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ABSTRACT 

Using an adiabatic collapse trick we determine, by two different meth- 

ods, the eta  invariants of many Dirac type operators  on circle bundles 

over Riemann surfaces. These results, coupled with a delicate spectral 

flow computat ion,  are then used to determine the virtual dimensions of 

moduli spaces of finite energy Seiberg-Witten monopoles on 4-manifolds 

bounding such circle bundles. 
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Introduct ion  

The eta invariant was introduced in mathematics  in the celebrated papers 

lAPS1-3] as a correction term in an index formula for a non-local, elliptic bound- 

ary value problem and since then it has been subjected to a lot of scrutiny because 

of its appearance in many branches of mathematics.  

Contrary to the index density of an elliptic operator, the eta invariant is a non- 

local object and this explains why it is so much harder to compute. Most concrete 

computat ions rely on special topologic or geometric features. For example, one 

can use the Atiyah-Patodi-Singer  theorem to compute the eta invariant of the 

signature operator because in this case the eta invariant is a combination of a 

topological term (the signature of a 4k-dimensional manifold with boundary) and 

a local contribution (the integral of the L-genus). For Sl-bundles over Riemann 

surfaces, this approach was successfully carried out in [Ko] (see also [O] for similar 

results in the more general case of Seifert manifolds). 

For the Dirac operator associated to a spin structure such an approach is not 

possible because the index of the Atiyah-Patodi-Singer problem is notoriously 

dependent upon the metric. However, if all the manifolds involved have positive 

scalar curvature then a Lichnerowicz type argument allows the computat ion of 

the index and thus, in this case, the computation of the eta invariant is a local 

problem. 

The first goal of this paper is to compute the eta invariant of some Dirac 

operators on the total space of a nontrivial circle bundle N over a Riemann 

surface E of genus > 1. The second goal is to use the eta invariant information to 

determine the virtual dimensions of the moduli spaces of finite energy solutions 

of the Seiberg-Wit ten equations on a 4-manifold bounding a disjoint union of 

circle bundles over Riemann surfaces. 

As in [N], we will work with product-like metrics on N such that  the fibers are 

very short. Such metrics have negative scalar curvatures and thus are beyond 
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the reach of the Lichnerowicz vanishing approach. Instead, using the results of 

Bismut Cheeger [BC] and Dai [Dai] we will compute the eta invariant for the 

usual Dirac operator using its known adiabatic limit (i.e. its limiting value as 

the geometry of N changes so that  the fibers become shorter and shorter). To 

recover the eta invariant (at least for short fibers) one can use known variational 

tbrrnulae and some very precise information about the very small eigenvalues (in 

the sense of [Dai]) of the Dirac operators determined by metrics with very short 

fibers. It turns out that  the variational formulae in this case involve no spectral 

flow contribution. 

Once this computat ion is performed we embark on a related problem. More 

precisely, we will determine the eta invariant of a very special scalar perturbat ion 

of the Dirac operator. These perturbed Dirac operators (we called them adiabatic 

Dirac operators) arose in IN] where we studied the adiabatic limits of the Seiberg 

Wit ten equations on circle bundles (see also [MOY]). We again use a variational 

approach. This time, however, there is a spectral flow contribution which requires 

some "spectral care". 

An adiabatic approach was also used in [SS] to compute the eta invariant of 

Dirac operators on circle bundles over Riemann surfaces of genus > 2. There 

are two main differences. The first difference comes from the spin structure 

considered in [SS] which extends to the disk bundle bounding our circle bundle. 

We perform our computations on Dirac operators associated to spin c structures 

pulled back from the base of our fibration and these, as explained in [KS], have 

notable topological properties. For example, the pullback of a spin structure 

from the base does not extend to a spin-structure on the bounding disk bundle, 

though it extends as a spin<structure. This explains why the adiabatic limit in 

[SS] is different from ours and shows that  the eta invariants can distinguish spin 

structures!!! 

The second difference is in the manner in which the adiabatic limit is computed. 

In [SS], using the representation theory of PSL2(IR) the authors determine ex- 

plicitly the adiabatically important  part of the spectrum which allows them to 

determine the adiabatic limit of eta itself. We achieve this in two ways. The first 

method uses the results of Bismut, Cheeger and Dai. In Appendix C we present 

a second method, which works for the adiabatic Dirac operators. Their whole 

eta functions can be computed directly and "elementarily", and can be elegantly 

described in terms of Riemann's  zeta function and some topological invariants. 

This argument extends easily to the more general case of Seifert manifolds. We 

present this extension in a separate paper [N1] to isolate the very complex eombi- 
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natorics, generated by the singular fibers, from the analytical arguments, which 

work without any modification in the general case. 

The eta invariant is an essential ingredient in the computation of the virtual 

dimension of the moduli space of finite energy solutions of the Seiberg-Witten 

equations on a 4-manifold with boundary a disjoint union of Sl-bundles over 

Riemann surfaces. For closed 4-manifolds the virtual dimension of the moduli 

space of solutions of the Seiberg-Witten equations corresponding to the spin c 

structure a is given by 

d(a) = ~(c l (a)  2 - (2e + 3~)) 

where cl (a) denotes the Chern class of the line bundle determined by the spin c 

structure, while e respectively T are the Euler characteristic and resp. the signa- 

ture of the 4-manifold. 

In the non-closed case the above formula is no longer true. There is a correction 

term determined by the asymptotic value of a finite-energy solution. 

We compute this correction term via the Atiyah-Patodi-Singer and the 

Seiberg-Witten analogues of the results in [MMR] describing the structure of 

the finite energy moduli space. There is an additional difficulty one has to over- 

come. The operators describing the deformation complex of this moduli space 

are based not just on the adiabatic operator alone. They depend on a very ex- 

plicit (though complicated) perturbation of the direct sum (Dirac operator ® odd 

signature operator). The final determination of the virtual dimension relies on 

an excision trick which requires a spectral flow computation. Some of the eigen- 

values changing sign do not do this transversally and detecting them is a very 

delicate perturbat ion theoretic problem. The theoretical basis of our approach 

is described in [FL] and [KK] which deal with similar degeneration problems in 

the case of the odd signature operators twisted by flat connections. 

We obtain explicit formula~ for the virtual dimensions for any 4-manifold 

bounding disjoint unions of circle bundles. We briefly describe one instance when 

the asymptot ic  limit of a finite energy solution is irreducible. 

The total  space N of a degree e # 0 Sl-bundle over a Riemann surface ~ of 

genus g can be equipped with a spin structure obtained by pullback from a fixed 

spin structure on ~. The sp/n c structures can be identified with second degree 

integral cohomology classes a E H2(N)  ~- Z 2g @ Zle I. The three dimensional 

Seiberg-Wit ten equations have solutions only if a is a torsion class a -- k mod 

]e I. Set 

Rk = {n e Z; l < ] n [ < g - 1 ,  n =  k mode}.  
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In [N] we have shown that  the space of irreducible solutions of a certain per- 

turbation of the Seiberg-Witten equations on N is smooth, and its components 

are bijectively parametrized by Rk. Fix a spin c structure 6 on N extending the 

spin ~ structure k on N. Suppose N is a four manifold with boundary 0 N  = N 

and C := (¢, A) is a finite energy solution of the Seiberg-Witten equations on 

N ~  - N U IR+ × N. If the asymptotic limit of (~ is an irreducible solution on 

N lying in the connected component labelled by n c Rk, then the expected 

dimension of a neighborhood of C in its moduli space is 

1- (--~--~2 /N FA AFA-(2e (N)+ 3sign(1Q)) ) 
4 

~ ( s i g n ( g ) - 1 ) + n + ~ ( 2  9 -  1 ) - ~ ( g - s i g n ( g ) ) .  

We tested our results in special case of "tunnelings". These are finite energy 

solutions of the Seiberg-Witten equations on an infinite cylinder ~ x N.  Our 

results are in perfect agreement with the computations in [MOY] obtained by 

entirely different methods. 

There are similarities between our paper  and [MOY], but there are also many 

important  differences. The paper  [MOY] is interested in finite energy solutions 

of the Seiberg Wit ten equations only on cylinders R x M where M is a Seifert 

fibration. The techniques used there are algebraic-geometric in nature and allow 

them to obtain detailed information about the nature of solutions, leading even- 

tually to virtual dimension formula~. In this paper (and its sequel [N1]) we are 

interested in finite energy solutions on any 4-manifold with cylindrical ends of the 
form R+ x M where M is again a Seifert manifold. This is outside the realm of 

algebraic geometry so we use entirely different methods, differential-geometric in 

nature. We obtain virtual dimension formulm in this general situation and, addi- 

tionally, detailed information about the eta invariants of many Dirac operators. 

As shown in [N1] and IN2], these eta invariants contain a remarkable amount  of 

topological information. On the other hand, some informations about  tunnelings 

obtained in [MOY] are not accessible by our techniques. 

This paper  is divided into three sections and four appendices. The first section 

is essentially a brief survey of known facts concerning the eta invariant: definition, 

the At iyah-Patodi-Singer  theorem, variational formulee and the spectral flow. 

We included these facts as a service to the reader, to eliminate any ambiguity 

concerning the various sign conventions. There does not seem to be general 

agreement on these conventions and, additionally, we used some "folklore" results 

for which we could not indicate satisfactory references. 



66 L.I. NICOLAESCU Isr. J. Math. 

The second section contains the main steps in the computat ion of the eta  

invariants discussed above. We begin by describing the geometric background 

and the various Dirac operators. Then using variational formulae for the eta 

invariant and the adiabatic results of Bismut-Cheeger-Dai  we compute in the 

second part  the eta  invariant of the Dirac operator on a circle bundle with very 

short fibers (Theorem 2.4). 

In the third part,  we compute the eta invariant of the adiabatic Dirac operator 

- - a  per turbat ion of the Dirac operator which arose in IN]. This is achieved in 

Theorem 2.6 via a variational formula and a spectral flow computation.  The 

computat ions of certain transgression terms involved in the variational formuse 

are deferred to appendices. An alternative method of computation is described 

in Appendix C. 

The last par t  of this section is devoted to extending the previous computat ions 

to the Dirac operators coupled with flat line bundles. We use essentially the same 

variational strategy. However, new phenomena arise during the computat ion of 

some spectral  flow contributions. 

The third section is devoted to applications to Seiberg-Witten theory. The first 

two subsections describe the 3- and 4-dimensional Seiberg-Witten equations and 

some basic facts about  them established in [MOY] and IN]. The third subsection 

is entirely devoted to the computat ion of a spectral flow. This is a very delicate 

job since one has to worry about eigenvalues changing sign in a nontransversal 

manner.  In the last subsection we compute virtual dimensions of finite energy 

Seiberg Wit ten moduli spaces on 4-manifolds founding circle bundles over Rie- 

mann surfaces and we conclude by comparing our answers in the special case of 

tunnelings to those in [MOY]. 

ACKNOWLEDGEMENT: While working on the eta invariants I benefited very 

much from conversations with X. Dai, J. Lott, and M. Ouyang. I want to express 

here my gratitude. 

1. T h e  e t a  i n v a r i a n t  o f  a f i rs t  o r d e r  e l l ip t ic  o p e r a t o r  

§1.1. DEFINITION. 

The elliptic selfadjoint operators on closed compact manifolds behave in many 

respects as common finite dimensional symmetric matrices. The eta invariant 

extends the notion of signature from finite dimensional matrices to elliptic op- 

erators. We will denote the trace of an infinite dimensional operator (when it 
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exists) by "Tr" while "tr" is reserved for finite dimensional operators. We have 

the following result. 

PROPOSITION 1.1: (a) Consider a dosed, compact, oriented R iemann  manifold 

(N ,g )  o f  dimension d, E --+ N a hermitian vector bundle and A: C ° ° ( E )  --+ 

C ~ ( E )  a first-order selfadjoint dl ipt ic  operator. Then 

(1.1) ~)A(S) -- F( s + ~  t (s-1) /2Tr(Ae-tA'~)dt  = E dimV~ - d i m V _ ~  
~--  ) A s 

A>0 

(V~ = ker(A - A))  is well defined for all 9~e s >> 0 and extends to a meromorphic  

function on C. Its poles are all simple and can be located only at s = ( d + 1 - n ) /2, 

n = O, 1 ,2 , . . . .  

(b) I f  d is odd, then the residue of  ~IA (s) at s = 0 is zero so that  s = 0 is a 

regular point. 

For a proof of this proposition we refer to [APS3]. When d is odd we define 

the eta invariant of A by 

zl(A) := qA(0). 

R e m a r k  1.2: (a) From the definition it follows directly that  7/(-A) = -z~(A) 

and 7/(AA) = zl(A), VA > O. 

(b) In [BF] it is shown that  if A is an operator of Dirac type then one can 

define its eta invariant directly by setting s = 0 in (1.1). In other words, in this 

case  

-2/? , ( A )  = t-1/2Tr ( Ae -tA~ )dt. 

In the sequel, we will reserve the letter D to denote Dirae type operators. 

§1.2. THE ATIYAH-PATODI SINGER THEOREM. 

The importance of the eta invariant in mathematics  is due mainly to its ap- 

pearance in the formula for the index of an elliptic boundary value problem first 

considered by Atiyah Patodi-Singer in [APS1]. 

Suppose that  (M, g) is a compact, (d+ 1)-dimensional, oriented Riemann mani- 

fold with boundary N = OM. We assume d is odd and that  the metric g is a 

product  on a tubular neighborhood ( -1 ,  0] × N of the boundary, i.e. g = du 2 +go, 

where go is a metric on N (see Fig. 1). We orient N such that  the outer normal 

followed by the orientation of N gives the orientation of M. (This is precisely 

the orientation that  makes the Stokes' formula come out right.) 



68 L . I .  N I C O L A E S C U  Isr. J. Ma th .  

N 

Figure 1. An oriented manifold with boundary. 

Next suppose that Ej= --+ M are two hermitian vector bundles and 

L: C°°(E+) --~ C°°(E-) is a first order elliptic operator which along the neck 

can be written as 

where G: E := E+ IN--+ E_ IN is a bundle isomorphism and A: Coo(E) ~ Coo(E) 
is a selfadjoint elliptic operator. (Note that our convention differs from the one 

in [APS1]!) Denote by P_>: L2(E) ~ L2(E) the orthogonal projection onto 

the closed space spanned by the eigenvectors of A corresponding to eigenvalues 

> 0. P< is defined similarly. The Atiyah-Patodi-Singer (APS) boundary value 

problem is 

f L¢  = 0, (APS): 
P>_¢ IN = o. 

