THE ANATOMY OF A SINGULARITY

LIVIU I. NICOLAESCU

Contents

1. Some basic facts 1
2. The Milnor fibration and the Gauss-Manin connection 2

3 . The spectrum of a singularity 8

1. SOME BASIC FACTS

Denote by $\mathcal{O}=\mathcal{O}_{N+1}$ the ring of germs of holomorphic functions $f=f\left(z_{0}, \cdots, z_{N}\right)$ defined in a neighborhood of $\overrightarrow{0} \in \mathbb{C}^{N+1}$. We denote by $\mathfrak{m} \subset \mathcal{O}$ the maximal ideal of \mathcal{O},

$$
f \in \mathfrak{m} \Longleftrightarrow f(\overrightarrow{0})=0
$$

Let $f \in \mathfrak{m}$. Assume $\overrightarrow{0}$ is an isolated critical point of f, i.e. $\overrightarrow{0}$ is an isolated point of the variety

$$
\partial_{z_{i}} f=0, \quad \forall i=0, \cdots, N
$$

We define the Jacobian ideal of f to be the ideal $J_{f} \subset \mathcal{O}$ generated by $\partial_{z_{i}} f, i=0, \cdots, N$. From the analytical Nullstellensatz we deduce

$$
\sqrt{J_{f}}=\mathfrak{m} \Longleftrightarrow \exists k>0: \mathfrak{m}^{k} \subset J_{f} \Longleftrightarrow A_{f}:=\operatorname{dim}_{\mathbb{C}} \mathcal{O} / J_{f}<\infty
$$

The finite dimensional commutative \mathbb{C}-algebra A_{f} is called the local algebra of the critical point $\overrightarrow{0}$ of f. Its dimension is called the Milnor number of f at $\overrightarrow{0}$ and it is denoted by $\mu=\mu(f, \overrightarrow{0})$. It has a natural structure of $\mathbb{C}\{t\}$-algebra

$$
t \cdot\left(g \bmod J_{f}\right)=(f g) \bmod J_{F}, \quad \forall g \in \mathcal{O}
$$

For every positive integer N we denote by $j_{N}(f)$ the N-th jet of f. It can be identified with a polynomial of degree N in $n+1$ complex variables.

Two germs $f, g \in \mathfrak{m}$ are called right-equivalent and we write this $f \sim_{r} g$ if g is obtained from g by a change in variables.

Theorem 1.1 (Finite determinacy). (a) (Mather-Tougeron) Let $f \in \mathfrak{m}$ have an isolated singularity at 0. Then

$$
f \sim_{r} j_{\mu+1}(f)
$$

(b) (Mather-Yau) Let $f, g \in \mathfrak{m}$ have isolated singularities at 0 . Then

$$
f \sim_{r} g \Longleftrightarrow A_{f} \cong A_{g} \text { as } \mathbb{C}\{t\} \text { - algebras. }
$$

[^0]Example 1.2 (Brieskorn singularities). Consider three integers $p, q, r \geq 2$ and consider the function

$$
f=f_{p, q, r}(x, y, z)=a z^{p}+b y^{q}+c z^{r} .
$$

Then $\mu=(p-1)(q-1)(r-1)$. The local algebra $A_{p, q, r}$ is generated by the monomials $e_{i j k}=x^{i} y^{j} z^{k}$ where $0 \leq i<p, 0 \leq j<q, 0 \leq k<r$. We see that this algebra is isomorphic to the \mathbb{C}-group algebra of the Abelian group $\mathbb{Z} / p \times \mathbb{Z} / q \times \mathbb{Z} / r$. The singularity described by $f_{2,2, n+1}$ is called the A_{n} singularity. It has Milnor number n.

Example 1.3. Consider the polynomial

$$
D_{4}=D_{4}(x, y, z)=x^{2} y-y^{3}+z^{2} .
$$

$\overrightarrow{0}$ is an isolated critical point of D_{4}, the local algebra has dimension 4 , and we can explicitly determine a basis

$$
e_{0}=1, \quad e_{1}=x, \quad e_{2}=y, \quad e_{3}=y^{2} .
$$

It is easy to compute the multiplication table of the local algebra $\mathcal{A}_{D_{4}}=\mathcal{O}_{3} / J_{D_{4}}$.

	$e_{1}=x$	$e_{2}=y$	$e_{3}=y^{2}$
$e_{1}=x$	$3 e_{3}$	0	0
$e_{2}=y$	0	e_{3}	0
$e_{3}=y^{2}$	0	0	0

Note that the D_{4}-singularity is weighted homogeneous. We recall that a function $f=$ $f\left(z_{1}, \cdots, z_{N}\right)$ is called weighted homogeneous if there exist integers, i.e. there exists integers m_{1}, \cdots, m_{N}, m such that

$$
f\left(t^{m_{1}} z_{1}, t^{m_{N}} z_{N}\right)=t^{m} D_{4}\left(z_{1}, \cdots, z_{N}\right), \quad \forall t \in \mathbb{C}^{*} .
$$

The rational numbers $w_{i}=m_{i} / m$ are called the weights. The weights of the D_{4} singularity are

$$
w_{1}=w_{2}=\frac{1}{3}, w_{3}=\frac{1}{2} .
$$

A weighted homogeneous polynomial satisfies the Euler identity

$$
f=\sum_{i} w_{i} \frac{\partial f}{\partial z_{i}} .
$$

Note that for such a function we have $f \in J_{f}$ so the $\mathbb{C}\{t\}$ module of A_{f} is very simple: t acts trivially.

