interesting geometric information.
As explained in [70], even the knowledge that monopoles exist can lead to
nontrivial conclusions. What is then the true nature of a monopole? The
experience with the Seiberg-Witten invariants strongly suggests that the
answers to this vaguely stated question will have a strong geometric flavour.

In dimension four, the remarkable efforts of C.H. Taubes [136, 137, 138,
139], have produced incredibly detailed answers and raised more refined
questions.

465



466 Epilogue

One subject we have not mentioned in this book but which naturally
arises when dealing with more sophisticated gluing problems is that of the
gauge theory of 3-manifolds. There is a large body of work on this sub-
ject (see [25, 43, 44, 70, 77, 78, 83, 88, 89, 91, 109, 111] and the
references therein) which has led to unexpected conclusions. The nature of
3-monopoles is a very intriguing subject and there have been some advances
[70, 72, 100, 108], suggesting that these monopoles reflect many shades
of the underlying geometry. These studies also seem to indicate that three-
dimensional contact topology ought to have an important role in elucidating
the nature of monopoles.

One important event unfolding as we are writing these lines is the in-
credible tour de force of Paul Feehan and Thomas Leness, who in a long
sequence of very difficult papers ([33]) are establishing the original predic-
tion of Seiberg and Witten that the “old” Yang-Mills theory is topologically
equivalent to the new Seiberg-Witten theory. While on this subject we
have to mention the equally impressive work in progress of Andrei Teleman
[140] directed towards the same goal but adopting a different tactic. Both
these efforts are loosely based on an idea of Pidstrigach and Tyurin. A new
promising approach to this conjecture has been recently proposed by Adrian
Vâjiac [142], based on an entirely different principle.

Gauge theory has told us that the low-dimensional world can be quite
exotic and unruly. At this point there is no one generally accepted suggestion
about how one could classify the smooth 4-manifolds but there is a growing
body of counterexamples to most common sense guesses. Certain trends
have developed and there is a growing acceptance of the fact that geometry
ought to play a role in any classification scheme. In any case, the world is
ready for the next Big Idea.
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Uk,n, 3

F(C∞), 393

Hk(M, Z), 115

Hk(M, g), 115

Lm, 253

ch(E), 14

div(X), 18

swM (σ), 150

swM (σ, g, η), 140

sw±
M , 153, 161, 165

sw
(±)
M , 235

td(E), 14

G(E), 4, 8

H∗
C, 126

KC, 126

L(D), 197

Op
M (E), 194, 199
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OM , 194, 199

OM (E), 194
Div (M), 194

PDiv (M), 194

Pic∞(M), 5

VBUNcyl(N̂), 282

kod (X), 223
Cl(V ), 27

Cln, 28

rL̂, 298
ASD, 309, 355

SIGN, 310, 333

adjunction inequality, 462
arithmetic genus, 200

asymptotic map, 301

basic classes, 150, 269, 277, 459

bimeromorphic map, 208
blow-down, 210

bundle

complex spinors, 49
canonical line, 45, 166, 180, 199

complex spinors, 45, 101

determinant line, 4
Hermitian vector, 4

Hopf, 6

line, 2
holomorphic, 72, 196

negative, 207

positive, 207
tautological, 2, 3, 167, 198

universal, 2

morphism, 4
principal, 6, 40

connection on a, 8

universal vector, 3
vector, 2

holomorphic, 68, 194

canonical, see also bundle

capture level, 353
Cartan identity, 28

Cayley transform, 108

chamber, 152
negative, 153, 229

positive, 153, 229

Chern
class, 12

character, 14, 200

class, 5, 101, 138
connection, 207

forms, 12

polynomial, 13, 167, 216
total class, 12

Clifford

algebra, 27

multiplication, 27

structure, 27
selfadjoint, 27

comparison principle, 238

complex curve, 180, 196
rational, 209

complex surface
K3, 191, 217, 247, 272

algebraic, 224

blow-up, 209
cubic, 215

elliptic, 218, 249

multiple fiber, 250
proper, 249

general type, 223, 247

geometrically ruled, 224

Hirzebruch, 212

Kodaira dimension, 223

minimal, 210
minimal model, 224

quadric, 212

rational, 208
configuration

irreducible, 102

reducible, 102
conjecture

11/8, 191

Thom, 181
Witten, 150

connection, 6, 8

Chern, 60
curvature of a, 9

flat, 9

Hermitian, 8, 10, 57
Levi-Civita, 28, 46

strongly cylindrical, 284

temporal, 174, 284
torsion, 47

torsion of a, 57

trivial, 7
CR-operator, see also operator

cylindrical

bundles, 281
compatible, 302

manifolds, 281

compatible, 302

sections, 282

structure, 281, 363, 403, 422, 444

asymptotic twisting, 428
asymptotic twisting, 283

deformation complex, 126

determinant, see also Fredholm

Dirac
bundle, 27

geometric, 46

operator, 20, 102
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geometric, 28, 77