Note that  if ¢ is a solution of (APS) then its restriction to the boundary lies in 

the negative eigenspace of A. Then, for all u > 0 we can define 

¢(u) = e~A¢ IOM . 

We see that ¢(u) extends ¢ to an exponentially decaying solution of L¢  = 0 

on Moo. Here Moo denotes M with the half-infinite tube [0, co) x N attached (see 

Fig. 2). Thus, the solutions of (APS) can be identified with the exponentially 

decaying solutions of L on Moo. The adjoint of (APS) is 

L*¢ = O, 
(APS)*: P<CblN = O, 
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where L* denotes the formal adjoint of L. (APS) is an elliptic problem which 

implies finite dimensional spaces of solutions for both (APS)  and its adjoint. 

/' ( 

0 
Figure 2. Attaching a half-infinite tube. 

Define 

ind (L, APS)  = dim ker(APS) - dim ker(APS)*. 

We have the following fundamental result. 

THEOREM 1.3 (Atiyah-Patodi-Singer): 

M 1 h(A) + ~I(A)) ind (L, APS)  = Cto (x)dvg - -  -~ ( 

where h(A) = dimker A, u(A) is the eta invariant of A and ao(x)dv 9 is the index 

density determined by L and is a completely local object (see [Gky], Sect. 1.8.2 

ibr an exact definition). 

Suggested by the above theorem we introduce the ~-invariant (or the reduced 

eta invariant) of A by 

~(A) = ~(h(g)  + ~(A)). 
z 

Note that  ~ ( -A)  = (h(A) - r/(A))/2 so that A ~-~ ~(A) is not an odd function. 

In many geometrically interesting situations the index density ao(x)dv 9 can be 

described quite explicitly. We describe below one such instance. 

Suppose that  M is equipped with a spin structure. Denote by ~ = S+ G S_ 

the associated superbundle of spinors. Fix a connection V M on M compatible 

with the metric g. V M need not be the Levi-Civita connection but we require 

that it looks like a product in a tubular neighborhood of the boundary. This 

induces in a canonical way a connection on S (compatible with both the metric 

and the splitting of S) which we denote by vM.  Suppose moreover that E --+ M 

is a hermitian vector bundle equipped with a compatible connection V E. We get 

in a standard fashion a connection on S ® E compatible with both the metric 
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and the Z2-grading. Finally, this connection canonically defines a Dirac operator 

T) : C ~¢ (S+ ® E) -+ C ~ (g_ N E) described by 

~ :  oo + C (gE) ~ C ° ° ( T * M ® S  +) ~+ C°°(SE) 

where 8: T * M  --~ Hom ($+ ® E, S_ ® E) denotes the Clifford multiplication. 

As required by the Atiyah Patodi Singer index theorem, near the boundary 

7} has the product structure 

= - 

where D is the Dirac operator induced by ~ on the boundary. 

The index density associated to this operator is the top degree part of the 

differential form A(V M) A eh(V E) where A (resp. eh) denote the/i~-genus form 

(resp. the Chern character form) obtained from V M (resp. V E) via the Chern- 

Weil construction. In particular, if d imM = 4 and E is the trivial line bundle 

equipped with the trivial connection we deduce 

(1.2) ind (/), A P S )  = - - ~  Pl (V M) - ~(D). 

Remark 1.4: The above formula for ao(x)dvg is traditionally proved only for 

the special case when V M is the Levi-Civita connection. However, a careful 

inspection of the proof in Chap. 11 of [Roe] shows it extends verbatim to the 

more general case when V M is only metric compatible 

.~1.3. VARIATIONAL FORMULtE. 

While the eta invariant itself is a very complex object, its deformation theory 

turns out to be a lot simpler. We collect here some results we will use in our 

computations. More specifically, we will address the following problem. 

Consider two metrics g~ i = O, 1 and compatible connections V i on an odd 

dimensional manifold N and denote by Di the associated Dirac operators. Com- 

pute ~(D1) - ~(/)0)- 

We will soon see this problem does not have a unique answer and the reason 

will be very clear. Leaving this worry aside for a moment, consider a smooth 

path { (gt, V t) }re [0,1] of metrics and compatible connections connecting (g0, V °) 

tO (gl, ~71) • Denote the associated Dirac operators by Dt and set ~t = ~(Dt). We 

want to compute ~t = d~t/dt, although at this moment we have no guarantee the 

map t ~ ~t is differentiable. 
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Figure 3. The smoothing function 3'- 

Since the pa th  (gt, V t) may not be independent of t near t = 0, 1 we need to 

smooth-ou t  the corners. Wi th  this aim, consider a smooth,  nondecreasing map  

3' : [0, 1] --+ [0, 1], u ~-~ 7(u) such that  3'(0) = 0, 7(1) and 3''(u) = 0 for u near 

0 and 1 (see Fig. 3). Moreover, for each 0 < t _< 1 set 7t(u)  = tT(u)  so tha t  3`t 

connects 0 to t. 

Now for every 0 < t _< 1 form the operator  Lt  on [0, 1] x N defined by 

Lt  = V u  - iDt.y(u). 

L~ is an elliptic operator  and from the A - P - S  theorem we get 

1 1 
it :=  ind (Lt ,  A P S )  = Pt - [ ( h o  + ht)  + } (70  - qt) 

where Pt denotes the integral of the index density of Lt ,  ht = h(7)t) ,  ~t = ~(I) t ) .  

The above formula can be rewrit ten as 

(1.3) ~t - (0 = Pt + j t  

where j t  = - ( h o  + it) .  The term Pt depends smoothly on t since the coefficients 

of Lt  do. The  term j t  is Z-valued so it cannot  be smooth,  unless it is constant .  

If [~t] = ~t (mod Z) then the map t ~-~ [~t] is smooth  and by (1.3) 

(1.4) d[~t] = Pt. 
dt 

We will deal wi th / ) t  a bit later later but  first we need to bet ter  unders tand the 

special na ture  of the discontinuities of ~t. 
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We see from (1.1) that the discontinuities of ~t (and hence those of jr) are due 

to jumps in hr. We describe how the jumps in ht affect ~t in a simple, yet generic 

situation. We assume :Dr is a regular family i.e. 

• The resonance set Z = {t E [0, 1]; ht ~ 0} is finite. 

• For every to E Z there exists c > 0, an open neighborhood Af of to in [0, 1] and 

smooth maps Ak : Af -~ ( - c ,  s), k = 0, 1, ..., hto such that for all t EAf  the family 

{Ak(t)}k describes a11 the eigenvalues of :Dr in (-E,~) (including multiplicities) 

and, moreover~ ~k(t0) ¢ 0 for all k = 1, 2, ..., hto. 

Now for each t E Z set 

~±(t) = #(k;  ±ik(t) > o}, 

and 

Ato" : { 
- ~ _ ( o ) ,  t = o ,  

a+( t )  - a_ ( t ) ,  t E (o,1),  
a+(1) ,  t = 1. 

If 

we see that  At~ = 0 if t ¢ Z while for t E Z we have 

(1.5) At~ = Ata. 

(To understand the above formula it is convenient to treat Dt as a finite dimen- 

sional symmetric matrix and then keep track of the changes in its signature as 

the spectrum changes in the regular way described above.) Finally, define the 

spectral flow of the family :Dr by 

(1.6) SF(~,)-- Z ~'~  

For example, in Fig. 4 we have represented those eigenvalues At of a smooth path 

of Dirac operators which vanish for some values of t. The + l ' s  describe the jumps 

Ata.  Thus the spectral flow in Fig. 4 is 1. 
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-1 

t 

Figure 4. Spectral  flow. 

Using the equalities j l  - j0 = ~ t  At~ and j0 = 0 we deduce 

(1.7) j l  --  j 0  = - - i l  - -  h0  ~- E / \ t 4  = E AtO" = S F ( ' D t )  
t rE[o,1] 

so t ha t  

(1.8) il = ind (L1, A P S )  = - h o  - SF(Dt) .  

F rom the equalit ies (1.3) and (1.7) we now conclude 

fo 1 dr. (1.9) 41 - 40 = SF(Dt)  + dt 

R e m a r k  1.5: In the  above two equalities we have neglected the smooth ing  effect 

of 3'. However,  since 3'(u) is nondecreasing,  the crossing pa t t e rns  of the eigen- 

values of t ~-+ Dt and u ~+ D~(~) are identical. This  implies SF(:Dt) = SF(D~(~)). 

I t  is now the t ime to explain the continuous variat ion ~[{]t-  Formula  (1.4) 

shows this is a locally computab le  quantity.  In fact, one can be more  accura te  

t han  this. We s ta r t  with a s imple s i tuat ion first. 
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Assume (N, g) is an oriented Riemann manifold of dimension d = 3 mod 4 

equipped with a spin structure. Fix a smooth path  (Vt)te[0,1] of g-compatible 

connections and for each t denote by 7Pt the associated Dirac operator. Consider 

now the manifold M = [0, 1] x N equipped with the metric ~ = du 2 + g. The 

connection ~7 = du A 0H + V "~(~) is compatible with the metric t) and it determines 

a Dirac operator  7} which has the form 

The A - P  S theorem then gives 

- ~0 = / M  A(V)  - ind (7}, A P S )  - ho 

: SF(~),),(u)) -t" / M  t ( ~ 7 ) '  

To further simplify this formula note firstly that  

SF(9 (u)) = SF(9 ; 0 _< t < 1). 

Secondly, as in lAPS2] one can show that  the integral term is independent of 

the path  of connections chosen to deform V ° to ~71. Thus we can set V t = 

~7 0 + t(V1 _ %7o). The resulting integral over M can then be rephrased as an 

integral over N of the transgression form from V ° to V 1. This is defined as the 

degree d part  of 

d + l  ~o 1 T A ( V I ' v ° )  :-- 2 " A(w, at)dt  

where w = V 1 - V ° and Qt is the curvature of V ° + tee. More explicitly, 

~2t = fro + tdV°w + t2 w A w 

where d v° denotes the exterior derivative defined by V °. 

In the special case when d = 3 the only important part  of _~ is -~4Pl  where 

Pl is the degree 2 invariant polynomial on so(4) given by 

Pl (X, Y) = - 8 ~ t r  ( X Y ) .  

(Here we use the conventions of [BGV].) In this case the transgression is a multiple 

of the Chern-Simons integrand, and more precisely 

1 ~o ~ w A d V ° w + 3 w A w A w ) .  T~. (V l, V °) = 9--~2 tr (w A + 
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Thus when d = 3 we have the following remarkable formula 

1 IN ~o 1 1 (1.10) ~1 -- ~0 ~- SF(79t) q- ~ t r  (0d f -~- ~cd i dV°oJ q- Sad i od A a)). 

Now consider a more complicated problem. N is again a compact, oriented, 

d-dimensional manifold (d = 3 (mod) 4), but this time we allow the metric to 

vary. Thus, let (9t)te[o,1] be a smooth path of Riemann metrics on N and, for 

each t, denote by V t the Levi-Civita connection associated to the metric gt. We 

obtain in this way a path of Dirac operators (79t)te[0,1- We want to compute 

~1 - ~0 assuming for simplicity that all the operators 79t are invertible so there 

is no spectral flow. 

Form again the metric ~ = du 2 + g,(u) on [0,1] x N and denote by V its 

associated Levi-Civita connection. We get a Dirac operator /}  on M. It has the 

form ~(du) (0~ - 79,(~)) for u close to 0 and 1. Unfortunately, for u away from 

the endpoints it has the form 

(0o- 79;(o)) 
where 79' ~(~) =/9.~(~) + Tu and T~ is a certain endomorphism expressible in terms 

d of d~ugV(u)" If the operators 79' 7(~) were invertible, then their spectral flow would 

be zero and then ~1 - ~0 would be expressible as an integral of an A-form. 

Fortunately, there is a simple way to guarantee the above invertibility, relying 

on the observation that the size of T~ is comparable with the size of the u- 

derivative of g,(~). Consider a very large positive number L and form the tube 

ML = [0, L] x N equipped with the metric 

9L = dr2 + g~t(v/L). 

In other words, the path v v-+ g,y(v/L) defines a very, very slow deformation 

of go to gl. (A physicist would call this an adiabatic process.) In this case 

the v derivatives of 9"~(,4L) become extremely small so that the corresponding 

perturbations Tv become negligible and 79' will be invertible. If V L denotes "y O, I L ) 
the Levi-Civita connection of gL we get 

- = A ( V L ) .  
J M  L 

As remarked in [APS2], the above integral does not change if we replace V L 

by a linear connection on [0, L] x N, not necessarily compatible with gL, which 

interpolates afflnely between the Levi-Civita connections of go and gl. This 
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shows that  even in this case we can express the variation of ~ as the integral of a 

transgression form. The only difference this t ime is that  the transgression goes 

through GL(d,]R)-connections rather than O(d)-connections. This is no problem 

since the two groups are homotopically equivalent. 

We now have (almost) all the background necessary to compute eta invariants 

of Dirac operators. The only missing piece of information is the Bismut-Cheeger-  

Dai result concerning the adiabatic limits of the eta invariants. We will state the 

special case we need at the opportune moment.  

Remark 1.6: The above observations can be used to determine the index of an 

elliptic problem on a noncompact manifold considered in [LM]. 

Consider a smooth, non-decreasing function/3: ~ ~ [0, oc) such that /3(u)  - 0 

for _< 1 / 4  and - for > 3 /4 .  

Using the notations of §1.2, we define for each # E R the weighted Sobolev 

spaces L~'2(E~=) as completions of C~(E+) with respect to the norm 

I*l k,2.-- le (o)vJ,12dv  

Consider the bounded operator L -- Ou -A:  L~'2(E+) -+ L~(E_). In [LM] it was 

shown that  L is Fredholm if and only if A +/~ is invertible, i.e. - /~ q[ spec (A). 

We denote by i~,(L) its index. For example, if A is invertible, then as pointed 

out in [APS1] we have 

i0 = ind (L, APS). 

In general, to compute i~ for an arbitrary/~ note that  the map 

T~,: L 2 --+ L 2, ¢ ~ e/3(u)~b 

is an isometry so that  i~(L) = io(T~LT~I). A simple computation shows that  

T~LT~ 1 = L~, := L - #j3'(u). 

