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1. Some basic facts

Denote by O = ON+1 the ring of germs of holomorphic functions f = f(z0, · · · , zN ) defined
in a neighborhood of ~0 ∈ CN+1. We denote by m ⊂ O the maximal ideal of O,

f ∈ m ⇐⇒ f(~0) = 0.

Let f ∈ m. Assume ~0 is an isolated critical point of f , i.e. ~0 is an isolated point of the variety

∂zif = 0, ∀i = 0, · · · , N.

We define the Jacobian ideal of f to be the ideal Jf ⊂ O generated by ∂zif , i = 0, · · · , N .
From the analytical Nullstellensatz we deduce

√
Jf = m ⇐⇒ ∃k > 0 : mk ⊂ Jf ⇐⇒ Af := dimCO/Jf < ∞.

The finite dimensional commutative C -algebra Af is called the local algebra of the critical
point ~0 of f . Its dimension is called the Milnor number of f at ~0 and it is denoted by
µ = µ(f,~0). It has a natural structure of C{t}-algebra

t · (g mod Jf ) = (fg) modJF , ∀g ∈ O.

For every positive integer N we denote by jN (f) the N -th jet of f . It can be identified with
a polynomial of degree N in n + 1 complex variables.

Two germs f, g ∈ m are called right-equivalent and we write this f ∼r g if g is obtained
from g by a change in variables.

Theorem 1.1 (Finite determinacy). (a) (Mather-Tougeron) Let f ∈ m have an isolated
singularity at 0. Then

f ∼r jµ+1(f).
(b) (Mather-Yau) Let f, g ∈ m have isolated singularities at 0. Then

f ∼r g ⇐⇒ Af
∼= Ag as C{t} − algebras.

ut
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Example 1.2 (Brieskorn singularities). Consider three integers p, q, r ≥ 2 and consider the
function

f = fp,q,r(x, y, z) = azp + byq + czr.

Then µ = (p − 1)(q − 1)(r − 1). The local algebra Ap,q,r is generated by the monomials
eijk = xiyjzk where 0 ≤ i < p, 0 ≤ j < q, 0 ≤ k < r. We see that this algebra is isomorphic
to the C-group algebra of the Abelian group Z/p× Z/q × Z/r. The singularity described by
f2,2,n+1 is called the An singularity. It has Milnor number n.

ut

Example 1.3. Consider the polynomial

D4 = D4(x, y, z) = x2y − y3 + z2.

~0 is an isolated critical point of D4,the local algebra has dimension 4, and we can explicitly
determine a basis

e0 = 1, e1 = x, e2 = y, e3 = y2.

It is easy to compute the multiplication table of the local algebra AD4 = O3/JD4 .
e1 = x e2 = y e3 = y2

e1 = x 3e3 0 0
e2 = y 0 e3 0
e3 = y2 0 0 0

Note that the D4-singularity is weighted homogeneous. We recall that a function f =
f(z1, · · · , zN ) is called weighted homogeneous if there exist integers, i.e. there exists integers
m1, · · · ,mN ,m such that

f(tm1z1, t
mN zN ) = tmD4(z1, · · · , zN ), ∀t ∈ C∗.

The rational numbers wi = mi/m are called the weights. The weights of the D4 singularity
are

w1 = w2 =
1
3
, w3 =

1
2
.

A weighted homogeneous polynomial satisfies the Euler identity

f =
∑

i

wi
∂f

∂zi
.