2. The Milnor fibration and the Gauss-Manin connection

Let $f \in \mathfrak{m}$ have an isolated singularity at 0 . Set $\mu=\mu(f, 0)$. According to Milnor, for $\varepsilon>0$ sufficiently small we can find an open neighborhood $X=X_{\varepsilon}$ of $0 \in \mathbb{C}^{N+1}$ so that $f\left(X_{\varepsilon}\right)=\mathbb{D}_{\varepsilon}=\{|z|<\varepsilon\} \subset \mathbb{C}$ such that the induced map

$$
f: X^{*}:=X \backslash f^{-1}(0) \rightarrow \mathbb{D}_{\varepsilon}^{*}
$$

is a local trivial fibration called the Milnor fibration. Its typical fiber X_{f} is smooth $2 N$ dimensional manifold with boundary called the Milnor fiber. Its boundary is a $(2 N-1)$ manifold called the link of the singularity. The Milnor fiber which has the homotopy type of
a wedge of μ spheres of dimension N,

$$
X_{f} \simeq \underbrace{S^{N} \vee \cdots \vee S^{N}}_{\mu}
$$

The Milnor fibration defines a monodromy map

$$
\mathcal{M}_{f}: \pi_{1}\left(\mathbb{D}_{\varepsilon}^{*}\right) \rightarrow \operatorname{Aut}_{\mathbb{Z}}\left(\tilde{H}_{N}\left(X_{f}, \mathbb{Z}\right)\right)
$$

where \tilde{H}_{\bullet} denotes reduced homology. We denote by $\left[\mathcal{M}_{f}\right]_{\mathbb{Z}}$ its \mathbb{Z}-conjugacy class and by $\left[\mathcal{M}_{f}\right]_{\mathbb{C}}$ its \mathbb{C}-conjugacy class. The complex conjugacy class is completely determined by the complex Jordan normal form of \mathcal{M}_{f}.
Theorem 2.1 (Monodromy Theorem, Griffith-Deligne). All the eigenvalues of \mathcal{M}_{f} are roots of 1 and its Jordan cells have dimension $\leq(N+1)$.
Example 2.2. (a) Consider the germ $f:(\mathbb{C}, 0) \rightarrow(\mathbb{C}, 0), f(z)=z^{n}$. Then the Milnor fiber f^{-1} can be identified with the group \mathfrak{R}_{n} of n-th roots of 1 ,

$$
\mathfrak{R}_{n}=\left\{1, \rho, \cdots, \rho^{n-1} ; \quad \rho=e^{\frac{2 \pi \mathrm{i}}{n}}\right\} .
$$

The Milnor number is $(n-1)$. This is equal to the rank of the reduced homology $\tilde{H}_{0}\left(f^{-1}(0), \mathbb{Z}\right)$ which can be identified with the subgroup of the group algebra $\mathbb{Z}\left[\Re_{n}\right]$

$$
\tilde{H}_{0}\left(f^{-1}(1), \mathbb{Z}\right) \cong\left\{\sum_{k=0}^{n-1} a_{k} \rho^{k} \in \mathbb{Z}\left[\Re_{n}\right] ; \quad \sum_{k=0}^{n-1} a_{k}=0\right\}
$$

As basis in this group we can choose the "polynomials"

$$
e_{k}:=\rho^{k}-\rho^{k-1}, ; \quad k=1, \cdots, n-1
$$

Then

$$
\mathcal{M}_{f}\left(e_{k}\right)=\left\{\begin{array}{rll}
e_{k+1} & \text { if } & k<n-1 \\
-\left(e_{1}+\cdots+e_{n-1}\right) & \text { if } & k=n-1
\end{array}\right.
$$

We deduce $\mathcal{M}_{A_{n-1}}^{n}=\mathbb{I}$, i.e. all the eigenvalues of the monodromy are n-th roots of 1 .
(b) (Thom-Sebastiani) If $f=f\left(x_{1}, \cdots, x_{p}\right) \in \mathcal{O}_{p}$ and $g=g\left(y_{1}, \cdots, y_{q}\right) \in \mathcal{O}_{q}$ have isolated singularities at the origin, then so does $f * g \in \mathcal{O}_{p+q}$

$$
f * g(x, y)=f\left(x_{1}, \cdots, x_{p}\right)+g\left(y_{1}, \cdots, y_{q}\right)
$$

and

$$
X_{f * g} \simeq X_{f} * X_{g}:=\text { the join of the Milnor fibers } X_{f} \text { and } X_{g}
$$

(" $\simeq "$ denotes homotopy equivalence)

$$
\mu(f * g, 0)=\mu(f, 0) \cdot \mu(g, 0), \quad\left[\mathcal{M}{ }_{f * g}\right]_{\mathbb{C}}=[\mathcal{M}]_{f} \otimes[\mathcal{M}]_{g}
$$

Note that if $q=1$ and $g(y)=y^{2}$ then

$$
X_{f * y^{2}} \simeq \Sigma X_{f}
$$

where Σ denotes the suspension operation. The operation $f \mapsto f * y^{2}$ is called stabilization and two singularities are called stably equivalent if they become right-equivalent after a finite number of stabilizations. Note that the singularity presented $\left\{z^{n}=0\right\}$ discussed in part (a) is stably equivalent to the A_{n-1}-singularity.

A theorem of J . Mather states that two hypersurface singularities $\left\{f\left(x_{1}, \cdots, x_{p}\right)=0\right\}$ and $\left\{g\left(y_{1}, \cdots, y_{q}\right)=0\right\}$ are stably equivalent if and only if their local algebras A_{f} and A_{g} are isomorphic as \mathbb{C}-algebras.
(c) $\mathcal{M}_{D_{4}}$ was computed by Arnold. It is related to the Coxeter group with the same name. The Milnor fiber $X_{D_{4}}$ is a 4-manifold with boundary and the intersection form q on $\Lambda=$ $H_{2}\left(X_{D_{4}}, \mathbb{Z}\right)$ has a particularly nice form described in the Dynkin diagram below.

Figure 1. The Dynkin diagram D_{4}.
This means that Λ has a canonical integral basis consisting of vanishing spheres, i.e. embedded 2 -spheres $e_{0}, e_{1}, e_{2}, e_{3}$ with self intersection $-2, q\left(e_{\alpha}, e_{\alpha}\right)=-2, \forall \alpha=0,1,2,3$. Moreover

$$
q\left(e_{0}, e_{i}\right)=1, \quad q\left(e_{i}, e_{j}\right)=0, \quad \forall i, j=1,2,3
$$

A vanishing sphere e_{α} determines an involution R_{α} of Λ, the so called Picard-Lefschetz transformations associated to e_{α}. More explicitly, it is the q-orthogonal reflection in the hyperplane q-orthogonal to e_{α}, i.e.

$$
R_{\alpha}(v)=v-2 \frac{q\left(v, e_{\alpha}\right)}{q\left(e_{\alpha}, e_{\alpha}\right)}=v+q\left(v, e_{\alpha}\right)
$$

Then $\mathcal{M}_{D_{4}}$ is conjugate (over \mathbb{Z}) with the Coxeter transformation

$$
T_{D_{4}}=R_{0} R_{1} R_{2} R_{3} \in \operatorname{GL}(\Lambda)
$$

From the equality $T_{D_{4}}^{6}=\mathbb{I}$ (the Coxeter number of D_{4} is 6) we deduce that all the eigenvalues of $\mathcal{M}_{D_{4}}$ are 6 -th order roots of 1 .

