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Abstract. What follows is a study of the asymptotic behavior of oscillatory integrals of
the form

Iξ(a) =

Z
Rn

eiφ(x)ξa(x) dx,

in the limit as ξ → ∞. The asymptotic behavior depends only entirely on the stationary
points of the phase function φ. We describe an algorithmic approach to handling such
integrals which relies the concept of the Newton polygon of the phase and the associated
toric resolution.
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Introduction

There are a good number of situations of physical and mathematical interest which revolve
around integrals of the form

Iξ(a) = Iξ(a;φ) =
∫

Rn

eiφ(x)ξa(x) dx, ξ →∞,
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where the amplitude a is a compactly supported smooth function. The famous Riemann-
Lebesgue Lemma states that if the phase φ has no stationary points on the support of a then
the integral Iξ(a) goes to zero as ξ →∞ faster than any power ξ−n, n > 0. We can explain
heuristically the reason behind such a dramatic vanishing.

We regard the above integral as an infinite superposition of plane waves a(x)eiφ(x)ξ. As
the ξ becomes increasingly large, the factor eiφ(x)ξ oscillates more and per unit of distance
and the contributions of these plane waves tend to cancel each other out. The net result of
their superposition is a very small quantity.

We can turn Riemann-Lebesgue Lemma on its head and conclude that the integral Iξ(a)
has nontrivial asymptotics as ξ → ∞ only if φ has stationary points. The present thesis is
devoted to the understanding of the nature of this asymptotics when the set of stationary
points of φ consists of isolated points. Via partitions of unity we can reduce this to the case
when φ has a unique stationary point p0 on the support of a. The asymptotics of the integral
is strongly correlated with the behavior of the phase near p0. For simplicity we concentrated
on the case when the space dimension n is at most 2. The arguments work in arbitrary
dimensions but the computations are more involved.

The one-dimensional case reduces to the study of asymptotics Fresnel type integrals,∫ ∞

0
e±ixmξa(x)dx

which further reduces to a study of the Fourier transform of the homogenous functions

M±
a,k(x) =

{
|x|a(log |x|)k ±x > 0
0 ±x ≤ 0.

These are thoroughly investigated in the classical monograph [4].
The higher dimensional case can be reduced to the one-dimensional case via a nice trick

of I.M. Gelfand and J. Leray, whereby the phase φ is treated as a coordinate function. We
can assume that the unique stationary point of φ is the origin. Moreover, according to a
theorem of Tougeron [1, §6.3], up to a change of coordinates near 0 ∈ Rn, we can assume
that the phase φ is a polynomial. Observe that if we change φ by a constant c, the integral
Iξ(a) changes only by the multiplicative factor eicξ which does not affect the nature of the
asymptotics. Thus, in the sequel we can assume that φ is a polynomial in n variables which
has an isolated stationary point at the origin and such that φ(0) = 0.

If the support of a is sufficiently small then in the region supp a \ {φ = 0} we can regard
φ as a space variables and reduce the integral Iξ(a) to one-dimensional oscillatory integrals

Iξ(a) =
∫

t<0
eitξ

(∫
φ=t

a(x)
|dx|
|dφ|

)
︸ ︷︷ ︸

=:J−(t)

dt +
∫

t>0
eitξ

(∫
φ=t

a(x)
|dx|
|dφ|

)
︸ ︷︷ ︸

=:J+(t)

dt

The functions J±(t) are called the Gelfand-Leray functions. It turns out that the Gelfand-
Leray functions have very nice asymptotic expansion as t → 0±, and these asymptotics
determine the asymptotics of the oscillatory integral Iξ(a). The end result can be explicitly
read off a resolution of singularity of φ. To explain how this is done we restrict our attention
to the case of two space dimensions, n = 2.

A resolution of the singularity of φ at 0 is a pair (X, β), where X is a smooth surface
β : X → U ⊂ R2, is a proper smooth map onto a small open neighborhood U of 0 ∈ R2

satisfying the following conditions.
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• The exceptional locus E = β−1(0) is a union of connected submanifolds E1, . . . , Eν

of X of codimension 1 which intersect transversally. More explicitly, this means that
for every point p ∈ E we can find an open neighborhood O and local coordinates u, v
on O such that u(p) = v(p) = 0 and E ∩O is described either by the equation u = 0,
or by the equation uv = 0.
• The induced map β : X \ E → U \ 0 is a diffeomorphism.
• If we denote by C ′ the punctured curve C ′ = {q ∈ U \ 0; φ(q) = 0} then the closure

of β−1(C ′) in X is a smooth curve which intersects the components of E transversally.
We denote this curve by E0 and we will refer to it as the strict transform of the curve
{φ = 0}.

For i = 0, 1, . . . , ν we set
E′

i = E0 \ ∪j 6=iEj .

In other words E′
i is obtained from Ei by removing the intersections with the other com-

ponents. We denote by mi the order of vanishing of φ ◦ β along E′
i, and by δi the order of

vanishing of the jacobian of β along E′
i. We form the arithmetic progressions

Pi := {δi + 1
mi

,
δi + 2
mi

, · · · , }.

Let us point out that
P0 = {1, 2, . . . , }

We can now form the nerve ΓΦ of the resolution. Every vertex of this graph corresponds
bijectively to a component Ei, i = 0, 1, . . . , ν. We denote by vi the vertex corresponding
to the component Ei. We connect two vertices vi, vj by an edge [vivj ] if the corresponding
components Ei and Ej intersect.

To a vertex v = vi we associate the arithmetic progression Pi, and to an edge e = [vivj ]
we associate the arithmetic progression Pi ∩ Pj . We denote by V the set of vertices of the
graph, and by E the set of edges. Then Iξ(a) admits an asymptotic expansion of the type

Iξ(a) ∼
∑
v∈V

∑
α∈Pv

Cv
α(a)ξ−α +

∑
e∈E

∑
β∈Pe

(
Ce

β,0(a)ξ−β + Ce
β,1(a)ξ−β log ξ

)
, ξ ↗∞.

The coefficients Cv
α(a), Ce

β,0(a), Ce
β,1(a) depend linearly and continuously on the amplitude

a and vanish if the stationary point 0 ∈ R2 does not belong to the support of a. In more
technical terms, these coefficients are distributions on R2 supported at the origin and thus,
by a theorem of L. Schwartz, they are linear combinations of partial derivatives of the Dirac
delta distribution, [5, Thm. 2.3.4].

Thus the problem of studying the asymptotic expansion of on oscillatory integral reduces
to the problem of constructing a resolution of the phase. In this thesis we describe the
method of Arnold-Varchenko of producing special resolutions of the phase, the so called toric
or monomial resolutions. The nerve Γφ and the arithmetic progressions Pv can be read-off
the Newton diagram of the polynomial phase φ.

Here is a brief description of the organization of the paper. We begin by discussing a
number of useful tools and ideas from classical analysis. In Section 1.1 we discuss the always-
useful gamma function and variants such as the beta function. Discussing this function is
useful primarily for its application to the Fourier transform which is introduced in Section
1.2. Our presentation of the Fourier transform follows closely the classical text [5]. Section
1.3 is devoted to the calculation the Fourier transform of the functions M±

a,k which play a
fundamental role in the sequel. As we will come to see in the sequel, the Fourier transform
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of the amplitude function a(x) will be used to determine the coefficients in the asymptotic
expansion of Iξ.

Having these tools at our disposal, we then begin a discussion of asymptotic approxima-
tion in general. Section 2.1 lays out the basics of the theory of regular singular asymptotic
expansions, i.e., asymptotic expansions of the type

f(t) ∼
∑
a,k

Ca,kt
a(log |t|)k, t→ 0 or t→∞.

The series in the right hand side need not be convergent so it only has a formal meaning.
Inspired by the computations in Section 1.3 we define a formal Fourier transform which
associates to a formal series as above another formal series of the same type. The framework
of asymptotic approximation is then applied directly to the case of oscillatory integrals in one
dimension. Section 2.2 introduces many of the critical ideas of this paper, most notably the
Riemann-Lebesgue Lemma (Lemma 2.4) and Proposition 2.5 which states the asymptotics
at ξ → ∞ of the Fourier transform of a function a is the formal Fourier transform of the
asymptotic expansion of a near the origin.

Once the situation has been laid out in one dimension, we naturally turn out attention to
two dimensions. Section 3.1 explains how one may exactly calculate the asymptotic expansion
of oscillatory integrals with two-dimensional monomial phases using the trick of I.M. Gelfand
and J. Leray in which one takes the phase function φ to be a variable itself. This section
culminates with Corollary 3.2 outlining exactly which powers of |ξ| will be present in the
asymptotic approximations of these integrals.

Finally, we turn our attention to the case of non-monomial phases in two-dimensions. In
sections 3.2 and 3.3 we run into some very elegant mathematics. We construct a manifold
known as the toric resolution of our phase φ, using an idea due to A. Varchenko. This
reduces a general oscillatory integral to a sum of oscillatory integrals with monomial phases.
In order to make this process absolutely clear, we offer a concrete example and follow the
process from start to finish. The end result is a very carefully constructed space in which
our non-monomial phase becomes a monomial over various subspaces of the toric resolution.
Section 3.4 finishes off our discussion by looking at the asymptotics of a specific instance of
our concrete phase example, giving the recipe for determining exactly which powers of ξ and
log ξ will appear in the asymptotic approximation. Finally, we explain an elementary way in
which the leading power of the asymptotic approximation (often referred to as the oscillation
index) can be easily obtained directly from the Newton polygon of our phase function φ.