Note that for such a function we have f ∈ Jf so the C{t} module of Af is very simple: t acts
trivially.

ut

2. The Milnor fibration and the Gauss-Manin connection

Let f ∈ m have an isolated singularity at 0. Set µ = µ(f, 0). According to Milnor, for
ε > 0 sufficiently small we can find an open neighborhood X = Xε of 0 ∈ CN+1 so that
f(Xε) = Dε = {|z| < ε} ⊂ C such that the induced map

f : X∗ := X \ f−1(0) → D∗ε
is a local trivial fibration called the Milnor fibration. Its typical fiber Xf is smooth 2N -
dimensional manifold with boundary called the Milnor fiber. Its boundary is a (2N − 1)-
manifold called the link of the singularity. The Milnor fiber which has the homotopy type of
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a wedge of µ spheres of dimension N ,

Xf ' SN ∨ · · · ∨ SN︸ ︷︷ ︸
µ

The Milnor fibration defines a monodromy map

Mf : π1(D∗ε) → AutZ(H̃N (Xf ,Z)),

where H̃• denotes reduced homology. We denote by [Mf ]Z its Z-conjugacy class and by [Mf ]C
its C-conjugacy class. The complex conjugacy class is completely determined by the complex
Jordan normal form of Mf .

Theorem 2.1 (Monodromy Theorem, Griffith-Deligne). All the eigenvalues of Mf are roots
of 1 and its Jordan cells have dimension ≤ (N + 1).

Example 2.2. (a) Consider the germ f : (C, 0) → (C, 0), f(z) = zn. Then the Milnor fiber
f−1 can be identified with the group Rn of n-th roots of 1,

Rn = {1, ρ, · · · , ρn−1; ρ = e
2πi
n }.

The Milnor number is (n−1). This is equal to the rank of the reduced homology H̃0(f−1(0),Z)
which can be identified with the subgroup of the group algebra Z[Rn]

H̃0(f−1(1),Z) ∼=
{ n−1∑

k=0

akρ
k ∈ Z[Rn];

n−1∑

k=0

ak = 0
}

.

As basis in this group we can choose the ”polynomials”

ek := ρk − ρk−1, ; k = 1, · · · , n− 1.

Then

Mf (ek) =
{

ek+1 if k < n− 1
−(e1 + · · ·+ en−1) if k = n− 1

We deduce Mn
An−1

= I, i.e. all the eigenvalues of the monodromy are n-th roots of 1.

(b) (Thom-Sebastiani) If f = f(x1, · · · , xp) ∈ Op and g = g(y1, · · · , yq) ∈ Oq have isolated
singularities at the origin, then so does f ∗ g ∈ Op+q

f ∗ g(x, y) = f(x1, · · · , xp) + g(y1, · · · , yq)

and
Xf∗g ' Xf ∗Xg := the join of the Milnor fibers Xf and Xg

(”'” denotes homotopy equivalence)

µ(f ∗ g, 0) = µ(f, 0) · µ(g, 0), [Mf∗g]C = [M]f ⊗ [M]g

Note that if q = 1 and g(y) = y2 then

Xf∗y2 ' ΣXf ,

where Σ denotes the suspension operation. The operation f 7→ f ∗ y2 is called stabilization
and two singularities are called stably equivalent if they become right-equivalent after a finite
number of stabilizations. Note that the singularity presented {zn = 0} discussed in part (a)
is stably equivalent to the An−1-singularity.

A theorem of J. Mather states that two hypersurface singularities {f(x1, · · · , xp) = 0} and
{g(y1, · · · , yq) = 0} are stably equivalent if and only if their local algebras Af and Ag are
isomorphic as C-algebras.
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(c) MD4 was computed by Arnold. It is related to the Coxeter group with the same name.
The Milnor fiber XD4 is a 4-manifold with boundary and the intersection form q on Λ =
H2(XD4 ,Z) has a particularly nice form described in the Dynkin diagram below.

-2

-2-2

-2

e

ee

e

0

1

2 3

Figure 1. The Dynkin diagram D4.

This means that Λ has a canonical integral basis consisting of vanishing spheres, i.e. embed-
ded 2-spheres e0, e1, e2, e3 with self intersection −2, q(eα, eα) = −2, ∀α = 0, 1, 2, 3. Moreover

q(e0, ei) = 1, q(ei, ej) = 0, ∀i, j = 1, 2, 3.

A vanishing sphere eα determines an involution Rα of Λ, the so called Picard-Lefschetz
transformations associated to eα. More explicitly, it is the q-orthogonal reflection in the
hyperplane q-orthogonal to eα, i.e.