Construct  M1 by attaching the cylinder C1 = [0, 1] × N to the boundary of M. 

Alternatively, M1 is the region u ~ 1 in Mo~. Then L~ is well defined on M1 and 

as above we conclude 

i~ = ind (L~, APS). 

Set At, = A + #. We have 

indM (L, APS) = - (  ~(d~) - ~(A) ) + f_  ao(x)dvg. indM1 (L., APS) 
J U  1 
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On the other hand, the above index density can be expressed as in (1.3) in terms 

of the APS index of the operator L - #fl~(u) on C1, 

] c  C~O(x)dvg = ~ ( A , )  - ~(A) + h(A)  + indc1 (L - # ~ ' ( u ) , A P S ) .  
1 

Finally, according to (1.8), the last term can be expressed as a spectral flow 

(1.11) indc1 ( L  - # ~ ' ( u ) ,  A P S )  = - h ( A )  - SF(A + t#, t • [0, 1]). 

Putt ing all of the above together we obtain the following useful equality 

(1.12) i ,  = ind (L, A P S )  - SF(A + t#, t • [0, 1]) 

This is in perfect agreement with Theorem 1.2 in [LM]. Note also that  if # is 

sufficiently small and positive then there is no spectral flow correction in the 

above formula. 

We also want to mention an immediate consequence of the above considera- 

tions. Consider two elliptic first order operators as above, 

L1,L2: F(E+) --+ r ( E _ ) ,  

which have the same principal symbol  and have the A P S  form Lj = G(Ou - Aj) 

along the neck. Arguing as in the proof of (1.12) we deduce the excision formula 

(1.13) ind (L2, A P S )  = ind (L1, A P S )  - SF(A1 --+ A2) 

where SF(A1 --+ A2) denotes the spectral flow of the affine path  of elliptic oper- 

ators At = A1 + t(A2 - A1), t • [0, 1]. 

2. Eta  invariants o f  Dirac operators  

§2.1. THE DIFFERENTIAL GEOMETRIC BACKGROUND. 

Consider g E Z and denote by N = Nt the total space of a degree ~ principal S 1 

bundle over a compact oriented surface of genus g: S 1 ~ Nt Z~ F,. Denote by ~ E 

Vect (N) the infinitesimal generator of the S 1 action. N has a natural  orientation 

which can be described using any splitting T N  = (~} @ 7r*TE determined by an 

arbi trary connection. 

Assume E is equipped with a constant  sectional curvature Riemann metric hb 

such that  vOlhb (~) = 7r. Pick a connection form i~ E i~ 1 (N) such that  

- d ~  = 2gdVhb. 
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- 1  This choice is possible since ~-~ dp represents the first Chern class of N which is 

t?. For each 0 < r _< 1 define a metric hr on N by 

hr = ~ ® ~ ® 7C*hb, qor = r)9. 

Set ¢~ = r -1¢.  

Using this metric we can orthogonally split T * N  ~ (~o) ® 7r*T*E and this 

defines in a natural  way an orientation on N. If *~ denotes the Hodge * operator  

of the metric h~ we get 

(2.1) &Pr = 2h~ , r  (p~ 

where A~ = - r K  

Fix a local, orthonormal coframe 01, 0 2 on the base E such that  

(2.2) dO 1 = ~01 A 0 2 

and 

(2.3) dO 2 = 0 

where a is a nonnegative constant. Such a choice is obviously possible if E is 

the flat torus. If E has higher genus, then any constant curvature metric on Z 

admits  such local coframes because it is a quotient of the hyperbolic plane and 

on the hyperbolic plane such choices are possible. Note that  _a2 is actually the 

sectional curvature of E so by Gauss-Bonnet  

t~ 2 = 4 ( g - 1 ) .  

We now get a local, oriented, orthonormal frame of T * N  (~,~1,qo2),  where 

qo ~ = 7r*0 i, i = 1,2. Denote by ((~,¢1,(2) its dual frame. In [N] we showed that  

the 1-form associated to the Levi-Civita connection V ~ = V(hr)  by the above 

frame is 

(2.4) w~ = 
0 Ar - B ~  ] 

- A t  0 C~ 
B~ - C ~  0 

where 

(2.5) Ar = Argo 2, Br ~--- Arq01, C r  = --Ar~Or - -  14~01. 



Vol. 114, 1999 ETA INVARIANTS OF DIRAC OPERATORS 79 

In our computations we will need various other connections compatible with 

the above metric. For t E (0, 1] consider the bundle isomorphism Lt: TN ~ TN 
described locally by 

( ~ t ( ,  ( . ~ ¢ .  i=1,2.  

Clearly Lt defines an isometry (TN, hrt) ~ (TN, hr), for all r > 0 and all 

t C (0, 1]. This implies that the connection 

vr, t = LtVrtLt 1 

is compatible with the metric hr. A simple computation shows that the l-form 

associated to this connection by the frame ((~, (1, @) is 

[ 0  .~rt~ 2 --/~r~91 ] 
(2.6) Wr,t = -Art~p 2 0 -Art2qor - n p  1 • 

The connection V r't induces a connection ~r,t  on ((r) ± = 7c*TE. Denote by V 2 

the Levi-Civita connection on E. The formulae (2.5) and (2.6) imply immediately 

l i m ~ ' t  =7r*VE, V r > 0  
t---+ 0 

gild 

l i m ~ r ' t = T r * V  x, Vt>O.  
r--+O 

Set V °° = 7r*V z. 

The bundle (~>± has a natural complex structure locally defined by the corre- 

spondences ~1 ~-+ - 9 2  ~-~ -~1 .  In this way we get a complex line bundle ]C -+ N. 

It is isomorphic with the pullback of the canonical line bundle KE of the base. 

Once we fix a spin structure on E the Levi-Civita induced connection defines a 

natural holomorphic structure on K~ 1/2. In [N] we showed that this induces a 

spin structure on N with associated bundle of spinors 

S = ~ 1/2 (9 ;C 1/z. 

The Clifford multiplication is described explicitly in Appendix D. We only want 

to mention here that our choice is such that the Clifford multiplication by the 

volume form on N is equal to -1 .  This agrees with the conventions of [BC]. 

Note that  the hr-compatible connections V r,t define a 2-parameter family of 

Dirac operators iPr,t on S. To explicitly describe their form introduce as in IN] 

the following operators: 

Z=Z~= [ i0¢~0 -i0¢r0] and T =  [ 0b0 be9 1 0  
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where (locally) 

and  

b~ = 2-1/2(qol _ i~2) ® (V¢O~ + i v y )  

~ 0 = 2 - 1 / 2 ( ~  1 + i ~  2 ) ® (  ¢ , - - ,V¢2  ). 

The  computa t ions  in [N] show tha t  

)~r t2 
(2.7) Dr,t = Zr + T + T 

We set 

79r := 79r,t [t=l 

and 

(2.8) Dr  = l im/)~ t = Zr + T = Z)r - - - .  
t--}0 ' 2 

The  first goal of this paper  is to compute  rl(Dr) and r/(DT). 

We conclude this subsection by listing some propert ies  of the spec t rum of Dr  

as r --+ 0. Thei r  proofs can be found in [N]. 

PROPOSITION 2.1: (a) For a11 r E (0, I] 

d im ker DT = 2hl/2 :---- 2 dim H ° ( E ,  K1/2).  

(b) There  exists r0 > 0 and  Zo > 0 such that for all r E (0, ro] the only eigenvalue 

of Dr in ( - z o , z o )  is O. 

§2.2. THE ETA INVARIANT OF THE SPIN DIRAC OPERATOR. 

In the  sequel we assume g ¢ 0, i.e. N is a nontrivial circle bundle.  

As we ment ioned in the introduction,  the key step in our computa t ion  of ~r := 

~(Dr)  will be the adiabat ic  result of B i smut -Cheeger  [BC] in the more  accura te  

form of [Dai]. Ins tead  of formulat ing the  most  general version of their  result  

(which would require a large preamble)  we s ta te  it for the special case we have 

in mind.  Fortunately,  in this case concrete computa t ions  were per formed in [Z] 

and [DZ]. Set ~70 = lim~-,0 ~ .  We then have the following result. 

THEOREM 2.2: The  adiabatic limit exists and moreover  

f ^ ~. t anh(c /2)  - c /2  
r/o = -2 ]~ A(V ) ~ c ) - - 2 )  + E s i g n . ,  
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where c C H2(E,]R) is the Euler  class o f  the S 1 bundle N and the s u m m a t i o n  is 

carried over all nonzero eigenvalues # o f  D~ which are o f  size O(r )  as r - 4 0 .  

Using the Taylor expansion 

x 3 
t a n h x = x - ~ - + O ( x  5) 

and the fact that  A(E)  = 1, we deduce 

A V z tanh(c/2) - c /2  = - c / 1 2 .  ( ) 

Since Dr = D,. + A~/2 we deduce from Proposition 2.1 that  for 0 < r << r0 the 

only nonzero eigenvalue of D~ which is of size O(r)  is A~/2 =- - r f / 2  and it has 

multiplicity dim ker D~. Put t ing all the above together we deduce 

(2.9) 710 = g/6 - 2sign (£)hl/2. 

Let r0 be as in Proposition 2.1. For every 0 < r << r0 set ~ = ~(D~). N o t e  

that ~r I = ~Ur since, by Proposition 2.1, kerD~ = 0 if r << ro. Finally, denote 

~o = lim~-+o ~. From the equality (2.9) we deduce 

e 
(2.10) ~ 0 - ~ - - - -  1 2 - s i g n ( g ) h l / 2 - ~ '  Vr<<r0.  

On the other hand, as explained in subsection 1.3, for all 0 < p < r << ro the 

difference ~ p - ~ r  can be expressed as the integral of an A-genus form. There is no 

spectral flow because the operators/9~ are invertible for 0 < r << r0. Following 

the prescriptions at the end of subsection 1.3 one obtains the following result. 

(For details we refer to Appendix A.) 

LEMMA 2.3 (First transgression formula): For all 0 < r << ro we have 

(~p--~r)  = - - ~ (  £ 2 r 4 -  lim x r  2) 
p-+O IZ  

where X = X(~)  -- 2 - 2g. 

By combining all of the above we get the following result. 

THEOREM 2.4: For all 0 < r << ro we have 

1 
sign (/)hl/2 + ~2 (£2r 4 - xr2) .  ~r]~ = ~r - 12 
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§2.3. T H E  ETA INVAR.IANT OF THE ADIABATIC D I R A C  OPERATOR.  

In this subsection we take up the computation of the eta invariant of Dr. We 

rely on our freshly acquired knowledge of ((Dr).  

The Dirac operator :D~ is associated to the Levi-Civita connection V" while 

D~ is associated to the connection V ~'° = limt-~0 V r't. Set T • (1 - t2). Then, 

using (2.7) and (2.8) we get a path 

73r, = Dr - ~-3,r 
' 2 

such that 7}r,o = D~ and 7}~,1 = DT. Set ~, = ~(7}r,~). Using the variational 

technique described in §1.3 we deduce 

(2.11) ~1 = ~0 + SF(Z)~,~-; r e [0, 1]) + f ,  T A ( V  r,o, Vr,1). 

To compute the spectral flow note that  according to Proposition 2.1 the operator 

g3r,~ has a kernel only for T = 1. In this case, the kernel has dimension 2hl/2. 

Using (1.5) of §1.3 we deduce 

(2.12) SF = 

As for the transgression term, 

2hu2 e > 0, 
0, g < 0 .  

it is described in the following lemma whose 

proof can be found in Appendix B. 

LEMMA 2.5 (Second transgression formula): 

/N T A ( V  r,°, V ~,1) = - ~ 2  (g2r 4 - xr2). 

Putt ing together all the above we obtain from Theorem 2.4 the following result. 

THEOREM 2.6: For all 0 < r << 1 we have 

g 
= + h l / 2 .  

Note that  ~(D~) is independent of r !!! In hindsight, this should not be so 

surprising if we think that Dr was obtained after the adiabatic deformation in 

(2.8). Notice that  ~(D~) still "remembers" it came from a fibration due to the 

term g/12. The geometry of the base is reflected in the term hl/2. Remarkably, 

~(Dr) = g/6. Thus the base E is "invisible" to the eta invariant of D~ !!! 
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§2.4. T H E  ETA INVARIANT OF THE COUPLED ADIABATIC DIRAC OPERATOR. 

Let us begin by recalling that  the Gysin exact sequence implies that  

H2(N; Z)  ~ u * H 2 ( E ; Z ) ® H ~ ( E , ; Z ) ~  Zle I ® Z  2g. 

Consider a complex line bundle L -~ N such that  el(L) = k E ZI, L. Such a 

line bundle can be obtain as the pullback of line bundle L~ -+ E of degree 

k E Z. Note that  k is determined only modulo ~. A line bundle as above admits 

fiat connections and the holonomy of such a connection is exp(2~ki/~). The 

collection of gauge equivalence classes of fiat connections is homeomorphic to a 

torus T 2g. 

These facts were proven in [N] relying on a simple observation which we repeat 

here, since it is relevant to our computations. 

Let A be a fiat connection on L and set 

ki 
(2.13) B := A + ~-p.  

Then B is a connection with trivial holonomy along fibers and it can be regarded 

as a pullback of a connection on a line bundle Lz --+ E such that  Cl(L~) = k E Z. 

Now set 
SL = S ® L = I C  -1 /2®L ® /C 1/2®L.  

By coupling the connection 7r*V z on S with the flat connection A we get a 

connection on SL which leads to a Dirac operator DA = DA,T. We call this the 

adiabatic operator coupled with A. 
Similarly, using the connection B on L we obtain two connections on $L ob- 

tained by coupling B with the Levi-Civita connection and respectively the con- 

nection ~r*V z. These lead to two Dirac operators, /)u,r  and respectively DB,r. 
The goal of this section is to compute the eta invariant of the operator DA, r which 

played a key role in [N] in the description of the reducible adiabatic solutions of 

the Seiberg-Witten equations. We will use these eta invariant computations in 

a forthcoming work on Seiberg-Witten equations on manifolds with cylindrical 

ends. 

The computat ion of ~I(DA,~) for 0 < r << 1 is performed in three steps. 

STEP 1: Compute  ~(/gB,~). 

STEP 2: Compute  ~(Du,~). 

STEP 3: Compute  ~(DA,~). 