1. Classical Analysis

1.1. The Gamma Function. As is the case with many scientific calculations, the Gamma
Function (also known as the factorial function) will prove to be a valuable tool in our un-
derstanding of Oscillatory Integrals. We therefore devote the first section of our Classical
Analysis introduction to understanding the Gamma Function.

Definition 1.1 (The Gamma Function). The Gamma function is the function

Γ : {Re(z) > 0} → C, Γ(z) =
∫ ∞

0
e−ttz−1dt. ut
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It can be shown that Γ may be analytically continued as a meromorphic function on the
whole complex plane. To see this, note that

Γ(z) =
∫ 1

0
e−ttz−1dt +

∫ ∞

1
e−ttz−1dt

The second integral is an entire function, so Γ(z) is analytic wherever the first integral is. We
can analytically continue the first integral by replacing e−t with its power series expansion.∫ 1

0
e−ttz−1dt =

∫ 1

0
tz−1dt

∞∑
k=0

(−1)k

k!
tk =

∞∑
k=0

(−1)k

k!

∫ 1

0
tk+z−1dt

=
∞∑

k=0

(−1)k

k!
1

z + k
.

We are justified in switching the order of integration and summation above because the the
integral of the sum is absolutely convergent for Re(z) > 0. As this shows, Γ(z) may be
analytically continued to the whole complex plane as a meromorphic function with simple
poles at 0 and the negative integers. As such, we could write (for z 6= 0,−1,−2, . . . )

Γ(z) =
∞∑

k=0

(−1)k

k!
1

z + k
+
∫ ∞

1
e−ttz−1dt

The Gamma function has several useful properties, with factorial relationships between
Gamma functions of integers being particularly useful.

Proposition 1.2 (Properties of the Gamma Function).

Γ(z + 1) = zΓ(z), (1.1)

Γ(z)Γ(1− z) =
π

sinπz
, (1.2)

22z−1Γ(z)Γ
(

z +
1
2

)
=
√

πΓ(2z). (1.3)

Proof. To obtain equation 1.1 we simply integrate Γ(z + 1) by parts to see that

Γ(z + 1) =
∫ ∞

0
e−ttzdt = −e−ttz|∞0 + z

∫ ∞

0
e−ttz−1dt = zΓ(z)

We start by temporarily assuming that Re(z) < 1. Then

Γ(z)Γ(1− z) =
∫ ∞

0
e−ttz−1dt

∫ ∞

0
e−ss−zds =

∫ ∞

0

∫ ∞

0
e−(s+t)s−ztz−1ds dt.

Then, setting u = s + t and v = t
s , we see that

Γ(z)Γ(1− z) =
∫ ∞

0

∫ ∞

0
e−uvz−1 du dv

1 + v
=
∫ ∞

0

vz−1

z + v
dv =

π

sin πz
.

We can safely continue this function analytic into any regions where Γ(z) and Γ(1 − z) are
able to be continued, and thus equation (1.2) is valid for all z except the integers.
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Equation (1.3), commonly referred to as the doubling formula, can again be derived directly
from Definition 1.1.

22z−1Γ(z)Γ
(

z +
1
2

)
= 22z−1

∫ ∞

0
e−ttz−1dt

∫ ∞

0
e−ss−zds

=
∫ ∞

0

∫ ∞

0
e−(s+t)(2

√
st)2z−1t−1/2 ds dt

= 4
∫ ∞

0

∫ ∞

0
e−(α2+β2)(2αβ)2z−1α dα dβ,

under the substitution α =
√

s and β =
√

t. Since α and β are dummy variables, we may
re-write this as

22z−1Γ(z)Γ
(

z +
1
2

)
= 2

∫ ∞

0

∫ ∞

0
e−(α2+β2)(2αβ)2z−1(α + β) dα dβ

= 4
∫ ∞

0

∫ α

0
e−(α2+β2)(2αβ)2z−1(α + β) dα dβ.

Letting u = α2 + β2, v = 2αβ, and u = v + ω2 we see

22z−1Γ(z)Γ
(

z +
1
2

)
=

∫ ∞

0
v2z−1 dv

∫ ∞

0

e−u

√
u− v

du

= 2
∫ ∞

0
e−vv2z−1 dv

∫ ∞

0
e−ω2

dω

=
√

πΓ(2z).

As before, this equation can be continued analytically to the region z 6= 0,−1/2,−1,−3/2, . . . .
ut

Now that we have developed these properties, it is time to put them to use. First, simply
note that equation (1.1) sets up a recursion relation for the Gamma function of integers, that
is to say,

Γ(n + 1) = nΓ(n).
Noting that Γ(1) = 1, we clearly see that Γ(n + 1) = n! for n = 0, 1, 2, . . . .

Furthermore, equation (1.3) with z = 1/2 gives us that

Γ(1/2) =
√

π Γ(1)
Γ(1)

=
√

π,

and equation (1.1) then implies that

Γ(n + 1/2) =
1 · 3 · 5 · · · (2n− 1)

2n

√
π, n = 1, 2 . . .

We would now like to introduce a number of integrals which are very similar to the Gamma
function in form, but differ in ways which expand our available toolbox of integration tricks.

First, we look at integrals of the form∫ ∞

0
e−pttz−1 dt, p ∈ R>0, Re(z) > 0.

Letting s = pt, we easily see that ∫ ∞

0
e−pttz−1 dt =

Γ(z)
pz

. (1.4)
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Of course, this formula may be analytically continued to arbitrary complex Re(p) > 0 in a
manner similar to that used before.

Another function which is very similar to the Gamma function is the aptly-named Beta
function. In fact, it will turn out that Gamma and Beta are more than similar, the Beta
function is simply a number of Gamma functions in disguise. Here we are getting ahead of
ourselves, however, so we must start with a definition.

Definition 1.3 (The Beta Function). The Beta function is the function B : C2 → R defined
by

B(x, y) =
∫ 1

0
tx−1(1− t)y−1 dt, Re(x) > 0, Re(y) > 0.

If we look at the Beta function a little closer we notice that it shares some similarities with
the Gamma function. In particular, for the change of variables u = t/(1− t), we have that

B(x, y) =
∫ ∞

0

ux−1

(1 + u)x+y
du, Re(x) > 0, Re(y) > 0.

Furthermore, by equation (1.4) we see that

Γ(x + y)
(1 + u)x+y

=
∫ ∞

0
e−(1+u)ttx+y−1dt,

and thus

B(x, y) =
1

Γ(x + y)

∫ ∞

0
e−ttx+y−1

∫ ∞

0
e−utux−1 du

=
Γ(x)

Γ(x + y)

∫ ∞

0
e−tty−1 dt =

Γ(x)Γ(y)
Γ(x + y)

1.2. The Fourier Transform. One of the primary reasons the Gamma function will be of
use to us in our studies is because of its close connection with the Fourier transform. A large
majority of our work will utilize the language of the Fourier and Laplace transforms of a
function, so we will now lay out the essential facts regarding these two operations.

First, we must introduce some notation.
We define

〈−,−〉 : Rn × Rn → R, 〈x, ξ〉 :=
n∑

i=0

xnξn.

Definition 1.4 (The Fourier Transform). For any absolutely integrable function f ∈ L1(Rn)
we define the Fourier transform of f to be

f̂(ξ) =
∫

e−i〈x,ξ〉f(x) dx. ut

Physically, the Fourier transform of a function f can be thought of as decomposing f into
“frequency components”; that is to say, the Fourier transform calculates the contribution of
a given frequency ξ to the amplitude function f . Similarly, we may derive an inverse Fourier
transform which essentially reconstructs the amplitude f from these individual frequency
components f̂(ξ).

To develop the inversion formula we must study a specific subset of the smooth functions.
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Definition 1.5. Let S(Rn) denote the set of all φ ∈ C∞(Rn) such that

sup
x
|xβ∂αφ(x)| <∞

for all multi-indices α and β.

In the following we will use the notation Dxj = −i∂xj , Dξk
= −i∂ξk

and for α =
(α1, . . . , αn),

Dα
x = (−i)α1+···+αn(∂x1)

α1 · · · (∂xn)αn .

Lemma 1.6. The Fourier transform S → S, φ 7→ φ̂ maps S continuously into itself. Fur-
thermore,

D̂xjφ = ξjφ̂, x̂jφ = −Dξj
φ̂

Proof. By definition, φ̂(ξ) =
∫

e−i〈x,ξ〉φ(x) dx. Thus

Dα
ξ φ̂(ξ) = (−i)α1+···+αn(∂ξ1)

α1 · · · (∂ξn)αn

∫
e−i〈x,ξ〉φ(x) dx

= (−i)2(α1+···+αn)

∫
(x1

α1 · · ·xn
αn)e−i〈x,ξ〉φ(x) dx

=
∫

e−i〈x,ξ〉(−x)αφ(x) dx.

Since this integral is uniformly convergent, we see that φ̂ ∈ C∞. Thus Dα
ξ φ̂ = ̂(−x)αφ.

Furthermore,

x̂jφ =
∫

Rn

xje
−i〈x,ξ〉φ(x)dx = −Dξj

∫
Rn

e−i〈x,ξ〉φ(x)dx = −Dξj
φ̂(ξ).