Using local trivializations in the Milnor fibration $f: X^{*} \rightarrow \mathbb{D}^{*}$ we can parallel transport ${ }^{1}$ cycles in a fiber $X_{t}:=f^{-1}(t) \cap X$ to nearby fibers and we obtain in this fashion the locally constant sheaf H_{f} whose stalk at $t \in \mathbb{D}^{*}$ is $\tilde{H}_{N}\left(X_{t}, \mathbb{Z}\right)$. It is called the sheaf of vanishing cycles. Its sections are families of vanishing cycles varying continuously from fiber to fiber. We will refer to these as locally constant vanishing cycles. We denote by $\underline{\mathbb{Z}}$ the constant sheaf on \mathbb{D}^{*} and we set

$$
H^{f}:=\underline{\operatorname{Hom}}_{\mathbb{Z}}\left(H_{f}, \underline{\mathbb{Z}}\right),
$$

where $\underline{\operatorname{Hom}}(\mathcal{F}, \mathcal{G})$ denotes the sheaf of morphisms between two sheaves \mathcal{F}, \mathcal{G}. Consider the sheaf \mathcal{E} of smooth complex valued functions on \mathbb{D}^{*}. The sheaf

$$
\mathcal{H}^{f}:=\underline{\operatorname{Hom}}_{\mathbb{Z}}\left(H_{f}, \mathcal{E}\right) \cong H^{f} \otimes_{\mathbb{Z}} \mathcal{E}
$$

is a locally free sheaf of \mathcal{E} modules and thus can be interpreted as the sheaf of sections of rank μ-complex vector bundle over \mathbb{D}^{*} which we also denote by \mathcal{H}^{f}. It is called the cohomological Milnor bundle.

This bundle is equipped with a canonical holomorphic structure and a canonical flat connection ∇ constructed as follows.

[^1]Given $t_{0} \in \mathbb{D}^{*}$, a small contractible neighborhood U of $t_{0} \in \mathbb{D}_{*}$ and a \mathbb{Z}-basis $\left\{e_{1}, \cdots, e_{\mu}\right\}$ of vanishing cycles in X_{t}, we obtain by parallel transport a trivialization of H_{f} over U and then by duality a local frame $\left(e^{i}\right)$ of $\left.\mathcal{H}^{f}\right|_{U}$. Any $s \in \Gamma\left(U, \mathcal{H}^{f}\right)$ can be written as $s=\sum_{k} s_{k} e^{k}$, $s_{k}=\left\langle s, e_{k}\right\rangle \in \mathcal{E}(U) . s$ is declared holomorphic if all the components s_{k} are holomorphic functions. We set

$$
\nabla s:=\sum_{k}\left(d s_{k}\right) \otimes e_{k} \in \Gamma\left(U, T^{*} U \otimes \mathcal{H}^{f}\right)
$$

These notions are independent of the various choices. ∇ is called the topological GaussManin connection. We denote by $\mathcal{H}_{\text {hol }}^{f}$ the sheaf of holomorphic sections of $\mathcal{H} f$.

Brieskorn has constructed free, coherent sheaves of $\mathcal{O}_{\mathbb{D}}$-modules $\mathcal{L}_{0}, \mathcal{L}_{1} \rightarrow \mathbb{D}$, together with an injective morphisms of $\mathcal{O}_{\mathbb{D}}$-modules $\varphi: \mathcal{L}_{1} \hookrightarrow \mathcal{L}_{0}$ and isomorphisms $\beta_{i}:\left.\mathcal{H}^{f} \rightarrow \mathcal{L}_{i}\right|_{\mathbb{D}^{*}}$, $i=0,1$ such that over \mathbb{D}^{*} the diagram below is commutative

Moreover, if we denote by t the local coordinate on \mathbb{D} such that $\mathcal{O}_{\mathbb{D}, 0} \cong \mathbb{C}\{t\}$ then there exists a natural isomorphisms of $\mathbb{C}\{t\}$-modules

$$
\rho:\left(\mathcal{L}_{0} / \varphi\left(\mathcal{L}_{1}\right)\right)_{0} \rightarrow A_{f}
$$

The sheaves \mathcal{L}_{i} are also known as the Brieskorn lattices. Each is an extension to \mathbb{D} of the coherent sheaf \mathcal{H}^{f}. Note also that the quotient $\mathcal{L}_{0} / \varphi\left(\mathcal{L}_{1}\right)$ is a coherent sheaf supported at the center of \mathbb{D}.

We describe the restrictions to \mathbb{D}^{*} of the sheaves \mathcal{L}_{i} and the morphisms φ, β_{i}^{-1}. Denote by Ω^{k} sheaf of holomorphic k-forms on X, i.e. differential forms ω locally described as

$$
\omega=\sum_{\alpha} \omega_{\alpha} d z_{\alpha_{1}} \wedge \cdots d z_{\alpha_{k}}
$$

Given a small open disk $U \subset \mathbb{D}^{*}$ we set ${ }^{f} U=f^{-1}(U)$ and

$$
\mathcal{L}_{1}(U) \approx \Omega^{N}\left({ }^{f} U\right) \bmod \left(d \Omega^{N-1}\left({ }^{f} U\right)+d f \wedge \Omega^{N-1}\left({ }^{f} U\right)\right)
$$

We use the symbol " \approx " instead of " $=$ " since the above definition is only "morally correct".
The restriction of a holomorphic form $\omega \in \Omega^{N}\left(U_{f}\right)$ to fiber $X_{t}, t \in U$ is a closed form ω_{t} and we denote by $\left[\omega_{t}\right] \in H^{N}\left(X_{t}, \mathbb{C}\right)$ the class it defines. This cohomology class depends only on the image of $\omega \in \mathcal{L}_{1}(U)$.