While the first two steps follow closely §2.2 and respectively §2.3, interesting 

new phenomena arise at Step 3. 
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Before we carry out the computations we need to review some facts and intro- 

duce some notations. 

Recall first that if L2 -+ ~ is a complex line bundle then any connection 

B on L2 introduces a holomorphic structure on L~. We denote by hl/2(LE) 

the dimension of the space of holomorphic sections of K~/2 ® L~. Using the 

Riemann-Roch formula we deduce 

dimH°(K~/2  ® L~) - d i m H l ( K ~ / 2  ® L) = deg L~. 

On the other hand, Serre duality implies dim H 1 (K~/2 ® L) = H°(g~./2 ® L~,) = 

hl/2(L~),  where L~ denotes the dual of L~.. Hence 

(2.14) hl/2(L~,) - hl/2(L*) = degL2.  

Let A and B as in (2.13). In [N] we proved the following result. 

PROPOSITION 2.7: 

(a) For all r E (0, 1] the splitting SL = ~-1/2 ® L @ ~1/2 ® L induces a splitting 

of ker Ds,r  and moreover we have an isomorphism 

ker Ds,r ~- H°(K~/2 ® L~) (9 H°(g~/2  @ L~.) 

so that dim ker DB,r = hl/2(L~) + hl /2(Lz) .  
(b) There exist ro > 0 and zo > 0 such that for ali r 6 (0, ro] the only eigenvalue 

O[DB,r in (--zo, zo) is O. 

With respect to the splitting SL = K: -1/2 @ L (9 K: 1/2 ® L the operator Ds,~ 

has the block decomposition DB,~ = ZB,~ + TB where 

, and T B =  BO ° bOSO " 

Also ~DB,r = DB,r + ~ .  Another important piece of information is a super- 

commutator  identity established in [N]. In our special case it has the form 

(2.15) {ZB,r, TB} := ZB,rTB + TBZB,r ---- O. 

STEP 1: The same argument as in [Z] proves the following result. 

PROPOSITION 2.8: 

:= l im q(:DB,r) = - 2 / ~  ]~(VS) • ch(B) • 
tanh(c/2) - c/2 

+ Z sign # 
c.  tanh(c/2) 
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where ch(B)  denotes the Chern-Character defined in terms of the connection B 

on L --+ E and the remaining terms have the same signit~cance as in Theorem 

2.2. 

Proceeding exactly as in §2.2 we conclude (via Proposition 2.7) that  

g 
710 = ~ - sign(g)(hl/2(L~.) + hl/2(L2)) .  

If we set ~r = ~(:DB,~)  = 1 ~Tk we deduce 

g sign (g). hl/2(L~) + hl/2(L~) 
~ 0 - ~ r -  12 2 - ~ "  

On the other hand, we have 

g (g2r4 - :~r4). 
- - 1 2  

This follows from the first transgression formula. We can quote this formula since 

as r --+ 0 the only constituent of DB,r that changes is the Levi-Civita connection 

while the coupling connection is independent of r. The degree 3 part of the 

transgression of the index density A A ch(B) equals precisely the transgression of 

the A-genus which was computed in the first transgression formula. We conclude 

g - sign (g). hl/2(L~) + hl/2(L~) _~. (2.16) ~r/r = ~(Du,~) = ~ 2 ~- _ _  ( g 2 r 4  - -  Xr2)" 

STEP 2: Now we "transgress" from DB,~ t o  DB, r using the same deformation 

(~B .... ) as in §2.3. As in that case we have 

(2.17) ~(DB,r) = ~(:DB,~) + SF(~B .... ;0 < ~- < 1) + / g  TA(V~'° '  V~'I)" 

Again there is no transgression term coming from the coupling which does not 

change as T runs from 0 to 1. 

The spectral flow contribution occurs only at ~- = 1 and using Proposition 2.7 

we determine it to be 

(2.18) S F ( ~ B ~ - ; 0 < T < I ) = ~  hl/2(L~) + hl/2(L~),  g > O, 
' '  ( O, g < O .  

The transgression term is given by the second transgression formula. Putt ing all 

the above together we deduce 

g hl /2(g~) + hl/2(L~) 
(2.19) ~(DB,r) = ~ + 2 
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Note that 

6 
(2.20) rl(DBx) = ~. 

Surprisingly, 7/(DB,~) carries very little geometrical information. The extreme 

generality of the Bismut--Cheeger Dai theorem may obscure some beautiful sym- 

metries responsible for (2.20). We refer the reader to Appendix C, where we 

have included an elementary derivation of this equality which works in the more 

general context of Seifert manifolds and we believe contains several illuminating 

in formations. 

STEP 3: Finally we compute {(DA#).  In the remaining part we will assume 

k E Z A (0, 161). Note that if k = 0 then DA,r = DB,r and there is nothing to 

compute in this case. Hence we have to consider only the case 0 < k < 6. 

The equality 
ki 

A ~ B - -  - -  

suggests using the path of connections 

ki 
Bt = B + tf~, B = -g~or .  

We have (omitting the r-subscript for brevity) 

= {(Du) + SF(DB~) + / N  T(A A ch)(B,,  B0). ( 2 . 2 1 )   (DA) 

This time A is fixed and only the coupling connection changes. We have the 

following result. 

LEMMA 2.9 (Third transgression formula): 

k 2 
NT(A A ch)(B1, B0) = 

Proof of the/emma: As we mentioned before, the only part which contributes to 

the transgression is ch through its degree 4 component c~ (Bt)/2.  For an arbitrary 

connection V on L we have 

c2(V) 1 
2 - s 2F(V) AF(V). 

Thus in our case the transgression is 

T c h -  1 £ 1  
47r2 /~/~ FB~. 
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A simple computation shows 

tki 
FBt = FB + td[? = FB - ~ - d ~  = FB + 2tkiqo 1 A g)2, 

ki 2tk 2 qo2. 
1~ A F B t  = - - T 9 9 A F B - [ -  ~ - g P A ~  1 A 

Hence 
ik k 2 ~1 ~92 Tch  = l..~a~ -if}q° A FB - 4~T~ q°A A 

k iFB k 2 
-- 2~rgqV A 27r 47rzf(p A q0 1 A (p2. 

The lemma follows integrating over N and using the equalities 

fbase i F B = d e g L = k ' f I 2 7 c  iber ~# = 27r' /N q0 A q°l A q02 = 2rr2" 

To compute the spectral flow in (2.21) we need to go deeper inside the structure 

of DB,. We have 

DB~ = Z&,~ + TB,. 

Note that TB, = TB since T involves only derivatives along horizontal directions 

while Bt changes only in the vertical direction. As for ZBt,r we have 

ZBt , r  : ZB,  r = 
iVy. + it/~((r) 0 ] 

0 - i V y , .  - i t / 3 ( ( , )  

z~,,. + t_ [ k/e o ] 
r 0 - k / ~  " 

Denote the "matrix" above by 9l and set ZB := ZB#=I. Using the equality 

~'r = r - l ~  we deduce 

ZB~,~ = ! (ZB + t91). 

Observe now that both ZB and 91 anticommute with TB so that 

B~,~ = (zB + t91) 2 + rg .  

In particular, this shows 

kerDBt,r = k e r D ~ , r  = ker(ZB + r91) g/ kerTB. 

Since0 < k < Igl we see that k e r Z B + t 9 1 =  (0) i f t  E (0,1]. In other words, 

the only contribution to the spectral flow arises at t = 0. Denote by {p~(t)} the 
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eigenvalues of DB~,r such that/~i(0) = 0. There are dim ker DB,~ such eigenvalues. 

Denote by a_ the number of those such that fli(0) < 0. The spectral flow is then 

- a _ .  Determining the eigenvalues #i (t) may be a complicated job. We follow a 

different description of a_  given in [RS]. 

Set E0 = ker Ds,r ,  denote by P0 the orthogonal projection onto E0 and define 

the resonance matrix R : Eo --+ Eo by 

R = P o b z , , ~  t*=0 : E0 -~ E0. 

Clearly R is nondegenerate and, as explained in [RS], a_ can be identified with 

a_  (R) which is the number of negative eigenvalues of R. This number can be 

determined using the explicit description of~R and Proposition 2.7 (a). We deduce 

{ -h l /2 (L~) ,  ~ > 0 ,  
SF(DB~,~) = - a _  = -h l /2 (L~) ,  g < O. 

Using the third transgression formula and the equalities (2.21), (2.19) we finally 

determine 

g k 2 hl/2(L~) - hl /2(L~) 
(2.22) ~(DA) = --~-~ + ~ + sign (~)- 2 

(2._14) ~ k 2 k 
12 + ~ - sign(t) . 

Again ~(DA,r) is a topological quantity!!! 

Remark 2.10: The spectral flow computation in Step 3 used in an essential way 

the fact that  k E (0, g). In fact, if we started with a different k' - kmod g then 

the computations at Step 3 would be affected in both the transgression term and 

in the spectral flow term (which would now have several contributions). One 

can verify easily that these changes cancel each other so that the final result is 

independent of the choice of a residue of k mod ~. 

3. Finite energy Seiberg-Witten monopoles 

Throughout  this section, a hat over an object will signal (unless otherwise indi- 

cated) that  it is a 4-dimensional geometric object. 

For example, if N is a 3-manifold then on the tube R × N  there exist two exterior 

derivatives: the 3-dimensional exterior derivative d along the slices {t} × N and 

the 4-dimensional exterior derivative d so that ({ = dt A Ot + d. If A(t) is a family 

of connection on some vector bundle E --+ N, then we get a bundle/~ -+ R × N 

and we can think of the path A(t) as a connection .4 on/~.  We will denote by 
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FA(t) the curvature of A(t) on the slice {t} x N while -P~i will denote the curvature 

of fi~ on the tube. 

§3.1. THE 4-DIMENSIONAL SEIBERG-WITTEN EQUATIONS. 

Let /V denote an oriented 4-manifold (not necessarily compact), equipped with 

a Riemann metric t). Denote by ;~ the Hodge star operator defined by the metric 

and the orientation of/~/. Fix a connection V on TN compatible with t). 

need not be the Levi-Civita connection. 

Denote by Spinc(N ) the collection of isomorphism classes of spin ~ structures 

on/V. For each 5 • Spine(N) we denote by de t#  the associated line bundle and 

by So -- ~+ • ~ the associated bundle of spinors. Note that det 5 ~ det S+. 

Denote by ~ the space of hermitian connections on S~ compatible with both 

the Z2-grading and the fixed background connection ~7. More precisely, A • 

~o(N)  if for any a C ft l (N),  any Z • Vect (N) and any ¢ • C°°(S~) we have 

where 

a: T*N --+ Horn (g+,S2) 

denotes the Clifford multiplication. Any connection on det ~ determines a con- 

nection in 9.1~ and, moreover, once we fix a connection A0 • ~Io(N), we can 

identify ~o(fi/) with iftl(/~). To any connection A • 9.1o(N) we can associate 

the Dirac operator 

r(go +) -, r(s;)  

defined as the composition 

~A 
v(go) ~ r ( T * N ® g  +) -% V(g;-). 

There is a natural quadratic map 

q: F(S +) -4 End(g+),  ¢ ~4 -r(~) 

defined by 

In terms of Dirac's bra-ket notation T(¢) can be alternatively described as 

q((~[) = I~>(~[- ~(@[~)- 
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Note that  for each ~ the endomorphism 7(~) is symmetric and traceless (see 

Appendix D). 

The quantization map from the exterior algebra to the Clifford algebra extends 

the Clifford multiplication to a map 

~: A*T*N -+ End (ga). 

This map has the property that ~(oJ) is a traceless, skew-symmetric endomor- 

phism of g+ for any ~0-self-dual real valued 2-form w. 

The Seiberg-Witten equations (associated to the spin c structure d) are equa- 

tions for a pair (~, A) = (spinor in S + , connection in ~[a(/~r)). More precisely, 

they are 

/ = 0, 
( s w )  t = 

In the remaining part of this subsection we will make further additional as- 

sumptions on the geometry and the topology of -N and explain how this affects 

the Seiberg Witten equations. 

More precisely, assume the manifold 2V can be decomposed as 

N = u [o, oo) × N 

where fiJ0 is a compact oriented 4-manifold with boundary O/V0 = N. We will 

denote by t the longitudinal coordinate on the cylindrical part of N (see Fig. 5). 

Fix a tubular neighborhood (-1,0]  x N of N in N0, a metric g on N and a 

connection V compatible with g, not necessarily the Levi-Civita connection of 9. 

We assume that  along the infinite cylinder ( -1 ,  co) x N the metric 0 is a product 

metric 0 = dt2 + g. We fix a connection ~7 compatible with 0 such that along the 

above cylindrical end it has the form 

V = O ~ A d t + V .  

We denoted by &- the ~-gradient of ~- where 7: N ~ [0, ec) is a smooth function 

which coincides with the canonical projection [0, oo) x N ~ [0, ~ )  on the infinite 

neck. 

Figure 5. The background manifold N. 
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Note that the spin ~ structure ~ induces a spin ~ structure a on N = 0/~0. 

Denote by g~ -~ N the associated bundle of spinors and by c: T*N ~ End (N) 

the corresponding Clifford multiplication. As in the 4-dimensional case we can 

define ~1~ (N). 

Fix a reference connection fi,0 E !~la(fi/) which, along the neck, is gauge equiv- 

aleut to a product connection dt ® Ot + Ao, Ao E P2o(N). Now define the con- 

figuration space ~ as the set of pairs (¢, A0 + i8) := (~, fi,)=(spinor, connection) 

such that (~, i&) E L~o2c(S (9 iT*.N) and 

^ A ^ L2(~a ® iA1T*/V). VoT~®ia. (iFA) E 

We denoted by i& the contraction by Or. For brevity, will denote the elements 

of ~ by the generic symbol C. 

Det~nition 3.1: (a) A finite energy solution of (SW~) is a solution (~,A) such 

that (~ ,A - A0) E ~. 

(b) A Seiberg-Witten tunneling is a finite energy solution on 7V = R × N. 

There is an infinite dimensional group ~ acting on the configuration space, 

more precisely 
= L3,2l {7 E Map (/V, S i ) ;7  E Zoc,- 

The group ~ acts (on the right) on ~ and transforms finite energy solutions to 

finite energy solutions. Define 

:= {(g),/i) finite energy solutions of SW}/03. 