Next observe that
|ξβDαφ̂(ξ)| = (−1)|α|+|β| ̂

Dβ
x(xαφ)

On the other hand, since φ ∈ S there exists C > 0 such that

sup
x∈Rn

Dβ
x(xαφ)| ≤ C

1 + |x|n+1

and therefore,

sup
x
|ξβDα

ξ φ̂(ξ)| ≤ C

(∫
1

(1 + |x|)n+1
dx

)
<∞.

ut

Lemma 1.7. If T : S→ S is a linear map such that

TDjφ = DjTφ, Txjφ = xjTφ, j = 1, 2, . . . , n, φ ∈ S,

Then Tφ = cφ for some constant c.

Proof. Let φ(y) = 0. We may write φ(x) =
∑

(xj − yj)φj(x), where the φj ∈ C∞. Thus

Tφ(x) =
∑

(xj − yj)Tφj(x).

For x = y, Tφ(x) = 0, and thus we see that for all φ ∈ S,

Tφ(x) = c(x)φ(x).

Choosing some φ ∈ S which is everywhere non-zero, we obtain c ∈ C∞. Furthermore,

0 = DjTφ− TDjφ = (Djc)φ.
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Thus we see that c(x) must be constant. ut

Theorem 1.8. The Fourier transform S 3 φ 7→ φ̂ ∈ S is an isomorphism with inverse

φ(x) =
1

(2π)n

∫
ei〈x,ξ〉φ̂(ξ) dξ. (1.5)

Proof. By Lemma 1.6, we see that F 2 maps S into S and that it anticommutes with Dj and
xj . Let R(x) = φ(−x). By Lemma 1.7, T = RF 2 is a linear map which anticommutes with
Dj and xj , and is therefore equal to a constant, RF 2 = c. Since this is the case for any φ ∈ S,
we choose

φ = e−|x|
2/2.

Clearly (xj + iDj)φ = 0, and therefore (−Dj + iξj)φ̂(ξ) = 0 for j = 1, 2, . . . , n. This implies
that φ̂ = c1φ where c1 = φ̂(0) = (2π)n/2. Thus F 2φ = F (F (φ)) = F (c1φ) = c1

2φ, and
therefore c = (2π)n. We therefore have that RF 2φ = cφ, and the theorem is proved. ut

While proving these results in the general case is useful, in practice we will deal with the
Fourier transform on R. From this point on, unless otherwise stated the Fourier transform
will be acting on functions f ∈ L1(R), and therefore

f̂(ξ) =
∫ ∞

−∞
e−ixξf(x) dx.

Having thus defined the Fourier transform, let’s take a minute to compute the following
example. While it may seem random at this point, this calculation will be very useful in the
future.

1.3. A fundamental example. First, we define the function Ma,k : R\{0} → R Ma,k(x) =
|x|a(log |x|)k, and we denote by M±

a,k its truncations ,

M±
a,k(x) =

{
Ma,k(|x|) if ±x > 0

0 if ±x ≤ 0.

To get our bearings, we will start with the simplest example. Let fλ(x) = e−λxM+
a,0(x). Then

we have that

f̂λ(ξ) =
∫ ∞

−∞
e−ixξfλ(x) dx =

∫ ∞

0
e−ixξe−λxxa dx =

∫ ∞

0
e−p xxa dx,

for p = λ + iξ. Equation (1.4) implies

f̂λ(ξ) =
Γ(a + 1)

pa+1
=

Γ(a + 1)
(λ + iξ)a+1

=
Γ(a + 1)

(i)a+1(ξ − iλ)a+1
.

By convention, we define zλ := eλ log |z|eiλ arg z with −π < arg z < π. Thus

(i)−(a+1) = e−(a+1) log 1ei−(a+1)(π/2) = e−
π
2
i(a+1),

and

f̂λ(ξ) =
e−

π
2
i(a+1)Γ(a + 1)
(ξ + iλ)a+1

.

Now let us move to the more general case. Let fλ(x) = e−λxM+
a,k(x). We first note that the

general functions M+
a,k(x) satisfy the relation

∂k

∂ak
M+

a,0(x) =
∂k−1

∂ak−1
M+

a,1(x) = · · · = M+
a,k(x).
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It is therefore clear that in the general case we have

f̂λ(ξ) =
∫ ∞

−∞
e−ixξe−λxM+

a,k(x) dx =
∫ ∞

0
e−ixξe−λxM+

a,k(x) dx

=
∫ ∞

0
e−px ∂k

∂ak
M+

a,0(x) dx =
∂k

∂ak

∫ ∞

0
e−pxM+

a,0(x) dx

=
∂k

∂ak

(
e−

π
2
i(a+1)Γ(a + 1)
(ξ + iλ)a+1

)
If we now denote Eλ = e−λx and f±λ(x) = E±λM±

a,0(x) we get the most general description,
namely

̂E±λM±
a,0(ξ) = f̂±λ(ξ) =

Γ(a + 1)
e±

π
2
(a+1)i(ξ ∓ iλ)a+1

. (1.6)

As before, this implies that

̂E±λM±
a,k(ξ) =

∂k

∂ak

(
Γ(a + 1)

e±
π
2
(a+1)i(ξ ∓ iλ)a+1

)
(1.7)

For a > −1 each monomial M±
a,k(x) is locally integrable and thus naturally defines a

generalized function (distribution) on R. We get two real analytic maps

(−1,∞) 3 a 7→M±
a,k ∈ D′(R) = the sapce of distributions on R.

As explained in [4], they admit meromorphic extensions to the entire plane with simple poles
located at Z<0 ⊂ C. They satisfy the functional equation

M±
a,k =

∂k

∂ak
M±

a,0, ∀ a ∈ C \ Z<0.

For any f ∈ L1(R) we have defined the Fourier transform of f to be

f̂(ξ) =
∫ ∞

−∞
e−ixξf(x) dx.

For a > −1 and λ > 0 the distribution E±λM±
a,0 is integrable and its Fourier transform is

̂E±λM±
a,k(ξ) =

∂k

∂ak

(
Γ(a + 1)

e±
π
2
(a+1)i(ξ ∓ iλ)a+1

)
.

The Fourier transform of the distribution M±
a,k is then the distribution

M̂±
a,k(ξ) =

∂k

∂ak
lim
λ↘0

Γ(a + 1)
e±

π
2
(a+1)i(ξ ∓ iλ)a+1

=:
∂k

∂ak

(
Γ(a + 1)

e±
π
2
(a+1)i(ξ ∓ 0i)a+1

)
. (1.8)

The last equality should be understood as follows. For every tempered test function φ ∈ S(R)
we have

∂k

∂ak

〈
Γ(a + 1)

e±
π
2
(a+1)i(ξ ∓ iλ)a+1

, φ̂(ξ)
〉

= 2π
∂k

∂ak

∫
R

M±
a,0(x)φ(x) dx, ∀ a > −1.

Because zβ =
(
|z|ei arg z

)β = |z|βeiβ arg z we deduce

(ξ ± 0i)−(a+1) =

 |ξ|−(a+1) on ξ > 0

e±πi(a+1)|ξ|−(a+1) on ξ < 0
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We conclude that the restriction of M̂±
a,0 to ξ > 0 is a monomial in C[P] and we have

M̂±
a,0(ξ) =

(
e∓

π
2
(a+1)i

)
Γ(a + 1)M−(a+1),0(ξ), ∀ a > −1, ξ > 0.

More generally, we get

M̂±
a,k(ξ) =

∂k

∂ak

((
e∓

π
2
(a+1)i

)
Γ(a + 1)M−(a+1),0(ξ)

)
, a > −1, ξ > 0. (1.9)

Note that if a is a nonnegative half-integer, a = n/2 then for ξ � 0 we have

M̂±
n/2,0(ξ) = e∓

π
2
(n/2+1)iΓ(n/2 + 1)ξ−1−n/2 =

∓ie∓nπi/4Γ(1 + n/2)
ξ1+n/2

(1.10)

When n is even we have
Γ(1 + n/2) = (n/2)!.

When n is odd, n = 2k − 1 we have

Γ(1 + n/2) = Γ((2k + 1)/2) =
(k − 1)!

2k−1
Γ(1/2) =

(k − 1)!
2k−1

√
π.

2. Basics of asymptotic analysis

2.1. Regular Singular Asymptotics. We would like to study the asymptotic behavior of
integrals of the type ∫ ∞

0
eiφ(x)ξf(x) dx,

where the amplitude f is ≡ 0 near ∞ and both the phase φ(x) and the amplitude f(x) have
certain asymptotic expansions near 0. To describe them we first discuss the building blocks
of such expansions.

Set
P = {(a, k) ∈ R× Z | k ≥ 0}.

The weight is the canonical projection

w : P→ R, (a, k) 7→ a.

The multiplicity is the natural projection

ν : P→ Z≥0, (a, k) 7→ k.

Thus, for any p ∈ P we have
p = (w(p), ν(p)).

P is equipped with a natural involution

p 7→ p̌ = (−w(p), ν(p)).

Define
Mp(x) = |x|w(p)(log |x|)ν(p), x 6= 0.

Observe that
Mp(x) ·Mq(x) = Mp+q(x), ∀ p, q ∈ P. (2.1)

and
d

dx
Ma,k = aMa−1,k + kMa−1,k−1, ∀ a > 0. (2.2)

We introduce a linear order relation on P as follows.

p ≺ q⇐⇒Mq = o(Mp), as x↘ 0⇐⇒ lim
x↘0

Mq(x)
Mp(x)

= 0.
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Equivalently, if p = (a, k), q = (b, m) then

(a, k) ≺ (b, m)⇐⇒ a < b or a = b, k > m.