Given $\omega \in \mathcal{L}_{1}(U)$ we obtain a holomorphic $\operatorname{section}^{2}[\omega] \in \Gamma\left(U, \mathcal{H}^{f}\right)$ determined by the following rule: for every locally constant vanishing cycle $U \ni t \mapsto c_{t} \in H_{n}\left(X_{t}, \mathbb{Z}\right)$

$$
\langle[\omega], c\rangle(t)=\int_{c_{t}}\left[\left.\omega\right|_{X_{t}}\right] .
$$

The resulting map

$$
\left.\mathcal{L}_{1}\right|_{\mathbb{D}^{*}} \ni \omega \longmapsto[\omega] \ni \mathcal{H}_{h o l}^{f}
$$

is an isomorphism whose inverse is β_{1}.

[^2]The sheaf \mathcal{L}_{0} is intimately related to the notion of Poincaré residue. Given $U \subset \mathbb{D}^{*}$ as above and $\omega \in \Omega^{N+1}\left({ }^{f} U\right)$, we deduce from the fact that $d f \neq 0$ on X^{*} that ω can be written as

$$
\omega=d f \wedge \eta, \quad \eta \in \Omega_{X}^{N}\left({ }^{f} U\right)
$$

η is uniquely determined only modulo $d f \wedge \Omega^{N-1}\left({ }^{f} U\right)$ and we denote by $\frac{\omega}{d f}$ the image of η in $\Omega^{N} \bmod d f \wedge \Omega^{N-1}$. Note that

$$
\omega=d f \wedge \eta=\left.d f \wedge \eta^{\prime} \Longrightarrow \eta\right|_{X_{t}}=\left.\eta^{\prime}\right|_{X_{t}}, \quad \forall t \in U
$$

Hence $\frac{\omega}{d f}$ defines on each fiber X_{t} a closed form $\left.\frac{\omega}{d f}\right|_{X_{t}}$. Its cohomology class does not change if we add to ω forms of the type $d f \wedge d \eta, \eta \in \Omega_{X}^{N-1}$ since $\frac{d f \wedge d \eta}{d f}=d \eta$. We get a map

$$
\Omega^{N+1}\left({ }^{f} U\right) \bmod d f \wedge d \Omega^{N-1}\left({ }^{f} U\right) \rightarrow H^{N}\left(X_{t}, \mathbb{C}\right), \omega \longmapsto\left[\left.\frac{\omega}{d f}\right|_{X_{t}}\right]
$$

The cohomology class $\left[\left.\frac{\omega}{d f}\right|_{X_{t}}\right]$ is called the Poincaré residue of ω along X_{t}. We will denote it by $\boldsymbol{\operatorname { R e s }}_{f}\left(\omega, X_{t}\right)$. Now set

$$
\mathcal{L}_{0}\left({ }^{f} U\right) \approx \Omega^{N+1}\left({ }^{f} U\right) \bmod d f \wedge d \Omega^{N-1}\left({ }^{f} U\right)
$$

For $\omega \in \mathcal{L}_{0}\left({ }^{f} U\right)$ we can integrate $\boldsymbol{\operatorname { R e s }}_{f}\left(\omega, X_{t}\right)$ over locally constant vanishing cycles and obtain a holomorphic section $\operatorname{Res}_{f}(\omega) \in \Gamma\left(U, \mathcal{H}^{f}\right)$. Arnold refers to this section as the geometric section determined by the top dimensional form ω. The resulting morphism of sheaves

$$
\boldsymbol{\operatorname { R e s }}_{f}:\left.\mathcal{L}_{0}\right|_{\mathbb{D}^{*}} \rightarrow \mathcal{H}_{h o l}^{f}, \quad \omega \mapsto \boldsymbol{\operatorname { R e s }}_{f}(\omega)
$$

is an isomorphism whose inverse is β_{0}. The map

$$
\Omega^{N} \ni \omega \longmapsto d f \wedge \omega \in \Omega^{N+1}
$$

induces a morphism

$$
\mathcal{L}_{1} \approx \Omega^{N} \bmod \left(d f \wedge \Omega^{N-1}+d \Omega^{N-1}\right) \longrightarrow \Omega^{N+1} \bmod \left(d f \wedge d \Omega^{N-1}\right)=\mathcal{L}_{0}
$$

This is precisely the morphism φ.
The exterior differentiation $d: \Omega^{N} \rightarrow \Omega^{N+1}$ induces a morphism of sheaves

$$
d: \mathcal{L}_{1}\left|\mathbb{D}^{*} \rightarrow \mathcal{L}_{0}\right|_{\mathbb{D}^{*}}
$$

This is intimately related to the (topological) Gauss-Manin connection.
Theorem 2.3 (Gelfand-Leray formula). The following diagram of sheaves and morphisms of sheaves is commutative

Hence if we start with $\omega \in \Omega^{n}\left({ }^{f} U\right)$ we obtain a section $[\omega] \in \Gamma\left(U, \mathcal{H}_{\text {hol }}^{f}\right)$ and for every locally constant vanishing cycle $t \mapsto c_{t}$ we have

$$
\frac{d}{d t} \int_{c_{t}}[\omega]=\int_{c_{t}}\left[\frac{d \omega}{d f}\right]
$$

Suppose $S=S_{\theta} \subset \mathbb{D}^{*}$ is an angular sector

$$
S=\left\{t \in \mathbb{D}^{*}|\arg t| \leq \theta\right\}, \quad \theta \in(0, \pi)
$$

We fix a branch of $\log t$ on U such that $\log 1=0$ and for every real number α we set $t^{\alpha}=e^{\alpha \log t}$. Define

$$
\Lambda^{f}:=\left\{r \in \mathbb{R} ; \exp (2 \pi \mathbf{i} r) \text { is an eigenvalue of the monodromy } \mathcal{M}_{f}\right\}
$$

and $\Lambda_{\nu}^{f}=\Lambda^{f} \cap(\nu, \infty), \forall \nu \in \mathbb{R}$. From the monodromy theorem we deduce that Λ^{f} consists of finitely many arithmetic progression of rational numbers. We have the following fundamental result.