Rα(v) = v − 2
q(v, eα)
q(eα, eα)

= v + q(v, eα).

Then MD4 is conjugate (over Z) with the Coxeter transformation

TD4 = R0R1R2R3 ∈ GL(Λ).

From the equality T 6
D4

= I (the Coxeter number of D4 is 6) we deduce that all the eigenvalues
of MD4 are 6-th order roots of 1.

ut

Using local trivializations in the Milnor fibration f : X∗ → D∗ we can parallel transport1

cycles in a fiber Xt := f−1(t) ∩X to nearby fibers and we obtain in this fashion the locally
constant sheaf Hf whose stalk at t ∈ D∗ is H̃N (Xt,Z). It is called the sheaf of vanishing
cycles. Its sections are families of vanishing cycles varying continuously from fiber to fiber.
We will refer to these as locally constant vanishing cycles. We denote by Z the constant sheaf
on D∗ and we set

Hf := HomZ(Hf ,Z),
where Hom(F,G) denotes the sheaf of morphisms between two sheaves F,G. Consider the
sheaf E of smooth complex valued functions on D∗. The sheaf

Hf := HomZ(Hf , E) ∼= Hf ⊗Z E

is a locally free sheaf of E modules and thus can be interpreted as the sheaf of sections of rank
µ-complex vector bundle over D∗ which we also denote by Hf . It is called the cohomological
Milnor bundle.

This bundle is equipped with a canonical holomorphic structure and a canonical flat con-
nection ∇ constructed as follows.

1This a C∞ but not a holomorphic construction, as one may think. That is why the fact that the Gauss-
Manin connection ends up having a holomorphic (even algebraic!) nature is somewhat surprising.
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Given t0 ∈ D∗, a small contractible neighborhood U of t0 ∈ D∗ and a Z-basis {e1, · · · , eµ}
of vanishing cycles in Xt, we obtain by parallel transport a trivialization of Hf over U and
then by duality a local frame (ei) of Hf |U . Any s ∈ Γ(U,Hf ) can be written as s =

∑
k ske

k,
sk = 〈s, ek〉 ∈ E(U) . s is declared holomorphic if all the components sk are holomorphic
functions. We set

∇s :=
∑

k

(dsk)⊗ ek ∈ Γ(U, T ∗U ⊗Hf ).

These notions are independent of the various choices. ∇ is called the topological Gauss-
Manin connection. We denote by H

f
hol the sheaf of holomorphic sections of Hf .

Brieskorn has constructed free, coherent sheaves of OD-modules L0,L1 → D, together with
an injective morphisms of OD-modules ϕ : L1 ↪→ L0 and isomorphisms βi : Hf → Li |D∗ ,
i = 0, 1 such that over D∗ the diagram below is commutative

L1 L0

H
f
hol

wϕ

[
[[̂

β1 �
���
β0

.

Moreover, if we denote by t the local coordinate on D such that OD,0
∼= C{t} then there exists

a natural isomorphisms of C{t}-modules

ρ :
(
L0/ϕ(L1)

)
0
→ Af .

The sheaves Li are also known as the Brieskorn lattices. Each is an extension to D of the
coherent sheaf Hf . Note also that the quotient L0/ϕ(L1) is a coherent sheaf supported at
the center of D.

We describe the restrictions to D∗ of the sheaves Li and the morphisms ϕ, β−1
i . Denote

by Ωk sheaf of holomorphic k-forms on X, i.e. differential forms ω locally described as

ω =
∑
α

ωαdzα1 ∧ · · · dzαk
.

Given a small open disk U ⊂ D∗ we set fU = f−1(U) and

L1(U) ≈ ΩN (fU) mod
(

dΩN−1(fU) + df ∧ ΩN−1(fU)
)
.