Observe that
p ≺ p′, q ≺ q′ =⇒ p + q ≺ p′ + q′.

We can now define intervals
Pp := {q ∈ P | q � p},

Pp := {q ∈ P | p � q}, Pp
q = Pp ∩ Pq.

A set P ⊂ P is upper locally finite (u.l.f.) if

∀ p ∈ P, #(P ∩ Pp) <∞.

A set P ⊂ P is lower locally finite (l.l.f.) if P̌ is upper locally finite i.e.

∀ p ∈ P, #(P ∩ Pp) <∞.

A set P ⊂ P is locally finite (l.f.) if it is the union of a l.l.f and an u.l.f. set. Observe that P
is u.l.f (resp. l.l.f.) if for any w′ ∈ R there are only finitely many p ∈ P such that

w(p) ≤ w′ (resp. w(p) ≥ w′).

We define the oscillation index ω+(P ) of an u.l.f. set P by

ω+(P ) = min{w(p) | p ∈ P}.
The oscillation index ω−(P ) of a l.l.f. set P by

ω−(P ) = max{w(p) | p ∈ P}.
The index set of P is the set w(P ) ∈ R. Observe that the index set of a l.f. set is discrete.

Denote by C[P] the complex vector space spanned by {Mp | p ∈ P}. It is naturally a
C-algebra with multiplication induced by equation (2.1). M0,0 is the multiplication unit in
this algebra and we will denote it by 1. It is equipped with a natural involution defined by

Ma,k(x)←→ M̌a,k(x) = Ma,k(1/x) = (−1)kM−a,k(x).

Equivalently
M̌p = (−1)d(p)Mp̌.

We now define two completions C[[P]] of C[P ], the upper completion C[[P]]+ and the lower
completion C[[P]]−.

More precisely C[[P]]+ consists of all formal sums

A =
∑
p∈P

apMp,

where a : P→ C, p 7→ ap, is a function with u.l.f. support. For every A ∈ C[[P]]+ we set

suppA := {p ∈ P | ap 6= 0}.
We define a multiplication on C[[P]]+ by(∑

p∈P

apMp

)
∗
(∑

q∈P

bqMq

)
=
∑
s∈P

( ∑
p+q=s

apbq

)
Ms

Due to the equality (2.2) the derivative

d

dx
: C[P]→ C[P]
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extends to a derivation of the C-algebra (C[[P]]+,+, ∗).
d

dx
: C[[P]]+ → C[[P]]+.

The oscillation index of A ∈ C[[P]]+ is defined by

ω+(A) := ω+(supp A).

Note that

ω+(AB) = ω+(A) + ω+(B), ω+

(
d

dx
A

)
= ω+(A)− 1.

We define C[[P]]− in a similar fashion. Note that the involution A←→ Ǎ on C[P] induces an
isomorphism of C-algebras

C[[P]]+ ←→ C[[P]]−, A←→ Ǎ.

Observe that
C[P] = C[[P]]+ ∩ C[[P]]−.

An element A ∈ C[P] is called homogeneous if the index set of suppA consists of a single
point. In other words A has the form

A = xw
∑
k∈F

ak(log x)k

where F ⊂ Z≥0 is a finite set. The real number w is called the weight of A.
Suppose u : (0,∞) → C is a smooth function. We say that u admits a regular singular

asymptotic expansion at 0 if there exists A =
∑

p∈P apMp ∈ C[[P]]+ such that

u ∼ A as x↘ 0.

This means that for all ` ∈ Q and for all k ∈ Z≥0 we have∣∣∣ ∂

∂xk

(
u(x)−

∑
w(p)<`

apMp(x)
)∣∣∣ = o(|x|`−k) as x↘ 0.

The series A is uniquely determined by u and we set

[u]0 := A, L0
p(u) = ap.

That is to say, we can now write

[u]0 =
∑
p∈P

L0
p(u)Mp.

We denote by A+
0 the vector space of functions u : (0,∞)→ C which admit regular singular

asymptotic expansion at 0, and by A−
0 the vector space of functions v : (−∞, 0)→ C which

admit regular singular asymptotics at 0.
Similarly, we say that u admits a regular singular asymptotic expansion at∞ if there exists

B ∈ C[[P]]− such that u ∼ B ∈ C[[P]]− as x→∞. This means that for all ` ∈ Q and every
k ∈ Z≥0 we have ∣∣∣∣∣∣ ∂k

∂xk

(
u(x)−

∑
w(p)<`

bpMp(x)
)∣∣∣∣∣∣ = o(|x|`−k) as x→∞.

Equivalently,
u(1/x) ∼ B̄(x), as x↘ 0.
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We write
[u]∞ := B.

We define A∞ to be the vector space of smooth functions u : (0,∞) → C which have
regular singular asymptotic expansions at∞. Clearly, the spaces A±

0 and A∞ are C-algebras.
Moreover we have morphisms of C-algebras

[•]0 : A±
0 → C[[P]]+, u 7→ [u]0, [•]∞ : A∞ → C[[P]]−, u 7→ [u]∞.

Note that we have a natural isomorphism of C-algebras

ˇ: A+
0 → A∞, u(x) 7→ ǔ(x) = u(1/x).

Using equation (1.9) as a guide we define the formal one-sided Fourier transforms

F± : C[[P]]+ → C[[P]]−, F±(Ma,k) :=
∂k

∂ak

((
e∓

π
2
(a+1)i

)
Γ(a + 1)M−(a+1),0

)
. (2.3)

2.2. Large Frequency Asymptotics. We want to prove that the Fourier transform maps
a function with regular singular asymptotics at x → 0 to a function with regular singular
asymptotics at ξ → ∞. Before we state and prove the main result we need to present some
elementary facts.

For every absolutely integrable function f : (0,∞) → C which is identically zero near ∞
we denote by I±ξ (f) the Fourier transform of the restriction of f to the semi-axis ±x > 0, i.e.

I±ξ (f) :=
∫
±x>0

e−ixξf(x) dx =
∫

R
e−ixξf(x)M±

0,0(x) dx, ξ > 0.

We would like to study the asymptotic behaviour of I±ξ (f) as ξ →∞. Set

D := i
d

dx
.

We begin with a special case when the amplitude f(x) is identically zero in a neighborhood
of 0.

Lemma 2.1. Suppose ϕ : (0,∞) → C is a compactly supported smooth function. Then
Iξ(ϕ) ∈ A∞ and [I(ϕ)]∞ = 0, i.e., for every integer N > 0 we have

lim
ξ→∞

I±ξ (ϕ)ξ−N = 0.

Proof Using the identity
Dn(ξ−ne−ixξ) = eixξ

we obtain after an integration by parts n times we deduce that

I+
ξ (ϕ) =

(1
ξ

)n
Iξ(Dnϕ).

Hence for every n > 0 we have

|Iξ(f)| ≤ ξ−n sup |Dnϕ(x)|.

ut

We fix a smooth function η : R → [0, 1], such that η(x) = 1 if |x| ≤ 1 and η(x) = 0 if
|x| ≥ 2.
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Lemma 2.2. Suppose g ∈ C[P] is a homogeneous element of weight w(g) < −1. Then

(1− η)g ∈ L1(R),

I±ξ ((1− η)g) ∈ A∞(ξ) and [I±ξ ((1− η)g]∞ = 0.

Proof We prove this Lemma only for I+. The integrability of (1 − η)g follows from the
weight condition on g and the support properties of (1 − η). Observe next that for every
positive integer m the derivative Dmg is homogeneous of weight w(g)−m and we have

lim
|x|→∞

Dmg(x) = 0, Dm(1− η)(x) ≡ 0, ∀ |x| � 1.

Using these facts we deduce

I+
ξ ((1− η)g) = ξ−n

∫ ∞

0
Dn(eiξ)(1− η)g dx = ξ−n

∫ ∞

0
eixξDn((1− η)g) dx.

Using Leibniz product formula we deduce

I+
ξ ((1− η)g) = ξ−n

n∑
k=0

(
n

k

)
Iξ(Dk(1− η)Dn−kg)

so that

|I+
ξ (1− ηg)| ≤ ξ−n

n∑
k=0

(
n

k

)∫ ∞

0
|Dk(1− η)Dn−kg| dx.

ut

Lemma 2.3. Suppose g ∈ C[P] is homogeneous of weight w(g) > −1. Then

I±ξ (ηg) ∈ A∞(ξ) and [I±(ηg)]∞ = F±(g),

where F± denote the formal Fourier transforms defined in equation 2.3.

Proof We prove this Lemma only for I+. Let G := F +(g). We know that

G(ξ) = lim
τ↘0

I+
ξ (Eτg), Eτ (x) = e−τx.

Observe that
I+
ξ (ηg) = lim

τ↘0
I+
ξ (Eτηg).

Thus we have to show that

lim
τ↘0

I+
ξ (Eτ (1− η)g)

)
∼ 0, as ξ →∞,

that is for any positive integer N > 0 we have

lim
ξ→∞

ξ−N
(

lim
τ↘0

I+
ξ (Eτ (1− η)g)

)
= 0.

Observe that
Deixξ−τx = (ξ + iτ)eixξ−τx.

So that
eixξ−τx = Dm

{
(ξ + iτ)−meixξ−τx

}
, ∀ m > 0.

Set for simplicity Eξ,τ = eixξ−τx. Suppose n is a positive integer such that

w(g)− n < 1⇐⇒ n > w(g)− 1.