Theorem 2.4 (Regularity Theorem, Deligne-Griffiths). Denote by $j=j_{f}$ the largest dimension of the Jordan cells of \mathcal{M}_{f}. Suppose $\omega \in \Omega^{N+1}(X)$ and $S_{\theta} \ni t \stackrel{c}{\longmapsto} c_{t}$ is a parallel vanishing cycle. Then there exists a real number ν and for every $\alpha \in \Lambda_{\nu}^{f}$ a polynomial $P_{\alpha}=P_{\alpha, \omega, c} \in \mathbb{C}[s]$ of degree $<j$ such as $t \rightarrow 0$ in S we have the asymptotic expansion

$$
\int_{c_{t}}\left[\operatorname{Res}_{f} \omega\right] \sim \sum_{r \in \Lambda_{\nu}^{f}} t^{\alpha} P_{\alpha}(\log t)
$$

Remark 2.5. Let $\omega \in \Omega^{N+1}(X)$. We can write $\omega=g d \vec{z}$, where $d \vec{z}=d z_{0} \wedge \cdots \wedge d z_{N}$ and g is a holomorphic function on X. Since 0 is an isolated critical point of f we deduce from the analytical Nullstellensatz that there exists an integer $\ell>0$ such that

$$
f^{\ell} \in \mathfrak{m}^{\ell} \subset J_{f}
$$

In other words, there exist an open neighborhood V of 0 in X and holomorphic functions a^{0}, \cdots, a^{n} on V such that

$$
f^{\ell}=\sum_{k} a^{k} \partial_{z_{k}} f \quad \text { on } V
$$

If we denote by A the vector field $A=\sum_{k} a^{k} \partial_{z_{k}}$ and we denote by ι_{A} the contraction by A then we can rewrite the above equality as

$$
f^{\ell} d \vec{z}=d f \wedge \iota_{A} d \vec{z}
$$

In particular, we deduce that on $V^{*}-V \backslash f^{-1}(0)$ we have the equality

$$
g d V=f^{-\ell} g d f \wedge \iota_{A} d \vec{z} \Longleftrightarrow \frac{\omega}{d f}=f^{-\ell} \iota_{A} \omega
$$

We can assume V has the form $V=f^{-1}\left(\mathbb{D}_{\varepsilon}\right) \cap X$. Now observe that $\iota_{A} \omega$ defines a section

$$
\left[g \iota_{A} \omega\right] \in \Gamma\left(\mathbb{D}_{\varepsilon}^{*}, \mathcal{L}_{1}\right) \text { and }\left[f^{-\ell} \iota_{A} \omega\right]=t^{-\ell}\left[\iota_{A} \omega\right] \in \Gamma\left(\mathbb{D}_{\varepsilon}^{*}, \mathcal{L}_{1}\right) .
$$

We have

$$
\int_{c_{t}} \boldsymbol{\operatorname { R e s }}_{f}(\omega)=t^{-\ell} \int_{c_{t}}\left[\iota_{A} \omega\right], \quad \forall 0<|t| \ll 1
$$

This shows that we can expect these integrals will "explode" as $t \rightarrow 0$ so we can expect that the real number ν in the regularity theorem is <0.

On the other hand, according to Malgrange, the polynomial $P_{\alpha}(s) \equiv 0$ if $\alpha \leq-1$ so that in the above theorem we can assume $\nu=-1$. Thus these integrals explode but slower than t^{-1}.

3. The spectrum of a singularity

Suppose $\left(e_{1}, \cdots, e_{\mu}\right)$ is a basis of vanishing cycles in $X_{t_{0}}$ for some t_{0}. We can extend them by parallel transport over U to a trivialization $\left.H_{f}\right|_{U}$. For every holomorphic function g on X we obtain μ asymptotic expansions

$$
I_{\omega_{g}, e_{k}}(t):=\int_{e_{k}(t)} \operatorname{Res}_{f}\left(\omega_{g}\right) \sim \sum_{\alpha \in \Lambda_{-1}^{f}} t^{\alpha} P_{\alpha, \omega, k}(\log t), \quad \omega_{g}=g d z^{0} \wedge \cdots \wedge d z^{n}
$$

We set

$$
\nu_{k}(\omega)=\min \left\{\alpha \in \Lambda_{-1}^{f} ; \quad P_{\alpha, \omega, k} \neq 0\right\}
$$

and we define the order of the geometric section $s_{g}=\operatorname{Res}\left(\omega_{g}\right)$ to be

$$
\nu=\nu\left(\omega_{g}\right)=\min \left\{\nu_{k}(\omega) ; \quad k=1, \cdots, \mu\right\}
$$

If we denote by $\left(e^{k}\right)$ the basis if $\left.H^{f}\right|_{U}$ dual to $\left(e_{i}\right)$ then we set

$$
s_{\max }\left(\omega_{g}\right)=\sum_{k=1}^{\mu} t^{\nu} P_{\nu, \omega_{g}, k}(\log t) e^{k} \in \Gamma\left(U, \mathcal{H}_{h o l}^{f}\right)
$$

This section is independent of the basis $\left(e_{i}\right)$ and moreover, it extends to a section of $\mathcal{H}_{\text {hol }}^{f}$ over the entire punctured disk \mathbb{D}^{*}. It is called the principal part of the geometric section $\boldsymbol{\operatorname { R e s }}_{f}(\omega)$.
Example 3.1. Consider the function $f: X=\mathbb{C} \rightarrow \mathbb{C}, z \mapsto t=z^{n}$. Let $\zeta:=e^{\frac{2 \pi \mathbf{i}}{n}}$. For every $t=\rho e^{\mathrm{i} \theta}$ in the sector $S=S_{\pi / 2}=\{\boldsymbol{\operatorname { R e }} z>0\}$ we set

$$
t^{1 / n}=\rho^{1 / n} e^{\frac{\mathbf{i} \theta}{n}}, \quad e_{k}(t)=t^{1 / n}\left(\zeta^{k}-\zeta^{(k-1)}\right) \in \tilde{H}_{0}\left(f^{-1}(t), \mathbb{Z}\right), \quad k=1, \cdots, n-1
$$

For $1 \leq m<n$ we set $\omega_{m}=z^{m-1} d z=\frac{1}{m} d\left(z^{m}\right) \in \Omega^{1}(X)$. Then

$$
\frac{\omega_{m}}{d f}=\frac{z^{m-1} d z}{n z^{n-1} d z}=\frac{1}{n} z^{m-n} \in \Omega^{0}\left(X^{*}\right)
$$

For $t \in S$ we have

$$
\int_{e_{k}(t)} \frac{\omega_{m}}{d f}=\frac{1}{n}\left(\left(t^{1 / n} \zeta^{k}\right)^{(m-n)}-\left(t^{1 / n} \zeta^{k-1}\right)^{(m-n)}\right)=\frac{1}{n}\left(\zeta^{k m}\right) t^{\frac{(m-n)}{n}}\left(1-\zeta^{-m}\right)
$$