We use the symbol ”≈” instead of ”=” since the above definition is only ”morally correct”.
The restriction of a holomorphic form ω ∈ ΩN (Uf ) to fiber Xt, t ∈ U is a closed form ωt

and we denote by [ωt] ∈ HN (Xt,C) the class it defines. This cohomology class depends only
on the image of ω ∈ L1(U).

Given ω ∈ L1(U) we obtain a holomorphic section2 [ω] ∈ Γ(U,Hf ) determined by the
following rule: for every locally constant vanishing cycle U 3 t 7→ ct ∈ Hn(Xt,Z)

〈[ω], c〉(t) =
∫

ct

[ω |Xt ].

The resulting map
L1 |D∗3 ω 7−→ [ω] 3 H

f
hol

is an isomorphism whose inverse is β1.

2The holomorphic nature of this section is by no means obvious since the cycle ct only varies smoothly
with t.
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The sheaf L0 is intimately related to the notion of Poincaré residue. Given U ⊂ D∗ as
above and ω ∈ ΩN+1(fU), we deduce from the fact that df 6= 0 on X∗ that ω can be written
as

ω = df ∧ η, η ∈ ΩN
X(fU).

η is uniquely determined only modulo df ∧ΩN−1(fU) and we denote by ω
df the image of η in

ΩN mod df ∧ ΩN−1. Note that

ω = df ∧ η = df ∧ η′ =⇒ η |Xt= η′ |Xt , ∀t ∈ U.

Hence ω
df defines on each fiber Xt a closed form ω

df |Xt . Its cohomology class does not change

if we add to ω forms of the type df ∧ dη, η ∈ ΩN−1
X since df∧dη

df = dη. We get a map

ΩN+1(fU) mod df ∧ dΩN−1(fU) → HN (Xt,C), ω 7−→ [ ω

df
|Xt

]
.

The cohomology class
[

ω
df |Xt

]
is called the Poincaré residue of ω along Xt. We will denote

it by Resf (ω, Xt). Now set

L0(fU) ≈ ΩN+1(fU) mod df ∧ dΩN−1(fU).

For ω ∈ L0(fU) we can integrate Resf (ω,Xt) over locally constant vanishing cycles and
obtain a holomorphic section Resf (ω) ∈ Γ(U,Hf ). Arnold refers to this section as the
geometric section determined by the top dimensional form ω. The resulting morphism of
sheaves

Resf : L0 |D∗→ H
f
hol, ω 7→ Resf (ω),

is an isomorphism whose inverse is β0. The map

ΩN 3 ω 7−→ df ∧ ω ∈ ΩN+1

induces a morphism

L1 ≈ ΩN mod
(
df ∧ ΩN−1 + dΩN−1

)−→ΩN+1 mod
(
df ∧ dΩN−1

)
= L0.

This is precisely the morphism ϕ.
The exterior differentiation d : ΩN → ΩN+1 induces a morphism of sheaves

d : L1 |D∗→ L0 |D∗ .

This is intimately related to the (topological) Gauss-Manin connection.

Theorem 2.3 (Gelfand-Leray formula). The following diagram of sheaves and morphisms
of sheaves is commutative

L1 |D∗ L0 |D∗

Hf Hf

wd

u

Resf

u

β1

w∇t

Hence if we start with ω ∈ Ωn(fU) we obtain a section [ω] ∈ Γ(U,Hf
hol) and for every locally

constant vanishing cycle t 7→ ct we have
d

dt

∫

ct

[ω] =
∫

ct

[ dω

df

]
.
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Suppose S = Sθ ⊂ D∗ is an angular sector

S =
{
t ∈ D∗ | arg t| ≤ θ

}
, θ ∈ (0, π).

We fix a branch of log t on U such that log 1 = 0 and for every real number α we set
tα = eα log t. Define

Λf :=
{
r ∈ R; exp(2πir) is an eigenvalue of the monodromy Mf

}
,

and Λf
ν = Λf ∩ (ν,∞), ∀ν ∈ R. From the monodromy theorem we deduce that Λf consists of

finitely many arithmetic progression of rational numbers. We have the following fundamental
result.