In this section we want to analyze the Fredholm properties of the deformation 

complex naturally associated to 9)l when N is a circle bundle over a Riemann 

surface. In particular, we will compute the virtual dimension of the space of 

Seiberg-Witten tunnelings. 

We conclude this subsection with a simple but crucial observation which re- 

veals the dynamical feature of the Seiberg-Witten equations on cylinders which 

perhaps will explain the tunneling terminology. 

Note that if we set J = 6(dr) then J induces isomorphisms 

(3.1) s2 s; INu 

and 

(3.2) c(a)  = J~(a) ,  Va E f~l(N) ~-~ ~1([0, oo) x N). 
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A connection .4 C !~ia(/Q) is said to be in a t e m p o r a l  gauge  if ia~(~i - ~io) = 0 
along the infinite neck [0, oc) x N. 

Assume now that (¢, A) is a finite energy solution of (SIT) such that .4 is in 

a temporal gauge. Along the neck we can write 

= ¢ ( t ) ,  A = A o + i a ( t )  

where Ao = Ao IN, ¢(t)  C F(S~), a(t) E ~ l ( g ) ,  Vt > 0. Then (along the neck) 

(3.3) /~+ = 2{(Fa + *i/L) + dt A (ia + *F,)} 

where Ao + a(t) is the connection on the line bundle det a restricted to the slice 

{t} × N, F~ = FAo+i~ denotes its curvature and * denotes the Hodge star operator 

on N. Ao + ia(t) induces a Dirac operator 

Da = D~(t): F(S~) ~ F(So). 

Using (3.1) and (3.2) we deduce that along the neck 

= J ( a t  - l ) o ) .  

The equality (3.3) now implies 

= c ( , F o  + 

Consequently, along the neck, in a temporal gauge, the Seiberg-Witten equations 

can be rewritten as 

g) = D~¢, 
(3.4) ic(a) = q(¢) - c(*F~). 

The right-hand side of (3.4) arises when one considers the three dimensional 

counterpart of the Seiberg-Witten equations. 

§3.2. THE 3-DIMENSIONAL SEIBERG-WITTEN EQUATIONS. 

To formulate these equations we need to consider a new configuration space. Fix 

a connection A0 C !21~(N) and define 

= {(¢,A) ; ( ¢ , ( A - A 0 )  e LI'2(Sa @iT*N)}. 

For brevity, its elements will be denoted by the symbol C and we will often write 

C = (¢, a) instead of (¢, A0 + ia) whenever no confusion is possible. There is an 

energy functional $: ~ --~ R defined by 

(3.5) $(¢ ,  A) = ~ a A (FAo + FA) + -~ (¢, I)A~b)dvg. 
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The gauge group 
~5 = {V C Map ( N , S  1) ; "y C L 2'2} 

acts on ~ and, moreover, 

-1 • (¢,  A ) ) -  A) = - [ .  A FAo = [ .  A cl(A0),  
J N  //Y 

where we denoted by cl (A0) the 2-form representing the first Chern class of det a 

associated to A0 via the Chern Weil construction. The L2-gradient of £ is (see 

[N] or [MOY]) 

VC(¢ ,A)  = [ DA~ ] 
q(¢)  - *FA 

where we tacitly identified q(~b) with a purely imaginary 1-form via the Clif- 

ford multiplication. The 3-dimcnsional Seiberg-Witten equations can now be 

described as 
~ A ¢  = O, 

vs(c) = o , = .  c ( , F A )  = q ( ¢ ) .  

We see that  (3.4) can be rewritten as a gradient flow equation 

(3.6) C = V£(C).  

This last equation suggests that  as t --+ c~, C(t) converges to a critical point of 

£. Assuming the finite energy condition this can be proved for arbitrary N using 

the techniques of [MMR]. However, unlike the Yang Mills situation, the nature of 

critical points and the manner in which they are organized are less t ransparent  in 

the Seiberg Wit ten case. This is the reason why we will concentrate on a special 

case.  

In the  remainder  o f  the  section N will be assumed to be a degree ~ ~ 0 circle 

bundle over a genus g > 0 Riemann  surface E, S 1 ~-~ N ~ E equipped wi th  the  

me t r ic  described in §2.1 As background g-compat ible  connection on N we choose 

the  adiabatic connect ion V ° = limt-+0 V r't, where r is f ixed and small.  

The spin c structures on N are bijectively parameterized by the space of iso- 

morphism classes of hermitian line bundles on N. Fix a spin structure on E 

determined by a holomorphic square root K 1/2. If L --~ N is such a line bundle, 

then the corresponding bundle of complex spinors is 

~ L  : K ] - 1 / 2  @ L G ]C 1 /20  L. 

Moreover, we can identify the connections in P~o(N) with the hermitian connec- 

tions on L. The Dirac operator on SL induced by V ° and a connection A on L 
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will be denoted by DA. If instead of V ° we use the Levi-Civita connection of 

the metric g~ we get a different Dirac type operator that we denote by / )A.  The 

operator DA can be related to /)A by the following simple identity (see Section 

[2.1): 
Ar 

DA = ~)A 2 ' A,. - rg .  

Both DA and DA have obvious extensions to [0, ~ )  × N given by 

DA = J(Ot - DA),  I)A = J(Ot - I)A). 

Under these special geometric circumstances the Seiberg-Witten equations can 

be rewritten in a more useful form. 

Using the decomposition •L = (]C -1/2 ® L) @ (/CU2 ® L) we can represent 

any section ~ of SL as lb = ¢ -  G ¢+. Then the Seiberg-Witten equations can be 

rephrased as (see [N]) 

iv ¢_ +0A¢+ = 0, 

(oA)*¢- - i v a n +  = 0, 

(3.7) t ( ¢  2 
I -I -I¢+12) -- iFA((1,(2), 

i~_~+ = E®FA((1 +i (2 , ( ) ,  

where ¢ -- 2-1/2(~ 1 + i~2). 

Set 

¢ * = { ( ¢ , A )  6 e ;  ¢ ~ 0 } .  

The configurations in ~* are called irreducible. As in [M] one can show that  

:= ~/q5 is a metric space and, moreover, f~* = ~:*/~ is a Banach manifold. 

This is proved using the existence of local slices for the ¢~-action exactly as in the 

Yang-Mills case. For every configuration C E ~ we will denote by [C] its image 

in ~ .  

The solutions of (3.7) are explicitly described in [N] and [MOY]. Here are the 

relevant facts. 

FACT 1: If Cl(L) is not torsion then (3.7) has no solutions. 

Assume now that cl(L) -= ~ (mod g) and define 

R ~ - - { n e Z ;  1 5 [ n ] < g - 1 ,  n _ = ~ m o d e } .  
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FACT 2: Any irreducible solution (~b,A) of (3.7) is gauge equivalent to the 

pullback of a pair (¢ ,B)  where B is a connection in a line bundle L~ --+ E 

such that degL~ E R~ (so that zr*L~ ~ L); ¢ = ~_ O ~ -  is a section of 

C e ° ( K  -1/2 Q LE El) K 1/2 ® L). T h e  c o n n e c t i o n  B defines h o l o m o r p h i c  s t r u c t u r e s  

in K +1/2 ® L. ~_ is an antiholomorphic section of K -t/2 ® L while ~+ is a 

holomorphic section of K 1/2 ® Lp.. Moreover, one of @_ or ~+ is zero and satisfy 

the identity 

(l@_[ u -[@+12) dv = deg L~. 

Thus ~+ = 0 if deg L~ > 0 and ~_ = 0 if deg Lp. < 0. The irreducible part (mod 

~5), denoted by 9)I*, consists of #R,~ components 

i f2*= [,J 8)I . . . .  
nE R,~ 

The component ffJln = 9)I~,~ (corresponds to the choice deg Lr~ = n) is diffeo- 

morphic to a symmetric product of (g - 1) - In] copies of IE and thus has real 

dimension 2 ( 9 -  1 - ]n l ) .  Each component is Bott  nondegenerate as a critical set. 

(Pairs (¢_ ® ¢+, B) as above are known as vortex pairs on ~.) 

FACT 3: The reducible solutions consist of pairs (zero spinor, flat connection). 

Modulo ~5 they form a space 9)I o homeomorphic to a 29-dimensional torus. More- 

over, if ~ ~ 0 (mod g) the reducible part is nondegenerate (in a sense described in 

[MOY]). If ~ _= 0 the reducible solutions can be identified with the theta divisor 

Wg-1 inside the Jacobian Jg - l (~ )  (see [GH] for a definition of Wg-1). 

Associated to each component 9Jl there is a deformation theory which we now 

proceed to describe. We will concentrate only on the irreducible part E*. Since 

cl (L) is torsion, the energy functional g is gauge invariant and thus it descends 

to a well defined functional 

g_:~* -+1R. 

The group ~5 is a Hilbert-Lie group and its Lie algebra can be identified with the 

space 1~ := L 2'2 (N, JR). The exponential map has the form 

g ~ i f  ~ (exp(if): N -+ $1). 

The tangent space to the orbit O¢,A through C = (¢, A) of the right action of ~5 

is the range of the infinitesimal action operator 

£ = £C:  g -+ fi:' : =  LI '2(•L) O LI'2(iT*N), i f  ~ - i f  @ idf. 
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The tangent space to ~B* at [C] can be identified with the orthogonal complement 
to the tangent space to the orbit Oc and ultimately with the kernel of £~, the 
adjoint of £c.  An integration by parts shows 

£ * ( S G i h ) = - i d * a + i 2 r n ( ¢ , 5 ) ,  V S ® i h E X .  

We can use the affine structure of £ to linearize V£ at a given configuration 
C = (¢, A) and we obtain the unrestricted hess/an at C 

~ c  ia = ~ l t = o V g ( ¢ + t S ,  A + t i a ) =  - i , d a + q ( ¢ , ¢ )  " 

The term 0(¢, 5) is formally defined by the equality 

d 
q(¢, 5) := I,--0 q(¢ + tS) 

where we regard q as a quadratic map q: SL --+ iT*N. 
The stabilized hessian of $ at C = (¢, A) is the unbounded operator on 

L2(SL @ i(h 1 ~3 A°)T*N) defined by 

7 ~ c [ 5 @ i h  ] [ 5 @ i h  
i f  ] : = [ 7 / / :  ] 

/:* 0 i f  j 

IDA5 + c ( i h ) ¢ - i f ¢ ]  
= - i , d h + i d f  + q(¢,~) • 

id*h + i3m(¢, 5) 

In [N] and [MOY] it is shown that if [C] E 97l~,n then the kernel of the stabilized 
hessian ~ c  is naturally isomorphic to the tangent space T[c]9~,,~. Now define 

7~o ih = 0 - * d  d 
i f  0 d* 0 i f  

and P = P~ by 

= 0 ( ¢ , 5 )  • 

i f  i3m(¢, 5) 

Note that 7~0 = 7~0(C) is an elliptic selfadjoint operator for any C E ~ and 
7~c = G0 + 79¢. For every C 6 ~ define SF+(C) 6 Z as the spectral flow of 
the path +(7~0(C) + t79¢), t C [0, 1]. The next subsection is devoted to the 
computation of SF+ (C) when [C] E ~l~,~. For the reducible component 79¢ ~ 0 

and this problem is trivial. 
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Define now for later use the resonance  matr ix•  This is the quadratic form 

7Z on ker 7~0 defined by 

RE = R c E  = ProjPi~E, E = 0 ® ih ® i f  E ker 7~0 

where P r o j  denotes the orthogonal projection onto kerT~0. Note also that for 

[C] E ~,~,,~ 

ker ~o([C]) = H°(K 1/2 - Lz) ® H°(K 1/2 + Lz) ® HI(F,,IR) ® H°(E,IR) 

where L~ is the holomorphic line bundle on E determined by [C] as in Fact 2. 

§3.3 .  SPECTRAL FLOWS AND PEaTUaBATIOS THEOaV. 

Fix [el = [¢, A] E 9)I ..... Assume for simplicity that n < 0 so that ¢_ = 0. 

Denote by Ls  the holomorphic line bundle on E (deg Lx = n), by B the induced 

connection on Lz and by ¢+ the holomorphie section of K 1/2 ® Lz determined 

by [C]. The computation of SF+([C]) is carried out in two steps. We consider 

only the spectral flow SF+. Also for simplicity we will write L instead of Lx, 

and ¢ instead of ¢. 

STEP 1: Along the path t ~ 7~t := 7t0 + t'P, t E [0, 1] there is no spectral flow 
contribution for t # 0. 

STEP 2: Compute the spectral flow contribution at t = 0. 

Note first that t ~ ~ t  is an analytic family of selfadjoint operators with 

compact resolvent and thus by known perturbation results (see [Kato], Thm. 3.9, 

Chap. VII) the eigenvalues and the eigenveetors of this family can be locally 

organized in analytic families. To complete the first step it suffices to show that  
dim ker']~t is independent of 0 < t _< 1. 

With this aim consider as in IN], Sect. 4.2, the following elliptic complex 

(V[c]): 0 --+ ift°(E) J+ F ( L ® K  1/2) O iftl(E) ~+ F ( L ® K  -U2) ® ift°(E) --+ O, 

where 
• o5/~ + 2-1/2ih°3¢+ 

T [  ~ ]  = [ i * d & - i g q ¢ ( ¢ + , ~ ) ] ;  

ih °'1 component is the K-l-component  of ia corresponding to the orthogonal 

decomposition T*E ® C ~ K ® K -1. I is the infinitesimal action 

i f  ~ ( - i f ¢ + ,  B + idf). 
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In Sect. 4.2 of [N] it is shown that H°(V[c]) ~ H2(V[c]) -~ 0 and 

dimR H 1 (VIe]) -- - i n d ~  (VIe]) = dim ~Y~ . . . .  

Arguing exactly as in Sect. 5.6 of [MOY] one can prove that 

ke r~ t  ~ H I ( v [ c ] ) ,  Vt • (0, 1]. 

In particular, if E = ¢ @ i/z G i f  • ker 7~t, t > 0 then f - 0. This concludes the 

first step in our program. 

STEP 2: Before we embark on the computation of the spectral flow contribution 

at t = 0 we need to survey a few facts pertaining to perturbation theory. 