16 ZACH LAMBERTY

We deduce that

I+
ξ (Eτ (1− η)g) = (ξ + iτ)−n

∫ ∞

0
Eξ,τD

n((1− η)g).

= (ξ + iτ)−n
n∑

k=0

(
n

k

)∫ ∞

0
Eξ,τD

k(1− η)Dn−kg dx.

For 0 < k ≤ n the function Dk(1 − η)Dkg is compactly supported and from Lemma 2.1 we
deduce

lim
τ↘0

∫ ∞

0
Eξ,τD

k(1− η)Dn−kg dx = I+
ξ (Dk(1− η)Dkg) ∼ 0, as ξ →∞.

We still have to deal with the remaining term (1− η)Dng. Observe first that Dng ∈ C[P] is
homogeneous of weight w(g)−n < −1. We deduce that the function (1−η)Dng is integrable
and from the dominated convergence theorem we deduce that

lim
τ↘0

I+
ξ (Eτ (1− η)g) = I+

ξ ((1− η)g).

Lemma 2.2 now implies that I+
ξ ((1− η)g) ∼ 0 as ξ →∞.

ut

Lemma 2.4 (Riemann-Lebesgue). Let g ∈ A0(x) and n ∈ Z≥0 such that ω+([g]0) > n. Then

I±ξ (ηg) = o(ξ−n−1), as ξ →∞

Proof We prove the Lemma only for I+. The condition on the oscillation index of g implies
that Dn+1(ηg) ∈ L1(0,∞).

Dkg(0) = 0, ∀ 0 ≤ k ≤ n.

Let h := Dn+1(ηg). The extension of h(x) by zero for x < 0 is in L1(R) and we have

I+
ξ (ηg) =

1
ξn+1

∫
R

Dn(eixξ)ηg dx = ξ−n−1

∫
R

eixξh(x) dx.

We have to show that

Iξ(h) =
∫

R
eixξh(x) dx = o(1) as ξ →∞.

This is a generalization of the classical Riemann-Lebesgue Lemma. For a very elegant proof
we refer to [6, p.14].

ut

Proposition 2.5. Suppose f ∈ A0(x), ω+([f ]0) > −1 Then

I±ξ (ηf) ∈ A∞(ξ)

and
[I±ξ (ηf)]∞ = F±([f ]0),

where F± denote the formal Fourier transforms F± : C[[P ]± → C[[P ]]+ defined in equation
(2.3).
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Proof We prove the proposition only for I+
ξ . Set

A = [f ]0 =
∑

w(p)>−1

ApMp, B = F +(A) :=
∑

w(q)<0

BqMq.

Recall that for every p ∈ P, w(p) > −1 the Fourier transform of Mp is homogeneous of weight
−w(p)− 1. For every nonnegative integer n we set

An =
∑

−1<w(p)≤n

ApMp, fn = f −An, Bn =
∑

−n−1≤w(q)<0

BqMq.

We have to prove that for every positive integer n we have

|I+
ξ (ηf)−Bn(ξ)| = o(ξ−n−1) as ξ ↗∞.

Observe that fn ∈ A0 and ω+([fn]0) > n and Bn = F +(An). By the Riemann-Lebesgue
Lemma we have

I+
ξ (ηfn) = o(ξ−n−1), as ξ ↗∞.

On the other hand Lemma 2.3 implies

I+
ξ (ηAn) = Bn(ξ) + o(ξ−n−1) as ξ ↗∞.

Hence
I+
ξ (ηf) = I+

ξ (ηAn) + I+
ξ (ηfn) = Bn(ξ) + o(ξ−n−1) as ξ ↗∞.

ut

We would now like to investigate the asymptotics as ~↘ 0 of the integrals

I~ =
∫ ∞

−∞
e±ixj/~η(x) dx,

where η is a compactly supported smooth function, and j is a positive integer. For simplicity
we will consider only the cases j = 2, 3 because they contain all the intricacies of the general
situation. Observe that η admits an asymptotic expansion near x = 0,

η(x) ∼
∑
k≥0

ηkx
k, etak =

1
k!

η(k)(0).

We replace 1/~ with ξ and instead study Iξ =
∫∞
−∞ e±iξxj

η(x) dx.

Example 2.6 (j = 2). We shall start by stu dying the asymptotics of the integral

Iξ =
∫ ∞

−∞
eεiξx2

η(x) dx, as ξ ↗∞, ε = ±1.

By evenness of the integrand we have

Iξ = 2
∫ ∞

0
eεix2ξη(x) dx.

We distinguish two cases.
A. ε = 1 We make the change in variables

y = −x2, −∞ ≤ y < 0⇐⇒ x = |y|1/2 =⇒ dx =
− dy

2(−y)−1/2
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Hence, as ξ ↗∞ we have

Iξ =
∫ 0

−∞
e−iξy|y|−1/2η(|y|1/2) dy ∼ η0F−[M−1/2,0] + O(|ξ|−3/2)

= η0e
π
4
iΓ(1/2)ξ−1/2 + O(|ξ|−3/2).

B. ε = −1 We make the change in variables

y = x2, 0 ≤ y <∞⇐⇒ x = y1/2 =⇒ dx =
dy

2y−1/2

Hence

Iξ =
∫ ∞

0
e−iyξy−1/2η(y1/2) dy ∼ η0F +[M−1/2,0]+O(|ξ|−3/2) = η0e

−π
4
iΓ(1/2)ξ−1/2+O(|ξ|−3/2).

Summarizing,

Iξ =
∫ ∞

−∞
e±iξx2

η(x) dx ∼ e±iπ/4√πη0ξ
−1/2 + O(|ξ|−3/2).

ut

Example 2.7 (j = 3).

Iξ =
∫ ∞

−∞
e±iξx3

η(x) dx.

We first note that under the change of variables x = −t,∫ ∞

−∞
eiξx3

η(x) dx =
∫ ∞

−∞
e−iξt3η(t) dt,

so we need only consider one case. We will choose the negative case.
We must first separate the integral into two pieces, and then make our substitution.∫ ∞

−∞
e−iξx3

η(x) dx =
∫ 0

−∞
e−iξx3

η(x) dx +
∫ ∞

0
eiξx3

η(x) dx

In both cases we make the change of variable y = x3, and we thus obtain∫ ∞

−∞
eiξx3

η(x) dx =
1
3

[∫ ∞

0
e−iyξ|y|−2/3η(y1/3) dy +

∫ 0

−∞
e−iyξ|y|−2/3η(y1/3) dx

]

∼ η0

3
[
F +[M−2/3,0] + F−[M−2/3,0]

]
=

η0

3
Γ
(

1
3

)[
e−

π
6
i + e+π

6
i
]
ξ−1/3 + O(|ξ|−4/3).

ut

As one can readily see, these calculations are not easy, but they are at least possible, and
knowing how is a significant improvement over our previous situation.
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3. Higher Dimensions

In this last section we discuss the asymptotics of oscillatory integrals of two variables.
More precisely, we investigate the large ξ behavior of integrals of the type1

Iξ(a;φ) =
∫

R2

eiξφ(x,y)a(x)|dxdy|

where φ is a polynomial in two variables with an isolated stationary point at the origin, while
the amplitude a is a smooth, compactly supported function.

We will follow the approach pioneered by A. Varchenko which reduces this problem to
simpler oscillatory integrals with monomial phases via the process of toric resolutions.

3.1. Basic Monomials. We will start our higher dimension discussion by considering oscil-
latory integrals of the form

Ipm(ξ, ρ) =
∫

e±iξxAyB
ρ(x, y) |dx dy|, m, n ≥ 0

where A,B ∈ Z, A ≤ B, and ρ ∈ C∞(R2) is a nonnegative smooth function supported in the
box

B = [−1, 1]× [−1, 1].

In order to get a handle on this integral we invoke a trick of I.M. Gelfand and J. Leray,
namely, replacing our y variable with the phase function itself, in a sense treating φ as the
independent variable.

In order to avoid future complications, there are a few cosmetic changes that need to
take place before we can nail down φ. First of all, we would like for the two powers in the
expression of φ to be relatively prime. In order to do so, let d = gcd(A,B). Using the
notation ad = A, bd = B we can then write

I±(ξ, ρ) =
∫

B
e±iξ(xayb)d

ρ(x, y) |dx dy|.

We would now like to treat this not as a function of x and y but rather as a function of x
and the phase variable φ = xayb. This is possible only away from the two coordinate axes
x = 0, y = 0. Denote by B∗ the complement of the two axes in the box B. This complement
is a union of four boxes B1, . . . , B4 corresponding to the four quadrants. We have

I(ξ) =
∫

B∗
e±iξ(xayb)d

ρ(x, y) |dx dy| =
4∑

k=1

∫
Bk

eiξ(xayb)d
ρ(x, y) |dx dy|︸ ︷︷ ︸

=:I±k (ξ)

We investigate only the asymptotics of I+
1 (ξ, ρ), the integral over the first quadrant, since the

other cases are completely similar. Note that

y = (φx−a)1/b, dφ = axa−1ybdx + bxayb−1dy,

dy =
dφ− axa−1ybdx

bxayb−1
.

1The notation |dxdy| indicates that we regard the integrand as a density and not as a differential form.
The reason that we need to work with densities rather than differential forms is that we will be forced to work
on non-orientable surfaces.
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Because dx ∧ dx = 0,

dx ∧ dy =
1
b
x−ay1−bdx ∧ dφ =

1
b
x−a/bφ1/b−1dx ∧ dφ.