Theorem 2.4 (Regularity Theorem, Deligne-Griffiths). Denote by j = jf the largest di-
mension of the Jordan cells of Mf . Suppose ω ∈ ΩN+1(X) and Sθ 3 t

c7−→ ct is a parallel
vanishing cycle. Then there exists a real number ν and for every α ∈ Λf

ν a polynomial
Pα = Pα,ω,c ∈ C[s] of degree < j such as t → 0 in S we have the asymptotic expansion

∫

ct

[Resf ω] ∼
∑

r∈Λf
ν

tαPα(log t).

Remark 2.5. Let ω ∈ ΩN+1(X). We can write ω = gd~z, where d~z = dz0 ∧ · · · ∧ dzN and g is
a holomorphic function on X. Since 0 is an isolated critical point of f we deduce from the
analytical Nullstellensatz that there exists an integer ` > 0 such that

f ` ∈ m` ⊂ Jf .

In other words, there exist an open neighborhood V of 0 in X and holomorphic functions
a0, · · · , an on V such that

f ` =
∑

k

ak∂zk
f on V .

If we denote by A the vector field A =
∑

k ak∂zk
and we denote by ιA the contraction by A

then we can rewrite the above equality as

f `d~z = df ∧ ιAd~z.

In particular, we deduce that on V ∗ − V \ f−1(0) we have the equality

gdV = f−`gdf ∧ ιAd~z ⇐⇒ ω

df
= f−`ιAω.

We can assume V has the form V = f−1(Dε) ∩X. Now observe that ιAω defines a section

[gιAω] ∈ Γ(D∗ε, L1) and [f−`ιAω] = t−`[ιAω] ∈ Γ(D∗ε, L1).

We have ∫

ct

Resf (ω) = t−`

∫

ct

[ιAω], ∀0 < |t| ¿ 1.

This shows that we can expect these integrals will ”explode” as t → 0 so we can expect that
the real number ν in the regularity theorem is < 0.

On the other hand, according to Malgrange, the polynomial Pα(s) ≡ 0 if α ≤ −1 so that
in the above theorem we can assume ν = −1. Thus these integrals explode but slower than
t−1.

ut
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3. The spectrum of a singularity

Suppose (e1, · · · , eµ) is a basis of vanishing cycles in Xt0 for some t0. We can extend them
by parallel transport over U to a trivialization Hf |U . For every holomorphic function g on
X we obtain µ asymptotic expansions

Iωg ,ek
(t) :=

∫

ek(t)
Resf (ωg) ∼

∑

α∈Λf
−1

tαPα,ω,k(log t), ωg = gdz0 ∧ · · · ∧ dzn.

We set
νk(ω) = min{α ∈ Λf

−1; Pα,ω,k 6= 0}
and we define the order of the geometric section sg = Res(ωg) to be

ν = ν(ωg) = min{νk(ω); k = 1, · · · , µ}.
If we denote by (ek) the basis if Hf |U dual to (ei) then we set

smax(ωg) =
µ∑

k=1

tνPν,ωg ,k(log t)ek ∈ Γ(U,Hf
hol).

This section is independent of the basis (ei) and moreover, it extends to a section of H
f
hol

over the entire punctured disk D∗. It is called the principal part of the geometric section
Resf (ω).

Example 3.1. Consider the function f : X = C→ C, z 7→ t = zn. Let ζ := e
2πi
n . For every

t = ρeiθ in the sector S = Sπ/2 = {Re z > 0} we set

t1/n = ρ1/ne
iθ
n , ek(t) = t1/n

(
ζk − ζ(k−1)

) ∈ H̃0(f−1(t),Z), k = 1, · · · , n− 1.

For 1 ≤ m < n we set ωm = zm−1dz = 1
md(zm) ∈ Ω1(X). Then

ωm

df
=

zm−1dz

nzn−1dz
=

1
n

zm−n ∈ Ω0(X∗).