As we have already mentioned, the spectral data of 7~t can be organized in fami- 

lies depending analytically upon t. Denote by Z the set of all pairs (k(t), E(t)) 

where )~(t) is an eigenvalne of "/~t, "z(t) is a (length 1) eigenvector corresponding 

to k(t), A(0) = 0 and the dependence 

t 

is analytic. Clearly, # Z  = dimT~o. For every (A(t), ~(t)) we have Taylor expan- 

sions 

A(t )=A~t  ~ + - . . ,  A ~ 0 ,  

~ ( t ) = - - o + t ~ l + . . . ,  Eo•kerT~o, [--o[ = 1 .  

The integer ~ is called t he  o rde r  of the pair (A(t),E(t)). A pair is called 

d e g e n e r a t e  if its order is > 1 and n o n d e g e n e r a t e  if it has order 1. Set 

z*  = {(A(t), z ( t ) )  • z ;  0}. 

The complement Z \ Z* is determined (according to Step 1) by ker ~ t  (t > 0) 

and thus 

#Z* -- dim ker 7~0 - dim ker 7~1. 

The spectral flow SF+([C]) is then determined by 

(a.s) SF+([C]) -- -#{(A(t) ,E(t ) )  e Z*;A~ < 0}. 

To determine this integer we will distinguish two cases. 

The nondegenerate case (u -- 1): The equation ~tE( t )  = A(t)E(t) implies 

7~oEo = 0, ~oE1 + PEo = A1Eo. 
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This shows that A1 is a nonzero eigenvalue of the resonance matrix T4 and 

moreover 

(3.9) sign AI = sign {7~E0, Eo). 

In particular, the contribution to the spectral flow of the nondegenerate pairs is 

equal to the number of negative eigenvalues of the resonance matrix 74. Thus we 

need to better  understand the structure of the resonance form 

Q(=) = <7~=,_=>, E e ker~o.  

Any E C ker / to  decomposes as 

E = q ) ® i h ® i f  

where ¢ = ¢_  ® ¢+ E kerDA, h Z Ytl(N) is harmonic and f is constant. All 

these objects are pulled back from the base and moreover 
• ~ _  C H ° ( K  1/2 - L), ~+ C H ° ( K  1/2 + L). 

• ih = - ~ )  ~z C ½(w , H°(K). 
With these observations in place we have the following result. 

LEMMA 3.2: 

Q(~) = 21/2f3ra<¢+, ~+) - ~Re(~_¢+&). 

The proof of this lemma can be found in Appendix D, equality (D.4). 

We see that  (up to the positive factor 21/2 ) the resonance form is the direct 

sum of 

(a) a quadratic form Q1 on • ® H°(K U2 + L) 

Q l ( f  ® ¢+) = / 3 m ( ¢ + ,  ¢+>, 

(b) a quadratic form Q2 on H°(K 1/2 - L) @ H°(K) defined by 

Q2(S)_ ® = 

If we denote by dim± the dimension of the positive/negative eigenspace of a 

quadratic form then 

dim_ Q = dim_ Q1 + dim_ Q2. 

The negative eigenspace of Q1. Set V = H°(K 1/2 -4- L) and el = ¢+. Then 
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is a symplectic form on V. Q1 is the quadratic form on I~ G V defined by 

Ql( f  @v) = f~(e , ,v) .  

To determine its negative eigenspace extend el to a symplectic basis 

el,e2,. . .  ,e2a-l,e2d where d = d i m c  V. If v = ~-~j vjej then 

Ql( f  ®v) = fv2. 

This can be easily diagonalized and we get 

(3.10) dim_ Q1 = 1 = dim+ Q1 

and 

(3.11) d imkerQ1 = 2 d i m c  V -  1 = 2ho(K ~/2 + L) - 1 = 2h1/2(L) - 1. 

The negative eigenspace of Q2. Consider the multiplication map 

m:  H°(K 1/2-  L) -+ H°(K), ~b ~ 6 - ¢ + -  

m is obviously injective. (Tile implied inequality dim H°(K U2-L) < dim H°(K) 
is also a consequence of the classical Clifford theorem.) Set V = H°(K) and 

U = Range  m.  Q2 can be rewritten as 

Q2(~,w) = - 9 % ( m ~ , w }  

and thus it can be regarded as the quadratic form on U ® V, 

Q2(u • v) = -~e(u ,  v). 

This can be again easily diagonalized and leads to the equalities 

(3.12) d im_ Q2 = d i r e r  U = 2hl/2(L*) = dim+ Q2, 

(3.13) dim ker Q2 = dimrt H°(K) - dimR U = 2g - 2h1/2(L*). 

Summarizing,  we deduce the following. 

A .  The  spectral  flow contr ibution of the nondegenerate pairs in Z* is 

-1  - 2hu2(-L  ). 

B.  The  number  of degenerate pairs (A(t), E(t)) E Z is equal to 

d imR ker 7~ = 2hl/2(L) + 2g - 2hl/2(-L) - 1 = 2(g - Inl) - 1. 
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Recall that dimRkerT-[t = 2(g - 1 - Inl) (if t > 0) and the pairs (A(t),E(t)) 

spanning ker ~ t  do not contribute to the spectral flow. Hence there can be at 

most dimR ker 7~ - dim ke r r  7~t = 1 degenerate pairs contributing to the spectral 

flow. 

Tile degenerate case (v > 1): Set d = dimkerT~l. We have d + 1 degenerate 

pairs 

{(Ak(t),Ek(t));  k = 0 , . . . , d }  

where the labeling is such that k e r T ~  t = spank> 1 (Ek(t)). Thus we need to 

determine the contribution of the pair (A°(t),E°(t)) to the spectral flow. First 

we claim that this pair has order two. To achieve this we argue by contradiction. 

Set 

S = { E o ® E 1  ; EoEkerT~, ~ o E I + P E o = 0 } .  

Using the perturbation series 

A ° ( t ) = A ° t ~ + . - - ,  ~_>3, 

Ak(t)--O, V k = t , . . . , d ,  

=k(t) = E 0  k + E ~ t + E 2 k t  2 + . . . ,  k = 0 , . . . , d ,  

we deduce that for all k = 0 , . . . ,  d 

 oEo = o, 
(3.14) ~0E~ + PE0 k = 0, 

7/0=2 + PE~ = 0. 

Thus Eo k ® E~ E S Vk. Taking the inner product with E~ in the last inequality 

we get 

(3.15) -k  - j  (P:.I,=o)=O, Vj, k=O, . . . , d .  

Now observe the following elementary fact. Given 

(Eo,EI), (Z0,'~i), (U0, U1 ) E S 

i.e. Eo E k e r P  and ~oE1 = ~o--~ = -PF-o, then 

('PZl, Vo> = (P .~ ,  Uo). 

Indeed, 

(P~'l --* V0) (El --' = - -  P : I ,  = - -  : 1 , 7 ) U 0 )  0 
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since E 1 -- E]  • kerT~o and 7)Uo l ker 7~o. In other words, the quantity 

/3(~-"~0(~, E l ,  U0 (~ Ul )  ~- (~DE1,/fro) 

depends bilinearly only upon Eo and Uo. Thus, it defines a bilinear form on ker T~ 

and one can check it is also symmetric. The equality (3.15) implies 

~ j  ~k 
/ 3 ( = o , = o ) = 0  Vj, k = O , . . . , d ,  

i.e. /3 is trivial on kerR.  We will show that this is not the case, thus establishing 

that the order of A °(t) must be 2. 

Let 

E0 = 0 C ker 7~o. 
0 

Using the identity (D,3) in Appendix D we get 

PEo= i1¢+12~ • kerT~0 , 

0 

where qo is the global angular form on N. Hence Eo • ker T~. We have to solve 

~oE1 + PEo = O. 

If we write E1 = ~ @ ia @ i f  then the above equation can be rewritten as 

DA¢ = O, 
(3.16) - ,  diz + df + 1¢+12qo = 0, 

d*~ = O. 

One can say quite a lot about El. First note that since 1¢+[2~ is co-closed 

(Appendix D) and f A_ {constants} we conclude that f -- 0. We deduce 

j" *da = 1¢+12 , (3.17) [ d*/~ = 0. 

The above equation has a unique solution/~ orthogonal to the space of harmonic 

1-forms. It is given explicitly by 

1 
(3.18) & = -~-~[¢+[2~. 

Taking the inner product with & of the second equation of (3.16) we deduce that  

B(=o) = {-=1, P--o) = -(~qo-%, z1) 
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= {*da, ct}dVN = I¢+[2{~,ct}dVN = - - ~  I¢+]2dVN . 

We conclude from (3.18) tha t  

(3.19) B(~0) = -sign~?. 

This shows tha t  B is nontrivial. Since B can have at most  one nonzero eigenvalue 

the above equality shows tha t  this eigenvalue has the same sign as - g .  If we now 

use the per turba t ion  equations for A°(t) we obtain 

=°  = o, 
+ p_-o = o, 

~ 0  
= A2~ O. 

We deduce 

sign A ° = sign (7~Z °, _~o) = sign/3(--°)  = - s i g n  g. 

Thus the degenerate par t  contributes to the spectral flow only when g > 0. 

We can now assemble all the information we have collected so far in the fol- 

lowing result. 

THEOREM 3.3: 

- 2 - 2 h l / 2 ( L * ) ,  if g > 0 ,  
SF+([C]) = - 1  - 2h1/2(n*), if ¢ < 0. 

- 2 - 2 h 1 / 2 ( L * ) ,  if g < 0 ,  
SF_([C]) = - 1  - 2hl/2(L*), if g > 0. 

Remark  3.4: We have considered only the case [C] E 9/t,~,,~ with n < 0. The  

case n > 0 can be approached by entirely similar methods  and can be safely left 

to the reader. The  corresponding formulae can be obtained from the above by 

making the Serre duali ty subst i tut ion L ~ > L*. 

§3.4. VIRTUAL DIMENSIONS. 

In this final subsection we will show how one can use Theorem 3.3 to compute  

virtual  dimensions of finite energy moduli  spaces. We will rely heavily on the 

techniques of [MMR]. 

Consider a 4-manifold 19 with a cylindrical end isometric to [0, oo) x N,  where 

N is the disjoint union of nontrivial circle bundles {Nj  ; j = 1 , . . . ,  m} of degrees 

/~j over Riemann surfaces Ej  of genera gj > 1 (see Fig. 6). Fix spin s t ructures  

on each of the Riemann  surfaces Ej  which induce by pullback spin s tructures  on 
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Nj. Next fix a spin c structure gr o n / ~  which induces spin c structures aj  on Nj. 

Set 

= H j. 

The metric and compatible connections on the end of /V are prescribed as in- 

dicated in §3.2. This means that  we use as background connection on N the 

adiabatic connection V °. Consider a finite energy solution C = (¢, A) of the 

Seiberg-Wit ten equations associated to the structure 6. We assume that  along 

the neck it is in temporal  gauge 

O = (t c ( t )  = (¢ ( , ) ,A( t ) ) } .  

Nm 

Figure 6. Multiple cylindrical ends. 

The techniques of [MMR] work with no essential changes in the Seiberg-Witten 

context and show that  [C(t)] converges to [Coo] • 9Jl~, where by 9JI~ we denoted 

the Seiberg-Wit ten moduli space determined by the spin c structure a on N. 

The first conclusion we draw from this fact is that  a must be a pulled back spin c 

structure, since otherwise 9J[~ = ~. Suppose this is indeed the case. 

The moduli space 93Io is a disjoint union 

931a = H 9Jta~ 
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and thus the asymptotic limit is a collection 

[Coo] ~- ( [ C 1 ] , . . - ,  [Cm])-  

Assume first that all the configurations Cj are irreducible, 

C~ c ~ , ~  (aj). 

Again, to reduce the accounting job we consider that nj < 0 Vj. Tile irreducibility 

condition implies that [C(t)] converges exponentially to its asymptotic limit. 

We are interested in describing a neighborhood of (~ in the moduli space of 

finite energy solutions and we will begin as in [MMR] by studying a simpler 

problem. 

Define 9)I([C~o]) the moduli space of finite energy solutions with asymptotic 

limit [Co¢]. We want to understand the structure of a small neighborhood of 

0 E ~ ( [ C ~ ] ) .  More precisely, we would like to compute the virtual dimension 

of such a neighborhood. This is achieved using Kuranishi's deformation picture 

of the moduli space which requires a suitable functional framework. Since the 

convergence to the asymptotic limit is exponential, one can use the very conve- 

nient weighted Sobolev spaces L~ 'p where w is a very small positive number. The 

resulting deformation complex can be described as in Chap. 8 of [MMR] and is 

(3.20) 0 --} X 0 ~ X 1 ~ )  X 2 -+  O, 

where X0 is the Lie algebra of the group of gauge transformations on _/V 

exponentially converging to 1 along the neck 

X o  3 2 • 0 * ^ = L ~  (IA T N), 

X 1 is the tangent space to the space of configurations of the 4-dimensional 

equations 

X1 = L~2(g + @ iA1T*N), 

)(2 is tke space of "obstructions" 

1,2 ^ - X2 = L w (S~ ® iA2T*N),  

= / ~  is the infinitesimal gauge group action at C and s w is the linearization 

at C of the SW-equations on PC. 

We can now form the operator 

O , ~ : X I  ~ X 2 ~ X o ,  O ~ = s w @ £  *'~ 
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where *~ denotes the L2-adjoint of/~. This is an elliptic operator and a compu- 

tation g la [MMR] (Chap. 8) shows that along the neck it has the A P S  form 

O~ = something x (Vt - O~) 

where 

l [oA  ii ] 
i f  = - i , d & + i d f  + 0(¢,¢) 

i d * & - 2 w i f  + i2rn(¢, ~) 

and [¢,A] = [C~]. Note that 7t1(C~) = (0~ [~=0. O~ is a Fredholm operator 

and its index (over R) is equal to the virtual dimension of a small neighborhood 

of [C] in .~([C~]). Remark 1.6 at the end of §1.3 shows that the index of O~ is 

equal to the A P S  index of (9~. 

Denote by `4 the anti-selfduality operator on/V 

A = d+ @ d*: if~l (/~) ~ ifl2(N) (B if~°(N). 

Using the connection A and the spin c structure ~ we can form the Dirac operator 

b~: r(g~ +) -~ r(g~). 