We conclude that

$$
\nu\left(\omega_{m}\right)=\frac{m}{n}-1<0, \quad 1 \leq m<n
$$

Returning to the general case, let us make the change in variables $t=e^{s}$, $\boldsymbol{\operatorname { R e }} s<0$ and we (ambiguously) set $e_{k}(s)=e_{k}\left(e^{s}\right)$. Fix $t_{0} \in \mathbb{D}^{*}, \operatorname{Im} t_{0}=0$ and $s_{0}=\log t_{0} \in \mathbb{R}$. Set

$$
\underline{\mathbf{e}}(s)=\left[e_{1}(s), \cdots, e_{\mu}(s)\right], \quad \overline{\mathbf{e}}(s)=\left[\begin{array}{c}
e^{1}(s) \\
\vdots \\
e^{\mu}(s)
\end{array}\right] .
$$

In the basis $\left(\underline{\mathbf{e}}\left(s_{0}\right)\right)$ the monodromy \mathcal{M}_{f} is represented by a $\mu \times \mu$ matrix $M=\left(m_{j}^{i}\right)_{1 \leq i, j \leq \mu}$ and we have the equalities

$$
\underline{\mathbf{e}}\left(s_{0}+2 \pi \mathbf{i}\right)=\underline{\mathbf{e}}\left(s_{0}\right) \cdot M \Longleftrightarrow e_{i}\left(s_{0}+2 \pi \mathbf{i}\right)=\sum_{j} m_{i}^{j} e_{j}\left(s_{0}\right) .
$$

$$
\overline{\mathbf{e}}\left(s_{0}\right)=M \cdot \overline{\mathbf{e}}\left(s_{0}+2 \pi \mathbf{i}\right) \Longleftrightarrow e^{i}\left(s_{0}\right)=\sum_{j} m_{j}^{i} e^{j}\left(s_{0}+2 \pi \mathbf{i}\right)
$$

Given $\omega \in \Omega^{N+1}(X)$ we define the row vector

$$
\vec{I}_{\omega}=\left[I_{\omega, 1}(s), \cdots, I_{\omega, \mu}(s)\right], \quad I_{\omega, k}=\int_{e_{k}(s)} \boldsymbol{\operatorname { R e s }}_{f} \omega
$$

Note that

$$
\vec{I}_{\omega}(s+2 \pi \mathbf{i})=\vec{I}_{\omega}(s) \cdot M
$$

If we pick μ-forms $\omega_{1}, \cdots, \omega_{\mu} \in \Omega^{n+1}(X)$ we can form the $\mu \times \mu$ period matrix

$$
P(s)=\left[\begin{array}{c}
\vec{I}_{\omega_{1}}(s) \\
\vdots \\
\vec{I}_{\omega_{\mu}}(s)
\end{array}\right] .
$$

It satisfies

$$
P(s+2 \pi \mathbf{i})=P(s) \cdot M
$$

Since $M \in \mathrm{GL}_{\mu}(\mathbb{Z})$ we deduce that

$$
\operatorname{det} P(s+2 \pi \mathbf{i})= \pm \operatorname{det} P(s)
$$

Thus det $P(s)^{2}$ is a well defined meromorphic function $t \mapsto \delta\left(t ; \omega_{1}, \cdots, \omega_{\mu}\right)$ on \mathbb{D} with a possible pole at $t=0$. We denote by $\nu\left(\omega_{1}, \cdots, \omega_{\mu}\right) \in \frac{1}{2} \mathbb{Z}$ its order at $t=0$ divided by 2 .

Theorem 3.2 (Varchenko).

$$
\nu\left(\omega_{1}, \cdots, \omega_{\mu}\right) \geq \max \left\{\frac{N-1}{2} \mu, \sum_{j=1}^{\mu} \nu\left(\omega_{j}\right)\right\}
$$

with equality for a generic choice of $\left\{\omega_{1}, \cdots, \omega_{\mu}\right\}$. In such a generic case we also have the equality

$$
\nu\left(\omega_{1}, \cdots, \omega_{\mu}\right)=\frac{N-1}{2} \mu=\sum_{j=1}^{\mu} \nu\left(\omega_{j}\right) .
$$

We will refer to such a generic choice as a $\mathbb{C}\{t\}$-basis and we will use the notation $\underline{\omega}$ to denote an ordered $\mathbb{C}\{t\}$-basis.

We define a rational divisor on \mathbb{R} to be a finite formal linear combination of the form

$$
\sum_{q \in \mathbb{Q}} n_{q} \cdot(q), \quad n_{q} \in \mathbb{Z}, \quad n_{q}=0 \text { for all but finitely may } q \text { 's. }
$$

In other words, a rational divisor is an element

$$
\mathbb{Z}^{(\mathbb{Q})}=\text { functions } f: \mathbb{Q} \rightarrow \mathbb{Z} \text { with finite support. }
$$

For a rational number q we denote by $(q) \in \mathbb{Z}^{(\mathbb{Q})}$ the Dirac function supported at q. For any function $f: \mathbb{Q} \rightarrow \mathbb{Q}$ with finite fibers and any divisor $D \in \mathbb{Z}^{(\mathbb{Q})}$ we define

$$
f^{*} D=\sum_{r \in \mathbb{Q}} n_{f(r)}(f(r))=\sum_{q \in \mathbb{Q}} \sum_{f(r)=q} n_{q}(q)
$$

A divisor will be called invariant with respect to f if $D=f^{*} D$.