For t ∈ S we have∫

ek(t)

ωm

df
=

1
n

(
(t1/nζk)(m−n) − (t1/nζk−1)(m−n)

)
=

1
n

(ζkm)t
(m−n)

n
(
1− ζ−m

)
.

We conclude that
ν(ωm) =

m

n
− 1 < 0, 1 ≤ m < n.

ut

Returning to the general case, let us make the change in variables t = es, Re s < 0 and
we (ambiguously) set ek(s) = ek(es). Fix t0 ∈ D∗, Im t0 = 0 and s0 = log t0 ∈ R. Set

e(s) =
[
e1(s), · · · , eµ(s)

]
, ē(s) =




e1(s)
...

eµ(s)


 .

In the basis (e(s0)) the monodromy Mf is represented by a µ × µ matrix M =
(
mi

j

)
1≤i,j≤µ

and we have the equalities

e(s0 + 2πi) = e(s0) ·M ⇐⇒ ei(s0 + 2πi) =
∑

j

mj
iej(s0).
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ē(s0) = M · ē(s0 + 2πi) ⇐⇒ ei(s0) =
∑

j

mi
je

j(s0 + 2πi).

Given ω ∈ ΩN+1(X) we define the row vector

~Iω = [Iω,1(s), · · · , Iω,µ(s)], Iω,k =
∫

ek(s)
Resf ω.

Note that
~Iω(s + 2πi) = ~Iω(s) ·M.

If we pick µ-forms ω1, · · · , ωµ ∈ Ωn+1(X) we can form the µ× µ period matrix

P (s) =




~Iω1(s)
...

~Iωµ(s)


 .

It satisfies
P (s + 2πi) = P (s) ·M.

Since M ∈ GLµ(Z) we deduce that

detP (s + 2πi) = ±det P (s).

Thus detP (s)2 is a well defined meromorphic function t 7→ δ(t;ω1, · · · , ωµ) on D with a
possible pole at t = 0. We denote by ν(ω1, · · · , ωµ) ∈ 1

2Z its order at t = 0 divided by 2.

Theorem 3.2 (Varchenko).

ν(ω1, · · · , ωµ) ≥ max
{ N − 1

2
µ,

µ∑

j=1

ν(ωj)
}

with equality for a generic choice of {ω1, · · · , ωµ}. In such a generic case we also have the
equality

ν(ω1, · · · , ωµ) =
N − 1

2
µ =

µ∑

j=1

ν(ωj).

We will refer to such a generic choice as a C{t}-basis and we will use the notation ω to
denote an ordered C{t}-basis. ut

We define a rational divisor on R to be a finite formal linear combination of the form∑

q∈Q
nq · (q), nq ∈ Z, nq = 0 for all but finitely may q’s.

In other words, a rational divisor is an element

Z(Q) = functions f : Q→ Z with finite support.

For a rational number q we denote by (q) ∈ Z(Q) the Dirac function supported at q. For any
function f : Q→ Q with finite fibers and any divisor D ∈ Z(Q) we define

f∗D =
∑

r∈Q
nf(r)(f(r)) =

∑

q∈Q

∑

f(r)=q

nq(q).

A divisor will be called invariant with respect to f if D = f∗D.
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Given a C{t}-basis ω = (ω1, · · · , ω1) we set

(ω) =
µ∑

i=1

(
ν(ωi)

)
.

Following Steenbrink and Varchenko, we define for every α ∈ Λf the subsheaf Sα of H
f
hol

spanned over OD∗ by the principal parts of the geometric sections of order α. One can show
that each of them is a locally free sheaf and defines a sub-bundle of Hf . The multiplication
by t defines an inclusion

Sα−1 ↪→ Sα.

Note that Sα = 0 for all α ≤ −1. It is a highly nontrivial fact that SN = H
f
hol.

The spectrum of f is the divisor sp (f) ∈ Z(Q) defined by

sp (f) =
∑

α∈Λf
−1

(
dimC Sα/t · Sα−1

) · (α).