We have that
I±1 (ξ) =

1
b

∫
B1

e±iξφd
ρ(x, x−a/bφ1/b)x−a/bφ1/b−1|dxdφ|.

To obtain this asymptotics we integrate along the fibers of the function

φ : B1 = (0, 1]× (0, 1]→ (0,∞)

Note that along the level set φ = c we have c1/a ≤ x ≤ 1. We set

J1(φ; ρ) :=
1
b
φ1/b−1

∫ 1

φ1/a

ρ
(
x, x−a/bφ1/b

)
x−a/bdx.

Observe that J1(φ) is supported in the interval [0, 1]. From Fubini’s formula we deduce

I±1 (ξ) =
∫ ∞

0
e+±iξφd

φ1/b−1J1(φ; ρ)dφ,

Of course, I1 looks very similar to the functions we studied in Chapter 2. In fact, to use all
of our previous conclusions we need only determine whether or not the function J(φ) has a
regular singular asymptotic expansion near the origin.

We have by assumption that ρ(x, y) has a regular singular asymptotic expansion near (0, 0),

ρ(x, y) ∼ A(x, y) =
∑

k,`≥0

ak` xky`.

We have

J1(φ, xky`) =
1
b
φ(`+1)/b−1

∫ 1

φ1/a

xk−(`+1)a/bdx

=


1

ab( (k+1)/a−(`+1)/b ))

(
φ(`+1)/b−1 − φ(k+1)/a−1

)
if (k + 1)/a 6= (` + 1)/b

− 1
abφ

(`+1)/b−1 log φ if (k + 1)/a = (` + 1)/b.

In the second case we must have
k + 1
` + 1

=
a

b
and since the fraction a/b is irreducible we deduce that (` + 1) must be an integer multiple
of b, ` + 1 = (m + 1)b, m ≥ 0.

We would like to introduce here a useful notation for the sets of exponents that will result
from calculations of this type. From above, we will get a certain type of contribution when
the value (k+1)/a is not equal to the value of (`+1)/b, (and k and ` are both by assumption
greater than or equal to zero), as well as contributions containing logarithmic terms when
those two values are equal. Denote by

Pa,k :=
{

k + 1
a

,
k + 2

a
, . . .

}
.

Note in particular that P1,0 = Z≥1. Using this notation, we deduce that J(φ, ρ) has an
asymptotic expression of the form

J1(φ, ρ) =
∑

α∈Pa,0, β∈Pb,0

φ−1
(

Aαφα + Bβφβ
)

+
∑

γ∈Pa,0∩Pb,0

Cγφγ−1 log φ. (3.1)
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More generally, the above argument shows that for any smooth function ρ supported in B,
and any nonnegative integers µ, ν we have

J1(φ, xµyνρ) =
∑

α∈Pa,µ, β∈Pb,ν

φ−1
(

Aαφα + Bβφβ
)

+
∑

γ∈Pa,µ)∩PB,ν

Cγφγ−1 log φ (3.2)

Putting together all of the above we deduce the following result.

Proposition 3.1. Suppose ρ ∈ C∞(R2) is supported in R2. Then for every A,B ∈ Z>0 we
set

D = gcd(A,B), a =
A

D
, b =

B

D
, I±A,B(ξ; ρ) :=

∫
R2

e±iξxAyB
ρ(x, y)|dxdy|.

Then

I±A,B(ξ; ρ) =
∫ ∞

0
e±iξφD

J+
µ,ν(φ, ρ)dφ +

∫ 0

−∞
e±iξφd

J−µ,ν(φ, ρ)dφ

where J±(φ; ρ) are smooth functions defined on the semiaxis {±φ > 0} which near φ = 0
admit regular singular asymptotic expansions of the form

J±(φ; ρ) ∼
∑

α∈Pa,0, β∈Pb,0

|φ|−1
(

A±
α (ρ)|φ|α + B±

β (ρ)|φ|β
)

+
∑

γ∈Pa,0∩Pb,0

Cγ(ρ)|φ|γ−1 log |φ|.

Above the coefficients A±
α (ρ), B±

β (ρ), C±γ (ρ) depend linearly2 on the amplitude ρ. Moreover,
for any compactly supported smooth function ρ : R2 → R and any non-negative integers µ, ν
we have

A±
k (xµyνρ) = B±

` (xµyνρ) = C±m(xµyνρ) = 0

if α ∈ Pa,0 \ Pa,µ, β ∈ Pb,0 \ Pb,ν , γ 6∈ Pa,µ ∩ Pb,ν .

Using Proposition 2.5 we deduce as in Example 2.7 the following result.

Corollary 3.2. For any positive integers A,B, and any α ∈ PA,0, β ∈ PB,0, γ ∈ PA,0 ∩PB,0

there exist distributions uα, vβ, wγ on R2 such that, the following hold.
(a) The distributions uα, vβ, wγ are supported at 0 ∈ R2, i.e., uα(ρ) = vβ(ρ) = wγ(ρ) = 0,
for all ρ ∈ C∞

0 (R2), 0 6∈ supp ρ.
(b)For all ρ ∈ C∞

0 (R2) we have the regular singular asymptotic expansion as ξ ↗∞,

I±A,B(ξ, ρ) ∼
∑

α∈PA,0

uα(ρ)|ξ|−α +
∑

β∈PB,0

vβ(ρ)|ξ|−β +
∑

γ∈PA,0∩PB,0

γ(ρ)|ξ|−γ log |ξ|,

where D = gcd(A,B).
(c)

uα(xµyνρ) 6= 0 =⇒ α ∈ PA,µ,

vβ(xµyνρ) 6= 0 =⇒ β ∈ PB,ν ,

wγ(xµyνρ) 6= 0 =⇒ γ ∈ PA,µ ∩ PB,ν .

2More rigorously, they are distributions supported at the origin 0 ∈ R2. As such they are certain universal
linear combinations of the Dirac function and its partials.
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3.2. Non-Monomials. While the preceding discussion has allowed us to appropriately cal-
culate the asymptotics of integrals with phase functions of monomial terms, it would certainly
be nice to consider phase functions which are not monomials. It turns out that, again, we
will be able to take a difficult object and convert it into one with which we are more familiar.
In this instance, we will find that phase functions which are not monomials can, by a rather
elegant detour, be treated as monomials in a different space. This space’s fancy title (which
will be made more transparent soon) is the toric resolution of the phase φ. But before we
can start integrating, we have to figure out what each of the words in that title means.

For the purposes of this paper, we have decided that it is more enlightening to go through
a specific example of this process than to demonstrate it’s viability in all generality. Should
the reader be interested in the full derivation of this process for all dimensions, we heartily
recommend they pick up [2].

The phase with which we have chosen to work was not chosen because of some special
property or coincidence which would make its computation easier; it was selected at random.
We invite the reader to follow the steps with a completely different and equally random phase,
and the process will be exactly the same. But enough beating around the bush! The phase
we will work with for this long example is

φ(x, y) = A(6,0)x
6 + A(5,7)x

5y7 + A(2,4)x
2y4 + A(0,10)y

10.

We should note here that there are some constraints on the coefficients for this polynomial,
but that the set of numbers for which this process will not work is completely negligible. We
will describe the constraints at a more appropriate time.

We have written the terms in order of decreasing values of the exponential of x for reasons
that will be apparent forthwith. As we can see from Figure 1, our phase φ has an isolated
stationary point at the origin which is solely responsible for the asymptotics of an integral
involving φ.

The first step in this construction is to generate from this phase the geometric object called
the Newton Polygon of our polynomial φ(x, y). Also note here that the subscripts on the
coefficients of each individual monomial represent the powers of the x and y variables. We
can think of these pairs of numbers as being points in the positive quadrant of R2. The
Newton Polygon can be thought of as the convex hull of these points and the points (∞, 0)
and (0,∞). The edges of this polygon are shown in Figure 2, and it is important to note
that not every point in the polynomial will contribute to this polygon.

The next step is to calculate the slope of each of the lines of our polygon, and thereby
find the slope of the normal vectors to each of them. We number the lines in the order we
encounter them as we move counterclockwise from the x axis to the y axis. Letting mi denote
the slope of the line and si the slope of its normal, we find

s1 = 0 → m1 =∞
s2 = −1 → m1 = 1

s3 = −3 → m1 =
1
3

s4 =∞ → m1 = 0

The purpose of finding the slopes of the normals to these lines is in order that we might
construct an object known as the fan associated to the Newton Polygon of φ. Quite simply,
the associated fan is the normal vectors and the regions which lie between them. If we were
to write these slopes in fractional terms (where we set 0 = 0

1 and ∞ = 1
0), we obtain the

x and y coordinates of our normal rays from the denominator and numerator, respectively.
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Figure 1. φ(x, y) = 0 in R2.

Figure 2. The Newton polygon associated to φ.

Thus

m1 =
1
0
→ r1 = (0, 1)

m2 =
1
1
→ r2 = (1, 1)

m3 =
1
3
→ r3 = (3, 1)

m4 =
0
1
→ r4 = (1, 0)



24 ZACH LAMBERTY

If we plot these rays, the associated fan looks like Figure 3.

r1

r4

r3r2

C1 C2

C3

Figure 3. The fan associated to the Newton Polygon of φ.