Along the neck the direct sum Af t = DA ~ .4 has the A P S  form 

Af = something x ( V t -  7~0(Coo)) • 

Using the excision formula (1.13) in Remark 1.6 we deduce 

(3.21) i n d A e s ( O ~ )  = indAes (A f )  -- SF(7~0 --+ 7~1) - SF(Ttl --+ O~) 

where SF(A --+ B) denotes SF(A + t ( B  - A) ,  t E [0, 1]). All the indices and the 

spectral flows above are real quantities. 
We now proceed to determine the three terms in the right-hand side of the 

above formula. 
Corollary D.3 shows that  the third term above vanishes. The second spectral 

term can be rewritten as 

(3.22) SF(~0 -~ ~1) = ~ SF+([Cj]). 
J 

We denote by Pasd (resp. Pdir) the index densities of .4 (resp. hA), 

1( 
p~d = - ~  ~(N) + L  , 
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where e(/V) and L(N) denote respectively the Euler and the L-genus forms on 

/Y constructed using the Levi-Civita connection. Also 

1 
Pdir = 2-A(~ z°) A exp(~cl (det 6)), 

where on det # we used the connection induced by -A. The factor 2 appears since 

we are interested in the real index of / ) .  The _~-genus form is computed using the 
metric compatible connection ~70 which, along the neck, has the product form 

dt ® Ot + V °. For simplicity, set c(A) = c~ (det #). 

On a 4-manifold the above equality has a simpler form 

pd~ = ~(~(A) ~ - L(V°)) .  

The ~ invariant of 5Qo is the sum ~(.4 I N )  -{- 2~(DA) (the factor 2 is present for 
reality reasons), 

1 
~(~o) = ~ (direr  ker ~o  - r/sign -~ 2r/(DA)), 

where r/sign denotes the eta invariant of the odd signature operator. We deduce 

indAPS(A[) ----/N(Pasd + Pdir) - -  ~ ( ' ~ 0 )  

_ 1 d im~  ker ~ 0  - r/(DA) 
2 

1 [ (c2(A) _ L(¢O))  = - (X(/V) + sign (fig))/2 + ~ J~  

1 Z ( 2 g  j + l) _ 1 E g j .  - E dime ker D A j  -- -~ 
J J J 

Using (3.21) and (3.22) we deduce 

ind ((0~) = - (x(/V) + sign (N)) + ~ (c2(A) - L(XT°)) 

(3.23) - E  d i m e k e r D A j + S + F ( [ C j ] ) - ~ E ( I + 2 g j ) - E  . 
J J J 

This formula can be further simplified. We can replace the integral of L(V °) with 

the integral of L(/Y) plus a correction term given by the second transgression 



108 L.I. NICOLAESCU Isr. J. Math. 

formula. Assume for simplicity that  all components of N have fibers of the same 
radius r and the bases have common area 7r. We get 

2 / j  (g2 r4 
(3.24) f 3 ,  , -Xjr 2) 

J 

where Xj = 2 - 2gj. Denote by z 5 the signature eta invariant of Nj. This was 
computed in [Ko] and [O] and we have 

2~j (g2 r4 ~ gj 
= - s i g n ( g j ) -  3 ' J - Xjr2) +-3" nj 

If we set r /=  ~ z/j we deduce from (3.24) 

~ L(~Y°) + zl-  ~ L(fil)= E ( ' j / 3 - s i g n ( ' j ) ) .  
J 

The term 
z] - j ~  L(/V) 

is equal to - s ign  (/V), so that  we deduce 

j /  L ( Q ° ) - - s i g n ( / V ) + E ( ~ - s i g n ( / 5 )  ) .  
5 

If we use this equality in (3.23) we deduce 

1 ind ((gw) = ~ j ~  c2(A) - I (2x (N)  + 3sign (fi/)) 

1 E ( 2 g j + l ) _  1 (3.25) - E (dime ker DAj + SF+([Cj])) - ~ ~ E ( ~ j  - s i gn  (~j)). 
J J 

To find the virtual dimension dim,(C) of a neighborhood of C in the entire 
moduli  space 9~ we only have to add the dimensions of the asymptotic limit sets 
dimg)2~j,,j = 2(gj - 1 + nj) (recall that  we have assumed nj < 0): 

1 
dim.(C) = ~  f ~  c 2 ( A ) -  ~ ( 2 x ( N ) +  3sign (/~)) 

- E (dime ker DA~ -t- SF+([Cj])) 
J 

1 1 
(3.26) + -~ (2gj - 1 )+  2 E ( n j  - 1) - ~ E ( ~ j  - s i g n  (gj)). 

J J 
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We can now use Theorem 3.3 in the form 

SF+(Cj )  -- - 1  - 2 h l / 2 ( L ~ )  - c j  

where 
1 

e j  = 5(1 + sign (gj)). 

Since d i m e  ker D A j  = h l / 2 ( L j )  + h l / 2 ( L ~ )  we deduce 

d i m c  ker DAj + SF+([Cj])  = h w 2 ( L j )  - h l / 2 ( L ~ )  - 1 - e j  = n j  - 1 - e j .  

Using this in (3.26) we get 

dimv((~) = ~ c2(fi~) - (2:z(N) + 3sign (19)) 

1 1 
(3.27) + E ( e j  + n j  - 1) + ~ E ( 2 g j  - 1) - ~ E ( e j  - sign (gj)). 

J J J 

If we define the boundary  contr ibut ion of the asymptot ic  limit [Cj] by 

1 2 1 (t?j - sign (ej)), ~ ( [ c j ] )  = ( ~  + n j  - 1) + 5 (  g j  - 1) - 

then we can rewrite formula (3.27) as 

1 
(3.28) dimv((~) = ~ / ~ ,  c2(A) - ~(2) / (N)  + 3sign (N))  + E 

f 
~ ( [ c j ] ) .  

J 

The  first two terms in (3.28) represent formally the expression which computes  

the vir tual  dimension of the Seiberg-Wit ten  moduli  spaces on a closed compact  

4-manifold. 

We can now apply this formula to the special s i tuat ion of tunnelings. In this 

case _~r = ]R x N and thus rn  = 2, 91 = g2 = g, el + 62 = 0. Moreover, 

s ign(/~)  = X(fi/) = 0. The  equality (3.27) gives the vir tual  dimension of the 

space of tunnelings between 93l~,n~ (at - o e )  and ffJt~,n~ (at +c~).  Denote  this 

dimension by ~-(n; n l ,  n2). We have 

n l ,  n2) = /~ /c(~)  2 + nl  -1- n2 q- 2g -- 2. 

The  integral t e rm can be computed  via transgression exact ly as in the third 

transgression formula. It suffices to pick arbi t rary  [Cj] -- [¢j, Aj] C g)l~,~j, 
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j = 1,2, and an arbitrary path  of connections A(t) such that  A(0) = A1 and 

A(1) = A2. We choose Aj such that  

i nj 
-~FAj  = ~-dvE and A2 - A1 = ic~a, 

where c = (n2 - nl)///~. A(t) will be the affine path A1 + tic~. (The connection 

on det # will be ~®2 since det SL = L2.) We get a connection .A on [0, 1] × N.  A 

computat ion entirely similar to the one in the third transgression formula leads 

to the equality 

1 / ~ c ( 6 )  2 -  1 f [  ° F A =  n 2 - n 2  
2 47r2 ,1]xg 

Thus we get 

+ nl + n2 + 2 g -  2. 

This agrees with Corollary 1.0.5 of [MOY]. (In the notation of [MOY], ej = 

nj + g -  1.) 

We have omit ted from our discussion the case when one (or several) asymptot ic  

limits [Cj] is reducible. The degenerate case, gj - 1 - 0 (rood gj), requires special 

care and will not be discussed here. In the remaining cases the problem is actually 

simpler than the case dealing with irreducible limits. 

First of all the convergence to such a nondegenerate reducible continues to be 

exponential and thus we can use the same functional framework as above. Assume 

for simplicity the boundary has only one component. We have to compute the 

A P S  index of a new operator (Pw which, along the neck, has the form 

where this t ime 

66~ = something x (Vt - Ow), 

i f  = - i  , dh + idf . 
id*h - 2wi f  

(The spinor part  ¢ of the asymptotic limit [C] = [¢, A] is zero and thus 79¢ = 0.) 

Thus 

indaps(dw) = indaps(A/') - SF(O0 --+ Ow). 

The spectral flow contribution is easy to determine. The only eigenvalue of 

Ot~0 contributing to the spectral flow is - 2 w t  It=0 with a single eigenfunction 

@ ih G i f ,  where ¢ = 0, ih = 0 and f - 1. Hence 

indaps(O~o) = indaps(A;) + 1. 
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The index of A / c a n  be determined as above using instead the eta invariant of 

the adiabatic operator coupled with the flat connection A determined in §2.4. 

The nondegeneracy condition also implies ker DA = 0. Hence this eta invariant 

is twice the ~-invariant in (2.22) so that 

g ec 2 
rl(DA) = ~ + ~-  -- ~. sign (g). 

We deduce (using dimR ker 7~0 = Do(N) + b l (N)  = 2g + 1) 

1 / (c2(j~) _ L(~70) ) i n d A f s ( O ) w  = 1 -- (x(N) + sign (N)) /2  + 

g e; 2 
- ( 1 + 2 g )  6 e + Sign(f) 

Arguing as in the irreducible case we deduce 

1 
ind ( 0 w ) = ~  _/~ c 2 ( / i ) -  ~(2X(/~)+ 3. sign (/~r)) 

f 

1 ( f _  sign ( f ) ) -  n2 - ~(2g - 1) - ~ ~-  + n.  sign (f). 

To find the virtual dimension of a neighborhood in the entire moduli space 91l we 

proceed as in Sect. 8.5 of [MMR]. We need to add the dimension of the reducible 

limit set (which is a 2g-torus) and subtract the dimension of the stabilizer of the 

asymptotic limit (which is $1). We deduce 

1 
dimv(C) = ~  ./~ c 2 ( A ) -  ~ ( 2 x ( N ) +  3 • sign (/~)) 

F 

~;2 
1 1 (g _ sign (g)) - + n.  sign (g). (3.29) + ~ (29 - 1 )  - ~ ~- 

W'e see that  the boundary contribution of a reducible limit is 

(3.30) fl([C]) - 2g - 1 f - sign (g) ~;2 
2 4 g + ~" sign (g). 

We can now easily write the virtual dimension 7-(~ : O, n)of the space of tunnelings 

from a reducible solution [C1] to an irreducible one [Cz] C ~Y~, n. It is 

0, n) = fu Tc2(A2' A1) + ~([C1]) + 

where T stands for the transgression form. We denote by g the degree of the 

boundary at +oc. Then as in the third transgression formula we get 

f N T C 2 ( A 2 ,  - n ~ A1) 
f 
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Also 
= - + + -  

and (using the opposite orientation at -oo)  

/3([61]) -- 2g - 1 g - sign (g) 
~ +  4 

We get 

2g - 1 e - sign (t{) 

2 4 

t{ 2 
+ ~-  - nsign (t~). 

n 2 - n 2 1 + sign (g) 
T ( a ; 0 , n ) - -  ~ + 2 g - - 2 + n +  2 

A p p e n d i x  A. P r o o f  of  t h e  first  t r an sg re s s i o n  f o r m u l a  

Let 0 < p << r << 1. The parameter r will stay fixed throughout this section, p 
will eventually go to 0. We have a fixed local frame (~, ~1, ~2). This is not an 

orthonormal frame for either of the metric h~ or hp but it is an orthogonal frame. 

We first want to compute the 1-forms associated by the above frame to the 

connections V r and V p. We denote them by F~ and resp. Fp. Using the equalities 

(2.4) and (2.5) we get after some simple manipulations that 

0 Atfl 2 --A~ 1 ] 

[~r = _ , ~ 2  0 --?'2A~O -- t¢[O 1 . 
r2A~ 1 r2A~ Jr ~01 0 

We get a similar result for Fp. Set ~p = Fp - F~ and :~0 =limp-,o ~:p. Note that  

0 0 0 ] 
~0 -- r2)~¢fl 2 0 r 2 ,k(fl • 

-r2.~(fl 1 -r2.~o 0 

We have to compute limp_.o T A ( V  p, Vr). Note that 

T A ( W , W ) - -  1 1 _ r 9-~fir2 tr { Ep A ( f~  + ~(d=p + ~ A Ep + --p A F~) 

1_ 
+ 5=p A Ep A =-p ) }. 

Above, f~r is the curvature 2-form of the connection V r. By letting p --+ 0 in the 

above equality we deduce 
lim TA(V p, V r) 
p--~0 

(A.1) 1 {  ( 1 )} 
- 96r2t r  EoA ~ t ~ + ~ ( d E o + F ~ A ' - o + = - o A F r ) + ~ E o A E o A - E o  • 
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w e  now proceed to describe each of the above constituents, one by one. Since 

~]~ = dFr + F~ A F,, we deduce using (2.1), (2.2) and (2.3) that  

0 r2A2~ A 991 --A2r299 2 A %0 1 
~r  = --A2r4Cfl A 991 0 _(g2 _]_ 3A2r2)991 A 992 J . 