Given a $\mathbb{C}\{t\}$-basis $\underline{\omega}=\left(\omega_{1}, \cdots, \omega_{1}\right)$ we set

$$
(\underline{\omega})=\sum_{i=1}^{\mu}\left(\nu\left(\omega_{i}\right)\right) .
$$

Following Steenbrink and Varchenko, we define for every $\alpha \in \Lambda^{f}$ the subsheaf \mathcal{S}_{α} of $\mathcal{H}_{\text {hol }}^{f}$ spanned over $\mathcal{O}_{\mathbb{D}^{*}}$ by the principal parts of the geometric sections of order α. One can show that each of them is a locally free sheaf and defines a sub-bundle of \mathcal{H}^{f}. The multiplication by t defines an inclusion

$$
\mathcal{S}_{\alpha-1} \hookrightarrow \mathcal{S}_{\alpha}
$$

Note that $\mathcal{S}_{\alpha}=0$ for all $\alpha \leq-1$. It is a highly nontrivial fact that $\mathcal{S}_{N}=\mathcal{H}_{\text {hol }}^{f}$.
The spectrum of f is the divisor $\operatorname{sp}(f) \in \mathbb{Z}^{(\mathbb{Q})}$ defined by

$$
\operatorname{sp}(f)=\sum_{\alpha \in \Lambda_{-1}^{f}}\left(\operatorname{dim}_{\mathbb{C}} \mathcal{S}_{\alpha} / t \cdot \mathcal{S}_{\alpha-1}\right) \cdot(\alpha)
$$

If we write

$$
\operatorname{sp}(f)=\sum_{\alpha \in \Lambda_{-1}^{f}} n_{\alpha} \cdot(\alpha)
$$

then the numbers α such that $n_{\alpha} \neq 0$ are called the spectral numbers of f. The integer n_{α} is called the multiplicity of α (in the spectrum of f). Since $\mathcal{S}_{N}=\mathcal{H}_{\text {hol }}^{f}$ we deduce

$$
n_{\alpha}=0, \quad \forall \alpha \geq N
$$

Theorem 3.3 (Varchenko). Suppose $f=f\left(z_{0}, \cdots, z_{N}\right) \in \mathcal{O}_{N+1}$. Then the spectrum $\operatorname{sp}(f)$ is well defined, i.e. it is indeed a rational divisor supported inside the interval $(-1, N)$. Moreover, for any $\mathbb{C}\{t\}$-basis $\underline{\omega}$ of f we have the equality

$$
\operatorname{sp}(f)=(\underline{\omega})
$$

and $\operatorname{sp}(f)$ is invariant with respect to the reflection in the midpoint of $[-1, N]$.
To every divisor $D=\sum_{q} n_{q}(q) \in \mathbb{Z}^{(\mathbb{Q})}$ we associate the Laurent-Puiseux polynomial

$$
S_{D}(T)=\sum_{q} n_{q} T^{q}
$$

Note that the polynomial S_{D} completely determines the divisor D. When $D=\operatorname{sp}(f)$ we set

$$
S_{f}(T):=S_{\mathrm{sp}(f)}(T)
$$

We will refer to $S_{f}(T)$ as the spectral polynomial of f.
Theorem 3.4 (Varchenko).

$$
S_{f * g}(T)=T \cdot S_{f}(T) \cdot S_{f}(T)
$$

Remark 3.5. If, following Saito, we define

$$
\tilde{S}_{f}(T)=T S_{f}(T)
$$

then the last equality has the more natural form

$$
\tilde{S}_{f * g}(T)=\tilde{S}_{f}(T) \cdot \tilde{S}_{g}(T)
$$

Example 3.6. Consider again the function $f(z)=z^{n}$ discussed in Example 3.1 so that

$$
N=0, \quad \mu=n-1, \frac{N-1}{2} \mu=-\frac{n-1}{2} .
$$

Then the period matrix is given by

$$
P_{k}^{m}(t)=\int_{e_{k}(t)} \omega_{m}=\frac{1}{n}\left(\zeta^{k m}\right) t^{\frac{(m-n)}{n}}\left(1-\zeta^{-m}\right) .
$$

and we have

$$
\operatorname{det} P(t)=\frac{1}{n^{n-1}}\left(\prod_{m=1}^{n-1} t^{\frac{(m-n)}{n}}\left(1-\zeta^{-m}\right)\right) \cdot \operatorname{det}\left[\zeta^{k m}\right]_{1 \leq k, m \leq n-1} .
$$

The last determinant is a Vandermonde determinant and it is non zero. Hence the order of $\operatorname{det} P(t)$ at zero is

$$
\sum_{m=1}^{n-1}\left(\frac{m}{n}-1\right)=-\frac{n-1}{2}=\frac{N-1}{2} \mu .
$$

Thus the collection $\left\{z^{m} d z\right\}_{1 \leq m \leq n-1}$ is a basis and we deduce

$$
S_{z^{n}}(T)=\sum_{m=1}^{n-1} T^{\frac{m}{n}-1}=T^{-1} \sum_{m=1}^{n-1} T^{m / n}=T^{-1} \frac{T^{\frac{1}{n}}-T}{1-T^{\frac{1}{n}}}
$$

Using Theorem 3.4 we deduce that for a Brieskorn singularity $f_{a_{0}, \cdots, a_{N}}=z_{0}^{a_{0}}+\cdots+z_{N}^{a_{N}}$ we have

$$
S_{f_{a_{0}, \cdots, a_{N}}}(T)=T^{-1} \prod_{j=0}^{N} \frac{T^{1 / a_{j}}-T}{1-T^{1 / a_{j}}} .
$$

More generally, if f is a quasihomogeneous function with weights w_{0}, \cdots, w_{N} then

$$
S_{f}=T^{-1} \prod_{j=0}^{N} \frac{T^{w_{j}}-T}{1-T^{w_{j}}}
$$

In particular, the D_{4} singularity is quasihomogeneous with weights $(1 / 3, / 1 / 3,1 / 2)$ and we have

$$
S_{D_{4}}(T)=T^{-1}\left(\frac{T^{1 / 3}-T}{1-T^{1 / 3}}\right)^{2} \frac{T^{1 / 2}-T}{1-T^{1 / 2}}=T^{1 / 6}\left(1+T^{1 / 3}\right)^{2}=T^{1 / 6}+2 T^{1 / 2}+T^{5 / 6}
$$

The geometric genus of the isolated singularity defined by $f \in \mathcal{O}_{N+1}$ is the number of nonpositive spectral numbers of f counted with their multiplicities. In terms of a $\mathbb{C}\{t\}$-basis $\underline{\omega}=\left\{\omega_{1}, \cdots, \omega_{\mu}\right\}$ of f, the geometric genus is the number of ω_{j} 's with the property that there exists a locally constant vanishing cycle c_{t} such that the integral of ω_{j} along c_{t} does not converge to zero as $t \rightarrow 0$ inside an angular sector. We denote the geometric genus by $p_{g}(f, 0)$. For example $p_{g}\left(z^{n}, 0\right)=n-1, p_{g}\left(D_{4}, 0\right)=0$.