If we write
sp (f) =

∑

α∈Λf
−1

nα · (α)

then the numbers α such that nα 6= 0 are called the spectral numbers of f . The integer nα is
called the multiplicity of α (in the spectrum of f). Since SN = H

f
hol we deduce

nα = 0, ∀α ≥ N.

Theorem 3.3 (Varchenko). Suppose f = f(z0, · · · , zN ) ∈ ON+1. Then the spectrum sp (f)
is well defined, i.e. it is indeed a rational divisor supported inside the interval (−1, N).
Moreover, for any C{t}-basis ω of f we have the equality

sp (f) = (ω).

and sp (f) is invariant with respect to the reflection in the midpoint of [−1, N ]. ut

To every divisor D =
∑

q nq(q) ∈ Z(Q) we associate the Laurent-Puiseux polynomial

SD(T ) =
∑

q

nqT
q.

Note that the polynomial SD completely determines the divisor D. When D = sp (f) we set

Sf (T ) := Ssp (f)(T ).

We will refer to Sf (T ) as the spectral polynomial of f .

Theorem 3.4 (Varchenko).

Sf∗g(T ) = T · Sf (T ) · Sf (T ).

ut

Remark 3.5. If, following Saito, we define

S̃f (T ) = TSf (T )

then the last equality has the more natural form

S̃f∗g(T ) = S̃f (T ) · S̃g(T ).
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ut

Example 3.6. Consider again the function f(z) = zn discussed in Example 3.1 so that

N = 0, µ = n− 1,
N − 1

2
µ = −n− 1

2
.

Then the period matrix is given by

Pm
k (t) =

∫

ek(t)
ωm =

1
n

(ζkm)t
(m−n)

n
(
1− ζ−m

)
.

and we have

detP (t) =
1

nn−1

(n−1∏

m=1

t
(m−n)

n
(
1− ζ−m

)) · det[ζkm]1≤k,m≤n−1.

The last determinant is a Vandermonde determinant and it is non zero. Hence the order of
detP (t) at zero is

n−1∑

m=1

( m

n
− 1

)
= −n− 1

2
=

N − 1
2

µ.

Thus the collection {zmdz}1≤m≤n−1 is a basis and we deduce

Szn(T ) =
n−1∑

m=1

T
m
n
−1 = T−1

n−1∑

m=1

Tm/n = T−1 T
1
n − T

1− T
1
n

Using Theorem 3.4 we deduce that for a Brieskorn singularity fa0,··· ,aN = za0
0 + · · ·+ zaN

N we
have

Sfa0,··· ,aN
(T ) = T−1

N∏

j=0

T 1/aj − T

1− T 1/aj
.

More generally, if f is a quasihomogeneous function with weights w0, · · · , wN then

Sf = T−1
N∏

j=0

Twj − T

1− Twj
.

In particular, the D4 singularity is quasihomogeneous with weights (1/3, /1/3, 1/2) and we
have

SD4(T ) = T−1

(
T 1/3 − T

1− T 1/3

)2
T 1/2 − T

1− T 1/2
= T 1/6(1 + T 1/3)2 = T 1/6 + 2T 1/2 + T 5/6.

ut

The geometric genus of the isolated singularity defined by f ∈ ON+1 is the number of
nonpositive spectral numbers of f counted with their multiplicities. In terms of a C{t}-basis
ω = {ω1, · · · , ωµ} of f , the geometric genus is the number of ωj ’s with the property that
there exists a locally constant vanishing cycle ct such that the integral of ωj along ct does
not converge to zero as t → 0 inside an angular sector. We denote the geometric genus by
pg(f, 0). For example pg(zn, 0) = n− 1, pg(D4, 0) = 0.

For generic f ’s the geometric genus can be given a combinatorial description, similar in
spirit to the above description of pg(zn, 0).
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Let f = f(z0, · · · , zN ). Set L := ZN+1, L+ := Zn+1
≥0 , LR = L ⊗ R. For α ∈ L we set

~zα := zα0
0 · · · zαN

N . We can write

f =
∑

α∈L+

fα~zα.