First, we must get some more notation out of the way. Denote by Ci the cone bounded by
rays ri and ri+1, and denote by Wi the matrix whose columns are the components of rays ri

and ri+1. For the current fan, we have

W1 =
[

1 3
0 1

]
, W2 =

[
3 1
1 1

]
, W3 =

[
1 0
1 1

]
,

We will refer to Wi as the weight matrices. For reasons that are not at all transparent right
now, but very crucial, we need to have each of these Wi be unimodular, i.e. det(Wi) = 1.
While this requirement is satisfied by matrices W1 and W3, it is not for W2. In order to
resolve this problem, we turn to a process called refinement of the cone. Pictorally, this
process looks to find a suitable subdivision of cone C2. Looking at Figure 3, imagine we fix
ray r2 at it’s terminal point (i.e. at the arrowhead) and swing the origin point clockwise. The
refinement of the fan adds the first lattice point inside cone C2 this rotating line hits. In this
case, that point is the point (2, 1). With this new point, we have a fan which is depicted in
Figure 4. What we have done graphically can also be accomplished numerically via a formula
utilizing continued fractions.

We would now like to take stock of our new W matrices and, thinking ahead a bit, list
their inverses:

W1 =
[

1 3
0 1

]
, W2 =

[
3 2
1 1

]
, W3 =

[
2 1
1 1

]
, W4 =

[
1 0
1 1

]

W1
−1 =

[
1 −3
0 1

]
, W2

−1 =
[

1 −2
−1 3

]
, W3

−1 =
[

1 −1
−1 2

]
, W4

−1 =
[

1 0
−1 1

] .

The reason for writing out the inverses of these matrices is to create yet another in a seemingly
endless chain of matrices. We title these matrices gluing matrices for reasons which, again,
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C1

r1

C2 C3

C4

r2 r3 r4

r5

Figure 4. The refined fan.

will be apparent in due time. Let Gi+1,i = W−1
i+1Wi. Then

G2,1 =
[

1 1
−1 0

]
, G3,2 =

[
2 1
−1 0

]
, G4,3 =

[
2 1
−1 0

]
3.3. The Associated Toric Surface. And so, at long last, some explanation is in order.
What we have done in constructing these W and G matrices is found numbers which can be
used to describe a smooth atlas for a surface which is called the toric surface associated to
our fan. Essentially, to each cone of our refined fan we associate a copy of R2, and in this
copy the coordinates are labeled (xi, yi). These copies of R2 are then glued together in a very
particular way encoded by the matrices Gi+1,i. Because Ci and Ci+1 share a common edge
there ought to be a relationship between the ith and (i + 1)th copies given by

x2 = x1y1

y2 = x−1
1

, x1 6= 0,
x3 = x2

2y2

y3 = x−1
2

, x2 6= 0,
x4 = x3

2y3

y4 = x−1
3

, x3 6= 0. (3.1)

Using a rather abusive notation, the above equalities can be rewritten as

log
[

xi+1

yi+1

]
= Gi+1,i log

[
xi

yi

]
.

To our fan F = {C1, C2, C3, C4}, we associate the toric surface S(F) defined by the atlas

U1, U2, U2, U4,

where each of the Ui’s is a copy of R2 with coordinates (xi, yi). The copy Ui is glued to the
copy Ui+1 via the gluing maps defined in (3.1).

The weight matrices Wi define the blowdown map

β : S(F) −→ R2(x, y) = the Cartesian plane with coordinates (x, y).
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as follows. Letting βi = β|Ui , we have the following four maps in this case (note how the
exponents are defined in terms of the numbers in Wi for each βi).

(x1, y1)
β17−→ (x, y) := (x1y1

3, y1), (x2, y2)
β27−→ (x, y) := (x2

3y2
2, x2y2),

(x3, y3)
β37−→ (x, y) := (x3

2y3, x3y3), (x4, y4)
β47−→ (x, y) := (x4, x4y4).

Using the aforementioned “sloppy notation”, this can be written in shorthand as

log
[

x
y

]
= Wi log

[
xi

yi

]
.

It is worth our time to examine what this map tells us about our toric surface S(F). In
particular, we note what happens to the exceptional divisor of the map β (i.e. the zero locus
E = β−1(0)).

Figure 5. The exceptional divisor in U1 ⊂ S(F).

Let Ei = E ∩ Ui. Then in U1, E1 = {(x1, y1) | y1 = 0}. As can be seen in Figure 5, this
is simply the x axis in U1. More importantly though, we see that in U2 we have

E2 = {(x2, y2) | x2 = 0 or y2 = 0} .

What is interesting here is that, according to our gluing maps defined by the matrices Gi+1,i,
the portion of E2 defined by the condition x2 = 0—the y axis—is exactly the x axis of U1,
which we showed to be E1. The correspondence is shown in Figure 6. Furthermore, the gluing
maps identify the origin in U2 with the point at infinity on the x axis in U1, and vice-versa.
In a similar fashion, it can be shown that each Ei is either one or both of the axes, and that
one axis can be identified with one of the space above (when such a space exists), and the
other with an axis in the space below (again, when it exists).

When we put together all of the pieces here, we can think of these overlapping axes as
being rings that are attached to each other, but in a special way. Those axes which are glued
together are done so with a global flip. This flip is representative of the fact that the part
of the axes extending to infinity in one Ui are converging to the origin in the neighboring
Ui±1. To get a bit of intuition about what this means, I created a three-dimensional model of
this situation, and the picture has been included here as Figure 7. In particular, it is worth
mentioning that the surface is nonorientable!
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Figure 6. The exceptional divisor in U2 ⊂ S(F).

3.4. Integrating on the Toric Surface. And now finally, at long last, we can integrate.
The structure we have labored so hard to create can be summarized by the following diagram

S(F) R2

R

w

β

[
[
[
[]φ◦β
u

φ

The blowdown map β : S(F)→ R2 has the property that it induces a diffeomorphism

β : S(F) \ E → R2 \ 0, E := β−1(0).

Thus ∫
R2

eiξφ(x)a(x)|dxdy| =
∫

S(F)\E
eiξβ∗(φ)β∗(a)β∗|dxdy|.

We will see that the integral over S(F) \E becomes much simpler. In fact, it becomes a sum
of oscillatory integrals over R2 with monomial phases!
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Figure 7. The toric resolution is a chain of three Möbius bands and two “moustaches”.

First, we calculate what the function β∗(φ) = φ ◦ β : S(F) −→ R behaves like on each
chart Ui. The zero set of the function φ ◦ β is called the total transform of the curve {φ = 0}
in the plane with coordinates x, y. The preimage β−1(0) is called the exceptional divisor. For
simplicity we set φi := φ ◦ βi.

φ1 = A6,0(x1y1
3)6 + A5,7(x1y1

3)5(y1)7 + A2,4(x1y1
3)2(y1)4 + A0,10(y1)10

= y1
10
(
A6,0 x1

6y1
8 + A5,7 x1

5y1
12 + A2,4 x1

2 + A0,10

)
φ2 = A6,0(x2

3y2
2)6 + A5,7(x2

3y2
2)5(x2y2)7 + A2,4(x2

3y2
2)2(x2y2)4 + A0,10(x2y2)10

= x2
10y2

8
(
A6,0 x2

8y2
4 + A5,7 x2

12y2
9 + A2,4 + A0,10 y2

2
)

φ3 = A6,0(x3
2y3)6 + A5,7(x3

2y3)5(x3y3)7 + A2,4(x3
2y3)2(x3y3)4 + A0,10(x3y3)10

= x3
8y3

6
(
A6,0 x3

4 + A5,7 x3
9y3

6 + A2,4 + A0,10 x3
2y3

4
)

φ4 = A6,0(x4)6 + A5,7(x4)5(x4y4)7 + A2,4(x4)2(x4y4)4 + A0,10(x4y4)10

= x4
6
(
A6,0 + A5,7 x4

6y4
7 + A2,4 y4

4 + A0,10 x4
4y4

10
)

The level sets {φi = 0} for the phase φ(x, y) = x6 − x5y7 − 2x2y4 + 3y10 are depicted in
Figure 8. They were obtained using the Maple package algcurves.

We must note now that there is one constraint on the coefficients of this polynomial, and
therefore not every set of coefficients will be acceptable. For this process to work, the level set
φi = 0 must consists of connected smooth curves which intersect transversally. In particular,
no three components have a point in common. This translates into conditions on the the
partial derivatives of the phases φi along the axes xi and yi. However, random polynomials
with a given Newton polygon will satisfy these conditions with probability 1, so the instances
in which it is not the case are very rare. Polynomials satisfying these transversality conditions
are called Newton nondegenerate.

Next, we compute the pullback β∗|dxdy| of the area density |dxdy|. Observe that if we are
given a monomial map

(v1, v2)
µ7−→ (u1, u2) = (vm1

1 vm2
2 , vn1

1 vn2
2 ), det

[
m1 m2

n1 n2

]
= ±1,
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φ1 = β1 ◦ φ φ2 = β2 ◦ φ

φ3 = β3 ◦ φ φ4 = β4 ◦ φ

Figure 8. The total transform φ ◦ β = 0.

then

µ∗|du1du2| = |m1n2 − n1m2| · |vm1+n1−1
1 vm2+n2−1

2 dv1dv2| =
∣∣∣ vm1+n1−1

1 vm2+n2−1
2 dv1dv2

∣∣∣ .
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Hence we have that

β∗|dxdy||U1 = |y3
1||dx1dy1|, β∗|dxdy||U2 = |x3

2y
2
2||dx2dy2|

β∗|dxdy||U3 = |x2
3y3||dx3dy3|, β∗|dxdy||U4 = |x4||dx4dy4|.