For generic f 's the geometric genus can be given a combinatorial description, similar in spirit to the above description of $p_{g}\left(z^{n}, 0\right)$.

Let $f=f\left(z_{0}, \cdots, z_{N}\right)$. Set $L:=\mathbb{Z}^{N+1}, L^{+}:=\mathbb{Z}_{\geq 0}^{n+1}, L_{\mathbb{R}}=L \otimes \mathbb{R}$. For $\alpha \in L$ we set $z^{\alpha}:=z_{0}^{\alpha_{0}} \cdots z_{N}^{\alpha_{N}}$. We can write

$$
f=\sum_{\alpha \in L^{+}} f_{\alpha} \bar{z}^{\alpha} .
$$

We set

$$
\operatorname{supp} f=\left\{\alpha \in L_{+} ; \quad f_{\alpha} \neq 0\right\} .
$$

The (local) Newton polyhedron of f, denoted by $\Gamma_{+}(f)$ is the convex hull of $\operatorname{supp}(f)+L^{+}$. The germ f is called convenient if its Newton polyhedron intersects all the coordinate axes of $L_{\mathbb{R}}$. Equivalently, this means that for every $j=0, \cdots, N$, there exists $n_{j} \in \mathbb{N}$ such that the monomial $z_{n}^{n_{j}}$ enters into the Taylor expansion of f. We can assume without a loss of generality that f is a convenient polynomial. Indeed, according to Mather-Tougeron theorem, the analytic type of the singularity described by f does not change if we modify arbitrarily the terms in the Taylor expression of degree $>\mu+1$. In particular, we can replace f by $j_{\mu+1}(f)+\sum_{j=0}^{N} z_{j}^{\mu+2}$ and not change the analytic type of the singularity.

The Newton polyhedron is the intersection of finitely many half-spaces. Its boundary has compact and noncompact faces. The Newton diagram of f, denoted by $\Delta(f)$, is the union of all the compact faces. These are compact polyhedra of dimensions $\leq N$. For each face γ of the Newton diagram we set

$$
f_{\gamma}=\sum_{\alpha \in \gamma} f_{\alpha} \vec{z}^{\alpha} .
$$

The polynomial f is called Newton nondegenerate if for every face γ of $\Delta(f)$ the polynomials

$$
\frac{\partial f_{\gamma}}{\partial z_{j}}, j=0,1, \cdots, N
$$

have no common zero on $\left(\mathbb{C}^{*}\right)^{N+1}$. This condition is generic in the space of convenient polynomials with a fixed Newton polyhedron.

Let $\vec{w}_{0}=(1, \cdots, 1)$. A monomial \vec{z}^{α} is called subdiagramatic if $\alpha+\vec{w}_{0}$ does not lie in the interior of the Newton polyhedron.

Theorem 3.7 (Khovanski-Varchenko-Saito). Suppose $f \in \mathcal{O}_{N+1}$ is a Newton nondegenerate convenient polynomial. Then $p_{g}(f, 0)$ is equal to the number of subdiagramatic monomials.

Example 3.8. Consider the singularity D_{4}. The defining polynomial $x^{2} y-y^{3}+z^{2}$ is not convenient, but near 0 it is right equivalent to $c x^{6}+x^{2} y-y^{3}+z^{2}$, where c is a complex number. The Newton diagram of this polynomial is depicted in Figure 2. It consists of 0 - dimensional, 1 -dimensional and 2-dimensional faces. The 2-dimensional faces are the triangles $A C D$ and $B C D$. The 1-dimensional faces are the edges of these triangles and the 0 -dimensional faces are the vertices of these triangles. We have

$$
\begin{aligned}
& f_{A C D}=c x^{6}+x^{2} y+z^{2}, \quad \frac{\partial f_{A C D}}{\partial x}=6 c x^{5}+x y, \quad \frac{\partial f_{A C D}}{\partial y}=x^{2}, \quad \frac{\partial f_{A C D}}{\partial z}=2 z . \\
& f_{B C D}=y^{3}+x^{2} y+z^{2}, \quad \frac{\partial f_{B C D}}{\partial x}=2 x y, \quad \frac{\partial f_{B C D}}{\partial y}=3 y^{2}+x^{2}, \quad \frac{\partial f_{B C D}}{\partial z}=2 z .
\end{aligned}
$$

Figure 2. The Newton diagram of $c x^{6}+x^{2} y-y^{3}+z^{2}$.
etc. One can check that for $c \neq 0$ this is Newton nondegenerate. The two top dimensional faces of the Newton diagram are contained in the planes

$$
A C D \subset\{\underbrace{\frac{1}{6} x+\frac{2}{3} y+\frac{1}{2} z}_{:=\ell_{1}(x, y, z)=1}\}, \quad B C D \subset\{\underbrace{\frac{1}{3} x+\frac{1}{3} y+\frac{1}{2} z}_{:=\ell_{2}(x, y, z)}=1\}
$$

the Newton polyhedron is defined by

$$
\ell_{1}(x, y, z) \geq 1 \text { and } \ell_{2}(x, y, z) \geq 1 .
$$

A subdiagramatic monomial $x^{m} y^{n} z^{p}$ satisfies

$$
\ell_{1}(m, n, p)+\ell_{1}(1,1,1) \leq 1 \text { or } \ell_{2}(m, n, p)+\ell_{2}(1,1,1) \leq 1 .
$$

Equivalently this means

$$
\frac{m}{6}+\frac{2 n}{3}+\frac{p}{2}+\frac{4}{3} \leq 1 \text { or } \frac{m}{3}+\frac{n}{3}+\frac{p}{2}+\frac{7}{6} \leq 1, m, n, p \geq 0 .
$$

Clearly there are no such monomials so that $p_{g}\left(D_{4}, 0\right)=0$ as expected.

Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556-4618.
E-mail address: nicolaescu.1@nd.edu

[^0]: Date: January, 2005.
 Notes for a Felix Klein Seminar.

[^1]: ${ }^{1}$ This a C^{∞} but not a holomorphic construction, as one may think. That is why the fact that the GaussManin connection ends up having a holomorphic (even algebraic!) nature is somewhat surprising.

[^2]: ${ }^{2}$ The holomorphic nature of this section is by no means obvious since the cycle c_{t} only varies smoothly with t.