We set

supp f =
{
α ∈ L+; fα 6= 0

}
.

The (local) Newton polyhedron of f , denoted by Γ+(f) is the convex hull of supp(f) + L+.
The germ f is called convenient if its Newton polyhedron intersects all the coordinate axes
of LR. Equivalently, this means that for every j = 0, · · · , N , there exists nj ∈ N such that
the monomial z

nj
n enters into the Taylor expansion of f . We can assume without a loss of

generality that f is a convenient polynomial. Indeed, according to Mather-Tougeron theorem,
the analytic type of the singularity described by f does not change if we modify arbitrarily
the terms in the Taylor expression of degree > µ + 1. In particular, we can replace f by
jµ+1(f) +

∑N
j=0 zµ+2

j and not change the analytic type of the singularity.
The Newton polyhedron is the intersection of finitely many half-spaces. Its boundary has

compact and noncompact faces. The Newton diagram of f , denoted by ∆(f), is the union of
all the compact faces. These are compact polyhedra of dimensions ≤ N . For each face γ of
the Newton diagram we set

fγ =
∑
α∈γ

fα~zα.

The polynomial f is called Newton nondegenerate if for every face γ of ∆(f) the polynomials

∂fγ

∂zj
, j = 0, 1, · · · , N

have no common zero on (C∗)N+1. This condition is generic in the space of convenient
polynomials with a fixed Newton polyhedron.

Let ~w0 = (1, · · · , 1). A monomial ~zα is called subdiagramatic if α + ~w0 does not lie in the
interior of the Newton polyhedron.

Theorem 3.7 (Khovanski-Varchenko-Saito). Suppose f ∈ ON+1 is a Newton nondegenerate
convenient polynomial. Then pg(f, 0) is equal to the number of subdiagramatic monomials.

ut

Example 3.8. Consider the singularity D4. The defining polynomial x2y − y3 + z2 is not
convenient, but near 0 it is right equivalent to cx6+x2y−y3+z2, where c is a complex number.
The Newton diagram of this polynomial is depicted in Figure 2. It consists of 0- dimensional,
1-dimensional and 2-dimensional faces. The 2-dimensional faces are the triangles ACD and
BCD. The 1-dimensional faces are the edges of these triangles and the 0-dimensional faces
are the vertices of these triangles. We have

fACD = cx6 + x2y + z2,
∂fACD

∂x
= 6cx5 + xy,

∂fACD

∂y
= x2,

∂fACD

∂z
= 2z.

fBCD = y3 + x2y + z2,
∂fBCD

∂x
= 2xy,

∂fBCD

∂y
= 3y2 + x2,

∂fBCD

∂z
= 2z.
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x

y

z

3

6

2

(2,1)

A

C

B

D

Figure 2. The Newton diagram of cx6 + x2y − y3 + z2.

etc. One can check that for c 6= 0 this is Newton nondegenerate. The two top dimensional
faces of the Newton diagram are contained in the planes

ACD ⊂ { 1
6
x +

2
3
y +

1
2
z

︸ ︷︷ ︸
:=`1(x,y,z)=1

}
, BCD ⊂ {1

3
x +

1
3
y +

1
2
z

︸ ︷︷ ︸
:=`2(x,y,z)

= 1
}

the Newton polyhedron is defined by

`1(x, y, z) ≥ 1 and `2(x, y, z) ≥ 1.

A subdiagramatic monomial xmynzp satisfies

`1(m,n, p) + `1(1, 1, 1) ≤ 1 or `2(m,n, p) + `2(1, 1, 1) ≤ 1.

Equivalently this means
m

6
+

2n

3
+

p

2
+

4
3
≤ 1 or

m

3
+

n

3
+

p

2
+

7
6
≤ 1, m, n, p ≥ 0.

Clearly there are no such monomials so that pg(D4, 0) = 0 as expected.
ut
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