Now choose a partition of unity on the toric surface S(F) subordinated to the open cover
U1, . . . , U4. In other words we choose four smooth functions ηj ∈ C∞(S), j = 1, . . . , 4 such
that

supp ηj ⊂ Uj ,
∑

j

ηj = 1.

Then ∫
R2

eiξφρ|dxdy| =
∫

S
eiξβ∗φβ∗ρβ∗|dxdy| =

4∑
j=1

∫
Uj

eiξφjρjwj |dxjdyj |

where
φj = ηjβ

∗φ, ρj = ηjρ, wj |dxjdyj | = β∗|dxdy||Uj .

The above computations shows that the weights wj are monomials. More precisely

w1(x1, y1) = |y1|3, w2(x2, y2) = |x3
2y

2
2|, w3(x3, y3) = |x2

3y3|, w4(x4, y4) = |x4|.
Now it should be clear that the asymptotics of the integral pieces

Ij(ξ) :=
∫

Uj

eiξφjρjwj |dxjdyj |

can be obtained using Corollary 3.2. To see how this is done, we will work with one specific
portion. Let us analyze the asymptotics of I2(ξ). We start by introducing some notation.

By design, every φi is of the form xi
myi

nφ̂i(xi, yi). For example,

φ2 = x10
2 y8

2 φ̂2 where φ̂2(x2, y2) =
(
A6,0 x2

8y2
4 + A5,7 x2

12y2
9 + A2,4 + A0,10 y2

2
)
.

Using this notation we write

I2(ξ) =
∫

U2

eiξφ2ρ2w2|dx2dy2| =
∫

U2

eiξ u10v8 bφ2u3v2ρ2 du dv,

where for convenience we have renamed (x2, y2) as (u, v). Note that this is almost exactly
the form discussed at the end of Section 3.1.

(8, 2)

(1, 0)

(10,3)

Figure 9. The zero set of φ2 with labelled degeneracies.

A closer inspection of the zero set of φ2 in U2, also called the total transform of the curve
{φ = 0}, will help to illuminate our course of action, so let us examine Figure 9. As mentioned
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before, the important element in this picture is the exceptional divisor, in this case consisting
of the axes.The level set {φ̂2 = 0}, which is the curvilinear arc in Figure 9, is called the strict
transform of the curve {φ = 0}.

The first of the two numbers on each arc in Figure 9 is the order to which the pulled back
phase φ2 = φ ◦ β2 vanishes along that arc. Along the strict transform curve φ̂2 = 0 we write
1 because φ̂2 vanishes to order 1: φ̂2(0) = 0 and dφ̂2 6= 0, away from the intersection of the
curve {φ̂2 = 0} with the coordinate axes.

The second of the two numbers on each arc is the order of vanishing along that arc of the
jacobian of the blowdown map β.

Each component of {φ2 = 0} contributes terms to the asymptotic approximation which
are linear combinations of powers of ξ to powers in the arithmetic progressions determined
by the label of that component. Thus the horizontal axis will contribute terms of the form∑

α∈P10,3

Cαξ−α,

where P10,3 is the arithmetic progression introduced at the end of Section 3.1). The circled
intersections of the various components of {φ2 = 0} contribute terms which also contain
logarithms. We will look at the specifics at the origin. All other intersection points will
contribute in similar fashions.

Let us first look at the origin. In this region we can reasonably absorb the variable φ̂ into
the variable v. While this may seem like a dubious trick, all we are saying is that

∂vφ̂1/8

∂v

∣∣∣∣
v=0

6= 0.

This leaves us with an overall exponent of iξu10v8. Our integral now looks like

I2(ξ) =
∫

eiξ u10v8
u3v2ρ2 du dv.

From Corollary 3.2 we see that there must be a contribution to the asymptotic expansion in
this region of the form∑

α∈P10,3

uα(ρ2)|ξ|−α +
∑

β∈P8,2

vβ(ρ2)|ξ|−β +
∑

γ∈P10,3∩P8,2

wγ(ρ2)|ξ|−γ log |ξ|.

The set P10,3 ∩ P8,2 is also an arithmetic progression and its determination requires a bit of
elementary number theory.

Observe first that lcm(8, 10) = 40. Then the ratio of P8,2 is 5
40 and the ratio of P10,3 is 4

40 .
The least common multiple of the numerators 4 and 5 is 20 and we deduce that the ratio of
the progression P8,2∩P10,3 is 20

40 = 1
2 . The smallest element of this progression is the smallest

rational number q which admits a twofold description
3
8

+
k

8
= q =

4
10

+
`

10
, k, ` ∈ Z≥0.

We deduce that we must have

15 + 5k = 16 + 4`⇐⇒ 5k − 4` = 1

which leads to the equality
k = ` = 1.

Thus the first term of P10,3 ∩ P8,2 is 1
2 which shows that

P10,3 ∩ P8,2 = P2,0.
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By similar arguments, we expect that the contribution due to the point {φ̂2 = 0} ∩ {x − 0}
on the y-axis will be of the form∑

α∈P1,0

uα(ρ2)|ξ|−α +
∑

β∈P8,2

vβ(ρ2)|ξ|−β +
∑

γ∈P1,0

wγ(ρ2)|ξ|−γ log |ξ|.

What we are seeing develop here is a general fact of this construction. For situations such as
that presented in Figure 9, we will obtain easily recognizable sequences of numbers for our
powers of ξ. For example, the asymptotic expansion of our integral in U2 contributes terms
which contain ξ raised to the following powers:

(10, 3) −→ −P10,3 =
[
− 4

10
,− 5

10
,− 6

10
, . . .

]
, (8, 2) −→ −P8,2 =

[
−3

8
,−4

8
,−5

8
, . . .

]
(1, 0) −→ −P1,0 = [−1,−2,−3, . . .]

Of course, there will be a considerable amount of overlap between these sets, but the point re-
mains: these are all the powers of |ξ| that will appear in the U2 contribution to the asymptotic
expansion of our integral.

More generally, inspection of the other 3 phases reveals that each region contributes terms
to the asymptotic approximation on the order of the positive integers as well as

U1 → −P10,3 ∪ −P1,0, U2 → −P10,3 ∪ −P8,2 ∪ −P1,0

U3 → −P8,2 ∪ −P6,1 ∪ −P1,0, U4 → −P6,1 ∪ −P1,0.

We would like to make one final observation about this special construction. The most
practical application of this theory is in examining various limits in situations of physical
limit (particularly classical and high energy limits in quantum field theory), and in that case
it is most useful to know the leading power of ξ.

In the case described above, the first possible (largest) exponent is −1/3 ∈ −P6,1, and so
to first order the integral will go asymptotically as ξ−1/3. As it turns out, there is a rather
quick way of calculating this value directly from the Newton polygon. If we draw the line
y = x on top of the Newton polygon, it will intersect the perimeter in only one point. Denote
this point t0 (as in Figure 10). Then the leading power of ξ will be exactly −1/t0. For our
phase φ, the value of t0 must lie on the line connecting the points (2,4) and (6,0)—i.e. on
the line y = 6 − x. Clearly t0 = 3, and as expected, the leading power of ξ will be ξ−1/3.
Observe that the exponent −1/3 appears in the expansions of the integrals over U2, U3 and
U4. They correspond to the cones C2, C3, C4 of our fan, precisely the cones related to the
edge of the Newton polygon intersected by the line y = x..

4. Conclusion

In conclusion, we have seen that the method of evaluating an integral of the form

Iξ =
∫

eiφ(x1,...,xn)ξa(x1, . . . , xn) dx1 · · · dxn

(in the limit as ξ → ∞, can really be looked at as an algorithmic process, each level being
reduced to the previous until we have a sum of oscillatory integrals in one dimension. The
various levels of approximation depend at their core on the complexity of the phase function
φ, as this is the component which truly determines the behavior of our integral for large ξ.

Lastly, it is instructive to realize just exactly how useful integrals of this type can be.
Mathematically there are an infinite number of situations that can be contrived in which
integrals of this form would need to be calculated, but we hope that this topic can actually
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(3, 3)

Figure 10. The Newton polygon of φ with the line y = x.

be useful in understanding the world around us. Fortunately, the topic of oscillatory inte-
grals was not just a stab in the dark—in fact, the topic could hardly be more applicable
to physics. Particularly, the path-integral formalism of modern quantum field theory relies
almost exclusively on the theory of the asymptotic approximation of oscillatory integrals.

One of the major theoretical breakthroughs of the past century was the realization that
the weak and strong interactions in the standard model could be described (via proper renor-
malization) in the path-integral formalism in the same way which electromagnetism was
described in quantum chromodynamics. The asymptotic approximation provides the math-
ematical framework of the entire discussion of renormalization, and is therefore absolutely
essential to our current understanding of the standard model and quantum field theory. How-
ever, this is not the full usefulness of this formula. Many Green’s functions have essentially
the same form as our general oscillatory integral, and therefore most applications of Green’s
functions will in some way need rely on asymptotic approximations for their validity.

In any case, one should appreciate the tremendous intricacy that is involved in discussing
asymptotic approximation in even two dimensions, let alone the multiple dimensions called
for by modern quantum field theory. Furthermore, it is quite frankly stunning how some
notions of geometry long thought to be primarily abstract can have immediate application
to new situations of physical interest. Truly, this should be seen as a subtle reminder of the
vast and complex interplay between mathematics and physics which drives both subjects to
a deeper and more profound understanding of the universe around us.
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