spin, 46

structure, 27, 47

geometric, 28, 47, 102

divisors, 194

ample, 198

big, 206, 225

effective, 197, 233, 236

linearly equivalent, 196

nef, 208, 224, 248, 249

numerically equivalent, 206, 225

polar, 196

principal, 194

very ample, 198

zero, 196

Dolbeault

complex, 199

Elkies invariant, 188

elliptic p.d.o., see also p.d.o

elliptic surface, see also complex surface

energy

density, 335, 407

gap, 414

identity, 177, 364

spectrum, 406

eta invariant, 288

reduced, 289

Euler sequence, 167

exceptional divisor, 209

formula

blow-up, 459

adjunction, 180, 199, 267

genus, 180

wall crossing, 165

Wu, 187

Fredholm

complex, 379

family, 82

determinant line bundle of, 140

orientation of a, 86, 140

stabilizer of, 83

index, 25

property, 25

gauge

group, 4

transformation, 4, 8

based, 325, 327

geometric genus, 200

global angular form, 10, 313, 456

gluing cocycle, 2

gluing map, 305, 423, 428

Grassmannian, 3

Green formulæ, 25

Hölder

norm, 22

space, 20

Hilbert complex, 379

homology orientation, 136, 150

inequality

DeGiorgi-Nash-Moser, 337

Kato, 22, 114, 337

Morrey, 23

Sobolev, 23

Kodaira dimension, see also complex surface

Kuranishi map, 128, 333, 433

Kuranishi neighborhood, 334, 335

Laplacian, 16

covariant, 18

generalized, 18, 20, 26

Hodge, 18

lemma

Weyl, 24

Lie

algebra, 8

derivative, 16

group, 5

line bundle, see also bundle

linear system, 197

base locus, 197

complete, 197

pencil, 197

local slice, 118

logarithmic transform, 251

manifold

almost Kähler, 56

cylindrical, 281, 284, 325

Kähler, 56

symplectic, 57, 153, 272

metric

adapted, 57, 153

Hermitian, 4

monopole, 103

regular, 127, 333, 334, 383

strongly regular, 383, 399, 405

three-dimensional, 177, 328

multiple fiber, see also complex surface

obstruction space, 382, 433

operator

APS, 285

anti-self-duality, 309

Cauchy-Riemann, 66, 203, 233

CR, 66, 233, 237

odd signature, 310

orientation transport, 89, 244, 261
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p.d.o., 15

elliptic

analytical realization of an, 24

index of an, 25

formal adjoint of a, 18

formally selfadjoint, 18, 47

order of a, 17

symbol of, 17

elliptic, 20

pencil, see also linear system

perturbation parameter, 103

Picard group, 196, 266

plurigenus, 200, 223

Pontryagin

classes, 15

forms, 15

projective plane, 166, 180

projective space, 167, 198, 211, 215, 216

quadratic form, 185

E8, 186

characteristic vector of, 187

definite, 185

diagonal, 186

even, 185

hyperbolic, 186

indefinite, 185

odd, 185

signature of, 185

unimodular, 185

quadric, see also complex surface

quantization map, 29

scalar curvature, 47, 151, 182

Seiberg-Witten

equations, 103

moduli space, 103

monopoles, 103

semi-tunneling, 417

signature defect, 321

simple type, 150, 462

Sobolev

space, 20

embedding, 23

norm, 21

spinor representation, 29

splitting map, 304, 434

splitting neighborhoods, 439

stabilizer, 90, 95

oriented, 95, 158

Stiefel-Whitney class, 39, 187

structure

spin, 39, 45, 49

spinc, 41, 49

cylindrical, 284, 325, 426

feasible, 139

almost complex, 52

almost Hermitian, 55

almost Kähler, 56
Kähler, 56

surface, see also complex surface
symbol map, 28

theorem
h-cobordism, 271
Cappell-Lee-Miller, 305
connected sum, 454
global gluing, 447
local gluing, 435, 448
Taubes, 274
Atiyah-Patodi-Singer, 287
Atiyah-Singer index, 52
Castelnuovo, 215
Castelnuovo-Enriques, 210
Dolbeault, 199
Donaldson, 188
Elkies, 188, 189
Gauss-Bonnet, 182
Hodge, 200
Hodge index, 205, 248, 250
Kazdan-Warner, 234
Kodaira embedding, 207
Kodaira vanishing, 207
Lefschetz hyperplane, 211
Nakai-Moishezon, 208
Riemann-Roch, 200, 267
Riemann-Roch-Hirzebruch, 200
Sard-Smale, 98, 142, 143, 189
Serre duality, 202
Wall, 271

Todd genus, 14, 200
torsor, 43
tunneling, 397, 441

unobstructed gluing, 433

vector bundle, see also bundle
virtual dimension, 127, 383
vortex, 243
vortices, 231

wall, 152
weak solution, 23
Weitzenböck

formula, 28, 48
presentation, 19, 277
remainder, 19, 48