/\2r4992 A 99 (t~ 2 + 3A2r2)99 1 A 992 0 

Then 

(A.2) -~o A ~r  = I 
0 * * 

, (4/~3r 4 + A~2r2) , 

• * (4A3r 4 + At~2r 2) 
] 99A991A99 2 , 

0 0 0 ] 
d~0 = 0 0 2/~2r2 991 A 992 

--)~nr 2 --2A2r 2 0 

Then 

(A.3) Eo A d--o = 
0 * * ] 
• - 2 ~ 3 r  4 , %o A 991 A 992. 
• * --2)~3r 4 

Simple manipulat ions yield 

(A.4) 
0 * * ] 

~ 0 A ~ ' 0 A F r - { - ~ 0 A F r A - ~ 0  : * --2A3r 4 * 99A991A992. 
, • --2A3r 4 

An immediate  computat ion (eased by the large number of vanishing entries in 

E0) shows tha t  tr (E0 A ~0 A "-0) = 0. By combining (A.1) with (A.2)-(A.4) we 

get 

lim T A ( V  p, V r) = 9 ~ 2  (4)~3r4 + 2~t~2r2)99 A 991 A 992. 
p--~0 

The first transgression formula now follows by integrating over N and using the 

equalities )~ = -6 ,  ~2 = 4(g - 1) and 

/N99 A99 1 A ~  2 = 27i -2 ' 
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A p p e n d i x  B. P r o o f  o f  the  s e c o n d  transgress ion  formula  

We have to compute limt-~0 Tfik(V r't, Vr). As in Appendix A we get 

iim T,&(V ~'~ , V r) 
t--+O 

(B.1) 
1 { ( 1 1 ) }  

-- 9--6-~2 tr Eo A mr 4- ~(dEo + wr A Eo 4- -Ro A wr) 4- ~EO A E0 A ":0. , 

where fir = dwr + wr A wr  and (using (2.5) and (2.6)) 

0 992 _991 ] 
E o = w r , o - w r = - A r  _992 0 -@r - 

991 99r 0 

Using (2.1), (2.2) and (2.3) we get after some simple manipulations 

~tr = 
0 Ar299r A 991 2 2 ] --At99 A 99r 

-A~99r A 99 0 - ( 3 £  + ~2)99, A 992 J . 
2 2 (3At 2 E2)991 A 992 At99 A 99r + 0 

Then 

(B.2) [ -2A~ * 
Eo A fir = -At  , _(4A2 + ~2) • ] 

• (Dr A 991A 992 

0 0 - ~  ] 
dEo = -At  0 0 -2At 991A 992, 

2At 0 

(B.3) 
0 * * ] 

Eo A d.=o = A2r * --2At * 99r A 991 A 992, 
• * --2At 

(B.4) 1 * * 1  EO A EO A Eo = 2A 3 * 1 * 99r A 991 A ~f12 
• * 1 

(B.5) 
1 * * ]  

~o A wr A EO + ::0 A ~o A wr = -4A~ * 1 * 99r A (ill A 99 2. 
• * 1 
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Put t ing together (B.2)-(B.5) we deduce 

t-~01imT-A(V*"t' V~) = ~ 1  (4A3 + 2t~2A~)T ~ A V 1 A ~  2 

_ 1 (4A3r 4 + 2A~2r2)~ A ~1 A ~2. 
96~ 2 

We now conclude exactly as in Appendix A. | 

A p p e n d i x  C. E l e m e n t a r y  c o m p u t a t i o n  of  t h e  e t a  i n v a r i a n t s  

We include here an elementary derivation of the equality (2.20). For brevity 

we present a proof only fbr circle bundles over smooth Riemann surfaces but the 

arguments extend to the more general case of Seifert manifolds, i.e. smooth circle 

bundles over Riemann V-surfaces (2-orbifolds). The changes from the smooth to 

the orbifold case are only cosmetic ("orbify" everything, i.e. add the prefix V to 

all the intervening geometric objects and use known V-theorems: V-Riemann- 

Roch, V-Serre duality etc.). 

Our circle bundle N equipped with the metric described in §2.1 determines a 

hermitian metric and compatible connection on a degree ~ hermitian line bundle 

over E. This connection determines a holomorphic structure and we denote by L0 

the holomorphic line bundle thus obtained. Consider another line bundle L --+ E 

of degree k equipped with a hermitian metric and compatible connection B. The 

connection B determines a holomorphic structure on L and we will denote by 

h(L) the dimension of the space of holomorphic sections. 

Consider now the spin ~ structure on N whose associated spinor bundle is 

(C.1) gk = ]g-1 ® 7r*L @ 7r*L. 

In terms of the notations in §2.4 we have Sk = S @ ~-1 /2  ® L. Note that  Sk 

makes no reference to a choice of spin structure on the base E and thus a similar 

object can also be defined when N is a Seifert fibration over a not necessarily 

spin-orbifold. This is very similar to the case of spin c structures over (even 

dimensional) almost complex manifolds. 

Using the pullback of B on 7r'L, the pullback of the Levi-Civita connection on 

K z  to E and the adiabatic Levi-Civita connection limt-.0 V r't we obtain as in 

§2.4 the adiabatic Dirac operator D = DB. For each # C R define 

V~ = ker(# - D), v~ = dim V~. 

We want to compute the eta function of D 

~>o  # ~  " 
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Recall (§2.4) that  D has a decomposition D = Z + T. Now define 

E ~ , = { v e V u ; Z T v = O } ,  e u = d i m E u .  

Denote by E~ the orthogonal complement of E t, in V u. Since {Z,T}  = 0 we 

also have {D, ZT} = 0 and it is easy to check that ZT(E~)  C El_t,. The 

definition of Eu implies that the induced map ZT: E~ --+ EZu is injective. Thus 

dim E~ < dim E ~ ,  and by symmetry dim E~ = dim E~, .  Using this in (C.2) 

we deduce 

After some elementary manipulation which can be safely left to the reader, we 

deduce that  E~ is both Z and T invariant. Since {Z, T} = Z T  = 0 we deduce 

that Z, T commute as operators on E ,  and, moreover, Z + T = D - # on E~. 

Standard spectral theory for commuting symmetric operators implies that E ,  

admits an orthogonal decomposition E~ = F~ @ B ,  with respect to which Z and 

T have the block decompositions 

0]0  [00 .°] 
Set f. = dim F .  and b. = dim B. .  We claim that 

(C.4) bt, = b_~, V# > 0. 

Indeed, if ¢ E B ,  \ {0}  we deduce Z ¢  = 0 and T ¢  = #¢. The first equality 

implies that  ¢ is covariant constant along the fibers of N and thus ~b is the 

pullback of some section ¢ on K -1 ® L (~ L ~ E. The second equality implies 

that ¢ is a #-eigenvector of the Z2-graded, L-twisted, Hodge-Dolbeault operator 

c9 + 0* on E. The equality (C.4) is now obvious. Hence 

t~>0 

At this point, the dimensions ft, can be described quite explicitly. More precisely 

we have 

(C.6) f~ ¢ 0 ==~ # e Z and ft, = h(K - L - #Lo) + h(L - #Lo). 

Before we prove the above equality we want to show its impact on the 
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computation of ~(s). Using (C.5) we deduce 

tt>O -- 

(Riemann-Roch) 

L - #Lo) - h (L  + #Lo) ) + ( h (L  - ttLo) 

- h ( K -  L + # L o ) ) ) ,  

= E - ( d e g L  + #degLo  + 1 - g) + ( d e g L -  ffdegLo + 1 - g) 
~8 

~t>O 

-2~ _ 2~¢(s - I) =E p~ 
i~>0 

where ¢(s) is Riemann's zeta function. In particular, 

~(0) = - 2 6 ( ( - 1 )  

1 This agrees with (2.20). while by [WW], ( ( - 1 )  = 12" 

Proof  of  (C.6): 

Then 
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Let ¢ EFt, .  We decompose ¢ = a ® ~  using the splitting (C.1). 

(C.7) iV~(~ =/~o~, c5~o~ = O, 

(C.8) - iVfff l  = #~, 0B~ = 0. 

Denote by f~- (resp. by f+)  the dimension of the space of solutions of (C.7) (resp. 

(C.8)). (The connections intervening in the above equations are connections on 
K: -1 ® ~*L and 7r*L obtained by pullback from connections on line bundles over 

the base.) We will only show how to determine f+  since the determination of 
f ~  is entirely similar. 

Set for simplicity/~ = 7r'B, B~ = / ~  =F i#~. Note first that vS~ =- aS~ since 

the transition B - + / ~  does not alter the derivatives along horizontal directions. 

On the other hand, the equation - i V ~  = #fl can be rewritten as 

Thus the equations (C.8) are equivalent to 

(C.9) - i V ~ Z  = 0, VSB+Z = 0. 
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If (C.9) admits  a nontrivial solution fl then/3  must be B+-covariant constant 

along the fibers. This implies that  the pair (Tr*L, B +) is the pullback of a pair 

(line bundle L~+connection B ~ on L ~) on the base E. The curvature of the 

connection B ~ can be determined from 

FB, = F B +  2g#id-vol~, 

so that  

- # g  + deg L = ~ FB, C Z. 

On the other hand, since ~r*U ~ lr*L we deduce that  #g ~ 0 (mod f) so that  

l~ E Z. In fact one can see that  we have an isomorphism of holomorphic line 

bundles 

( L, B')  ~ L ® Lo ~. 

The second equation of (C.9) implies that /7  is a holomorphic section of L ® Lo ~. 

Hence f +  = h(L - #Lo). Similarly f ~  = h(K - L - #L0), which concludes the 

proof of (C.6). 

Remark  C.1: A similar argument allows one to compute the entire eta function 

of an adiabatic Dirac coupled with a flat connection of the type discussed in §2.4. 

In the notation of that  section we have 

(c.10) ~(s) = - e  (¢(8 - 1, k/lel) + ~(1 - s, 1 - k/lel)) 

where, for any a E (0, 1], we denoted by ~(s, a) the Riemann-Hurwitz  function 

~(~, a) = (n + a)s" 
n ~ 0  

In [WW] it is shown that  ~ ( -1 ,  a) = -B~a(a)/6, where B~ denotes the derivative 

of the Bernoulli polynomial Ba(z) = z 3 - 3z2 + ½z. Substituting this in (C.10) 

we re-obtain the main result of §2.4. 

A p p e n d i x  D. Technical identit ies  

We gather here some technical results used at various places in the main body of 

the paper. 

Consider a local orthonormal coframe {~, ~l ,  ~2} of T * N  as in §2.1. Set 

1 1 
: ~ ( ~ 1  + iv2) ,  ~ :  ~ ( ~ 1  - i v 2 )  
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Note that c is a local section of ~. With respect to the splitting 

SL = K-I/~ ®L ~ K  1/2 ®L 

the Clifford multiplication has the block decomposition (see IN]) 

[ ia (b+ic)g ] 
c(a~ + b~p, + c~2) = - (b  - ic)e - i a  " 

In particular, c(qo)e(~ 1)c(~2)  = --1 which agrees with the conventions described 
in Lemma 1.22 of [BC]. 

We compute easily 

c,c,__ [ o ] 
- v %  0 ' 0 0 

If i& E i~ I(N) has the orthogonal decomposition 

1 
i& = ihoqV + ~(w --  ~), w E Coo(]C), 

then 

a0 c C °°(N), 

( D . I )  e( ia)= [ -h0 -2-1/2~ ] 
-2-1/2w &o " 

The quadratic map q(¢), viewed as an endomorphism of gL, has the block 
decomposition 

q(¢)= ~(I -I - I  + l )  ¢-$+ 
1 & ¢ +  -~(l¢-I 2 -I¢+12) 

If ¢ is such that ¢_ = O, then 

O(¢,(b) def d [ -9%(¢+,~+) ~_(~+ ] 
= ~ It=0 q(¢ + t/;) = ~_¢+ me<c+, ~+) 

Using (D.1) we obtain a description of q(¢,¢) as a purely imaginary/- form 

(D.2) q(¢, g)) = i9~e(¢+, ¢+>~0 - 2-1/2 (¢_  (}+ - @_¢+). 

Let ¢ be as above. Given = = ~ G i& @ if where ia = l ( w -  c~), w E C°°(K:), 
then using (D.1) and (D.2) we deduce 

I c(ih)¢ - i f¢ ] 
(D.3) PCE = q(¢, ¢) 

i2m(¢,¢} 

(-toe+) ~ ( - i f¢+)  
= = ifflc(¢+, ~+)y) + 2-1/2(g)_¢+ - ~_¢+) 

iYm(¢+, ¢+) 
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We now deduce easily tha t  

(D.4) (7)--, E) = 2 U 2 f 2 m ( ¢ + ,  ¢+)  - ~R¢(~_¢+~).  

The  t e rm  q(¢, ¢)  has nice divergence properties.  More precisely we have the 

following result. 

LEMMA D . I :  Consider a spin c structure a on an oriented, Riemannian 

3-manifold (M, g). Fix a connection A on det a and denote by 7)A the Dirac 

operator on S~ induced by the Levi-Civi ta  connection coupled with A. Then for 

every ~b 6 C ~ ( S o )  we have 

d*q(¢) = -i3m<¢, VA¢>. 

Proo~ Fix an a rb i t ra ry  point  P0 E M,  choose normal  coordinates  ( x l , x 2 , x  3) 

near  Po and set e i -- dx ~. Note tha t  a t  P0 we have d*e i = 0 for all i. In [N] we 

showed tha t ,  viewed as a 1-form, q(¢) has the local description 

1 ~-~(¢,  c(ei)¢>e/.  q(¢) = 
i 

At  Po we have 

2d*q(¢) = - Z 0i( (¢ ,  c(ei)~b))e i 
i 

A = -- ~--~(V~ ~, ¢)  - ~--~(¢, c (e ' )VA¢} (since Vie  i = 0 at  Po) 
i 

= ~ (¢, c(e~)VA¢) -- ~--~ (¢, c(d)vA¢) = --2i~m(¢, VA¢). 
i i 

Since Po is a rb i t r a ry  this proves the lemma.  | 

On our circle bundle N we have ~)A : DA + ~r/2 ,  SO tha t  

(D.5) d*q(¢) = - i 2 m (  ¢, (DA + A~/2)¢) = - i ~ m ( ¢ ,  DA¢>. 

Suppose  now ¢ 6 ker DA. We derivate (D.5) along ~ and we get 

(D.6) d*(~(¢, g)) = -f ire(C, DA(~). 

This  ident i ty plays an impor tan t  role in the proof  of the following result.  

LEMMA D.2:  Consider an irreducible solution C = (¢, A) of the Seiberg-Wit ten  

equation on N .  We assume for simplicity ¢_ = O. For each w > 0 we have an 
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operator Ow = Ow(C) as in §3.4. (Recall that Oo = ~1.)  Then for all w > 0 we 
have 

ker 7~ 1 = ker Ow. 

Proof: Note that  i f E  = ~ @ i & ~ i f  E kerOw is such that  f -- 0, then the 

definition of O~ implies immediately that  E C kerT~l. Conversely, any E E 

7~0 has vanishing third coordinate. Hence it suffices to show that  the third 

component  of any E C ker Ow vanishes. 

Let E -- ~ ® i& @ i f  C ker 0 ~ .  This means 

DAUb q- c ( i 5 ) ¢ - i f ¢  = 0, 
(D.7) - i  * d;~ + idf + 0(¢, ¢) = 0, 

i d * i ~ - 2 w i f  + i3rn(¢,¢) = 0. 

Take the inner product of the second equation with idf. After an integration by 

parts we get 

L ]dfl2 dVN - /N  f " d*iO( ¢, (bdvN = O. 

Using (D.5) and the first equation in (D.7) we get 

/ (Idfl ~ + I/I 2 • 1¢12)dVN = 0. 

This shows f -- 0 and completes the proof of the lemma. | 

The above lemma has the following important  consequence. 

COROLLARY D.3: 

SF(~I  -~ o~ )  = o. 
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